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Abstract. Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of
generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate
the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily
relies on estimates on the tail distribution of the first regeneration time.

Résumé. Nous considérons une marche aléatoire en milieu aléatoire sur un arbre de Galton–Watson. Soit τn le temps d’atteinte du
niveau n. Le papier présente un principe de grandes déviations pour τn/n, dans les cas quenched et annealed. Nous étudions ensuite
le régime sous-exponentiel, qui fait apparaître un régime polynomial rappelant la dimension 1. Le papier repose principalement sur
les estimations de la queue de distribution du premier temps de renouvellement.
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1. Introduction

We consider a super-critical Galton–Watson tree T of root e and offspring distribution (qk, k ≥ 0) with finite mean
m := ∑

k≥0 kqk > 1. For any vertex x of T, we call |x| the generation of x, (|e| = 0) and ν(x) the number of children
of x; we denote these children by xi,1 ≤ i ≤ ν(x). We let νmin be the minimal integer such that qνmin > 0 and we
suppose that νmin ≥ 1 (thus q0 = 0). In particular, the tree survives almost surely. Following Pemantle and Peres [14],
on each vertex x, we pick independently and with the same distribution a random variable A(x), and we define:

• ω(x, xi) := A(xi)

1+∑ν(x)
i=1 A(xi )

, ∀1 ≤ i ≤ ν(x),

• ω(x,
←
x ) := 1

1+∑ν(x)
i=1 A(xi)

.

To deal with the case x = e, we add a parent
←
e to the root and we set ω(

←
e , e) = 1. Once the environment built, we

define the random walk (Xn,n ≥ 0) starting from y ∈ T by

P y
ω(X0 = y) = 1,

P y
ω (Xn+1 = z|Xn = x) = ω(x, z).

The walk (Xn,n ≥ 0) is a T-valued Random Walk in Random Environment (RWRE). To determine the transience or
recurrence of the random walk, Lyons and Pemantle [11] provides us with the following criterion. Let A be a generic
random variable having the distribution of A(e).
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Theorem A (Lyons and Pemantle [11]). The walk (Xn) is transient if inf[0,1] E[At ] > 1
m

, and is recurrent otherwise.

In the transient case, let v denote the speed of the walk, which is the deterministic real v ≥ 0 such that

lim
n→∞

|Xn|
n

= v, a.s.

Define

i := ess infA,

s := ess supA.

We make the hypothesis that 0 < i ≤ s < ∞. Under this assumption, we gave a criterion in [1] for the positivity of the
speed v. Let

Λ := Leb

{
t ∈ R: E

[
At

] ≤ 1

q1

}
(Λ = ∞ if q1 = 0). (1.1)

Theorem B ([1]). Assume inf[0,1] E[At ] > 1
m

, and let Λ be as in (1.1).

(a) If Λ < 1, the walk has zero speed.
(b) If Λ > 1, the walk has positive speed.

When the speed is positive, we would like to have information on how hard it is for the walk to have atypical be-
haviours, which means to go a little faster or slower than its natural pace. Such questions have been discussed in the
setting of biased random walks on Galton–Watson trees, by Dembo et al. in [5]. The authors exhibit a large deviation
principle both in quenched and annealed cases. Besides, an uncertainty principle allows them to obtain the equality of
the two rate functions. For the RWRE in dimensions one or more, we refer to Zeitouni [17] for a review of the subject.
In our case, we consider a random walk which always avoids the parent

←
e of the root, and we obtain a large deviation

principle, which, following [5], has been divided into two parts.
We suppose in the rest of the paper that

inf[0,1] E
[
At

]
>

1

m
, (1.2)

Λ > 1, (1.3)

which ensures that the walk is transient with positive speed. Before the statement of the results, let us introduce some
notation. Define for any n ≥ 0 and x ∈ T,

τn := inf
{
k ≥ 0: |Xk| = n

}
,

D(x) := inf{k ≥ 1: Xk−1 = x,Xk = ←
x }, inf∅ := ∞.

Let P denote the distribution of the environment ω conditionally on T, and Q := ∫
P(·)GW(dT). Similarly, we denote

by Px the distribution defined by Px(·) := ∫
P x

ω(·)P(dω) and by Qx the distribution

Qx(·) :=
∫

Px(·)GW(dT).

Theorem 1.1 (Speed-up case). There exist two continuous, convex and strictly decreasing functions Ia ≤ Iq from
[1,1/v] to R+, such that Ia(1/v) = Iq(1/v) = 0 and for a < b, b ∈ [1,1/v], we have almost surely,

lim
n→∞

1

n
ln Qe

(
τn

n
∈]a, b]

)
= −Ia(b), (1.4)

lim
n→∞

1

n
lnP e

ω

(
τn

n
∈]a, b]

)
= −Iq(b). (1.5)



Large deviations for transient random walks 161

Theorem 1.2 (Slowdown case). There exist two continuous, convex functions Ia ≤ Iq from [1/v,+∞[ to R+, such
that Ia(1/v) = Iq(1/v) = 0 and for any 1/v ≤ a < b, we have almost surely,

lim
n→∞

1

n
ln Qe

(
τn

n
∈ [a, b[

)
= −Ia(a), (1.6)

lim
n→∞

1

n
lnP e

ω

(
τn

n
∈ [a, b[

)
= −Iq(a). (1.7)

Besides, if i > ν−1
min, then Ia and Iq are strictly increasing on [1/v,+∞[. When i ≤ ν−1

min, we have Ia = Iq = 0 on the
interval.

As pointed by an anonymous referee, it would be interesting to know when Ia and Iq coincide. We do not know
the answer in general. However, the computation of the value of the rate functions at b = 1 reveals situations where
the rate functions differ. Let

ψ(θ) := ln

(
EQ

[
ν(e)∑
i=1

ω(e, ei)
θ

])
.

Then ψ(0) = ln(m) and ψ(1) = ln(EQ[∑ν(e)
i=1 ω(e, ei)]).

Proposition 1.3. We have

Ia(1) = −ψ(1), (1.8)

Iq(1) = − inf]0,1]
1

θ
ψ(θ). (1.9)

In particular, Ia(1) = Iq(1) if and only if ψ ′(1) ≤ ψ(1). Otherwise Ia(1) < Iq(1).

Quite surprisingly, we can exhibit elliptic environments on a regular tree for which the rate functions differ. This
could hint that the uncertainty of the location of the first passage in [5] does not hold anymore for a random environ-
ment. Here is an explicit example. Consider a binary tree (q2 = 1). Let A equal 0.01 with probability 0.8 and 500
with probability 0.2. Then we check that the walk is transient, but ψ ′(1) > ψ(1) so that Ia(1) 
= Iq(1) on such an
environment.

Theorem 1.2 exhibits a subexponential regime in the slowdown case when i ≤ ν−1
min. The following theorem details

this regime. Let

Se(·) := Qe
(·|D(e) = ∞)

.

