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Abstract. A connection between representation of compact groups and some invariant ensembles of Hermitian matrices is de-
scribed. We focus on two types of invariant ensembles which extend the Gaussian and the Laguerre Unitary ensembles. We study
them using projections and convolutions of invariant probability measures on adjoint orbits of a compact Lie group. These mea-
sures are described by semiclassical approximation involving tensor and restriction multiplicities. We show that a large class of
them are determinantal.

Résumé. Nous décrivons les liens unissant les représentations de groupes compacts et certains ensembles invariants de matrices
aléatoires. Cet article porte plus particulièrement sur deux types d’ensembles invariants qui généralisent les ensembles gaussiens
ou de Laguerre. Nous les étudions en considérant des convolutions ou des projections de probabilités invariantes sur des orbites
adjointes de groupes de Lie compacts. Par approximation semi-classique, ces mesures sont décrites par des produits tensoriels ou
des restrictions de représentations. Nous montrons qu’une large classe d’entre elles sont déterminantales.
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1. Introduction

One of the first aims of random matrix theory (RMT) is computation of eigenvalue distributions. Its first appearance
is in statistics in 1928, when Wishart [61] has determined the maximum likelihood estimator of the covariance matrix
of a Gaussian vector. In 1951, Wigner [60] introduced random Hermitian matrices in physics, with the idea that their
eigenvalues behave as the high energy levels of hard nucleus. Up to now, in this very active field of research, the
detailed analysis of these eigenvalues most often rests on the explicit determinantal expression of their distribution,
see, e.g. Mehta [45]. Although these distributions are usually obtained by more or less easy applications of the change
of variable formula, it has been noticed that they contain expressions familiar to the theory of group representations.
Actually, many tools from this theory occur in RMT: for instance, Young tableaux, Harish–Chandra–Itzkinson–Zuber
formula, symmetric spaces, and so on.

The purpose of this paper is to establish a direct link between classical compact groups and RMT and to use it
to compute the distributions of some new ensembles. On the one hand it gives expressions which are maybe not so
easy to obtain directly. On the other hand, and more importantly, it explains the frequent occurrence of concepts from
representation theory in some aspects of random matrix theory.

The main idea is simple. Roughly speaking, the ensembles we will consider are invariant under the action of
a unitary group by conjugacy. Computations will use ultimately a detailed description of the images of the Haar
measure on orbits under the adjoint action. They are called orbit measures. In the spirit of Kirillov’s orbit method,
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these measures are obtained by semi-classical approximation as limit of the empirical distribution of the weights of
irreducible representations of high dimension. For RMT, the quantities of interest will be expressed either by sums or
by projections of orbit measures. We will compute them using tensor products or restrictions of representations. This
latter computation will be made in a combinatorial-geometric manner, by using Kashiwara crystal theory, which can
be viewed as a recent and deep generalization of Young tableaux.

The paper is divided into two parts. We will describe the theoretical approach only in the second part, because it
uses algebraic machinery which can scare some readers.

The first part is devoted to its application to concrete problems in RMT. To illustrate our approach, we study some
non classical ensembles of Hermitian complex matrices. They will be either the set of all n × n Hermitian matrices
denoted below Pn(C), or the set of skew-symmetric Hermitian matrices denoted Pn(R), or the set of Hamiltonian
Hermitian matrices denoted Pn(H). The reason of these maybe strange notations is the following. Let F = R,C or H

be either the field of reals or complex or quaternions numbers. The so called classical compact groups are the neutral
components Un(F) of the unitary groups. If Un(F) is the Lie algebra of Un(F), then Pn(F) = iUn(F) is a subset of
the set of Hermitian matrices with complex entries. They correspond to the so-called classical flat symmetric spaces
associated to the complex semisimple groups. In RMT they occur in the Atland–Zirnbauer classification [1], but
among them only Pn(C) occurs in the Dyson threefold way [20]. As usual in physics, we are interested in ensembles
invariant under an appropriate group of symmetry. So we will look at random Hermitian matrices in Pn(F) whose
laws are invariant under conjugation by the elements of the compact group Un(F). Recall that in RMT an ensemble is
a random matrix.

Definition 1.1. A random matrix, or an ensemble, M with values in Pn(F) is called invariant if its distribution is
invariant under conjugation by Un(F).

It is for these ensembles that representation theory plays a role. Among them, a pre-eminent role is played by the
family of ensembles which form a projective series as n increases. Indeed, in physical applications the finite dimension
n is only an approximation. It is interesting to notice that these series admit a complete description, in the spirit of
de Finetti’s theorem. We will give it in Section 2, by applying a remarkable result of Pickrell [52]. They are obtained
as a “double mixture” of two simple types of ensembles that we call GUE(F) and LUE(F). The classical GUE and
LUE (Gaussian and Laguerre Unitary ensemble) are obtained for F = C. Notice that when F = R and F = H they
are not linked with the GOE and the GSE nor the LOE and LSE. Actually GUE(R) is in the class D of Altland and
Zirnbauer [1], and GUE(H) is in their class C. In the spirit of random matrix theory one can say that they are all in
the β = 2 family. Some of their applications will be recalled in Section 2.4.

As a first application of the introduced method we compute in Section 3 the distribution of the main minors of
an invariant random matrix. We show that the eigenvalues of the successive main minors of an invariant random
matrix in Pn(F) with given eigenvalues have the uniform distribution, or a projection of it, on a conveniently defined
Gelfand–Tsetlin polytope, which describes their interlacing. This was first proved for Pn(C) by Baryshnikov [2],
by a different method, motivated by queuing theory. We use the approximation of projections of orbits detailed in
Section 7.3. Notice that the role of Gelfand Tsetlin patterns in the study of shape process already appeared in Cohn,
Larsen and Propp [14].

As a second application, we study the LUE(F). These ensembles can be written as MΩM∗ where M is a stan-
dard Gaussian matrix with entries in F and Ω is a simple fixed appropriate matrix. For instance Ω = I when F = C.
The result of Pickrell mentioned above show that they are a building block in the harmonic analysis of infinite Her-
mitian matrices in the spirit of Olshanski and Vershik [51], Olshanski [50], Borodin and Olshanski [6], for instance.
Moreover, we will see that radically new phenomenon occur when F is not equal to C, so that this study is interesting
in itself. In Sections 4 and 5, we determine the distribution of the eigenvalues. In Section 4, one considers the case
where Ω is of rank one and analyse the perturbation of any matrix in Pn(F) by such a random matrix. This rests
on the theoretical results of the second part on tensor products of representations. The general case is considered in
Section 5.

In Section 6, considering the minor process associated to some invariant ensembles and successive rank one per-
turbations, we obtain two types of interlaced point processes, called “triangular” and “rectangular.” We deduce from
the description given in Sections 3–5 that a large class of them are determinantal. This shows that these interlacings
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exhibit repulsion. In the GUE case, this was also proved recently by Johansson and Nordenstam [34], and Okounkov
and Reshetikhin [47].

After a first part devoted to applications we develop in the second part of this paper the tools coming from repre-
sentation theory used to establish them. In Section 7, we present a variant of a theorem of Heckman which allows us
to describe in a precise way convolutions and projections of adjoint orbit measures, once we know the so called tensor
or branching rules. For our applications these rules are described in Section 9. They are classical and simple in the
case when F = C, but more involved in the other ones. Actually we only need a geometrical description of these rules
and not their combinatorics as usual. This is quite remarkable. These geometric descriptions are easily and directly
obtained using Kashiwara crystal theory. As explained in Section 9, crystal theory gives us a description in terms of
non-intersecting paths, or interlaced points, which is exactly what we need. Finally in Section 10, we apply the results
obtained in this second part to the context of RMT described in the first part.

One can find in the literature different versions of the theorem of Heckman. For instance, Collins and Sniady
gave one recently in [15], in the framework of noncommutative probabilities. Their approach consists in considering
a random matrix as a limit of random matrices with non-commutative entries. While finishing to write this paper
announced in [16], Forrester and Nordenstam [24] posted an article in arxiv dealing with the GUE(R) case.

Notation 1.2. In this paper, for an integer n we will write

ñ =
{

n, when F = C and H,

�n/2�, when F = R.

We let c = 1 if F = C,R, c = 2 if F = H and ε = 1 if n is odd and 0 otherwise.

Part 1. RANDOM MATRICES

2. Ensembles of Hermitian matrices

2.1. Some invariant set of Hermitian matrices

The set Pn(C) of n × n Hermitian matrices is the real vector space of complex matrices M such that M∗ = M , where
M∗ is the adjoint of M . Many classical ensembles considered in physics occur on subsets of Pn(C). Let us distinguish
three important classes which occur as flat symmetric spaces associated with compact groups, or equivalently complex
semi-simple groups, and are thus of the so called β = 2 type. They have been introduced in the literature under various
names. Our choice is due to the fact that we want to have a common setting for all of them.

The first set we consider is Pn(C) itself. The second set is the set Pn(R) of Hermitian complex matrices M which
can be written as M = iX where X is a real matrix. In this case X is skewsymmetric (i.e. X + Xt = 0). Thus Pn(R)

is just a convenient parametrization of the set of skewsymmetric real matrices, studied for instance by Mehta [45].
In order to introduce the third one, we first define the C-symmetry class of Atland and Zirnbauer [1]. It is the set

of complex Hermitian matrices H which can be written as

H =
(

H S

S∗ −H̄

)
, (1)

where H and S are two n × n complex matrices, with H Hermitian and S symmetric. In other words it is the set of
Hermitian matrices of the Lie algebra of the complex symplectic group. One recognizes the form of the Bogoliubov–de
Gennes Hamiltonian in condensed matter physics (see below). Actually we will use a more convenient representation
by using quaternions. For us, the set H of quaternion is just the set of 2 × 2 matrix Z with complex entries which can
be written as

Z =
(

a b

−b̄ ā

)
,
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where a, b ∈ C. Its conjugate Z∗ is the usual adjoint of the complex matrix Z. We define Pn(H) as the set of 2n × 2n

complex Hermitian matrices M which can be written as M = iX where X is a n × n matrix with quaternionic entries.
Let W be the matrix of the permutation of C

2n:

(x1, x2, . . .) �→ (x1, xn+1, x2, xn+2, x3, . . .).

Then H is an Hamiltonian given by (1) if and only if

H̃ = W HW−1 (2)

is in Pn(H). Therefore Pn(H) is just a parametrization of the class C of Altland and Zirnbauer. Notice that the matrices
of the GSE are not of this type since they are self dual matrices with entries in H. We can thus define:

Definition 2.1. For F = R,C,H, Pn(F) is the set of n × n Hermitian matrices with entries in iF.

One recognizes in Pn(F) the three infinite families of Cartan motion groups associated with compact (or complex)
groups. Indeed, let Un(F) be the neutral component of the group of unitary matrices with entries in F. Its Lie algebra
Un(F) is the set of matrices M with entries in F such that M + M∗ = 0. Then Pn(F) = iUn(F), and the Cartan motion
group associated with Un(F) is

G = Un(F) ×σ Pn(F),

where Un(F) acts on Pn(F) through σ by conjugation (i.e. by adjoint action). In the classification of symmetric spaces,
Pn(C) is said to be of type A and Un(C) is the unitary group. When n = 2r , Pn(R) is of type D and when n = 2r + 1,
Pn(R) is of type B, and Un(R) is the special orthogonal group SO(n) in both cases. At last, Pn(H) is of type C and
Un(H) is the symplectic unitary group Sp(n).

2.2. Eigenvalues and radial part

Consider a matrix M in Pn(F). Since M is an Hermitian complex matrix, it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

when F = R and C, and λ1 ≥ λ2 ≥ · · · ≥ λ2n when F = H. When F = C there is no further restriction, but when
F = R, then λn−k+1 = −λk , for k = 1, . . . , ñ + 1, which implies λñ+1 = 0 when n is odd (Recall that ñ = [n/2] when
F = R). When F = H then λ2n−k+1 = −λk , for k = 1, . . . , n. We define the Weyl chambers Cn in the different cases
by: when F = C,

Cn = {
λ ∈ R

n;λ1 ≥ λ2 ≥ · · · ≥ λn

}
,

when F = R, and n is odd,

Cn = {
λ ∈ R

ñ;λ1 ≥ λ2 ≥ · · · ≥ λñ ≥ 0
}
,

when F = R, and n is even (see Remark 2.3),

Cn = {
λ ∈ R

ñ;λ1 ≥ λ2 ≥ · · · ≥ λñ−1 ≥ |λñ| ≥ 0
}
,

when F = H,

Cn = {
λ ∈ R

n;λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
}
.

The Weyl chamber is a fundamental domain for the adjoint action of Un(F) on Pn(F). More precisely, let us
introduce the following matrices. For F = C, and λ = (λ1, . . . , λn) in R

n, we denote by Ωn(λ) the n × n diagonal
matrix

Ωn(λ) =
⎛
⎝λ1

. . .

λn

⎞
⎠ .
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When F = R, we let ω(α) =
(

0 iα
−iα 0

)
where α ∈ R, and for λ ∈ Rñ, we write Ωn(λ) for the n × n block-diagonal

matrix given by, when n is even,

Ωn(λ) =
⎛
⎝ω(λ1)

. . .

ω(λñ)

⎞
⎠

and when n is odd,

Ωn(λ) =

⎛
⎜⎜⎝

ω(λ1)
. . .

ω(λñ)

0

⎞
⎟⎟⎠ .

When F = H and λ = (λ1, . . . , λn) in R
n, we let

Ωn(λ) =
⎛
⎝Z(λ1)

. . .

Z(λn)

⎞
⎠ ,

where, for α ∈ R, Z(α) is the 2 × 2 matrix Z(α) =
(

α 0
0 −α

)
. Then it is well known and not difficult to prove that:

Lemma 2.2. Let M be a matrix in Pn(F). Then there exists a unique λ ∈ Cn and a matrix U ∈ Un(F) such that

M = UΩn(λ)U∗.

We call λ the radial part of M and will denote it by λ = X(n)(M).

This is the so called radial decomposition of M in the flat symmetric space Pn(F). We see that in each case{
kMk∗, k ∈ Un(F)

}∩ {
Ωn(μ),μ ∈ Cn

}= {
Ωn(λ)

}
.

Remark 2.3. The definition of Cn when F = R and n is even may look strange. Actually, in this case both λñ and −λñ

are eigenvalues, so λ1, . . . , λñ−1, |λñ| is the set of positive eigenvalues. But one has to take this Cn to have the lemma
above.

2.3. Infinite invariant ensembles

We have defined an invariant random matrix (or invariant ensemble) in Pn(F) as a random matrix with values in
Pn(F), whose distribution is invariant under conjugation by Un(F). There are of course many such matrices. Actually
it is well known that one has the following lemma.

Lemma 2.4. A random matrix M with value in Pn(F) is invariant if and only if it can be written as M = UΩn(Λ)U∗,
where U ∈ Un(F) and Λ ∈ Cn are independent random variables, U having the Haar distribution.