Theorem 1.4. We place ourself in the case i < ν−1
min.

(i) Suppose that either “i < ν−1
min and q1 = 0” or “i < ν−1

min and s < 1.” There exist constants d1, d2 ∈ (0,1) such
that for any a > 1/v and n large enough,

e−nd1
< Se(τn > an) < e−nd2

. (1.10)

(ii) If q1 > 0 and s > 1 (i.e. when Λ < ∞), the regime is polynomial and we have for any a > 1/v,

lim
n→∞

1

ln(n)
ln

(
Se(τn > an)

) = 1 − Λ. (1.11)

We mention that in one dimension, which can be seen as a critical state of our model where q1 = 1, such a poly-
nomial regime is proved by Dembo et al. [6], our parameter Λ taking the place of the well-known κ of Kesten et al.



162 E. Aidékon

[9]. We did not deal with the critical case i = ν−1
min. Furthermore, we do not have any conjecture on the optimal values

of d1 and d2 and do not know if the two values are equal.
The rest of the paper is organized as follows. Section 2 describes the tail distribution of the first regeneration time,

which is a preparatory step for the proof of the different theorems. Then we prove Theorems 1.1 and 1.2 in Section 3,
which includes also the computation of the rate functions at speed 1 presented in Proposition 1.3. Section 4 is devoted
to the subexponential regime with the proof of Theorem 1.4.

2. Moments of the first regeneration time

We define the first regeneration time

Γ1 := inf
{
k > 0: ν(Xk) ≥ 2,D(Xk) = ∞, k = τ|Xk |

}
as the first time when the walk reaches a generation by a vertex having more than two children and never returns to its
parent. We propose in this section to give information on the tail distribution of Γ1 under Se . We first introduce some
notation used throughout the paper. For any x ∈ T, let

N(x) :=
∑
k≥0

1{Xk=x}, (2.1)

Tx := inf{k ≥ 0: Xk = x},
T ∗

x := inf{k ≥ 1: Xk = x}..

This permits to define

β(x) := P x
ω(T←

x
= ∞),

γ (x) := P x
ω

(
T←

x
= T ∗

x = ∞)
. (2.2)

The following fact can be found in [5] (Lemma 4.2) in the case of biased random walks, and is directly adaptable in
our setting.

Fact A. The first regeneration height |XΓ1 | admits exponential moments under the measure Se(·).

2.1. The case i > ν−1
min

This section is devoted to the case i > ν−1
min, where Γ1 is proved to have exponential moments.

Proposition 2.1. Suppose that i > ν−1
min. There exists θ > 0 such that ESe [eθΓ1 ] < ∞.

Proof. The proof follows the strategy of Proposition 1 of Piau [16]. We couple the distance of our RWRE to the root
(|Xn|)n≥0 with a biased random walk (Yn)n≥0 on Z as follows. Let p := iνmin

1+iνmin
, and let un,n ≥ 0, be a family of i.i.d.

uniformly distributed [0,1] random variables. We set X0 = e and Y0 = 0. If Xk and Yk are known, we construct

Xk+1 = xi if
i−1∑
�=1

ω(x, x�) ≤ uk <

i∑
�=1

ω(x, x�),

Xk+1 = ←
x otherwise,

Yk+1 = y + 21{uk≤p} − 1,
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where x := Xk ∈ T and y := Yk ∈ Z. Then (Xn)n≥0 has the distribution of our T-RWRE indeed, and (Yn)n≥0 is
a random walk on Z which increases of one unit with probability p > 1/2 and decreases of the same value with
probability 1 − p. Notice also that on the event {D(e) = ∞}, we have

|Xk+1| − |Xk| ≥ Yk+1 − Yk.

It implies that the first regeneration time R1 of (Yn)n≥0 defined by

R1 := inf{k > 0: Y� < Yk ∀� < k,Ym ≥ Yk ∀m > k}
is necessarily a regeneration time for (Xn,n ≥ 0), which proves in turn that

Se(Γ1 > n) ≤ Qe(R1 > n).

To complete the proof, we must ensure that Qe(R1 > n) is exponentially small, which is done in [6], Lemma 5.1. �

2.2. The cases “i < ν−1
min, q1 = 0” and “i < ν−1

min, s < 1”

When i < ν−1
min, if we assume also that q1 = 0 or s < 1, we prove that Γ1 has a subexponential tail. This situation

covers, in particular, the case of RWRE on a regular tree.

Proposition 2.2. Suppose that i < ν−1
min and q1 = 0, then there exist 1 > α1 > α2 > 0 such that for n large enough,

e−nα1
< Se(Γ1 > n) < e−nα2

. (2.3)

The same relation holds with some 1 > α3 > α4 > 0 in the case “i < ν−1
min and s < 1.”

Proof of Proposition 2.2: lower bound. We only suppose that i < ν−1
min, which allows us to deal with both cases of

the lemma. Define for some p′ ∈ (0,1/2) and b ∈ N,

w+ := Q
( ν∑

i=1

A(ei) ≥ 1 − p′

p′ , ν(e) ≤ b

)
,

w− := Q
( ν∑

i=1

A(ei) ≤ p′

1 − p′ , ν(e) ≤ b

)
.

By (1.2), EQ[∑ν(e)
i=1 A(ei)] > 1 and therefore Q(

∑ν(e)
i=1 A(ei) > 1) > 0. Since ess inf A < ν−1

min, it guarantees that

Q(
∑ν(e)

i=1 A(ei) < 1) > 0. Consequently, by choosing p′ close enough of 1/2 and b large, we can take w+ and w−
positive. Let c := 1

6 ln(b)
, and define hn := �c ln(n). A tree T is said to be n-good if:

• any vertex x of the hn first generations verifies ν(x) ≤ b and
∑ν(x)

i=1 A(xi) ≥ 1−p′
p′ ,

• any vertex x of the hn following generations verifies ν(x) ≤ b and
∑ν(x)

i=1 A(xi) ≤ p′
1−p′ .

We observe that Q(T is n-good) ≥ w
hnbhn

+ w
hnb2hn

− ≥ e−n1/3+o(1)
which is stretched exponential, i.e. behaving like

e−nr+o(1)
for some r ∈ (0,1). Define the events:

E1 := {at time τhnwe cannot find an edge of level smaller than hn crossed only once}
∩ {D(e) > τhn},

E2 := {the walk visits the level hn n times before reaching the root or the level 2hn},
E3 := {after the nth visit of level hn, the walk reaches level 2hn before level hn},
E4 := {after time τ2hn the walk never comes back to level 2hn − 1}.
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Suppose that the tree is n-good. Since A is supposed bounded, there exists a constant c1 > 0 such that for any x

neighbour of y, we have

ω(x, y) ≥ c1

ν(x)
. (2.4)

It yields that P e
ω(E1)

−1 = O(nK) for some K > 0 (where O(nK) means that the function is bounded by a factor of
n → nK ). Combine (2.4) with the strong Markov property at time τhn to see that

P e
ω(E3|E1 ∩ E2)

−1 = O(nK),

where K is taken large enough. We emphasize that the functions O(nK) are deterministic. Still by Markov property,

P e
ω(E1 ∩ E2 ∩ E3 ∩ E4) = Ee

ω

[
1E1∩E2∩E3β(Xτ2hn

)
]
. (2.5)

Let (Y ′
n)n≥0 be the random walk on Z starting from zero with

Pω

(
Y ′

n+1 = k + 1|Y ′
n = k

) = 1 − Pω

(
Y ′

n+1 = k − 1|Y ′
n = k

) = p′.