Proof. The Lemma 2.2 allows us to write M = UΩn(Λ)U∗, with U ∈ Un(F) and Λ ∈ Cn. Let V ∈ Un(F) be a Haar
distributed random variable independent of M . Then M as the same distribution as (V U)Ωn(Λ)(V U)∗. The Haar
measure being invariant by multiplication, this has the same law as V Ωn(Λ)V ∗. �

Two important classes of invariant random matrices in Pn(F) are to be distinguished. The first one is the class of
ergodic measures. An invariant probability is called ergodic if it cannot be written as a barycenter of other invariant
probabilities. On Pn(F) the ergodic invariant measures are the orbit measures, that is the law of UΩn(λ)U∗ when U
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has the Haar distribution and λ is fixed in Cn. The second class is linked with random matrix theory. Actually, in that
case one is interested in a family νn of probability measures on Pn(F) which forms a projective system as n groes, and
thus defines a probability measure ν on the set P∞(F) of infinite Hermitian matrices. More precisely, for F = R,C

or H, let P∞(F) be the set of matrices {Mk,l,1 ≤ k, l < +∞}, with entries in iF such that Ml,k = M∗
k,l . For each

n ∈ N, Un(F) acts on P∞(F). A probability measure on P∞(F) is called invariant if it is invariant under the action of
each Un(F).

It is remarkable that, following Pickrell [52] and Olshanski and Vershik [51], one can describe explicitly the set
of invariant measures. As in de Finetti’s description, each of this measure is obtained as a mixture of ergodic ones,
and each ergodic one has a product structure: the diagonal elements form an i.i.d. sequence (see below). In order to
describe them let us introduce the two basic ensembles on P∞(F).

Let us denote Mn,m(F) the set of n × m matrices with entries in F. It is a real vector space. We put on it the
Euclidean structure defined by the scalar product,

〈M,N〉 = a Re tr
(
MN∗), M,N ∈ Mn,m(F),

where a = 1 for F = R, and a = 2 for F = C,H. Recall that a standard Gaussian variable on a real Euclidean space
with finite dimension d is a random variable with density

x �→ (2π)−d/2e−〈x,x〉/2.

Our choice of the Euclidean structure above defines a notion of standard Gaussian variable on Mn,m(F). Taking
m = n = 1 this defines standard Gaussian variables in F itself. We equip the real vector space Pn(F) with the scalar
product

〈M,N〉 = b tr(MN), M,N ∈ Pn(F),

where b = 1 when F = C and b = 1/2 when F = R,H, and thus define a standard Gaussian variable on Pn(F).
We have defined above, for each choice of F, the matrix Ωn(λ) for λ ∈ Cn. For k ≤ ñ, we let

Ωk
n = Ωn(1, . . . ,1,0, . . . ,0), (3)

where 1 appears k times, and, when 1 appears ñ times, we let

Ωn = Ωñ
n = Ωn(1, . . . ,1). (4)

Definition 2.5. For F = R,C or H, and k,n ∈ N, we define:

1. The ensemble GUEn(F) as the set of matrices in Pn(F) with the standard Gaussian distribution.
2. The ensemble LUEn,k(F) as the set of matrices MΩkM

∗ when M is a standard Gaussian random variable in
Mn,k(F).

Notice that if the matrices of the LUEn,k(F) may look strange, their Fourier transform does not (recall that k̃ = k

when F = C,H and k̃ = [k/2] when F = R, and that c = 1 when F = C,R and c = 2 when F = H):

Lemma 2.6. Let M be a standard Gaussian random variable in Mn,k(F). Then the Fourier transform of MΩkM
∗ is

given by

E
(
e−i〈N,MΩkM

∗〉)= det

(
I + i

c
N

)−k̃

, N ∈ Pn(F).

Proof. As MΩkM
∗ is invariant, it is enough to prove the identity for N = Ωn(λ), with λ ∈ Cn. When F = C,

〈
N,MΩkM

∗〉= n∑
i=1

k∑
j=1

λi |Mi,j |2,
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where Mi,j are independent standard Gaussian complex r.v. We have, for all α ∈ R,

E
(
e−iα|M1,1|2)= 1

1 + iα
,

which gives the complex case. When F = H,

〈
N,MΩkM

∗〉= n∑
i=1

j∑
j=1

λi

(|ai,j |2 − |bi,j |2
)
,

where the matrices
(

ai,j −b̄i,j

bi,j āi,j

)
are independent standard Gaussian variables in H. We have

E
(
e−iα(|a1,1|2−|b1,1|2))= 1

1 + (α/2)2
,

which gives the quaternionic case. When F = R,

〈
N,MΩkM

∗〉= ñ∑
i=1

k̃∑
j=1

λi(M2i,2j−1M2i−1,2j − M2i−1,2j−1M2i,2j ),

where the Mi,j ’s are independent standard real Gaussian variables. We have

E
(
e−iα(M2,1M1,2−M1,1M2,2)

)= 1

1 + α2
,

which gives the real case. �

When F = C we obtain the classical LUE, called the Laguerre Unitary or Complex Wishart ensemble, which is
carried by the cone of positive definite matrices. The situation is completely different for the fields R and H: in these
cases the Fourier transform

det

(
I + i

c
N

)−k̃

= det

(
I + N2

c2

)−k̃/2

is real, and therefore the distribution of a random matrix of the LUE(F) is symmetric. Actually the support of MΩnM
∗

is the whole of Pn(F). Observe that in the cases when F = H and F = R with n odd, all the invariant measures on
Pn(F) are symmetric.

Let us give a justification for the introduction of these invariant ensembles. We define the set LUE1∞(F) as the
set of matrices MΩ1∞M∗ with M ∈ M∞(F) such that the submatrices {Mi,j , i, j = 1, . . . , n} are standard Gaussian
variables in Mn(F) and the set GUE∞(F) as the set of matrices M ∈ P∞(F) such that the submatrices {Mi,j , i, j =
1, . . . , n} are standard Gaussian variables in Pn(F). A random matrix in P∞(F) is called invariant if its law is invariant
under the action of each Un(F). As will be clear from the proof, the following theorem is essentially contained in
Pickrell [52]. It can be useful to notice that the intuition behind this result is the fact that limit of orbit measures are
of this type, by Borel’s Theorem 5.4 recalled below.

Theorem 2.7. Each ergodic invariant random matrix M in P∞(F) is sum of elements of GUE∞(F) and LUE1∞(F):
it can be written as

M = aI + bG +
+∞∑
k=1

dkLk,

where G belongs to GUE∞(F), Lk belongs to LUE1∞(F), the random variables G,L1,L2, . . . are independent, and
a, b, dk are constants such that

∑
d2
k < +∞, I is the identity matrix. Moreover, a = 0 when F = R and F = H.
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Proof. The proof will use Olshanski spherical pairs, see Olshanski [48,49] or Faraut [22]. Given a topological group G

and a closed subgroup K , one says that (G,K) is an Olshanski spherical pair if for each irreducible unitary represen-
tation π of G in an Hilbert space H , the space {u ∈ H ;π(k)u = u, for all k ∈ K} is zero- or one-dimensional. For
instance, an inductive limit of Gelfand pairs is an Olshanski pair.

The dual of the vector space P∞(F) is the inductive limit of the Pn(F)’s, which is the set P (∞)(F) of matrices M

in P∞(F) such that Mi,j = 0 for i + j large enough. Each Un(F) acts on P (∞)(F) as on P∞(F). Let U(∞)(F) be the
group inductive limit of the Un(F)’s. Recall the radial decomposition Pn(F) = {UΩn(λ)U∗,U ∈ Un(F), λ ∈ Cn}. Let
λ = (λ1, λ2, . . .) be an infinite sequence of real numbers, with λk = 0 for k large enough. In this case, we write Ω(λ)

instead of Ω∞(λ). Notice that each matrix of P (∞)(F) can be written as UΩ(λ)U∗ for an U ∈ U(∞)(F) and such a λ.
As inductive limit of Gelfand pairs (U(∞)(F) ×σ P (∞)(F),U(∞)(F)) is an Olshanski pair. Therefore, by the so-

called multiplicative property of Voiculescu and Olshanski (see Olshanski [49], Pickrell [52]) an invariant probability
measure ν on P∞(F) is ergodic if and only if its Fourier transform ψ on P (∞)(F) is a positive definite invariant
function such that, for some function φ : R → C,

ψ
(
Ω(λ1, λ2, . . .)

)= φ(λ1)φ(λ2) · · ·

for all λ as above. When F = C it is proved in Pickrell [52] (see also Olshanski and Vershik [51]) that there exist
unique real numbers a, b ≥ 0 and dk, k ≥ 1, such that for all t ∈ R,

φ(t) = eiate−bt2
∞∏

k=1

[
(1 + idkt)e

idkt
]−1

. (5)

Therefore the theorem holds when F = C. We now consider the case where F = R, following an idea in Pickrell [52].
To any complex matrix M ∈ P (∞)(C) we associate a matrix f (M) ∈ P (∞)(R) by replacing each entry m = x + iy,
x, y ∈ R of M by the 2 × 2 matrix

m̃ =
(

iy ix
−ix iy

)
.

For all λ = (λ1, λ2, . . .), f (Ω(λ)) = Ω(λ) where Ω is, on the left-hand side, the one defined for F = C and on the
right-hand side the one defined for F = R.

Consider an ergodic invariant probability measure on P∞(R) and let ψ be its Fourier transform defined on
P (∞)(R). Then ψ is invariant and positive definite and by the multiplicativity theorem there exists, as above, a func-
tion φ : R → C such that

ψ
(
Ω(λ1, λ2, . . .)

)= φ(λ1)φ(λ2) · · · .

The function ψ ◦ f on P (∞)(C) is obviously positive definite and invariant. Moreover, since f ◦ Ω = Ω one has

(ψ ◦ f )
(
Ω(λ1, λ2, . . .)

)= φ(λ1)φ(λ2) · · · .

Therefore by the sufficient condition of the multiplicativity theorem, ψ ◦ f is the Fourier transform of an ergodic
invariant probability measure on P∞(C). Thus φ can be written as (5) above. Moreover, the function ψ is invariant
under the groups Un(R) = SO(n). Using the adequate reflection in SO(3), we see that

ψ
(
Ω(λ1, λ2, . . .)

)= ψ
(
Ω(−λ1, λ2, . . .)

)
.

Therefore, for all t ∈ R, φ(t) = φ(−t) which implies by uniqueness that,

φ(t) = e−bt2
∞∏

k=1

[(
1 + (dkt)

2)]−1
.
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Using the expression of the Fourier transform given in Lemma 2.6, we obtain the theorem in the case F = R. When
F = H the proof is similar: one uses the map f̃ : P (∞)(C) → P (∞)(H) defined in the following way. First, we define
f̃n : Pn(C) → Pn(H), by when M ∈ Pn(C) and W is given by (2),

f̃n(M) = W

(
M 0
0 −M̄

)
W ∗ ∈ Pn(H).

For M ∈ P (∞)(H), let πn(M) be its main minor of order n. The fact that πn(f̃n+1(πn+1(M))) = f̃n(πn(M)) allows
us to define f̃ :M ∈ P (∞)(C) → f̃ (M) ∈ P (∞)(H) by πn(f̃ (M)) = f̃n(πn(M)). We also have f̃ ◦ Ω = Ω . The sym-
metry λ �→ −λ given by the action of Un(H) allows us to conclude as when F = R. �

2.4. Symmetry classes and some applications

Let us recall the three main historical steps in the description of the ten symmetry classes, i.e. series of classical sym-
metric spaces, in physical applications of RMT, see Atland and Zirnbauer [1], Caselle and Magnea [13], Forrester [23],
Heinzner et al. [31]. We refer to the symmetry classes by Cartan’s symbol for the symmetric space corresponding to
their Hamiltonians. The first step is the introduction of the “threefold way” by Dyson [20] in 1962 where are defined
the GUE (class A), the GOE (class AI) and the GSE (class AII), often called the Wigner–Dyson classes. They describe
for instance single particle excitations in the presence of a random potential. In the 90’s, Altland and Zirnbauer [1]
have defined the classes BD, C, DIII and CI to describe mesoscopic normal-superconducting hybrid structures: for
instance a normalconducting quantum dots in contact with two superconducting regions. They are sometimes called
the Altland–Zirnbauer, or Bogoliubov–de Gennes, or Superconductor classes. At least chiral classes AIII (LUE), BDI
(LOE) and CII (LSE) were introduced by Verbaarschot [57] to describe Dirac fermions or systems with purely off-
diagonal disorder, as in random flux models. The explicit description of the distribution of the eigenvalues in all these
classes is given for instance in Forrester [23] or in Eichelsbacher and Stolz [21].

In our ensembles β = 2, and thus only the classes A, B, C, D, AIII occur. Let us for instance recall rapidly how
the new classes C and D appear in quantum mechanics. Dynamics of the systems of the Wigner Dyson class is given
in term of second quantization. For the superconductor classes, one convert this set up into first quantization by
using the Bogoliubov–de Gennes Hamiltonian. As explained in Atland and Zirnbauer [1], this Hamiltonian acts on a
2n-dimensional Hilbert space by a complex Hermitian matrix H which can be written as

H =
(

H Δ

−Δ̄ −Ht

)
,

where H and Δ are n × n matrices. Let U0 be the 2n × 2n unitary matrix, block diagonal with each diagonal block
equal to

u0 = 1√
2

(
1 1
i −i

)

in other words U0 = u0 ⊗ In. Then X = U0 HU−1
0 is in P2n(R) and each matrix in P2n(R) is of this form. This shows

that P2n(R) is a parametrization of the class D of Altland and Zirnbauer.
If we add spin rotation invariance the BdG Hamiltonian can be written (see [1]) as two commuting subblocks of

the form

H =
(

H1 H2
H ∗

2 −H̄1

)
.

This is the class C of Altland Zirnbauer. As seen above, Pn(H) describes this set. Notice also that the GUE(R), or
equivalently the antisymmetric case, was already studied as soon as 1968 by Rozenbaum and Mehta in [44]. Recently
it also occurs for instance in Cardy [12] and Brezin et al. [9,10], for instance.

When F = R and H, the eigenvalues of the matrices in Pn(F) come in pairs symmetric with respect to the origin
(this is sometimes linked with Kramers degeneracy). So in a sense there is a presence of a wall at 0. This often explains
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their occurrences in applications, see for instance Krattenthaler et al. [43], Katori et al. [37,38], Gillet [28], Forrester
and Nordenstam [24]. The LUE(C) is in a chiral class, but not the LUE(R) nor the LUE(H) which appear to be new
and for which, we are not aware of any physical application.

3. Minors and Gelfand–Tsetlin polytopes

In this section, we compute the joint distribution of the main minors of invariant random matrices in Pn(F). For
M = {Mi,j ,1 ≤ i, j ≤ n} in Pn(F) and k ≤ n, the main minor of order k of M , is the submatrix

πk(M) = {Mij ,1 ≤ i, j ≤ k}

(this is not the standard definition of a minor: usually it is the determinant of a submatrix of M , and not the submatrix
itself). The main minor of order k of M belongs to Pk(F), so we can consider its radial part denoted X(k)(M).
Considering the radial parts of all the main minors of an invariant random matrix in Pn(F), we get a random variable,

X(M) = (
X(1)(M), . . . ,X(n)(M)

)
,

which is, when F is equal to C, and M ∈ Pn(C) is a matrix from the GUE, the one introduced by Baryshnikov in
relation with queuing theory in [2], and called the minor process by Johansson and Nordenstam in [34]. The main
result of this section is stated at Theorem 3.4. It claims that for any F, the minor process associated to an invariant
random matrix with a fixed radial part, is distributed according to the uniform law, or a projection of it when F = H,
on a so called Gelfand–Tsetlin polytope.

Our proofs rest on results given from Section 7 to 10, which involve elements of representation theory of compact
Lie groups. In this section, our statements are made without any reference to this theory and most of the proofs are
postponed up to the Section 10.

When M is a complex Hermitian matrix, Rayleigh’s theorem claims that if λ ∈ R
n is the vector of the ordered

eigenvalues of M and if β ∈ R
n−1 is the one of its main minor πn−1(M) of order n − 1, then λ and β satisfy

interlacing conditions λi ≥ βi ≥ λi+1, i = 1, . . . , n − 1. Obviously this result also holds when M belongs to Pn(R)

and Pn(H), these sets being subsets of complex Hermitian matrices. Thus for F = C,R, one obtain easily that X(M)

belongs to the so called Gelfand–Tsetlin polytopes, that we define below. We will see after these definitions what
happens for F = H. For x, y ∈ R

n we write x � y if x and y are interlaced, i.e.,

x1 ≥ y1 ≥ x2 ≥ · · · ≥ xn ≥ yn

and we write x � y when

x1 > y1 > x2 > · · · > xn > yn.

When x ∈ R
n+1 and y ∈ R

n we add the relation yn ≥ xn+1 (resp. yn > xn+1). We denote |x| the vector whose
components are the absolute values of those of x.

Definition 3.1. Let λ be in the Weyl chamber Cn. The Gelfand–Tsetlin polytope GTn(λ) is defined by:

• when F = C,

GTn(λ) = {(
x(1), . . . , x(n)

)
: x(n) = λ,x(k) ∈ R

k, x(k) � x(k−1),1 ≤ k ≤ n
}
,

• when F = H,

GTn(λ) = {(
x(1/2), x(1), x(3/2), . . . , x(n−1/2), x(n)

)
: x(n) = λ,

x(k), x(k−1/2) ∈ R
k+, x(k) � x(k−1/2) � x(k−1),1 ≤ k ≤ n

}
,
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• when F = R,

GTn(λ) = {(
x(1), . . . , x(n)

)
: x(n) = λ,x(k) ∈ R

i−1+ × R when k = 2i,

x(1) = 0, x(k) ∈ R
i+ when k = 2i + 1,

∣∣x(k)
∣∣� ∣∣x(k−1)

∣∣,1 ≤ k ≤ n
}
.

If M is a matrix in Pn(H) such that X(n)(M) = λ, then X(M) belongs to the image of GTn(λ) by the map
(x(1/2), x(1), . . . , x(n)) ∈ GTn(λ) �→ (x(1), x(2), . . . , x(n)). To prove it, we can consider for instance, for r = 1, . . . , n,
the vector X(r−1/2)(M) ∈ R

r whose components are the ordered absolute values of the r largest eigenvalues of the
main minor of order 2r − 1 of M considered as a matrix from P2n(C). Then Rayleigh’s theorem implies that(

X(1/2)(M),X(1)(M), . . . ,X(n−1/2)(M),X(n)(M)
)

belongs to the Gelfand–Tsetlin polytope GTn(λ) of type H, which gives the announced property.
Usually, an element x of a Gelfand–Tsetlin polytope, is represented by a triangular array, called Gelfand–Tsetlin

array, as indicated from Figs 1 to 4.
Let us say what is meant by the uniform measure on a Gelfand–Tsetlin polytope. It is a bounded convex set of a

real vector space. As usual, we define the volume of a bounded convex set C as its measure according to the Lebesgue
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Fig. 1. A Gelfand–Tsetlin array for F = C.
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Fig. 2. A Gelfand–Tsetlin array for F = H.
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Fig. 3. A Gelfand–Tsetlin array for F = R, n odd.
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Fig. 4. A Gelfand–Tsetlin array for F = R, n even.

measure on the real affine subspace that it spans. We denote it vol(C). We define the Lebesgue measure on C as this
Lebesgue measure restricted to C and the uniform probability measure on C as the normalized Lebesgue measure
on C.

Let M ∈ Pn(F) be an invariant random matrix. The vector X(M) is a random variable with values in GTn =⋃
λ∈Cn

GTn(λ). We will show that the law of X(M) involves uniform probability measures on Gelfand–Tsetlin poly-
topes.

Definition 3.2. For λ in the Weyl chamber Cn, we let μλ be the image of the uniform probability measure on GTn(λ)

by the map pn−1 :x ∈ GTn(λ) �→ x(n−1) ∈ Cn−1.

We observe from Figs 1 to 4 that Gelfand–Tsetlin polytopes can be defined recursively. Thus the uniform measure
on GTn(λ), denoted mGTn(λ), satisfies the remarkable identity

mGTn(λ) =
∫

mGTn−1(β)μλ(dβ), (6)

which explains why we first focus on the measures μλ, λ ∈ Cn. The following lemma is proved at Paragraph 10.1.
The matrix Ωn(λ) considered in this lemma is defined in Section 2.2.

Lemma 3.3. Let λ be in the Weyl chamber Cn and U ∈ Un(F) be a Haar distributed random variable. Then the
distribution of the radial part of the main minor of order n − 1 of UΩn(λ)U∗ is μλ.

We will now describe the law of X(M) for every invariant random matrix M in Pn(F). It follows from Lemma 2.4
that it is enough to describe it for M = UΩn(λ)U∗, with U a Haar distributed random variable in Un(F) and λ fixed
in Cn.

Theorem 3.4. Let M = UΩn(λ)U∗, with U Haar distributed in Un(F) and λ ∈ Cn. Then X(M) is uniformly distrib-
uted on GTn(λ) for F = R,C and is distributed according to the image of the uniform measure on GTn(λ) by the map
(x(1/2), . . . , x(n−1/2), x(n)) ∈ GTn(λ) �→ (x(1), x(2), . . . , x(n)) for F = H.

Proof. Identity (6) implies that it is enough to prove that for every integer k ∈ {1, . . . , n − 1} and every bounded
measurable function f : Ck → R, the conditional expectations satisfy

E
[
f
(
X(k)(M)

)∣∣σ{X(k+1)(M), . . . ,X(n)(M)
}]= E

[
f
(
X(k)(M)

)∣∣σ{X(k+1)(M)
}]

.

For V ∈ Uk+1(F) we write V MV ∗ instead of(
V 0
0 I

)
M

(
V ∗ 0
0 I

)
,
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where I is the identity matrix with appropriate dimension. Let us write the radial decomposition πk+1(M) =
V Ωk+1(X

(k+1)(M))V ∗, with V ∈ Uk+1(F). Let W be a random variable independent of M , Haar distributed in
Uk+1(F). We have Wπk+1(M)W ∗ = πk+1(WMW ∗) and X(r)(WMW ∗) = X(r)(M), r = k + 1, . . . , n, so(

πk+1(M),X(k+1)(M), . . . ,X(n)(M)
)

has the same distribution as(
WΩk+1

(
X(k+1)(M)

)
W ∗,X(k+1)(M), . . . ,X(n)(M)

)
.

Then we have

E
[
f
(
X(k)(M)

)∣∣σ{X(k+1)(M), . . . ,X(n)(M)
}]

= E
[
f
(
X(k)

(
πk+1(M)

))∣∣σ{X(k+1)(M), · · · ,X(n)(M)
}]

= E
[
f
(
X(k)

(
WΩk+1

(
X(k+1)(M)

)
W ∗))∣∣σ{X(k+1)(M), · · · ,X(n)(M)

}]
= E

[
f
(
X(k)(M)

)∣∣σ{X(k+1)(M)
}]

. �

Let us now give an explicit description of the measures μλ, λ ∈ Cn. We first introduce a function dn, that we call
asymptotic dimension. Recall that ε is equal to 1 if n /∈ 2N and 0 otherwise.

Definition 3.5. We define the function dn on Cn by

dn(λ) = cn(λ)−1Vn(λ), λ ∈ Cn,

where the functions Vn and cn are given by:

• when F = C,

Vn(λ) =
∏

1≤i<j≤n

λi �=λj

(λi − λj ),

cn(λ) =
∏

1≤i<j≤n

λi �=λj

(j − i),

• when F = H,

Vn(λ) =
∏

1≤i<j≤n

λi �=λj

(
λi − λj

) ∏
1≤i<j≤n

λi �=−λj

(
λi + λj

) ∏
1≤i≤n

λi �=0

λi,

cn(λ) =
∏

1≤i<j≤n

λi �=λj

(j − i)
∏

1≤i<j≤n

λi �=−λj

(2n + 2 − j − i)
∏

1≤i≤n

λi �=0

(n + 1 − i),

• when F = R,

Vn(λ) =
∏

1≤i<j≤ñ

λi �=λj

(
λi − λj

) ∏
1≤i<j≤ñ

λi �=−λj

(
λi + λj

) ∏
1≤i≤ñ

λi �=0

λε
i ,

cn(λ) =
∏

1≤i<j≤ñ

λi �=λj

(j − i)
∏

1≤i<j≤ñ

λi �=−λj

(n − j − i)
∏

1≤i≤ñ

λi �=0

(
ñ + 1

2
− i

)ε

.
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When λ is in the interior of the Weyl chamber, then dn(λ) is just, up to a constant, the product of the positive roots
of Un(F). We let cn = cn(λ) in this case. We have the following lemma.

Lemma 3.6. Let λ be in the interior of Cn. Then

• when F = C,

dn(λ) = cn det
(
λ

j−1
i

)
n×n

,

• when F = H,

dn(λ) = cn det
(
λ

2j−1
i

)
n×n

,

• when F = R,

dn(λ) = cn det
(
λ

2j−2+ε
i

)
ñ×ñ

.

In particular, when F = C and λ is in the interior of the Weyl chamber, dn(λ) is just the Vandermonde polynomial.
The following lemma shows the importance of these functions for us.

Lemma 3.7. For any λ in the Weyl chamber Cn, the volume of GTn(λ) is dn(λ).

Proof. It is an immediate consequence of Lemma 10.1. �

For λ in the Weyl chamber, we let lλ be the Lebesgue measure on the convex set pn−1(GTn(λ)), where pn−1 is the
projection introduced at Definition 3.2.

Lemma 3.8. Let λ be in the Weyl chamber. Then,

• when F = R,C,

μλ(dβ) = dn−1(β)

dn(λ)
lλ(dβ),

• when F = H,

μλ(dβ) = dn−1(β)

dn(λ)
vol

({
z ∈ R

n: λ � z � β
})

lλ(dβ).

Proof. For x ∈ GTn(λ), the vector (x(1), . . . , x(n−1)) when F = C,R and the vector (x(1/2), x(1), x(3/2), . . . , x(n−1))

when F = H, belong the Gelfand–Tsetlin polytope GTn−1(x
(n−1)), whose volume is equal to dn−1(x

(n−1)) by
Lemma 3.7. This implies easily the lemma. �

We now give the density of μλ for two particular cases: when λ is in the interior of the Weyl chamber and when λ

has only one strictly positive component. For the computations, we recall a generalised Cauchy–Binet identity (see,
for instance, [33]). Let (E, B,m) be a measure space, and let φi and ψj , 1 ≤ i, j ≤ n, be measurable functions such
that the φiψj ’s are integrable. The generalised Cauchy–Binet identity is

det

(∫
E

φi(x)ψj (x)dm(x)

)
= 1

n!
∫

En

det
(
φi(xj )

)
det
(
ψi(xj )

) n∏
k=1

dm(xk). (7)

Let us also recall the identity which gives interlacing conditions with the help of a determinant (see Warren [59]). Let
x and y be two vectors in R

n such that x1 > · · · > xn and y1 > · · · > yn. Then

1{x�y} = det(1{xi>yj })n×n. (8)
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Proposition 3.9. Let λ be in the Weyl chamber Cn. If λ is in the interior of Cn, then the measure μλ has a density fλ

with respect to the Lebesgue measure on Cn−1 defined by :

• when F = C, fλ(β) = dn−1(β)

dn(λ)
1{λ�β},

• when F = R, fλ(β) = dn−1(β)

dn(λ)
1{|λ|�|β|},

• when F = H, fλ(β) = dn−1(β)

dn(λ)
det((λi − βj )1{λi≥βj })n×n, with the convention βn = 0.

If λ = (θ,0, . . . ,0), θ ∈ R+, then the measure μλ is equal to μ̃λ ⊗ δñ−1
0 , μ̃λ having a density gθ with respect to the

Lebesgue measure on R+ defined by:

• when F = C, gθ (β) = (n − 1)
βn−2

θn−1 1[0,θ](β),

• when F = R, gθ (β) = (n − 2)
βn−3

θn−2 1[0,θ](β),

• when F = H, gθ (β) = (2n − 2)(2n − 1)
β2n−3

θ2n−1 (θ − β)1[0,θ](β).

Proof. Lemma 3.8 gives immediately the densities fλ and gθ for F = C,R. For F = H and λ in the interior of the
Weyl chamber, this lemma implies that, for β ∈ R

n+,

fλ(β) = dn−1(β)

dn(λ)

∫
Rn

1{λ�z}1{z�β} dz.

We get the announced formula using the identity (8) and the generalised Cauchy–Binet identity (7). For F = H and
λ = (θ,0, . . . ,0) we get from Lemma 3.8 that, for β ∈ R+,

gθ (β) = dn−1(β)

dn(λ)

∫
R

1{θ≥z≥β} dz = dn−1(β)

dn(λ)
(θ − β)1[0,θ](β). �

4. Rank one perturbation on Pn(F)

The next two sections are devoted to the LUE introduced in Definition 2.5. We will focus on the distribution of the
eigenvalues. A random matrix of the LUEn,k(F) can be written as

∑
i=1,...,k̃

MiΩ
1
nMi , where the Mi ’s are independent

standard Gaussian variables in Mn(F) (cf. Lemma 2.6). We will compute the distribution of its eigenvalues recursively
on k. Thus, the study of an additive perturbation by the simplest Laguerre ensemble, i.e. the LUE1

n(F), is the first step,
and we give in Theorem 4.5 the distribution of Ωn(λ) + MΩ1

nM∗, for λ ∈ Cn.
For λ an element of Cn having only k nonzero components, the others being equal to zero, we will write

Ωn(λ1, . . . , λk) instead of Ωn(λ). Let θ ∈ R+ and U be a Haar distributed random variable in Un(F). We first de-
scribe the distribution of the radial part of Ωn(λ) + UΩn(θ)U∗. We introduce the following sets.

Definition 4.1. For λ ∈ Cn, θ ∈ R
∗+, we define the set E (λ, θ) by:

• when F = C,

E (λ, θ) =
{

(β, x) ∈ R
n × GTn: β � λ,

n∑
i=1

(βi − λi) = θ, x ∈ GTn(β)

}
,

• when F = H,

E (λ, θ) =
{

(β, z, x) ∈ R
n × R

n × GTn: λ,β � z,

n∑
i=1

(λi + βi − 2zi) = θ, x ∈ GTn(β)

}
,
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• when F = R, n = 2r + 1,

E (λ, θ) =
{

(β, z, x, s) ∈ R
r+ × R

r+ × GTn × {0,1}: λ,β � z,

r∑
i=1

(λi + βi − 2zi) = θ, x ∈ GTn(β), s = 0 if λr = 0

}
,

• when F = R, n = 2r ,

E (λ, θ) =
{

(β, z, x) ∈ R
r × R

r−1+ × GTn: λ,β � z,max
(|λr |, |βr |

)≤ zr−1,

r−1∑
k=1

(λk + βk − 2zk) + |λr − βr | = θ, x ∈ GTn(β)

}
.