We introduce T ′
i := inf{k ≥ 0: Yk = i}, and p′

n the probability that (Y ′
n)n≥0 visits hn before −1:

p′
n := Pω

(
T ′−1 < T ′

hn

)
.

By a coupling argument similar to that encountered in the proof of Proposition 2.1, we show that in an n-good tree,

P e
ω(E1 ∩ E2) ≥ P e

ω(E1)(p
′
n)

n = O
(
nK

)−1(
p′

n

)n
, (2.6)

which gives

P e
ω(E1 ∩ E2 ∩ E3) ≥ O

(
nK

)−1(
p′

n

)n
. (2.7)

Observing that Qe(Γ1 > n,D(e) = ∞) ≥ EQ[1{T is n-good}1E1∩E2∩E3∩E4], we obtain by (2.5)

Qe
(
Γ1 > n,D(e) = ∞) ≥ EQe

[
1{T is n-good}1E1∩E2∩E3β(Xτ2hn

)
]

= EQe

[
1{T is n-good}P e

ω(E1 ∩ E2 ∩ E3)
]
EQ[β],

by independence. By (2.7),

Qe
(
Γ1 > n,D(e) = ∞) ≥ O(nK)−1Q(T is n-good)(p′

n)
n.

We already know that Q(T is n-good) has a stretched exponential lower bound, and it remains to observe that the
same holds for (p′

n)
n. But the method of gambler’s ruin shows that p′

n ≥ 1 − (
p′

1−p′ )hn , which gives the required lower
bound by our choice of hn. �

Let us turn to the upper bound. We divide the proof in two, depending on which case we deal with.

Proof of Proposition 2.2: upper bound in the case q1 = 0. Assume that q1 = 0 (the condition i < ν−1
min is not

required in the proof). The proof of the following lemma is deferred. Recall the notation introduced in (2.2), γ (e) :=
P e

ω(T←
e

= T ∗
e = ∞) ≤ β(e).

Lemma 2.3. When q1 = 0, there exists a constant c2 ∈ (0,1) such that for large n,

EQ
[(

1 − γ (e)
)n] ≤ e−nc2

.
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Denote by πk the kth distinct site visited by the walk (Xn,n ≥ 0). We observe that

Qe(Γ1 > n3) ≤ Qe(Γ1 > τn) + Qe
(
more than n2 distinct sites are visited before τn

)
(2.8)

+ Qe
(∃k ≤ n2: N(πk) > n

)
.

Since Qe(Γ1 > τn) = Qe(|XΓ1 | > n), it follows from Fact A that Qe(Γ1 > τn) decays exponentially. For the second
term of the right-hand side, beware that

Qe
(
more than n2 distinct sites are visited before τn

)
≤

n∑
k=1

Qe(more than n distinct sites are visited at level k).

If we denote by tki the first time when the ith distinct site of level k is visited, we have, by the strong Markov property,

P e
ω(more than n sites are visited at level k) = P e

ω

(
tkn < ∞)

≤ P e
ω

(
tkn−1 < ∞,D(Xtkn−1

) < ∞)
= Ee

ω

[
1{tkn−1<∞}

(
1 − β(Xtkn−1

)
)]

.

The independence of the environments entails that

EQe

[
1{tkn−1<∞}

(
1 − β(Xtkn−1

)
)] = Qe

(
tkn−1 < ∞)

EQ[1 − β].
Consequently,

Qe
(
tkn < ∞) ≤ Qe

(
tkn−1 < ∞)

EQ[1 − β]
(2.9)

≤ (
EQ[1 − β])n−1

,

which leads to

Qe
(
more than n2 sites are visited before τn

) ≤ n
(
EQ[1 − β])n−1

, (2.10)

which is exponentially small. We remark, for later use, that Eq. (2.9) holds without the assumption q1 = 0. For the
last term of Eq. (2.9), we write

Qe
(∃k ≤ n2: N(πk) > n

) ≤
n2∑

k=1

Qe
(
N(πk) > n

)
.

Let U := ⋃
n≥0(N

∗)n be the set of words, where (N)0 := {∅}. Each vertex x of T is naturally associated with a word
of U , and T is then a subset of U (see [13] for a more complete description). For any k ≥ 1,

Qe
(
N(πk) > n

) =
∑
x∈U

Qe
(
x ∈ T,N(x) > n,x = πk

)
≤

∑
x∈U

EQ
[
1{x∈T}P e

ω(x = πk)
(
1 − γ (x)

)n]
,

with the notation of (2.2). By independence,

Qe
(
N(πk) > n

) ≤
∑
x∈U

EQ
[
1{x∈T}P e

ω(x = πk)
]
EQ

[(
1 − γ (e)

)n]
= EQ

[(
1 − γ (e)

)n]
.



166 E. Aidékon

Apply Lemma 2.3 to complete the proof. �

Proof of Lemma 2.3. Let μ > 0 be such that q := Q(β(e) > μ) > 0, and write

R := inf
{
k ≥ 1: ∃|x| = k,β(x) ≥ μ

}
.

Let xR be such that |xR| = R and β(xR) ≥ μ and we suppose for simplicity that xR is a descendant of e1. We see that
γ (e) ≥ ω(e, e1)β(e1) ≥ c1

ν(e)
β(e1) by Eq. (2.4). In turn, Eq. (2.1) of [1] implies that for any vertex x, we have

1

β(x)
= 1 + 1∑ν(x)

i=1 A(xi)β(xi)
≤ 1 + 1

ess inf A

1

β(xi)

for any 1 ≤ i ≤ ν(x). By recurrence on the path from e1 to xR , this leads to

1

β(e1)
≤ 1 + 1

ess inf A
+ · · · +

(
1

ess inf A

)R−1 1

μ
.

We deduce the existence of constants c4, c5 > 0 such that

γ (e) ≥ c4

ν(e)
e−c5R. (2.11)

It yields that

EQ
[(

1 − γ (e)
)n1{ν(e)<

√
n}

] ≤ Q
(

R >
1

4c5
ln(n)

)
+ e−n1/4+o(1)

.

We observe that

Q
(

R >
1

4c5
ln(n)

)
≤ Q

(
∀|x| = 1

4c5
ln(n),β(x) > μ

)
.