Each set E (λ, θ) is either a convex set or an union of two convex sets. Thus we can define the Lebesgue measure
on it.

Definition 4.2. For λ ∈ Cn, θ ∈ R
∗+, we define νλ,θ as the image of the uniform probability measure on E (λ, θ) by the

projection on the component β , denoted by p.

The following proposition is proved at Section 10.2.

Proposition 4.3. Let θ ∈ R
∗+, λ ∈ Cn and U be a Haar distributed random variable in Un(F). Then the radial part of

the random matrix Ωn(λ) + UΩn(θ)U∗ is distributed according to the measure νλ,θ .

Recall that a real random variable has a gamma distribution with parameters (α,n) ∈ R
∗+ ×N, if its density is equal

to
α

(n − 1)!e−αx(αx)n−11R+(x).

Recall also that we use the notation c = 1 when F = C,R and c = 2 when F = H.

Lemma 4.4. Let M be a standard Gaussian variable in Mn(F). Then the radial part of MΩ1
nM∗ has only one

nonzero component Θ . It has a gamma distribution with parameters (1, n) when F = C, (1, n − 1) when F = R, and
(2,2n) when F = H. Its density fΘ can be written, for some k > 0 as

fΘ(θ) = kdn(θ)e−cθ .

Proof. We make the simple remark that MΩ1
nM∗ has the same eigenvalues as M∗MΩ1

n . If F = C or H, the matrix
M∗MΩ1

n is equal to |V |2Ω1
n , where V is a standard Gaussian variable of Fn. This shows that MΩ1

nM∗ has only one
strictly positive eigenvalue, which has a gamma distribution with parameters (1, n) for F = C and (2,2n) for H. In
the case when F = R, MΩ1

nM∗ has only one strictly positive eigenvalue. The proof that it has a gamma distribution
with parameters (1, n − 1) along the same line is not so immediate but remains quite elementary. Anyway, it will also
follow from Proposition 5.5 below. The last statement follows from the fact that dn(θ) is equal to

θn−1

(n − 1)! for F = C,
2θn−2

(n − 2)! for F = R,
θ2n−1

(2n − 1)! for F = H. (9)

�

This fact, which will be useful for computations, is not a coincidence. Actually it is a particular case of a more
general result, Proposition 5.5, the proof of which provides an interesting way to understand why the asymptotic
dimension dn appears.
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Theorem 4.5. Let M be a standard Gaussian variable in Mn(F) and λ be an element of the Weyl chamber Cn. Then
the distribution of the radial part of Ωn(λ) + MΩ1

nM∗, that we denote νλ, is the probability measure proportional to∫
R+

νλ,θ dn(θ)e−cθ dθ.

Proof. The matrix MΩ1
nM∗ is an invariant random matrix in Pn(F). Thus Lemmas 2.4 and 4.4 ensure that M can

be written UΩn(Θ)U∗, where U and Θ are independent random variables with a Haar distribution on Un(F) and the
density fΘ . It suffices to apply Proposition 4.3 to see that νλ = ∫

R
νλ,θfΘ(θ)dθ . �

In the following section we will need an explicit formula for the density of the measure νλ. We first deal with the
measure νλ,θ .

Lemma 4.6. For λ ∈ Cn, θ ∈ R+, the volume of E (λ, θ) is equal to dn(λ)dn(θ).

Proof. The lemma is immediately deduced from Lemma 10.3. �

We denote by lλ,θ the Lebesgue measure on p(E (λ, θ)), where p is the projection introduced at Definition 4.2.

Lemma 4.7. Let λ be in the Weyl chamber and θ in R+. Then

• when F = C,

νλ,θ (dβ) = dn(β)

dn(λ)dn(θ)
lλ,θ (dβ),

• when F = H,R,

νλ,θ (dβ) = dn(β)

dn(λ)dn(θ)
vol(Mλ,θ (β))lλ,θ (dβ),

where Mλ,θ (β) is the projection, for β fixed, of E (λ, θ) on the component z when F = H or F = R with n even, and
on the component (z, s) when F = R with n odd.

Proof. By definition νλ,θ is the image of the uniform measure on E (λ, θ) by the projection p. Thus, the normalisation
follows from the Lemma 4.6 and the factor dn(β) appears when one integrates this uniform measure with respect to
the component x ∈ GTn(β). �

We will see that vol(Mλ,θ (β)) plays the role of an asymptotic multiplicity. It is replaced by one when F = C

because this is the only field for which the irreducible decompositions described from Propositions 9.2–9.5 are multi-
plicity free. Let us now describe the measure νλ in some particular cases.

Proposition 4.8. Let k be an integer smaller that ñ and λ ∈ R
ñ be equal to (λ1, . . . , λk,0, . . . ,0). When F = R, if n

is even and k = ñ, we suppose that λ1 > · · · > λk−1 > |λk|. For every other case we suppose that λ1 > · · · > λk > 0.
Then the measure νλ is equal to ν̃λ ⊗ δ

⊗(n−(k+1)∧n)
0 , where ν̃λ has a density Lλ with respect to the Lebesgue

measure on R
(k+1)∧ñ defined by

• when F = C,

Lλ(β) = dn(β)

dn(λ)
1{β�λ}e−∑(k+1)∧n

i=1 (βi−λi),

• when F = H,

Lλ(β) = 2n dn(β)

dn(λ)

[∫
R

k+
1{λ,β�z}e−2

∑k
i=1(λi+βi−2zi )−βk+11{k<n} dz

]
1{β(k+1)∧n≥0}.
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• when F = R, n = 2r , k = r, r − 1,

Lλ(β) = 1

2

dn(β)

dn(λ)

[∫
R

r−1+
1{λ,β�z,|λr |,|βr |≤zr−1}e−∑r−1

i=1 (λi+βi−2zi )−|λr−βr | dz

]
,

• when F = R, n = 2r , k ≤ r − 2,

Lλ(β) = 1

2

dn(β)

dn(λ)

[∫
R

k+
1{λ,β�z}e−∑k

i=1(λi+βi−2zi )−λk+1 dz

]
1{βk+1≥0}.

Proof. Using the same notations as in the proof of Theorem 4.5 we have that νλ = ∫
R+ νλ,θfΘ(θ)dθ . Thus the propo-

sition follows immediately from Lemma 4.7 and the fact that fΘ(θ) = dn(θ)e−θ when F = C, fΘ(θ) = 2ndn(θ)e−2θ

when F = H, and fΘ(θ) = 1
2dn(θ)e−θ when F = R. �

Remark 4.9. We observe in Lemma 4.7 that the measures νλ,θ are the same, in the cases F = R, n = 2r + 1 and
F = H, n = r (see Section 8.2 for explanations). Moreover, for that two cases, the functions dn are the same, up to
a constant. Thus the measures νλ defined at Theorem 4.5 are the same, up to the constant c. That is why we did not
write both cases in the previous proposition.

5. Generalised Laguerre ensembles

In this section we compute the law of the radial part of a matrix in LUEn,k(F) by considering successive rank one per-
turbations, i.e. the random walk (Sk)k≥0 on Pn(F) defined by Sk =∑k

i=1 MiΩ
1
nMi , where the Mi ’s are independent

standard Gaussian variables in Mn(F). We compute the law of the radial part Rk of Sk by induction. The follow-
ing proposition concerns the chain (Rk)k≥0. In Figs 5–7 the black discs represent successive states of this chain for
F = C,H and R. The white discs are intermediate points which indicate the interlacing conditions satisfied by the
chain.

Proposition 5.1. The process (Rk)k≥0 is a Markov chain whose transition probability P(λ, ·) is equal to νλ. When
R0 = 0, Rk has k ∧ ñ nonzero components.

Fig. 5. Rank one perturbations on P3(C).

Fig. 6. Rank one perturbations on P2(H).
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Fig. 7. Rank one perturbations on P4(R).

Proof. As in Lemma 2.4, we see that (Sk,Rk, . . . ,R1) has the same law as

(UΩn(Rk)U
∗,Rk, . . . ,R1),

when U ∈ Un(F) is a Haar distributed random variable independent of (Rk, . . . ,R1). Then for every bounded measur-
able function f : Pn(F) → R,

E
(
f (Sk+1)|σ {Rk, . . . ,R1}

) = E
(
f
(
UΩn(Rk)U

∗ + Mk+1Ω
1
nM∗

k+1

)|σ {Rk, . . . ,R1}
)

= E
(
f
(
UΩn(Rk)U

∗ + Mk+1Ω
1
nM∗

k+1

)|σ {Rk}
)
.

Thus (Rk)k≥0 is Markovian. The transition probability is given by Theorem 4.5 and it is clear, for instance from
Lemma 4.7, that the last point is true. �

We have now gathered all the ingredients needed to get the law of the eigenvalues of the matrices from the
LUEn,k(F). For λ ∈ R

n, the Vandermonde determinant is

Δn(λ) =
∏

1≤i<j≤n

(λi − λj ).

Recall that ñ = n when F = C,H, ñ = [n/2] when F = R, c = 1 when F = R,C, c = 2 when F = H and Ωk is given
by (4).

Theorem 5.2. Let M be a standard Gaussian variable in Mn,k(F). Then the positive eigenvalues of MΩkM
∗ have a

density fn,k with respect to the Lebesgue measure on R
ñ∧k̃ and there exists a constant C > 0 such that for λ ∈ R

ñ∧k̃ ,

fn,k(λ) = Cdn(λ)Δ
ñ∧k̃

(λ)

ñ∧k̃∏
i=1

λ
(k̃−ñ)∨0
i e−cλi . (10)

Proof. Let us first prove it by induction on k when F = C,H. The random matrix MΩkM
∗ has the same law as

the random variable Sk introduced at the beginning of the section. The property is true for k = 1 by Lemma 4.4.
Suppose that it is true for k ≥ 1. Let γ = (γ1, . . . , γk∧n,0, . . . ,0) be a vector of R

n such that γ1 > · · · > γk∧n > 0
and M be a standard Gaussian variable in Mn,1(F). Proposition 4.8 ensures that the strictly positive eigenvalues of
Ωn(γ ) + MΩ1

nM∗ have a density Lγ with respect to the Lebesgue measure on R
n∧(k+1), which proves the first point

and implies that, for λ ∈ R
n∧(k+1),

fn,k+1(λ) =
∫

R
n∧k+

fn,k(γ )Lγ (λ)dγ. (11)
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Let us now distinguish the complex and quaternionic cases. When F = C, identity (11) and the induction hypothesis
imply that there exists a constant C1 such that

fn,k+1(λ) = C1dn(λ)e−∑
i λi

∫
R

k∧n+
Δk∧n(γ )

n∧k∏
i=1

γ
(k−n)∨0
i 1{λ�γ } dγ. (12)

When k < n, the integral above is an homogeneous polynomial of degree 1
2k(k + 1), equal to zero when λi = λj ,

i �= j , so it is proportional to Δk+1(λ). This proves the property for k + 1 ≤ n. The positive eigenvalues of MM∗
being the same as those of M∗M , we get the proposition for k ≥ n as well. It implies that for some ck > 0,

∫
R

k∧n+
Δk∧n(γ )

n∧k∏
i=1

γ
(k−n)∨0
i 1{λ�γ } dγ = ckΔ(k+1)∧n(λ)

n∧(k+1)∏
i=1

λ
(k+1−n)∨0
i . (13)

When F = H, we get that fn,k+1(λ) is proportional to

dn(λ)e−2
∑

i λi

∫
R

k∧n+
1{λ�z}

[∫
R

k∧n+
1{γ�z}e−4

∑
i (γi−zi )Δk∧n(γ )

k∧n∏
i=1

γ
(k−n)∨0
i dγ

]
dz.

The generalised Cauchy–Binet identity implies that

∫
R

k∧n+
Δk∧n(γ )1γ�ze−4

∑k∧n
i=1 (γi−zi )

k∧n∏
i=1

γ
(k−n)∨0
i dγi

= 1

(k ∧ n)!
∫

R
k∧n+

det
(
γ

j−1+(k−n)∨0
i

)
det
(
1{γi>zj }e−4(γi−zj )

)
dγ

= det

(∫
R+

γ j−1+(k−n)∨01{γ>zi }e−4(γ−zi ) dγ

)

= C2 det
(
z
j−1+(k−n)∨0
i

)= C2Δk∧n(z)

k∧n∏
i=1

z
(k−n)∨0
i ,

where C2 is a constant. Using (13), this proves the property for k + 1.
Let us now prove the proposition when F = R. By Remark 4.9 the odd real case is the same as the quaternionic

case replacing n, k and c = 2 by ñ, k̃ and c = 1. Thus, the property is true for the real odd case. If n is even, it is
easier to use what we know about the odd case rather than Proposition 4.8 to get the result. Let us consider the random
matrix

N =
(

M

X

)
,

X being a standard Gaussian variable in M1,k(R), independent of M . Then, the density of the strictly positive eigen-
values of NΩkN

∗ is fn+1,k . This random matrix has a law invariant for the adjoint action of Un+1(R) and its main

minor of order n is MΩkM
∗. Thus, using Lemma 3.8, we get that for λ ∈ R

ñ∧k̃+ , fn,k(λ) is proportional to

∫
R

ñ∧k̃+

dn(λ)

dn+1(γ )
fn+1,k(γ )1{γ�λ} dγ.

The integer n + 1 is odd, so we can replace fn+1,k in the previous identity by the formula (10). An easy computation
achieves the proof. �
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Let us notice that this theorem shows that the eigenvalues of a random matrix from the LUE(F) are distributed as
some biorthogonal Laguerre ensembles studied by Borodin in [8]. Moreover, it allows us to compute the density of
the random matrix itself. Let ε be equal to 1 if n /∈ 2N and 0 otherwise.

Theorem 5.3. When k ≥ n the distribution of a matrix of the LUEn,k(F) has a density l(H) with respect to the
Lebesgue measure dH on Pn(F) proportional to

n∏
i=1

λk−n
i e−λi 1R+(λi) for F = C,

1∏
1≤i<j≤n(λi + λj )

n∏
i=1

λk−n−1
i e−2λi for F = H,

1∏
1≤i<j≤ñ(λi + λj )

ñ∏
i=1

λk̃−ñ−ε
i e−λi for F = R,

where λ is the vector of eigenvalues of H when F = C, of positive eigenvalues of H when F = R,H.

Proof. The function dn being proportional to the product of roots on the interior of the Weyl chamber, Weyl integral’s
formula (see Helgason [32], Theorem I.5.17) says that there exists a constant C > 0 such that for every invariant
measurable function f : Pn(F) → R

+, we have∫
Pn(F)

f (H)dH = C

∫
Cn

dn(λ)2f (λ)dλ,

where dH and dλ are the Lebesgue measure on Pn(F) and Cn. Thus Theorem 5.2 implies that the density of a random
matrix of the LUEn,k(F) is proportional to

H ∈ Pn(F) �→ Δñ(λ)

dn(λ)

ñ∏
i=1

λk̃−ñ
i e−cλi 1R+(λi).

We achieve the proof by replacing dn(λ) by its value. �

For λ in Cn, let us consider a random matrix Ωn(λ) +∑
i=1,...,k̃

MiΩn(αi)M
∗
i , where the Mi ’s are independent

standard Gaussian variables in Mn(F) and the αi ’s are some real numbers, or equivalently a random matrix Ωn(λ) +
MΩk(α)M∗, where M is a standard Gaussian variable in Mn,k(F). When λ = 0 and F = C, it has a generalised
Wishart distribution. One easy way to compute the law of its eigenvalues is to use the Harish Chandra formula (see
for instance Wang [58]). But this method does not work for the other fields. Our method, which consists in computing
the law of the eigenvalues by induction, provide a way to compute the law of the radial part of Ωn(λ) + MΩk(α)M∗
for any field F. Nevertheless, computations are not always easy for such a general matrix. Actually, in the case when
λ = 0 and k ≤ n, computations are much simpler using Lemma 3.3 rather than this approach. To do this, we need the
following theorem which goes back to Borel [5] (see Olshanski [49], Pickrell [52]).

Theorem 5.4. Let (UN)N≥1 be a sequence of random variable such that UN is Haar distributed in UN(F). Then the
main minor of order n of

√
NUN converges in distribution to a standard Gaussian variable in Mn(F), when N goes

to +∞.

Proposition 5.5. Let k be an integer smaller than n, M be a standard Gaussian variable in Mn,k(F) and α ∈ R
k̃ such

that α1 > · · · > α
k̃
> 0. Then there is a constant C such that the positive eigenvalues of MΩk(α)M∗ have a density

gn,k with respect to the Lebesgue measure on R
k̃+ defined by

gn,k(λ) = C
dn(λ)

dn(α)
∏k̃

i=1 αi

det
(
e−cλi/αj

)
1≤i,j≤k̃

.
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In particular, when k̃ = 1 and α1 = 1, this density is proportional to the function θ ∈ R �→ dn(θ)e−cθ 1R+(θ).

Proof. Let N ∈ N be an integer greater than n. We consider a Haar distributed random variable UN ∈ UN(F), the
random matrix MN = UNΩN(α)U∗

N and its main minor of order n denoted by πn(MN). Using Lemma 3.8 we obtain
that the density of the k̃ strictly positive eigenvalues of πN−1(MN) is proportional to

dN−1(λ)

dN(α)
det

(
(αi − λj )

c−1

(c − 1)! 1{αi>λj }
)

1≤i,j≤k̃

.

Iterating for the smaller minors and using the Cauchy–Binet identity we obtain that the density of the strictly positive
eigenvalues of πn(MN) is proportional to

dn(λ)

dN(α)
det

(
(αi − λj )

c(N−n)−1

(c(N − n) − 1)! 1αi>λj

)
1≤i,j≤k̃

.

So the distribution of the strictly positive eigenvalues of Nπn(MN) converges to a distribution with a density propor-
tional to

dn(λ)

dn(α)
∏k̃

i=1 αi

det
(
e−cλi/αj

)
1≤i,j≤k̃

.

Theorem 5.4 states that Nπn(MN) converges in distribution to MΩn(α)M∗, as N goes to infinity, which completes
the proof. �

The joint eigenvalues density of the Laguerre unitary ensemble LUE(C) has been known for a long time [29].
For the invariant ensembles LUE(F) with F = H or F = R, it seems to be new: none of them is associated to the
Gaussian ensembles for the symmetry classes recalled in Section 2.4. We have already seen some specificities of these
ensembles: for instance the support of a random matrix of the LUEn,k(F) for the other fields than C is all the set
of rank k̃ matrices of Pn(F) whereas in the complex case, this is the set of positive rank k Hermitian matrices. For
instance, we know that if M = (Mt)t≥0 is a standard Brownian motion in Mn(C), then MtM

∗
t and the process of its

eigenvalues are Markovian. This follows from stochastic matrix calculus (see Bru [11]), or more conceptually from the
fact that they are radial parts of the Brownian motion in the flat symmetric space associated to U(n, k)/U(n) × U(k)

(see Forrester [23], Roesler [56]). This is not the case in general: if (Mt) is for instance a standard Brownian motion
in M2(R), then neither MtΩ2M

∗
t nor the process of its eigenvalues (this is the same here!) is Markovian. It will be

interesting to investigate these invariant ensembles which seem to be deeply different from the usual ones.

6. Interlaced determinantal processes

Let E be a Borel subset of R
r . A counting measure ξ on E is a measure such that ξ(B) is an integer for all bounded

Borel set B of E. Let us consider a sequence (Tk)k≥1 of random variables with values in E and Ξ = ∑
k∈N

δTk
. If

Ξ is almost surely a counting measure on E, we say that Ξ is a point process on E. Let m be a measure on E.
A function ρn on En such that

E

[
n∏

i=1

Ξ(Bi)

]
=
∫

B1×···×Bn

ρn(x1, . . . , xn)m(dx1) · · ·m(dxn)

for every disjoint bounded Borel sets B1, . . . ,Bn in E, is called a nth correlation function. The measure m is called
the reference measure.

Definition 6.1. If there exists a function K :E × E → C such that for all n ≥ 1,

ρn(x1, . . . , xn) = det
(
K(xi, xj )

)
n×n
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for x1, . . . , xn ∈ E, then one says that the point process is determinantal and K is called the correlation kernel of the
process.

Let us give two classical examples of determinantal processes. For this we recall a classical way to show that a
point process is determinantal and to obtain its correlation kernel (see Borodin [8]). Suppose that μn is a probability
measure on En having a density un with respect to the measure m⊗n on En defined by

un(λ1, . . . , λn) = C det
(
ψi(λj )

)
n×n

det
(
φi(λj )

)
n×n

, (14)

where C is a positive constant and the functions ψi ’s and φi ’s are measurable functions such that ψiφj is integrable
for any i, j . We denote A = (Aij )1≤i,j≤n the matrix defined by

Aij =
∫

E

ψi(x)φj (x)m(dx).

Then A is invertible and the Proposition 2.2 of [8] claims that the image measure of the probability measure μn by
the map (λ1, . . . , λn) �→∑n

i=1 δλi
is a determinantal point process with correlation kernel defined by

K(x,y) =
n∑

i,j=1

ψi(x)
(
A−1)

ij
φj (y), x, y ∈ E. (15)

Suppose for example that E = R, m is the Lebesgue measure and

un(λ) = Δn(λ)2
n∏

i=1

w(λi), (16)

where w is a positive integrable function on R such that
∫

xkw(x)dx < +∞ for any k. If (pi)i≥0 is a sequence of
polynomials such that the pi ’s have degree i and satisfy∫

E

pi(x)pj (x)w(x)dx = δij , i, j ∈ N,

then Δn(λ) is proportional to det(pi−1(λj )) and the correlation kernel is

K(x,y) =
n∑

i=1

pi(x)w(x)1/2pi(y)w(y)1/2, x, y ∈ R. (17)

This is an usual way to show that the point processes associated to the eigenvalues of the random matrices from the
GUE or the LUE are determinantal. For these cases, the orthogonal polynomials which have to be considered to get
a kernel of the form (17) are respectively the Hermite and the Laguerre ones. Let us now briefly describe the cases of
the GUE(F) and the LUE(F) when F = R or F = H.

We let ε = 1 if F = H or F = R with n odd, and ε = 0 otherwise. Weyl integral’s formula ([32], Theorem I.5.17)
implies that there exists a constant C such that the vector of the positive eigenvalues of a random matrix M from the
GUE(F), F = H,R, has a density fgue defined on R

ñ+ by

fgue(λ) = Cdn(λ)2
ñ∏

i=1

e−λ2
i /21R+(λi). (18)

Lemma 3.6 shows that the density fgue has the form (14) with ñ instead of n and for instance ψi(x) = φi(x) =
x2i−2+εe−x2/4. Thus the associated point process is determinantal. Since the Hermite polynomials have only mono-
mials of same parity, it shows that the correlation kernel is

ñ∑
i=1

h2i−2+ε(x)h2i−2+ε(y)e−(x2+y2)/4, x, y ∈ R+.
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Actually this situation corresponds to a classical one. It suffices to make the change of variable λ′
i = λ2

i in (18) to get
the classical form (16) with w(x) = xαe−x/2, where α = 1

2 when F = H or F = R, n is odd and α = − 1
2 when F = R,

n is even. The orthogonal polynomials to consider are thus the Laguerre ones.
For F = H or R, Theorem 5.2 shows that the density of the positive eigenvalues of a random matrix from the

LUEn,k(F), for k ≥ n, has the form (14) with ñ instead of n and for instance ψi(x) = x2i−2+ε+k̃−ñ, φi(x) = xi−1e−cx .
Thus, the associated point processes are determinantal and their correlation kernels are given by (15). Nevertheless, it
is important to notice that the orthogonal polynomials method cannot be applied here.

In the following, we will study more generally the determinantal aspect of the interlaced processes considered in
the previous sections. Using the explicit formula that we got, we write their measures as a product of determinant
and use the method Johansson [33] and Borodin et al. [7] to show that a large class of them are determinantal and to
compute their correlation Kernels.

6.1. “Triangular” interlaced processes

The first type of interlaced point process that we consider is the one associated to the eigenvalues of the main minors
of an invariant random matrix in Pn(F). In this case E = {1, . . . , n} × R and the reference measure m is the product
of the counting measure on {1, . . . , n} with the Lebesgue measure on R when F = C, on R+ when F = H and F = R.

Definition 6.2. We say that an invariant random matrix M in Pn(F) belongs to the class K if the eigenvalues of M

for F = C, and the positive eigenvalues of M for F = R or F = H, have a joint density with respect to the Lebesgue
measure on Rñ proportional to

dn(λ)det
(
ψj (λi)

)
ñ×ñ

,

where the ψi ’s are real continuous functions on R, equal to zero on R− for F = R and F = H, and such that for all
k ∈ N, the function x �→ xkψi(x) is integrable on R.

Many invariant ensembles belong to the class K, especially the random matrices from the GUE(F) and the LUE(F).

Theorem 6.3. Let M be an invariant random matrix in Pn(F), which belongs to the class K. Let us consider the
random vector X = X(M) and the associated point process Ξ on E defined by

Ξ =
n∑

k=1

k∑
i=1

δ
(k,X

(k)
i )

when F = C,H, and Ξ =
n∑

k=1

k̃∑
i=1

δ
(k,|X(k)

i |) when F = R.

Then

(i) The point process Ξ is determinantal.
(ii) The correlation kernel of Ξ is, for (r, x), (s, y) ∈ E,

K((r, x), (s, y)) = − (y − x)c(s−r)−1

(c(s − r) − 1)! 1{s>r,y≥x}

+ α

ñ∑
k=1

ψr
r−k(x)

∫
∂c(n−s)dn

∂z
c(n−s)
k

(z1, . . . , zk−1, y, zk+1, . . . , zñ)

ñ∏
i=1
i �=k

ψi(zi)dzi,

where ψr
r−k(x) = ∫ +∞

x
1

(c(n−r)−1)! (z − x)c(n−r)−1ψk(z)dz, if r < n, ψn
n−k(x) = ψk(x) and α−1 = ∫

dn(z) ×∏ñ
i=1 ψi(zi)dzi .

We observe that (X(1)(M), . . . ,X(n)(M)) when M is an invariant random matrix in Pn(H), has the same law as
(X(3)(N),X(5)(N), . . . ,X(2n+1)(N)) when N is an invariant random matrix in P2n+1(R), provided that X(n)(M) has
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the same law as X(2n+1)(N). So the quaternionic case is deduced from the real odd one in the previous theorem (see
Section 8.2).

Corollary 6.4. Under the hypothesis of the previous theorem, suppose that we can write dn(λ) = det(χi(λj ))ñ×ñ,
where (χk)k≥1 is a sequence of real functions on R such that the χiψj ’s are integrable on R and

∫
R

χi(x)ψj (x)dx =
δij . Then

K
(
(r, x), (s, y)

)= − (y − x)c(s−r)−1

(c(s − r) − 1)! 1{s>r,y≥x} +
ñ∑

k=1

ψr
r−k(x)

dc(n−s)χk

dxc(n−s)
(y).

If the radial part of M is deterministic and equal to λ in the interior of the Weyl chamber, the theorem and its
corollary remain true up to slight modifications, replacing ψi(z)dz by the Dirac measure δλi

(dz) for F = C and by
δ|λi |(dz) for F = R, in the kernel and the counting measure on {1, . . . , n} in the reference measure by the counting
measure on {1, . . . , n−1}. Let us describe some applications before making the proofs of the theorem and its corollary.
Recall that we let ε be equal to 1 if n /∈ 2N and 0 otherwise.

The Gaussian case: GUE(F). As we have seen a standard Gaussian variable M in Pn(F) satisfies the hypothesis
of the theorem with ψi(x) = xi−1e−x2/2 when F = C and ψi(x) = x2i−2+εe−x2/21{x>0} otherwise. Besides, the hy-
pothesis of the corollary are satisfied if we let χi = hi−1 when F = C, χi = h2i−2+ε when F = R and χi = h2i−1

when F = H, where (hi)i≥0 is the sequence of normalized Hermite polynomials for the weight e−x2/2, such that hi

has degree i.
In the case of the GUE(C), the corollary was obtained by Johansson and Nordenstam [34], and Okounkov and

Reshetikhin [47]. The following proposition, which provides the correlation kernel for the minor process associated
to a matrix from the GUE∞(R), has been announced in [16]. Forrester and Nordenstam posted a proof on arxiv a few
weeks later in [24].

Proposition 6.5. Let M be a standard Gaussian variable in P∞(R). We consider the radial part X(k) ∈ R
k̃ of the main

minor of order k of M . Then the point process
∑+∞

k=1
∑k̃

i=1 δ
(k,|X(k)

i |) is determinantal on N
∗ × R+ with correlation

kernel

R
(
(r, x), (s, y)

) = − 1{r<s}
(s − r − 1)! (y − x)s−r−11{y≥x}

+
r̃∧s̃∑
i=1

((r − 2i)!)1/2

((s − 2i)!)1/2
hs−2i (y)hr−2i (x)e−x2/2

+
s̃∑

i=r̃+1

hs−2i (y)

((s − 2i)!√π)1/2

∫ +∞

x

(z − x)2i−r−1

(2i − r − 1)! e−z2/2 dz.

Proof. Let n be an odd integer and M be a standard Gaussian variable in Pn(R). The matrix M belongs to the class
K with ψi = h2i−1, i = 1, . . . , ñ. The functions χi = h2i−1, i = 1, . . . , ñ, satisfy the hypothesis of Corollary 6.4. So

the point process
∑n

k=1
∑k̃

i=1 δ
(k,|X(k)

i |) is determinantal on N
∗ × R+ and its correlation kernel K is equal to

K
(
(r, x), (s, y)

)= − 1{s<r}
(r − s − 1)! (y − x)r−s−11{y≥x} +∑ñ

k=1 h
(n−s)
2k−1 (y)ξk(r, x),

where ξk(r, x) = ∫∞
x

(z−x)n−r−1

(n−r−1)! h2k−1(z)e−z2/2 dz. Let us consider

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2.
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We recall that hn = 1
(n!√π)1/2 Hn and h′

n = √
nhn−1. Letting i = ñ − k + 1, we get that

ñ∑
k=1

h
(n−s)
2k−1 (y)ξk(r, x) =

ñ∑
i=1

[
(n − 2i)!
(s − 2i)!

]1/2

hs−2i (y)ξk(r, x).

Integrating by part we get that when i ≥ r̃ + 1,

ξk(r, x) = 1

((n − 2i)!√π)1/2

∫ ∞

x

(z − x)2i−r−1

(2i − r − 1)! e−z2/2 dz,

and when i ≤ r̃ ,

ξk(r, x) =
[

(r − 2i)!
(n − 2i)!