By assumption, q1 = 0; thus #{x ∈ T: |x| = 1
4c5

ln(n)} ≥ 21/4c5 ln(n) =: nc6 . As a consequence, Q(∀|x| = 1
4c5

ln(n),

β(x) > μ) ≤ qnc6 . Hence, the proof of our lemma is reduced to find a stretched exponential bound for EQ[(1 −
γ (e))n1{ν(e)≥√

n}]. For any x ∈ T, denote by V
μ
x the number of children xi of x such that β(xi) > μ. For ε ∈

(0,Q(β(e) > μ)),

EQ
[(

1 − γ (e)
)n1{ν(e)≥√

n}
]

≤ Qe
(
ν(e) ≥ √

n,V μ
e < εν(e)

) + EQ
[(

1 − γ (e)
)n1{V μ

e ≥εν(e)}
]
.

We apply Cramér’s theorem to handle with the first term on the right-hand side. Turning to the second one, the bound
is clear once we observe the general inequality,

γ (e) =
ν(e)∑
k=1

ω(e, ek)β(ek) ≥ c1

ν(e)

ν(e)∑
k=1

β(ek) ≥ c1μ

ν(e)
V μ

e , (2.12)

which is greater than c1με on {V μ
e ≥ εν(e)}. �

Remark 2.3. As a by-product, we obtain that EQ[(1 − γ (e))n1{ν(e)≥√
n}] ≤ e−nc3 without the assumption q1 = 0.

Proof of Proposition 2.2: upper bound in the case s < 1. We follow the strategy of the case “q1 = 0”. The proof
boils down to the estimate of

Qe
(
N(πk) > n,D(e) = ∞)

= Qe
(
N(πk) > n, ν(πk) <

√
n,D(e) = ∞) + Qe

(
N(πk) > n, ν(πk) ≥ √

n,D(e) = ∞)
.
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Let x ∈ T and consider the RWRE (Xn,n ≥ 0) when starting from
←
x . Inspired by Lyons et al. [12], we propose to

couple it with a random walk (Y ′′
n , n ≥ 0) on Z. We first define X′′

n as the restriction of Xn on the path [[←e , x]]. Beware

that X′′
n exists only up to a time T , which corresponds to the time when the walk (Xn,n ≥ 0) escapes the path [[←e , x]],

id est leaves the path and never comes back to it. After this time, we set X′′
n = Δ for some Δ in some space E . Then

(X′′
n)n≥0 is a random walk on [[←e , x]] ∪ {Δ}, whose transition probabilities are, if y /∈ {←e , x,Δ},

P
←
x

ω

(
X′′

n+1 = y+|X′′
n = y

) = ω(y, y+)

ω(y, y+) + ω(y,
←
y ) + ∑

yk 
=y+ ω(y, yk)β(yk)
,

P
←
x

ω

(
X′′

n+1 = ←
y |X′′

n = y
) = ω(y,

←
y )

ω(y, y+) + ω(y,
←
y ) + ∑

yk 
=y+ ω(y, yk)β(yk)
,

P
←
x

ω

(
X′′

n+1 = Δ|X′′
n = y

) =
∑ν(y)

k=1 ω(y, yk)β(yk)

ω(y, y+) + ω(y,
←
y ) + ∑

yk 
=y+ ω(y, yk)β(yk)
,

where y+ is the child of y which lies on the path [[←e , x]]. Besides, the walk is absorbed on Δ and reflected on
←
e and x.

We recall that s := ess supA. We construct the adequate coupling with a biased random walk (Y ′′
n )n≥0 on Z, starting

from |x| − 1, increasing with probability s/(1 + s), decreasing otherwise and such that Y ′′
n ≥ |X′′

n| as long as X′′
n 
= Δ

(which is always possible since Pω(X′′
n+1 = y+|X′′

n = y) ≤ s
1+s

). After time T , we let Yn move independently. By
coupling and then by gambler’s ruin method, it leads to

P
←
x

ω (Tx < T←
e
) ≤ P |x|−1

ω

(∃n ≥ 0: Y ′′
n = |x|) = s.

It follows that

1 − P x
ω

(
T ∗

x < T←
e

) ≥ ω(x,
←
x )

(
1 − P

←
x

ω (Tx < T←
e
)
) ≥ c1(1 − s)

ν(x)
,

by Eq. (2.4). Hence,

Qe
(
N(πk) > n, ν(πk) ≤ √

n,D(e) = ∞)
=

∑
x∈U

EQ
[
1{ν(x)≤√

n}P e
ω

(
x = πk,D(e) > Tx

)
P x

ω

(
N(x) > n,D(e) = ∞)]

≤
∑
x∈U

EQ

[
P e

ω(x = πk)

(
1 − c1(1 − s)√

n

)n]
=

(
1 − c1(1 − s)√

n

)n

,

which decays stretched exponentially. On the other hand,

Qe
(
N(πk) > n, ν(πk) ≥ √

n,D(e) = ∞)
≤ Qe

(
ν(πk) ≥ √

n,V μ
πk

< εν(πk)
) + Qe

(
N(πk) > n,V μ

πk
≥ εν(πk)

)
with the notation introduced in the proof of Lemma 2.3. We have

Qe
(
ν(πk) ≥ √

n,V μ
πk

< εν(πk)
) = Q

(
ν(e) ≥ √

n,V μ
e < εν(e)

)
,

which is stretched exponential by Cramér’s theorem. We also observe that

Qe
(
N(πk) > n,V μ

πk
≥ εν(πk)

) ≤ EQe

[
1{V μ

πk
≥εν(x)}

(
1 − γ (πk)

)n]
= EQ

[
1{V μ

e ≥εν(x)}
(
1 − γ (e)

)n] ≤ (1 − cμε)n,

by Eq. (2.12). This completes the proof. �
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2.3. The case Λ < ∞

In this part, we suppose that Λ < ∞, where Λ is defined by

Λ := Leb

{
t ∈ R: E

[
At

] ≤ 1

q1

}
.

We prove that the tail distribution of Γ1 is polynomial.

Proposition 2.4. If Λ < ∞, then

lim
n→∞

1

ln(n)
ln

(
Se(Γ1 > n)

) = −Λ. (2.13)

Proof. Lemma 3.3 of [1] already gives

lim inf
n→∞

1

ln(n)
ln

(
Se(Γ1 > n)

) ≥ −Λ.

Hence, the lower bound of (2.13) is known. The rest of the section is dedicated to the proof of the upper bound.
We start with three preliminary lemmas. We first prove an estimate for one-dimensional RWRE, that will be useful

later on. Denote by (Rn,n ≥ 0) a generic RWRE on Z such that the random variables A(i), i ≥ 0 are independent and
have the distribution of A, when we set for i ≥ 0,

A(i) := ωR(i, i + 1)

ωR(i, i − 1)

with ωR(y, z) the quenched probability to jump from y to z. We denote by P k
ω,R the quenched distribution associated

with (Rn,n ≥ 0) when starting from k, and by PR the distribution of the environment ωR . Let c7 ∈ (0,1) be a constant
whose value will be given later on. For any k ≥ � ≥ 0 and n ≥ 0, we introduce the notation

p(�, k,n) := EPR

[(
1 − c7P

�
ω,R

(
T ∗

� > T0 ∧ Tk

))n]
. (2.14)

Lemma 2.5. Let 0 < r < 1, and Λr := Leb{t ∈ R: E[At ] ≤ 1
r
}. Then, for any ε > 0, we have for n large enough,∑

k≥�≥0

rkp(�, k, n) ≤ n−Λr+ε.