]1/2

hr−2i (x)e−x2/2,

which proves the proposition. �

The Laguerre case: LUE(F). A random matrix from the LUEn,k(F) satisfies for k ≥ n the hypothesis of The-

orem 6.3 with ψi(x) = xi−1+k̃−ñe−cx1R+(x). Those of the Corollary 6.4 are satisfied only when F = C with
ψi = χi = Li , where (Li)i≥0 is the sequence of normalized Laguerre polynomials for the weight xk−ne−x , such
that Li has degree i.

Let us now prove Theorem 6.3. The main point of its proof is the following lemma which is an application of [7].
For f,g : R × R → R+, h : R → R+ and x, y ∈ R, we write, when it is meaningful,

(f ∗ g)(x, y) =
∫

R

f (x, z)g(z, y)dz, (f ∗ h)(x) =
∫

R

f (x, z)h(z)dz,

(19)
f (1) = f, f (r) = f ∗ f (r−1), if r ≥ 1, f (r) = 0, if r ≤ 0.

Lemma 6.6. Let M be an invariant random matrix as in Theorem 6.3 and Ξ the associated point process. We suppose
that the support of the functions ψi ’s and φi ’s are included in an interval ]a, b[. Then the correlation kernel of Ξ is
defined by

• when F = C,

K
(
(r, x), (s, y)

)= −φ(s−r)(x, y) +
n∑

k=1

ψr
r−k(x)

s∑
l=1

(
A−1)

kl
φ(s−l+1)(a, y),

• when F = R,

K
(
(r, x), (s, y)

)= −φ(s−r)(x, y) +
ñ∑

k=1

ψr
r−k(x)

s̃∑
l=1

(
B−1)

kl
φ(s−2l+1)(0, y),

where φ(x, y) = 1[x,∞)(y), and A and B are invertible matrices defined by Aij = φ(n−i+1) ∗ ψj (a), i, j = 1, . . . , n,
and Bij = φ(n−2i+1) ∗ ψj (0), i, j = 1, . . . , ñ.

Proof. Let us consider Λ = (Λ(1), . . . ,Λ(n)), where Λ(r) = σr(X
(r)(M)), when F = C and Λ(r) = σr(|X(r)(M)|),

when F = R, where the σr ’s are independent random permutations of the coordinates, uniformly distributed and
independent from M . The reason why we introduce these permutations is that we have to work with symmetric
densities. Since the random matrix M is invariant, Theorem 3.4, Lemma 3.7 and identity (8) imply that the density of
(Λ(1), . . . ,Λ(n)) is proportional to the function f defined by:
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• when F = C, with the convention that x
(r−1)
r = a,

f
(
x(1), . . . , x(n)

)= det
(
ψj

(
x

(n)
i

))
n×n

n∏
r=1

det(1{x(r)
j >x

(r−1)
i })r×r ,

• when F = R, with the convention that x
(2r−1)
r = 0,

f
(
x(1), . . . , x(n)

)= det
(
ψj

(
x

(n)
i

))
ñ×ñ

n∏
r=1

det(1{x(r)
j >x

(r−1)
i })r̃×r̃ .

We consider a sequence (Λ̃N)N of discrete random variables such that Λ̃N belongs to 1
N

GTn,Z and P(Λ̃N =
(x(1), . . . , x(n))) is proportional to f (x(1), . . . , x(n)). Then Lemma 3.4 in [7], slightly modified for F = R (see [24]
for details), implies that the associated point process is determinantal with a correlation kernel KN obtained from K

replacing the Lebesgue measure on R in identities (19) by the counting measure on 1
N

Z. We get the lemma letting N

goes to infinity. �

Proof of Theorem 6.3. We write the proof for F = R. We use the Lemma 6.6 and its notations. We have, for r ≥ 1,

φ(r)(0, y) = yr−1

(r − 1)!1{y≥0}.

Thus, φ(s−2l+1)(0, y) = ∂n−s

∂yn−s φ
(n−2l+1)(0, y), l = 1, . . . , ñ, and

s∑
l=1

(
B−1)

kl
φ(s−2l+1)(0, y) = ∂n−s

∂yn−s

n∑
l=1

(
B−1)

kl
φ(n−2l+1)(0, y).

Let us denote slk(B) the matrix obtained from B by suppressing the lth line and the kth column. We have

(
B−1)

kl
= (−1)k+l

det(B)
det
(
slk(B)

)
ñ−1×ñ−1.

Thus

ñ∑
l=1

(
B−1)

kl
φ(n−2l+1)(0, y) =

ñ∑
l=1

(−1)k+l

det(B)
det
(
slk(B)

)
ñ−1×ñ−1φ

(n−2l+1)(0, y)

=
ñ∑

l=1

(−1)k+l

det(B)
det
(
φ(n−2i+1) ∗ ψj(0)

)
i �=l
j �=k

φ(n−2l+1)(0, y)

=
ñ∑

l=1

(−1)k+l

det(B)

∫
Rn−1

det
(
φ(n−2i+1)(0, zj )

)
i �=l
j �=k

φ(n−2l+1)(0, y)

ñ∏
j=1
j �=k

ψj (zj )dzj

= 1

det(B)

∫
Rn−1

det
(
φ(n−2i+1)(0, zj )

)
ñ×ñ

ñ∏
j=1
j �=k

ψj (zj )dzj , letting zk = y.

Moreover, if Vn is the function introduced at Definition 3.5, we have

det
(
φ(n−2i+1)(0, zj )

)
ñ×ñ

= det

(
zn−2i
j

(n − 2i)!1{zi≥0}
)

ñ×ñ

= Vn(z)

ñ∏
i=1

1{zi≥0}
(n − 2i)! ,
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which achieves the proof for F = R. We get the theorem letting a and b go to −∞ and +∞. The case F = C is quite
similar. We deduce the quaternionic case from the real odd one. �

Proof of Corollary 6.4. The corollary is deduced from the theorem using the identities

∫
Rñ

det
(
χi(zj )

)
ñ×ñ

ñ∏
j=1

ψj (zj )dzj = det

(∫
χi(z)ψj (z)dz

)
ñ×ñ

= 1,

∫
Rñ−1

det
(
χi(zj )

)
ñ×ñ

ñ∏
j=1
j �=k

ψj (zj )dzj = det(aij )ñ×ñ = χk(y),

where aij = δij , j �= k and aik = χi(y), i = 1, . . . , ñ. �

6.2. “Rectangular” interlaced processes

In Section 5, considering successive rank one perturbations, we have constructed Markov processes which have a
remarkable property: two successive states satisfy some interlacing conditions. Thus we got interlaced random con-
figurations on N × R. More precisely, let (Mk)k≥1 be a sequence of independent standard Gaussian variables in

Mn(F). For λ in the interior of the Weyl chamber, we consider the process (R(k))k≥1, where R(k) is the radial part of

Ωn(λ)+∑k
i=1 MiΩ

1
nM∗

i , and the associated point process Ξλ =∑m
k=1

∑k̃
i=1 δ

k,R
(k)
i

. Since interlacing conditions and

function dn can be written as a determinant for F = C, F = H or F = R with n odd, our Proposition 5.1 shows that
the hypothesis of Proposition 2.13 in [33] are satisfied in these cases and that the point process Ξλ is determinantal.
In the even real case, we do not know if this remains true. Thus we have the following proposition.

Proposition 6.7. Let F = C, F = H or F = R with n odd. Let (Mi)i≥1 be a sequence of independent standard
Gaussian variable in Pn(F) and λ ∈ R

ñ+ such that λ1 > · · · > λñ. Let us consider the point process Ξλ =∑m
k=1 δ

k,R
(k)
i

,

where R
(k)
i is the ith positive eigenvalue of Ωn(λ) +∑k

i=1 MiΩ
1
nM∗

i .
Then,

(i) the point process Ξλ is determinantal on {1, . . . ,m} × R+.
(ii) The correlation kernel of Ξλ is

Kλ

(
(r, x), (s, y)

)= −φ(s−r) +
ñ∑

i,j=1

φ(m−r) ∗ ψ(x, i)
(
A−1)

ij
φ(s)(λj , y),

where φ(x, y) = 1y≥xe−(y−x), ψ(x, i) = xi−1 when F = C, φ(x, y) = e−c(x+y)(e2c(x∧y) − 1), ψ(x, i) = x2i−1 when
F = H,R and A is an invertible matrix defined by Aij = φ(m) ∗ ψ(λi, j).

Part 2. ORBIT MEASURES

7. Approximation of orbit measures

7.1. Introduction

Let K be a compact connected Lie group with Lie algebra k. We equip k with an Ad(K)-invariant inner product. This
allows us to identify k and its dual k∗. The group K acts on k by the adjoint action Ad and on k∗ by duality by the
coadjoint action. By definition, the coadjoint orbit through λ ∈ k∗ is the set

O(λ) = {
Ad(k)λ, k ∈ K

}
.
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The (normalized) orbit measure is the image on O(λ) of the normalized Haar measure mK on K , i.e. the distribution of
Ad(U)λ where U is a random variable with law mK . Computations for invariant ensembles of random matrix theory
rest on a detailed analysis of either the sum (convolution) of orbit measures on O(λ) and O(μ), where λ,μ ∈ k∗, or
their projection p on the dual Lie algebra of a subgroup H . Let us recall two basic facts of Kirillov’s orbit method ([39,
40], p. xix). In his famous “User’s guide” the third and fifth rules are the following (we denote by Vλ the irreducible
module associated to λ):

Rule 3: If what you want is to describe the spectrum of ResK
H Vλ then what you have to do is to take the projection

p(O(λ)) and split into Ad(H) orbits.
Rule 5: If what you want is to describe the spectrum of the tensor product of Vλ ⊗ Vμ then what you have to do is

to take the arithmetic sum O(λ) + O(μ) and split into Ad(K) orbits.

Our method is to use these two rules, but in the reverse order: we interchange “what you want” and “what you have
to do.” First we prove a version of a theorem of Heckman which will allow us to give an effective way to compute the
measures on dominant weights defined with the help of the so called branching rules. Then we obtain the convolution
or the projection of orbit measures using these rules.

7.2. Characters

Let K be a connected compact Lie group with Lie algebra k and complexified Lie algebra kC. By compactness,
without loss of generality, we can suppose that K is contained in a unitary group, and then the adjoint and the
coadjoint actions are given by Ad(k)x = kxk∗, k ∈ K,x ∈ k or k∗. We choose a maximal torus T of K and we denote
by t its Lie algebra. We consider the roots system R = {α ∈ t∗: ∃X ∈ kC \ {0},∀H ∈ t, [H,X] = iα(H)X}, the
coroots hα = 2α/〈α,α〉, α ∈ R. We choose the set Σ of simple roots of R. We introduce the corresponding set
R+ of positive roots and the (closed) Weyl chamber C = {λ ∈ t∗: 〈λ,α〉 ≥ 0 for all α ∈ Σ}. The set of weight is
P = {λ ∈ t∗: 〈hα,λ〉 ∈ Z, for all α ∈ R} and the set of dominant weights is P + = P ∩ C . We denote by W the Weyl
group.

For λ ∈ P +, we denote by Vλ the irreducible k-module with highest weight λ and dim(λ) the dimension of Vλ. Its
character χλ is the function on t defined by,

χλ(ζ ) =
∑
μ∈P

m(μ,λ)ei〈μ,ζ 〉, ζ ∈ t,

where m(μ,λ) is the multiplicity of the weight μ in the k-module Vλ. Notice that we use representations of the
Lie algebra rather than representations of the compact group. We denote ρ = 1

2

∑
α∈R+ α, the half sum of positive

roots. The dimension of the module Vλ is given by χλ(0). Recall the Weyl dimension formula (see Knapp [42],
Theorem V.5.84):

χλ(0) =
∏

α∈R+

〈λ + ρ,α〉
〈ρ,α〉 (20)

and the Weyl character formula for the Lie algebra of a compact Lie group (see Knapp [42], Theorem V.5.77):

Proposition 7.1 (Weyl character formula). The character χλ is equal to

χλ(ζ ) =
∑

w∈W det(w)ei〈w(λ+ρ),ζ 〉∑
w∈W det(w)ei〈w(ρ),ζ 〉 .

In this formula, the denominator is also equal to the product
∏

α∈R+(e(i/2)〈α,ζ 〉 − e−(i/2)〈α,ζ 〉). When K = Un(C)

and λ have integer coordinates, the characters are the classical Schur functions (see, for instance, [26]).
Let us recall some properties of invariant probability measures on the adjoint orbits of the group K . Let, for

z ∈ t ⊕ it, λ ∈ t∗,

h(z) =
∏

α∈R+
〈α, z〉, d(λ) =

∏
α∈R+

〈α,λ〉/〈α,ρ〉.
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The quantity d(λ) can be interpreted as the Liouville measure of the adjoint orbit O(λ) or as an asymptotic dimension.
For λ ∈ t∗, we introduce the function Φλ on k such that Φλ(ζ ) = Φλ(kζk∗) for all ζ ∈ k, k ∈ K , and such that when
ζ ∈ t,

Φλ(ζ ) =
∑

w∈W det(w)ei〈wλ,ζ 〉

h(iζ )d(λ)
.

We recall the Harish Chandra formula (see Helgason [32], Theorem II.5.35). In different contexts it is also known
as the Kirillov formula for compact groups or the Iztkinson–Zuber formula. Recall that mK is the normalized Haar
measure on K .

Proposition 7.2. For λ ∈ t∗, ζ ∈ k∫
K

ei〈kλk∗,ζ 〉mK(dk) = Φλ(ζ ). (21)

This shows that Φλ(ζ ) is a continuous function of (λ, ζ ) and Φλ(0) = 1.

7.3. A version of Heckman’s theorem

We consider a connected compact subgroup H of K with Lie algebra h. After maybe a conjugation, we can choose
a maximal torus S of H included in T (see, for instance, Knapp [42]). We denote its Lie algebra by s. The objects
previously associated to K are defined in the same way for H . In that case, we add an exponent or a subscript H to
them. For λ ∈ P +, β ∈ P +

H we denote by mλ
H (β) the multiplicity of the irreducible h-module with highest weight β

in the decomposition into irreducible components of the k-module Vλ considered as an h-module. Rules giving the
value of the multiplicities mλ

H are called branching rules. We have the following decomposition

Vλ =
⊕

β∈P +
H

mλ
H (β)V H

β , (22)

where Vλ is considered as an h-module and V H
β is an irreducible h-module with highest weight β . This is equivalent

to say that mλ
H is the unique function from P +

H to N satisfying the following identity: for all ζ ∈ s,

χλ(ζ ) =
∑

β∈P +
H

mλ
H (β)χH

β (ζ ). (23)

For x ∈ k∗, let πH (x) be the orthogonal projection of x on h∗. The intersection between the orbit of an element x ∈ k∗
under the coadjoint action of K and the Weyl chamber C contains a single point that we call the radial part of x and
denote by r(x). The same holds for H and we denote by rH (x) the radial part of x ∈ h∗ in the Weyl chamber CH for
the coadjoint action of H . We choose a sequence εn > 0 which converges to 0 as n → ∞. The following theorem is a
variant of Theorem 6.4 in Heckman [30]. We give a direct proof.