Proof. The method used is very similar to that of Lemma 5.1 in [1]. We feel free to present a sketch of the proof. We
consider the one-dimensional RWRE (Rn)n≥0. We introduce for k ≥ � ≥ 0, the potential V (0) = 0 and

V (�) = −
�−1∑
i=0

ln
(
A(i)

)
,

H1(�) = max
0≤i≤�

V (i) − V (�),

H2(�, k) = max
�≤i≤k

V (i) − V (�).

We know (e.g. [17]) that

e−H2(�+1,k)

k + 1
≤ P �+1

ω,R (Tk < T�) ≤ e−H2(�+1,k), (2.15)

e−H1(�)

k + 1
≤ P �−1

ω,R (T−1 < T�) ≤ e−H1(�). (2.16)
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It yields that

P �
ω,R

(
T ∗

� > T0 ∧ Tk

) ≥ e−H1(�)∧H2(�,k)+O(lnk),

where O(ln k) is a deterministic function. Let η ∈ (0,1).

p(�, k,n) ≤ (
1 − c7n

−1+η
)n + PR

(
H1(�) ∧ H2(�, k) − O(ln k) ≥ (1 − η) ln(n)

)
≤ e−c8n

η + PR

(
H1(�) ∧ H2(�, k) − O(ln k) ≥ (1 − η) ln(n)

)
.

In Section 8.1 of [1], we proved that for any s ∈ (0,1), EPR
[eΛs(H1(�)∧H2(�,k))] ≤ ek ln(1/s)+os (k), where os(k) is such

that os(k)/k tends to 0 at infinity. This implies that, defining õs(k) := os(k) − ΛsO(ln k),

skPR

(
H1(�) ∧ H2(�, k) − O(ln k) ≥ (1 − η) ln(n)

)
≤ sk

(
1 ∧ ek ln(1/s)−Λs(1−η) ln(n)+̃os (k)

)
≤ n−Λs(1−η) exp

((
k ln(s) + Λs(1 − η) ln(n)

) ∧ õs(k)
)
.

Observe that there exists Ms such that for any k and any n, we have (k ln(s) + Λs(1 − η) ln(n)) ∧ õs(k) ≤
supi≤Ms ln(n) õ(i) + η lnn, and notice that supi≤Ms ln(n) õs(i) is negligible towards ln(n). This leads to, for n large
enough,

skp(�, k, n) ≤ ske−c8n
η + n−Λs(1−η)+2η.

Let r ∈ (0,1) and s > r . We have

rkp(�, k, n) ≤ rke−c8n
η +

(
r

s

)k

n−Λs(1−η)+2η.

Lemma 2.5 follows by choosing η small enough and s close enough to r . �

Let Zn represent the size of the nth generation of the tree T. We have the following result.

Lemma 2.6. There exists a constant c9 > 0 such that for any H > 0,B > 0 and n large enough,

EQ
[(

1 − γ (e)
)n1{ZH >B}

] ≤ n−c9B.

Proof. We have

EQ
[(

1 − γ (e)
)n1{ZH >B}

] ≤ EQ
[(

1 − γ (e)
)n1{ν(e)≥√

n}
] + EQ

[(
1 − γ (e)

)n1{ZH >B,ν(e)≤√
n}

]
≤ e−nc3 + EQ

[(
1 − γ (e)

)n1{ZH >B,ν(e)≤√
n}

]
by Remark 2.3. When ν(e) ≤ √

n, we have, by (2.11),

γ (e) ≥ c4√
n

e−c5R,

with R := inf{k ≥ 1: ∃|x| = k,β(x) ≥ μ} as before (μ > 0 is such that q := Q(β(e) > μ) > 0). Thus,

EQ
[(

1 − γ (e)
)n1{ZH >B,ν(e)≤√

n}
] ≤ Q

(
R >

1

4c5
ln(n) + H,ZH > B

)
+ e−n1/4+o(1)

.

By considering the ZH subtrees rooted at each of the individuals in generation H , we see that

Q
(
R > c10 ln(n) + H,ZH > B

) = EGW

[
Q

(
R > c10 ln(n)

)ZH 1{ZH >B}
]

≤ Q
(
R > c10 ln(n)

)B
.
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If R > c10 ln(n), we have in particular β(x) < μ for each |x| = c10 ln(n) which implies that

Q
(
R > c10 ln(n) + H,ZH > B

) ≤ EGW

[
qZc10 ln(n)

]B
.

Let t ∈ (q1,1). For n large enough, EGW [qZc10 ln(n)] ≤ tc10 ln(n) = nc10 ln(t), (EGW [qZn]/qn
1 has a positive limit by

Corollary 1, page 40 of [2]). The lemma follows. �

Let r ∈ (q1,1), ε > 0, B be such that

c9Bε > 2Λ (2.17)

and H large enough so that

GW(ZH ≤ B) < rH 1

B
< 1. (2.18)

In particular, c11 := GW(ZH > B) > 0.
Let ν(x, k) denote for any x ∈ T the number of descendants of x at generation |x| + k (ν(x,1) = ν(x)), and let

SH := {
x ∈ T: ν(x,H) > B

}
. (2.19)

For any x ∈ T, we call F(x) the youngest ancestor of x which lies in SH , and G(x) an oldest descendant of x in SH .
For any x, y ∈ T, we write x ≤ y if y is a descendant of x and x < y if besides x 
= y. We define for any x ∈ T, W(x)

as the set of descendants y of x such that there exists no vertex z with x < z ≤ y and ν(z,H) > B . In other words,
W(x) = {y: y ≥ x,F (y) ≤ x}. We define also

◦
W(x) := W(x)\{x},
∂W(x) := {

y:
←
y ∈ W(x), ν(y,H) > B

}
.

Finally, let Wj(e) := {x: |x| = j, x ∈ W(e)}.

Lemma 2.7. Recall that m := EGW [ν(e)] and r is a real belonging to (q1,1). We also recall that H and B verify
GW(ZH ≤ B) < rH 1

B
. We have for any j ≥ 0,

EGW

[
Wj(e)

]
< mrj−1.

Proof. We construct the subtree TH of the tree T by retaining only the generations kH , k ≥ 0 of the tree T. Let

W = W(T) := {
x ∈ TH : ∀y ∈ TH , (y < x) ⇒ ν(y,H) ≤ B

}
. (2.20)

The tree W is a Galton–Watson tree whose offspring distribution is of mean EGW [ZH 1{ZH ≤B}] ≤ B × GW(ZH ≤
B) ≤ rH by (2.18). Then for each child ei of e (in the original tree T), let Wi := W(Tei

) where Tei
is the subtree rooted

at ei . We conclude by observing that Wj(e) ≤ ∑ν(e)
i=1 #{x ∈ Wi : |x| = 1 + �(j − 1)/H� × H } hence EGW [Wj(e)] ≤

EGW [ν(e)]rj−1. �

We still have r ∈ (q1,1) and ε > 0. We prove that for n large enough, and r and ε close enough to q1 and 0, we
have

Qe
(
Γ1 > n,D(e) = ∞) ≤ c12n

−(1−2ε)Λr+3ε, (2.21)

where Λr := Leb{t ∈ R: E[At ] ≤ 1
r
} as in Lemma 2.5. This suffices to prove Proposition 2.4 since ε and Λr can be

arbitrarily close to 0 and Λ, respectively. We recall that we defined B , H and SH in (2.17)–(2.19).
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The strategy is to divide the tree in subtrees in which vertices are constrained to have a small number of children (at
most B children at generation H ). With B = H = 1, we would have literally pipes. In general, the traps constructed
are slightly larger than pipes. We then evaluate the time spent in such traps by comparison with a one-dimensional
random walk. We define πs

k as the kth distinct site visited in the set SH . We observe that

Qe
(
Γ1 > n,D(e) = ∞)

≤ Qe(Γ1 > τln2(n)) + Qe
(
more than ln4(n) distinct sites are visited before τln2(n)

)
(2.22)

+ Qe
(∃k ≤ ln4(n),∃x ∈ W

(
πs

k

)
,N(x) > n/ ln4(n)

)
+ Qe

(∃x ∈ W(e),N(x) > n/ ln4(n),D(e) = ∞,ZH ≤ B
)
.

The first term on the right-hand side decays like e− ln2(n) by Fact A, and so does the second term by equation (2.9).
We proceed to estimate the third term on the right-hand side of (2.22). Since

Qe
(∃k ≤ ln4(n),∃x ∈ W

(
πs

k

)
,N(x) > n/ ln4(n)

) ≤
ln4(n)∑
k=1

Qe
(∃x ∈ W

(
πs

k

)
,N(x) > n/ ln4(n)

)
we look at the rate of decay of Qe(∃x ∈ W(πs

k ),N(x) > n/ ln4(n)) for any k ≥ 1. We first show that the time spent at
the frontier of W(πs

k ) will be negligible. Precisely, we show

Qe
(
N

(
πs

k

)
> nε

) ≤ c14n
−2Λ, (2.23)

Qe
(∃z ∈ ∂W

(
πs

k

)
,N(z) > nε

) ≤ c15n
−2Λ. (2.24)

As P
y
ω(N(y) > nε) ≤ (1 − γ (y))n

ε
for any y ∈ T, we have,

Qe
(
N

(
πs

k

)
> nε

) = EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
)
P y

ω

(
N(y) > nε

)]
(2.25)

≤ EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
)(

1 − γ (y)
)nε

]
.

We would like to split the expectation EQ[P e
ω(πs

k = y)(1−γ (y))n
ε ] in two. However the random variable P e

ω(πs
k = y)

depends on the structure of the first H generations of the subtree rooted at y. Nevertheless, we are going to show that,
for some c14 > 0,

EQ
[
P e

ω

(
πs

k = y
)(

1 − γ (y)
)nε ] ≤ c14EQ

[
P e

ω

(
πs

k = y
)]

EQ
[(

1 − γ (y)
)nε |ν(y,H) > B

]
.

Let U := ⋃
n≥0(N

∗)n be, as before, the set of words. We have seen that U allows us to label the vertices of any tree
(see [13]). Let y ∈ U and let ωy represent the restriction of the environment ω to the outside of the subtree rooted
at y (when y belongs to the tree). For 1 ≤ L ≤ H , we denote by yL the ancestor of y such that |yL| = |y| − L. We
attach to each yL the variable ζ(yL) := 1{ν(yL,H)>B}. We notice that there exists a measurable function f such that
P e

ω(πs
k = y) = f (ωy, ζ )1{ν(y,H)>B} where ζ := (ζ(yL))1≤L≤H . Let E (ωy) := {e ∈ {0,1}H : Q(ζ = e|ωy) > 0}. We

have

EQ
[
f (ωy, ζ )|ωy

] ≥ max
e∈E (ωy)

f (ωy, e)Q(ζ = e|ωy).

We claim that there exists a constant c13 > 0 such that for almost every ω and any e ∈ E (ωy),

Q(ζ = e|ωy) ≥ c13.
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Let us prove the claim. If ωy is such that ν(
←
y ) > B , then E (ωy) = {(1, . . . ,1)} and Q(ζ = e|ωy) = 1. Therefore

suppose ν(
←
y ) ≤ B and let h := max{1 ≤ L ≤ H : ν(yL,L) ≤ B}. We observe that, for any e ∈ E (ωy), we necessarily

have eL = 1 for h < L ≤ H . We are reduced to the study of

Q(ζ = e|ωy) = Q
( ⋂

1≤L≤h

{
ζ(yL) = eL

}|ωy

)
.

For any tree T , we denote by T j the restriction to the j first generations. Let also Tyh
designate the subtree rooted

at yh in T. Since ν(yh,h) ≤ B , we observe that Th
yh

belongs almost surely to a finite (deterministic) set in the space
of all trees. We construct the set

Ψ
(
Th

yh
, e

) := {
tree T : T h = Th

yh
,GW

(
T h+H

)
> 0,∀|x| ≤ 2H,νT (x) ≤ B

∀1 ≤ L ≤ h, νT (yL,h) > B if and only if eL = 1
}
.

We observe that Ψ (TK
yK

, e) 
= ∅ as soon as e ∈ E (ωy). Let Ψ̃ (TK
yK

, e) := {T h+H , T ∈ Ψ (Th
yh

, e)} be the same set but
where the trees are restricted to the first h+H generations. Since Ψ̃ (TK

yK
, e) is again included in a finite deterministic

set in the space of trees, we deduce that there exists c13 > 0 such that, almost surely,

inf
{
GW

(
T h+H |T h

)
, T ∈ Ψ

(
Th

yh
, e

)
, e ∈ E (ωy)

} ≥ c13.

Consequently,

Q(ζ = e|ωy) ≥ Q
(
Th+H

yh
∈ Ψ̃

(
Th

yh
, e

)|ωy

) ≥ c13,

as required. We get

EQ
[
f (ωy, ζ )|ωy

] ≥ c13 max
e∈E (ωy)

f (ωy, e) ≥ c13f (ωy, ζ ).

Finally we obtain, with c14 := 1
c13

,

f (ωy, ζ ) ≤ c14EQ
[
f (ωy, ζ )|ωy

]
.