Theorem 7.3. Let λ be in the Weyl chamber C and (λn)n≥1 be a sequence of elements in P + such that εnλn converges
to λ as n tends to +∞. Then

(i) the sequence (μn)n≥0 of probability measures on CH defined by

μn =
∑

β∈P +
H

dimH (β)

dim(λn)
m

λn

H (β)δεnβ

converges to a probability measure μ which satisfies, for ζ ∈ h,∫
CH

ΦH
β (ζ )μ(dβ) = Φλ(ζ ), (24)
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(ii) μ is the law of rH (πH (UλU∗)), where U is distributed according to mK .

Proof. Let ζ ∈ s. We have

χλn(εnζ )

χλn(0)
= Φεnλn+εnρ(ζ )

∏
α∈R+

i〈α, εnζ 〉
e(i/2)〈α,εnζ 〉 − e−(i/2)〈α,εnζ 〉 .

On the other hand,

χλn(εnζ )

χλn(0)
=

∑
β∈P +

H

χH
β (εnζ )

χH
β (0)

m
λn

H (β)χH
β (0)

χλn(0)

=
[ ∏

α∈R+
H

i〈α, εnζ 〉
e(i/2)〈α,εnζ 〉 − e−(i/2)〈α,εnζ 〉

]∫
CH

ΦH
β+εnρH

(ζ )dμn(β).

Therefore,

lim
n→+∞

∫
CH

ΦH
β+εnρH

(ζ )μn(dβ) = Φλ(ζ ).

The support of μn is contained in the convex hull of the orbit of εnλn by the Weyl group. This implies that all the
measures μn are contained in a same compact set. Uniform continuity on compact sets of the function Φ ensures that

lim
n→+∞

∫
CH

ΦH
β (ζ )μn(dβ) = Φλ(ζ ). (25)

Let us consider the image γn of the product measure mH ⊗ μn by the function (u,β) ∈ H × CH �→ uβu∗ ∈ h∗.
The previous convergence and Harish Chandra’s formula applied to H give that

lim
n→∞

∫
h∗

ei〈x,ζ 〉γn(dx) = Φλ(ζ ).

By invariance of the Haar measure on H by multiplication, this remains true for every ζ ∈ h, which proves that the
sequence of measures (γn)n≥0 converges and consequently so does the sequence (μn)n≥0. We denote by μ the limit
measure. The convergence (25) shows that it satisfies the following identity, for ζ ∈ h,∫

CH

ΦH
β (ζ )μ(dβ) = Φλ(ζ ),

which proves the first point of the theorem. Applying the Harish Chandra formula to K and H we get∫
K

ei〈uλu∗,ζ 〉mK(du) =
∫

K

ei〈πH (uλu∗),ζ 〉mK(du)

=
∫

H

∫
CH

ei〈uβu∗,ζ 〉μ(dβ)mH (du),

which gives the second point of the theorem. �

In the case when H = T , the limit measure μ is equal to d(λ)−1Dλ where Dλ is the Duistermaat–Heckman measure
associated to λ. The tensor product of irreducible representations being a particular restriction of representation, the
theorem has the following corollary, which is due to Dooley et al. [18].
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Corollary 7.4. Let λ and γ be in C . Let (λn)n≥1 and (γn)n≥1 be two sequences of elements in P + such that εnλn and
εnγn respectively converge to λ and γ , as n tends to +∞. Let us define the sequence (νn)n≥0 of probability measures
on C by

νn =
∑

β∈P +

dim(β)

dim(λn)dim(γn)
Mλn,γn(β)δεnβ,

where Mλn,γn(β) is the multiplicity of the highest weight β in the decomposition into irreducible components of
Vλn ⊗ Vγn . Then the sequence (νn)n≥0 converges to the law of the radial part of λ + UγU∗, where U is distributed
according to mK .

Proof. Let Vλn and Vγn be irreducible k-modules with respective highest weight λn and γn. Let us consider the
compact group K × K . Then Vλn ⊗ Vγn is an irreducible (k × k)-module with highest weight (λn, γn). Applying
Theorem 7.3 to the compact group K × K and the subgroup H = {(k, k), k ∈ K}, we get that the associated sequence
(νn)n≥1 converges, when n goes to +∞, to the law of rH (πH (Ad(W)(λ, γ ))), W being distributed according to
the normalized Haar measure on K × K , i.e. W = (U,V ), where U and V are independent random variables with
distribution mK . The facts that πH (Ad(W)(λ, γ )) = UλU∗ +V γV ∗ and rH (UλU∗ +V γV ∗) = rH (λ+U∗V γV ∗U)

complete the proof of the corollary. �

8. Orbit measures and invariant random matrices

8.1. Previous results in the framework random matrices

In this section, we apply Theorem 7.3 and its corollary to invariant random matrices in Pn(F). For F = C,H,R the
group Un(F) defined in Section 2 is one of the classical compact groups, namely, the unitary, the symplectic and
the special orthogonal group. Its root system is of type An−1 when F = C, Cn when F = H, Br when F = R with
n = 2r + 1, and Dr when F = R with n = 2r . The Lie algebra Un(F) of Un(F) is equal to iPn(F).

Let us consider the set tn = {iΩn(x): x ∈ R
ñ}. It is the Lie algebra of a maximal torus of Un(F). We define

the linear forms εk : tn → R, by εk(iΩn(x)) = xk , x ∈ R
ñ, k = 1, . . . , ñ. We equip Un(F) with the scalar product

〈x, y〉 = Tr(xy∗) for F = C and 〈x, y〉 = 1
2 Tr(xy∗) for F = H,R. For each group Un(F), we choose the following

set Σ of simple roots:

• when F = C, Σ = {εi − εi+1, i = 1, . . . , n − 1},
• when F = H, Σ = {2εn, εi − εi+1, i = 1, . . . , n − 1},
• when F = R and n = 2r + 1, Σ = {εr , εi − εi+1, i = 1, . . . , r − 1},
• when F = R and n = 2r , {εr−1 + εr , εi − εi+1, i = 1, . . . , r − 1}.
If we identify R

ñ and tn by the map x ∈ R
ñ �→ iΩn(x) ∈ tn, and tn with t∗n by the scalar product, we get that x ∈ R

ñ

is identifiable with iΩn(x) ∈ tn or
∑ñ

i=1 xiεi ∈ t∗n. Up to these identifications, the Weyl chamber corresponding to the
chosen simple roots is the set Cn defined in Section 2, and the radial part of the matrix UΩn(x)U∗ is x, considering
either the definition of Section 2 or the one of Section 7. An integral point in Cn is an element with entries in Z.
Although we will not use this fact, one may notice that only integral dominant weights occur in the representation of
the group Un(F). When K = Un(F), the Corollary 7.4 is equivalent to the following theorem.

Theorem 8.1. Let λ and β be two elements in the Weyl chamber Cn and an associated sequence of measures (νk)k≥1
chosen as in Corollary 7.4. Then (νk)k≥1 converges to the law of the radial part of Ωn(λ) + UΩn(β)U∗ where U is
a Haar distributed random variable in Un(F).

We consider the subgroup H = {U ∈ Un(F): Uin = Uni = δin, i = 1, . . . , n} and its Lie algebra {M ∈
Un(F): Min = Mni = 0, i = 1, . . . , n}. They are trivially identifiable with Un−1(F) and Un−1(F). The orthogonal
projection of a matrix M of Un(F) on this last subspace is equal, up to some zeros, to the main minor of order n − 1
of M . Thus, for the group Un(F) and the subgroup H , Theorem 7.3 gives:
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Theorem 8.2. Let λ be in the Weyl chamber Cn. Let us consider M = UΩn(λ)U∗, where U is a Haar distributed
random variable in Un(F) and an associated sequence of measures (μk)k≥1 on Cn−1 as in Theorem 7.3. Then (μk)k≥1

converges to the law of the radial part of the main minor of order n − 1 of M .

8.2. Relation between quaternionic and real odd case

We have observed in the previous sections that on the one hand the rank one perturbations are the same for F = R and
n = 2r + 1 as for F = H and n = r , and on the other hand that the law of the radial part of the main minor of order
n − 1 of UΩn(λ)U∗, with U Haar distributed in Un(H), is the same as the law of the radial part of the main minor of
order 2n − 1 of V Ω2n+1(λ)V ∗, with V Haar distributed in U2n+1(R). It is not a coincidence: identity (24) shows that
the convolution of invariant orbit measures or the projection of invariant measure depend only on the Weyl group of
the groups and subgroups considered. At the price of some redundancy, we have chosen to state explicitly our results
in both cases for the convenience of the reading.

9. Tensor product and restriction multiplicities

We want to compute the law of the sum or of the minors of invariant random matrices. By Theorems 8.1 and 8.2,
it suffices to have a precise description of some appropriate tensor product and restriction multiplicities. In group
representation, these computations are a fundamental issue which have been studied for a long time. Recently the
discovery of quantum group provided a new understanding of them.

The rank one perturbations that we introduce in Section 3 are related to the tensor products Vλ ⊗ Vγ , where λ

and γ are dominant weights, γ being proportional to ε1. Using the theory of crystal graphs of Kashiwara, we obtain
in Section 9.1, explicit description of these decompositions. Our results are surely not new and they are contained,
or maybe hidden, in more general ones (see, for instance, Berenstein and Zelevinski [3], Nakashima [46]) but our
descriptions present some advantages: they are quite simple and make interlacing conditions arise, which can be
described, in the spirit of Fulmek and Krattenthaler [25], for instance, in term of non intersecting paths.

In Section 9.2, we recall the classical restriction multiplicities that we need for the computation of the law of the
main minors.

9.1. Tensor product multiplicities and crystal graphs

Let us recall some standard notations for crystal graphs (see, e.g, Kashiwara [35]). As in the previous section we
consider a compact connected Lie group K and its Lie algebra k. Recall that the crystal graphs of the k-modules
are oriented coloured graphs with colours i ∈ I . An arrow a

i→ b means that f̃i (a) = b and ẽi (b) = a where ẽi

and f̃i are the crystal graph operators. We denote Λi , i = 1, . . . , n, the dual basis of the coroots. For a k-module V

and its crystal graph B , the weight of a vertex b ∈ B is defined by wt(b) = ∑
I (ϕi(b) − εi(b))Λi , where ϕi(b) =

max{n ≥ 0: f̃ n
i (b) ∈ B} and εi(b) = max{n ≥ 0: ẽn

i (b) ∈ B}, i ∈ I . For each dominant weight λ we denote by B(λ)

the crystal graph of the irreducible k-module Vλ with highest weight λ and by uλ the highest weight vertex. We recall
the Proposition 4.2 of [35].

Proposition 9.1. Let λ and μ be two dominant weights and B(μ) the crystal graph of Vμ. Then

Vλ ⊗ Vμ =
⊕

Vλ+wt(b),

where the sum ranges over b ∈ B(μ) such that εi(b) ≤ 〈hi, λ〉 (or equivalently εi(uλ ⊗ b) = 0) for every i ∈ I .

We now consider K = Un(F) and we describe the tensor products Vλ ⊗ Vaε1 that we are interested in. For this we
use the description of the crystal graphs for classical Lie algebras given by Kashiwara and Nakashima in [36]. In the
following, we write x indifferently for (x1, . . . , xñ) ∈ R

ñ and
∑ñ

i=1 xiεi . Notice that ε1 is the highest weight of the
standard representation.
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9.1.1. Tensor product of representations for the type An−1
This case is classical and known as Pieri’s formula (see Fulton [26]). But it will help the reader to first see the method
we use in this simple example. In the type An−1, the simple coroots are hi = εi − εi+1, 1 ≤ i ≤ n − 1. The crystal
graph of Vε1 is, see [35],

B(ε1) : 1
1→ 2

2→ ·· · n−1→ n.

Here the weight of i is εi , i = 1, . . . , n. We use the usual order on {1, . . . , n}. Let m be an integer. Theorem 3.4.2 of
[36] claims in particular that

B(mε1) = {
bm ⊗ · · · ⊗ b1 ∈ B(ε1)

⊗m: bk+1 ≥ bk

}
.

Let λ be a dominant weight. Let us describe the decomposition of the tensor product Vλ ⊗ Vmε1 . In Proposition 9.1,
the sum ranges over all elements bm ⊗ · · ·⊗ b1 ∈ B(mε1) such that, for 1 ≤ i ≤ n, εi(uλ ⊗ bm ⊗ · · · ⊗ b1) = 0, which
is equivalent to say that εi(bk) ≤ 〈hi, λ + wt(bk+1) + · · · + wt(bm)〉 for 1 ≤ k ≤ m. When b ∈ B(ε1), either b = i + 1
and εi(b) = 1 = −〈hi,wt(b)〉, or εi(b) = 0 ≤ 〈hi,wt(b)〉. Thus we have

εi(b) ≤ 〈hi, λ〉 ⇔ 0 ≤ 〈
hi, λ + wt(b)

〉
. (26)

So, in the considered decomposition, the sum ranges over all elements bm ⊗ · · · ⊗ b1 ∈ B(ε1)
⊗m satisfying the

following conditions for every k ∈ {1, . . . ,m}, i ∈ {1, . . . , n},{
bk+1 ≥ bk,

0 ≤ 〈
hi, λ + wt(bm) + · · · + wt(bk)

〉
.

(27)

We draw on Fig. 8 the functions

k �→ μi(k) = 〈
εi, λ + wt(bm) + · · · + wt(bm−k+1)

〉
.

At each k, one and only one of the functions μ1, . . . ,μn increases by one unit. Moreover, the ith curve cannot
increase if the (i + 1)th has not because bm ⊗ · · · ⊗ b1 is an element of B(mε1). The curves cannot cross each
other since 0 ≤ 〈hi, λ + wt(bm) + · · · + wt(bk)〉. Therefore we see that the map bm ⊗ · · · ⊗ b1 �→ β ∈ Z

n, with
βi = 〈εi, λ + wt(bm) + · · · + wt(b1)〉, i = 1, . . . , n, is a bijection from {b ∈ B(mε1): b satisfies conditions (27)} to
{β ∈ Z

n: β � λ,
∑

i (βi − λi) = m}. So we get the Pieri’s formula (notice that the multiplicity are equal to one):

Proposition 9.2. Let λ,γ ∈ Z
n such that λ1 ≥ · · · ≥ λn and γ = (m,0, . . . ,0), m ∈ N. Then

Vλ ⊗ Vγ =
⊕

β

Vβ,

where the sum is over the integral dominant weights such that β � λ, and m =∑n
i=1(βi − λi).

Fig. 8. Irreducible decomposition of Vλ ⊗ Vmε1 for the type A2.
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9.1.2. Tensor product of representations for the type Cn

The simple coroots are now hi = εi − εi+1, 1 ≤ i ≤ n − 1, hn = εn, and the crystal graph of Vε1 is

B(ε1) : 1
1→ ·· · n−1→ n

n→ n̄
n−1→ ·· · 1→ 1̄.

Here i and ī have respective weight εi and −εi . We define the order ≤ on B(ε1) by 1 ≤ · · · ≤ n ≤ n ≤ · · · ≤ 1. By
Theorem 4.5.1 of [36], if m ∈ N,

B(mε1) = {
bm ⊗ · · · ⊗ b1 ∈ B(ε1)

⊗m: bk+1 ≥ bk

}
.

Let λ be a dominant weight. As above is it easy to see that equivalence (26) holds. Therefore, by Proposition 9.1, the
sum ranges over all elements bm ⊗ · · · ⊗ b1 ∈ B(ε1)

⊗m satisfying the following conditions for 1 ≤ k ≤ m,1 ≤ i ≤ n,{
bk+1 ≥ bk,

0 ≤ 〈
hi, λ + wt(bm) + · · · + wt(bk)

〉
.