By (2.26), it entails that

Qe
(
N

(
πs

k

)
> nε

) ≤ c14

∑
y∈U

EQ
[
1{ν(y,H)>B}EQ

[
f (ωy, ζ )|ωy

](
1 − γ (y)

)nε ]
= c14

∑
y∈U

EQ
[
f (ωy, ζ )

]
EQ

[
1{ν(e,H)>B}

(
1 − γ (e)

)nε]
= c14

∑
y∈U

EQ
[
P e

ω

(
πs

k = y
)]

EQ
[(

1 − γ (e)
)nε |ν(e,H) > B

]
.

It implies that

Qe
(
N

(
πs

k

)
> nε

) ≤ c14EQ
[(

1 − γ (e)
)nε |ZH > B

] ≤ c14n
−c9εB,

by Lemma 2.6. Since c9εB > 2Λ, this leads to, for n large,

Qe
(
N

(
πs

k

)
> nε

) ≤ c14n
−2Λ
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which is Eq. (2.23). Similarly, recalling that ∂W(y) designates the set of vertices z such that
←
z ∈ W(y) and ν(z,H) >

B , we have that

Qe
(∃y ∈ ∂W

(
πs

k

)
,N(y) > nε

)
≤ EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
) ∑

z∈∂W(y)

(
1 − γ (z)

)nε
]

≤ c14EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
)]

EGW

[
∂W(e)

]
EQ

[(
1 − γ (e)

)nε |ZH > B
]

= c14EGW

[
∂W(e)

]
EQ

[(
1 − γ (e)

)nε |ZH > B
]
.

We notice that EGW [∂W ] ≤ EGW [∑x∈W(e) ν(x)] = mEGW [W(e)] which is finite by Lemma 2.7. It yields, by
Lemma 2.6,

Qe
(∃x ∈ W

(
πs

k

)
,N

(
G(x)

)
> nε

) ≤ c15n
−2Λ

thus proving (2.24). Our next step is then to find an upper bound to the probability to spend most of our time at a

vertex x belonging to some
◦
W(y). To this end, recall that G(x) is an oldest descendant of x such that ν(x,H) > B .

We have just proved that the time spent at y(= F(x)) or G(x) is negligible. Therefore, starting from x, the probability
to spend much time in x is not far from the probability to spend the same time without reaching y neither G(x). Then,
this probability is bound by coupling with a one-dimensional random walk.

Define T̃
(�)
x as the �th time the walk visits x after visiting either F(x) or G(x), i.e. T̃

(1)
x = Tx and,

T̃ (�)
x := inf

{
k > T̃ (�−1)

x : Xk = x,∃i ∈ (
T̃ (�−1)

x , k
)
,Xi = F(x) or G(x)

}
.

Let also N(�)(x) = ∑T̃ (�+1)(x)−1
k=T̃ (�)(x)

1{Xk=x} be the time spent at x between T̃ (�) and T̃ (�+1). We observe that, for any
k ≥ 1,

Qe
(∃x ∈ W

(
πs

k

)
,N(x) > n/ ln4(n)

)
≤ Qe

(
N

(
πs

k

)
> nε

) + Qe
(∃x ∈ W

(
πs

k

)
,N

(
G(x)

)
> nε

)
(2.26)

+ Qe
(∃x ∈ ◦

W
(
πs

k

)
,∃� ≤ 2nε,N(�)(x) > n1−2ε

)
≤ (c14 + c15)n

−2Λ +
∑

�≤2nε

Qe
(∃x ∈ ◦

W
(
πs

k

)
,N(�)(x) > n1−2ε

)
.

Since

Qe
(∃x ∈ W

(
πs

k

)
,N(�)(x) > n1−2ε

)
≤ EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
) ∑

x∈ ◦
W(y)

P x
ω

(
N(�)(x) > n1−2ε

)]
,

and by the strong Markov property at T̃
(�)
x ,

P x
ω

(
N(�)(x) > n1−2ε

) = P x
ω

(
T̃ (�)

x < ∞)
P x

ω

(
N(1)(x) > n1−2ε

)
≤ P x

ω

(
N(1)(x) > n1−2ε

)
,
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this yields

Qe
(∃x ∈ W

(
πs

k

)
,N(�)(x) > n1−2ε

)
≤ EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
) ∑

x∈ ◦
W(y)

P x
ω

(
N(1)(x) > n1−2ε

)]
(2.27)

≤ c14EQ

[ ∑
y∈SH

P e
ω

(
πs

k = y
)]

EQ

[ ∑
x∈ ◦

W(e)

P x
ω

(
N(1)(x) > n1−2ε

)|ZH > B

]

= c14EQ

[ ∑
x∈ ◦

W(e)

P x
ω

(
N(1)(x) > n1−2ε

)|ZH > B

]
.

For any x ∈ W(e), define, for any y ∈ [[e,G(x)]],

ω̃(y, y+) := ω(y, y+)

ω(y, y+) + ω(y,
←
y )

,

ω̃(y,
←
y ) := ω(y,

←
y )

ω(y, y+) + ω(y,
←
y )

,

where as before y+ represents the child of y on the path. We let (X̃n)n≥0 be the random walk on [[e,G(x)]] with the
transition probabilities ω̃ and we denote by P̃ω,x(·) the probability distribution of (X̃n, n ≥ 0). By Lemma 4.4 of [1],
we have the following comparisons:

P
←
x

ω (Tx < Te) ≤ P̃
←
x

ω,x(Tx < Te),

P
x+
ω (TG(x) < Tx) ≤ P̃

x+
ω,x(TG(x) < Tx).

Therefore,

P x
ω

(
T ∗

x < Te ∧ TG(x)

)
= ω(x,

←
x )P

←
x

ω (Tx < Te) + ω(x, x+)P
x+
ω (Tx < TG(x)) +

∑
i≤ν(x):xi 
=x+

ω(x, xi)
(
1 − β(xi)

)
≤ ω(x,

←
x )P̃

←
x

ω,x(Tx < Te) + ω(x, x+)P̃
x+
ω,x(Tx < TG(x)) +

∑
i≤ν(x):xi 
=x+

ω(x, xi)

= 1 − (
ω(x,

←
x ) + ω(x, x+)

)
P̃ x

ω,x

(
T ∗

x > Te ∧ TG(x)

)
.

Since ν(x) ≤ B (for x ∈ ◦
W(e)), we find by (2.4) a constant c16 ∈ (0,1) such that ω(x,

←
x ) + ω(x, x+) ≥ c16. It yields

that

P x
ω

(
T ∗

x < Te ∧ TG(x)

) ≤ 1 − c16P̃
x
ω,x

(
T ∗

x > Te ∧ TG(x)

)
.

We observe that, for any x ∈ W(e), with the notation of (2.14) and taking c7 := c16,

EP
[(

1 − c16P̃
x
ω,x

(
T ∗

x > Te ∧ TG(x)

))n] = p
(|x|, ∣∣G(x)

∣∣, n)
.