(28)

The function bm ⊗ · · · ⊗ b1 �→ (β, c) ∈ N
n × N

n, where for i = 1, . . . , n,

βi = 〈
εi, λ + wt(bm) + · · · + wt(b1)

〉
and

ci = min
{〈

εi, λ + wt(bm) + · · · + wt(bk)
〉
,1 ≤ k ≤ m

}
,

is a bijection from {b ∈ B(mΛ1): b satisfies conditions (28)} to {(β, c) ∈ N
n × N

n: λ � c,β � c,
∑

i (λi − ci + βi −
ci) = m}. Look at Fig. 9 to be convinced of the bijection. The ith curve cannot decrease (resp. increase) if the (i −1)th
(resp. (i + 1)th) has not since bm ⊗ · · · ⊗ b1 is an element of B(aε1). Moreover, the curves remain nonnegative and
cannot cross each other since 0 ≤ 〈hi, λ + wt(bk) + · · · + wt(bm)〉. So we get the following proposition.

Proposition 9.3. Let λ,γ ∈ N
n be such that λ1 ≥ · · · ≥ λn, and γ = (m,0, . . . ,0), m ∈ N. Then

Vλ ⊗ Vγ =
⊕

β

Mλ,γ (β)Vβ,

where the sum is over all β ∈ N
n satisfying β1 ≥ · · · ≥ βn such that there exists c = (c1, . . . , cn) ∈ N

n which verifies
λ � c, β � c and

∑n
i=1(λi − ci + βi − ci) = m. In addition, the multiplicity Mλ,γ (β) of the irreducible module with

highest weight β is the number of c ∈ N
n satisfying these relations.

We invite the reader to compare this figure with Fig. 6: vectors Ri and Ri+1 (black discs) satisfy the same interlacing
conditions as the highest weights λ and μ, and the white discs verify the same interlacing conditions as c.

Fig. 9. Irreducible decomposition of Vλ ⊗ Vmε1 for the type C3.



244 M. Defosseux

9.1.3. Tensor product of representations for type Br

The coroots of the simple roots are hi = εi − εi+1, i = 1, . . . , r − 1, hr = 2εr , the crystal graph of Vε1 is

B(ε1) : 1
1→ ·· · r−1→ r

r→ 0
r→ r

r−1→ ·· · 1→ 1,

where i, i and 0 have respective weight εi , −εi and 0 for i = 1, . . . , r . We define an order on B(ε1) by 1 ≤ · · · ≤ r ≤
0 ≤ r ≤ · · · ≤ 1. By Theorem 5.7.1 of [36],

B(mε1) = {
bm ⊗ · · · ⊗ b1 ∈ B(ε1)

⊗m :bk+1 ≥ bk, bk+1 ⊗ bk �= 0 ⊗ 0
}
.

Let λ be an integral dominant weight. As for the type Cn, in the decomposition of Vλ ⊗ Vmε1 the sum ranges over
the bm ⊗ · · · ⊗ b1 ∈ B(mε1) such that εi(bk) ≤ 〈hi, λ + wt(bk+1) + · · · + wt(bm)〉 for 1 ≤ k ≤ m,1 ≤ i ≤ r . Let
b ∈ B(ε1). For i ≤ r − 1, 〈hi,wt(b)〉 = −1 if b = i + 1 or b = i. Moreover, 〈hr,wt(b)〉 = −2 if b = r . In every other
cases 〈hi,wt(b)〉 is positive. Thus one easily shows that

εi(b) ≤ 〈hi, λ〉 ⇔
{(

b �= 0 and 0 ≤ 〈
hi, λ + wt(b)

〉)
or(

b = 0 and 〈hr,λ〉 ≥ 1
)
.

So, in the decomposition considered, the sum ranges over all elements bm ⊗ · · · ⊗ b1 ∈ B(ε1)
⊗m satisfying for every

(k, i) ∈ {1, . . . ,m} × {1, . . . , r}⎧⎨
⎩

bk+1 ≥ bk, bk+1 ⊗ bk �= 0 ⊗ 0,

0 ≤ 〈
hi, λ + wt(bm) + · · · + wt(bk)

〉
,

1 ≤ 〈
hr,λ + wt(bm) + · · · + wt(bk)

〉
if bk = 0.

(29)

Thus we get the following proposition.

Proposition 9.4. Let λ,γ ∈ N
r be such that λ1 ≥ · · · ≥ λr and γ = (m,0, . . . ,0), a ∈ N. Then

Vλ ⊗ Vγ =
⊕

β

Mλ,γ (β)Vβ,

where the sum is over all β ∈ N
r such that β1 ≥ · · · ≥ βr such that there exists an integer s ∈ {0,1} and c ∈ N

r

which verifies λ � c, β � c and
∑r

i=1(λi − ci + βi − ci) + s = m, s being equal to 0 if cr = 0. In addition, the
multiplicity Mλ,γ (β) of the irreducible module with highest weight β is the number of (c, s) ∈ Nr × {0,1} satisfying
these relations.

9.1.4. Tensor product of representations for type Dr

The simple coroots are hi = εi − εi+1, i = 1, . . . , r − 1, and hr = εr + εr−1, the crystal graph of Vε1 is

B(ε1) : 1
1→ ·· · r−3→ r − 2

r−2→ r − 1 r − 1
r−2→ r − 2

r−3→ ·· · 1→ 1.

↗r r ↘r − 1

↘r − 1 r ↗r

Here i and i have respective weight εi and −εi , i = 1, . . . , r . We define a partial order ≤ on B(ε1) by 1 ≤ · · · ≤
r − 1 ≤ r

r
≤ r − 1 ≤ · · · ≤ 1. For m ∈ N Theorem 6.7.1 of [36] states that,

B(mε1) = {
bm ⊗ · · · ⊗ b1 ∈ B(ε1)

⊗m :bk+1 ≤ bk

}
.

Let λ be a dominant weight such that 〈εr , λ〉 ∈ N. For b ∈ B(ε1), the same considerations as for the types An−1 and
Cn imply equivalence (26). So that we get Proposition 9.5, which is illustrated by Fig. 10. We invite the reader to
compare with Fig. 7.
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Fig. 10. Irreducible decomposition of Vλ ⊗ Vmε1 for the type D3.

Proposition 9.5. Let λ,γ ∈ N
r be such that λ1 ≥ · · · ≥ |λr |, and γ = (m,0, . . . ,0), m ∈ N. Then

Vλ ⊗ Vγ =
⊕

β

Mλ,γ (β)Vβ,

where the sum is over all β ∈ N
r satisfying β1 ≥ · · · ≥ βr such that there exists c ∈ N

r−1 which verify λ � c, β � c,
max(|λr |, |βr |) ≤ cr−1 and

∑r−1
k=1(λk − ck + βk − ck) + |λr − μr | = m. In addition, the multiplicity Mλ,γ (β) of the

irreducible module with highest weight β is the number of c ∈ N
r−1 satisfying these relations.

9.2. Classical restriction multiplicities

For F = R,C,H, the branching rules when K = Un(F) and H = Un−1(F), are well known (see, for instance, Knapp
[42]). Let us recall them. We add a subscript Z to the Gelfand–Tetlin polytopes GTn(λ) to designate the subset of
elements with integer entries.

Proposition 9.6. Let λ be an integral point of Cn. Let Vλ be an irreducible module with highest weight λ. The irre-
ducible decomposition (22) when K = Un(F) and H = Un−1(F) is the following one:

Vλ =
⊕

β

mλ
Un−1

(β)V
Un−1
β ,

where the sum is over all β such that there exists x ∈ GTn,Z(λ) such that x(n−1) = β . Moreover, for F = C,R,
mλ

Un−1
(β) = 1 and for F = H, mλ

Un−1
(β) is the number of c ∈ N

n for which there exists x ∈ GTn,Z(λ) with x(n−1) = β

and x(n−1/2) = c.

10. Asymptotic multiplicities and limit measures

In this section, we prove Lemma 3.3 and Proposition 4.3.

10.1. Proof of Lemma 3.3

We have recalled in Proposition 9.6 the branching rules in the case when K = Un(F) and H = Un−1(F). Let us
consider the chain of subgroups Un(F) ⊃ · · · ⊃ U1(F) and the corresponding successive restrictions. If we compare
the successive branching rules with the definition of the Gelfand–Tsetlin polytopes GTn(λ) for λ an integer point
in Cn, we get the famous result that the number of integer points in GTn(λ) is the dimension of the irreducible
Un(F)-module with highest weight λ. Actually this is the reason why Gelfand–Tsetlin polytopes have been introduced
[27]. The dimension formula (20) implies the following lemma. Let ε be equal to 1 if n /∈ 2N and 0 otherwise.
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Lemma 10.1. Let λ be an integer point in Cn. The number of points in GTn,Z(λ), denoted Card GTn,Z(λ), is equal to:

• when F = C,

∏
1≤i<j≤n

λi − λj + j − i

j − i
,

• when F = H,

∏
1≤i<j≤n

(λi − λj + j − i)(λi + λj + 2n + 2 − j − i)

(j − i)(2n + 2 − j − i)

n∏
i=1

λi + n + 1 − i

n + 1 − i
,

• when F = R,

∏
1≤i<j≤ñ

(λi − λj + j − i)(λi + λj + 2ñ + ε − j − i)

(j − i)(2ñ + ε − j − i)

ñ∏
i=1

[
λi + ñ + 1/2 − i

ñ + 1/2 − i

]ε

.

Before writing the proof of the Lemma 3.3 let us state the following lemma. Recall that μλ is the image of the
uniform measure on GTn(λ) by the map x ∈ GTn(λ) �→ x(n−1), and (εk)k≥1 converges to 0.

Lemma 10.2. Let λ be in the Weyl chamber Cn. Let us consider a sequence (λk)k≥1 of integer points in Cn such that
εkλk converges to λ, as k goes to infinity, and the associated sequence of measures (μk)k≥0 defined as in Theorem 7.3
for K = Un(F) and H = Un−1(F). Then (μk)k≥1 converges to the measure μλ.

Proof. We use the multiplicity m
λk

Un−1
(β) defined in Proposition 9.6. Since the dimension of the irreducible Un(F)-

module with highest weight γ is given by the number of integer points in GTn(γ ), we obtain that μk is equal to

∑
β

Card GTn−1,Z(β)

Card GTn,Z(λk)
m

λk

Un−1
(β)δεkβ . (30)

Comparing the definition of Gelfand–Tsetlin polytopes with the branching rules given in Proposition 9.6, we get that
the measure μk is the image by the map x ∈ GTn(εkλk) �→ x(n−1) of the measure 1

dim(λk)

∑
x∈GTn,Z(λk)

δεkx . This last
measure converges to the uniform measure on GTn(λ). Thus μk converges to μλ. �

Proof of Lemma 3.3. Let λ ∈ Cn and U ∈ Un(F) a Haar distributed random variable. We choose a sequence of
measures (μk)k≥1 on Cn as in Lemma 10.2 which claims that (μk)k≥1 converges to the law of the radial part of the
main minor of order n − 1 of UΩn(λ)U∗. Lemma 10.2 implies that this law is μλ. �

10.2. Proof of Proposition 4.3

The following lemma states the connection between the set E (λ, θ) defined in Section 4 and irreducible decomposition
of tensor products of representations studied in Section 9. In every case but the real odd one, we denote EZ(λ, θ) the
subset of E (λ, θ) whose elements have components in Z. In the case where F = R and n = 2r + 1, we let

EZ(λ, θ) =
{

(β, z, x, s) ∈ N
r × N

r × GTn,Z × {0,1}: λ,β � z,

r∑
i=1

(λi + βi − 2zi) + s = θ, x ∈ GTn(β), s = 0 if zr = 0

}
.

Lemma 10.3. Let λ and γ = (a,0, . . . ,0) be integer points of Cn. Then the number of points in EZ(λ, a) is equal to
dim(λ)dim(γ ).
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Proof. We compare the conditions satisfied by the component β of the elements of EZ(λ, a) with those satisfied
by the weights appearing in the description of the irreducible decomposition of the tensor product Vλ ⊗ Vγ given
in Propositions 9.2–9.5. Recalling that Card GTn,Z(β) is equal to dim(Vβ) we get that Card EZ(λ, a) =∑

β dim(Vβ),
where the sum ranges over the dominant weights β (with their multiplicity) appearing in the irreducible decomposition
of Vλ ⊗ Vγ . Thus Card EZ(λ, a) = dim(Vγ ⊗ Vγ ) = dim(λ)dim(γ ). �

Lemma 10.4. Let λ be in the Weyl chamber Cn and θ > 0. Let us consider two sequences (λk)k≥1 and (γk)k≥1 of
integer points in Cn such that γk can be written as (ak,0, . . . ,0). We suppose that εkλk converges to λ and εkak

converges to θ , as k goes to infinity. Then the associated sequence of measures (νk)k≥1 given in Corollary 7.4 for
K = Un(F) converges to the measure νλ,θ .

Proof. The measure νk is the measure

∑
β

dim(β)

dim(λk)dim(γk)
Mλk,γk

(β)δεkβ,

where Mλk,γk
(β) is the multiplicity of the highest weight β in the irreducible decomposition of Vλk

⊗ Vγk
. The de-

scription of this irreducible decomposition given in Section 9, from Proposition 9.2–9.5, and the fact that dim(β) =
Card GTn,Z(β) show that νk is the image by the projection on the component β of the probability

1

dim(λk)dim(γk)

∑
x∈EZ(λk,ak)

δεkx,

which proves the proposition. �

Proof of Proposition 4.3. Let λ ∈ Cn, θ ∈ R
∗+ and choose a sequence of measures (νk)k≥1 on Cn as in Lemma 10.4.

Then (νk)k≥1 converges to the law of the radial part of Ωn(λ) + UΩn(θ)U∗ where U has a Haar distribution.
Lemma 10.4 implies that this law is νλ,θ . �

11. Concluding remarks

11.1. Random processes with values in GTn

Let M = (Mt)t≥0 be a standard Brownian motion in Pn(C). Then the minor process X(M) = (X(Mt))t≥0 is generally
not a Markov process. For instance for F = C, the only cases when X(M) is a Markov process are for n = 1 and n = 2.
Actually a Brownian motion in Pn(C) can be obtained as a limit, in a certain sense, of a quantum random walk (see
Biane [4] for P2(C)). The fact that the minor process X(M) is not Markovian has to be related to the fact that for
n ≥ 3, the “complete system of observables” in the space of any representation defined by Zhelobenko in Chapter X.67
of [62], is not stable by the Markovian operator of the quantum random walk.

11.2. Rank one perturbation on classical complex Lie groups

Klyachko showed in [41] that the convolution of biinvariant measures on the complexification G of the compact
group K , is deduced from the convolution of invariant measures on K . His result is an hyperbolic version of the so
called wrapping map introduced by Dooley and Wildberger [19]. Using this we can show that the radial part of a
Brownian motion on the symmetric space G/K can be approached by an interlaced process.

11.3. Rank one perturbation on Un(F)

Let us say a word about some other interesting rank one perturbations having invariance properties that we can find
in literature. For instance, Diaconis and Shahshahani [17], followed by Porod [53,54] and Rosenthal [55], studied
specific random walks on Un(F), F = R,C,H, whose increments are some random rotations, in order to approximate
the Haar measure on Un(F). The wrapping map introduced in [19] makes a link between these rank one perturbations
and those that we studied in this paper.
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