It follows that

EGW

[ ∑
x∈ ◦

W(e)

Px
(
N(1)(x) > n1−2ε

)] ≤ EGW

[ ∑
x∈ ◦

W(e)

p
(|x|, ∣∣G(x)

∣∣, n1−2ε
)]

.
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On the other hand,
∑

x∈W(e) p(|x|, |G(x)|, n1−2ε) ≤ ∑
y∈∂W(e)

∑
x≤y p(|x|, |y|, n1−2ε). It implies that

EGW

[ ∑
x∈ ◦

W(e)

Px
(
N(1)(x) > n1−2ε

)] ≤
∑
j≥0

EGW

[
#
{
y ∈ ∂W(e), |y| = j

}](∑
i≤j

p
(
i, j, n1−2ε

))

≤ m
∑
j≥0

EGW

[
Wj−1(e)

](∑
i≤j

p
(
i, j, n1−2ε

))
.

By Lemmas 2.5 and 2.7, for n large enough,

EGW

[ ∑
x∈ ◦

W(e)

Px
(
N(1)(x) > n1−2ε

)] ≤ m2
∑
j≥0

rj−2
(∑

i≤j

p
(
i, j, n1−2ε

)) ≤ n−(1−2ε)Λr+ε. (2.28)

Supposing r and ε close enough to q1 and 0, Eq. (2.28) combined with (2.27) and (2.28), shows that, for any k ≥ 1,

Qe
(∃x ∈ W

(
πs

k

)
,N(x) > n/ ln4(n)

) ≤ c17n
−(1−2ε)Λr+2ε.

We arrive at

Qe
(∃k ≤ ln4(n),∃x ∈ W

(
πs

k

)
,N(x) > n/ ln4(n)

) ≤ c18n
−(1−2ε)Λr+3ε. (2.29)

Finally, the estimate of Qe(∃x ∈ W(e),N(x) > n/ ln4(n),D(e) = ∞,ZH ≤ B) in (2.22) is similar. Indeed,

Qe
(∃x ∈ W(e),N(x) > n/ ln4(n),D(e) = ∞,ZH ≤ B

)
≤ Qe

(
N(e) > nε,D(e) = ∞, ν(e) ≤ B

) + Qe
(∃x ∈ W(e),N

(
G(x)

)
> nε

)
+ Qe

(∃x ∈ W(e),∃� ≤ 2nε,N(�)(x) > n1−2ε
)
.

We have

Qe
(
N(e) > nε,D(e) = ∞, ν(e) ≤ B

) ≤ EQ
[(

1 − ω(e,
←
e )

)nε

1{ν(e)≤B}
]

≤ (1 − c1/B)n
ε

,

by (2.4). By Eq. (2.24),

Qe
(∃x ∈ W

(
πs

k

)
,N

(
G(x)

)
> nε

) ≤ c15n
−2Λ.

Finally,

Qe
(∃x ∈ ◦

W(e),∃� ≤ 2nε,N(�)(x) > n1−2ε
) ≤

∑
�≤2nε

Qe
(∃x ∈ ◦

W(e),N(�)(x) > n1−2ε
)

≤ 2nεQe
(∃x ∈ ◦

W(e),N(1)(x) > n1−2ε
)

≤ 2nεEGW

[ ∑
x∈ ◦

W(e)

Px
(
N(1)(x) > n1−2ε

)]

≤ c17n
−(1−2ε)Λr+2ε,

by (2.28). We deduce that, for n large enough,

Qe
(∃x ∈ W(e),N(x) > n/ ln4(n),D(e) = ∞,ZH ≤ B

) ≤ n−(1−2ε)Λr+3ε. (2.30)

In view of (2.22) combined with (2.29) and (2.30), Eq. (2.21) is proved, and Proposition 2.4 follows. �
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3. Large deviations principles

We recall the definition of the first regeneration time

Γ1 := inf
{
k > 0: ν(Xk) ≥ 2,D(Xk) = ∞, k = τ|Xk |

}
.

We define by iteration

Γn := inf
{
k > Γn−1: ν(Xk) ≥ 2,D(Xk) = ∞, k = τ|Xk |

}
for any n ≥ 2. We have the following fact (points (i) to (iii) are already discussed in [1]; point (iv) is shown in [8] in
the case of regular trees and in [12] in the case of biased random walks, and is easily adaptable to our case).

Fact B.

(i) For any n ≥ 1, Γn < ∞ Qe-a.s.
(ii) Under Qe, (Γn+1 − Γn, |XΓn+1 | − |XΓn |), n ≥ 1 are independent and distributed as (Γ1, |XΓ1 |) under the

distribution Se.
(iii) We have ESe [|XΓ1 |] < ∞.

(iv) The speed v verifies v = ESe [|XΓ1 |]
ESe [Γ1] .

The rest of the section is devoted to the proof of Theorems 1.1 and 1.2. It is in fact easier to prove them when
conditioning on never returning to the root. Our theorems become

Theorem 3.1 (Speed-up case). There exist two continuous, convex and strictly decreasing functions Ia ≤ Iq from
[1,1/v] to R+, such that Ia(1/v) = Iq(1/v) = 0 and for a < b, b ∈ [1,1/v], we have almost surely,

lim
n→∞

1

n
ln

(
Qe

(
τn

n
∈]a, b]

∣∣∣D(e) = ∞
))

= −Ia(b), (3.1)

lim
n→∞

1

n
ln

(
P e

ω

(
τn

n
∈]a, b]

∣∣∣D(e) = ∞
))

= −Iq(b). (3.2)

Theorem 3.2 (Slowdown case). There exist two continuous, convex functions Ia ≤ Iq from [1/v,+∞[ to R+, such
that Ia(1/v) = Iq(1/v) = 0 and for any 1/v ≤ a < b, we have almost surely

lim
n→∞

1

n
ln

(
Qe

(
τn

n
∈ [a, b[

∣∣∣D(e) = ∞
))

= −Ia(a), (3.3)

lim
n→∞

1

n
ln

(
P e

ω

(
τn

n
∈ [a, b[

∣∣∣D(e) = ∞
))

= −Iq(a). (3.4)

If ess inf A =: i > ν−1
min, then Ia and Iq are strictly increasing on [1/v,+∞[. If i ≤ ν−1

min, then Ia = Iq = 0.

Theorems 1.1 and 1.2 follow from Theorems 3.1 and 3.2 and the following proposition.

Proposition 3.3. We have, for a < b ≤ 1/v,

lim
n→∞

1

n
ln

(
Qe

(
τn

n
∈]a, b]

))
= lim

n→∞
1

n
ln

(
Qe

(
τn

n
∈]a, b]

∣∣∣D(e) = ∞
))

, (3.5)

lim
n→∞

1

n
ln

(
P e

ω

(
τn

n
∈]a, b]

))
= lim

n→∞
1

n
ln

(
P e

ω

(
τn

n
∈]a, b]

∣∣∣D(e) = ∞
))

. (3.6)
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Similarly, in the slowdown case, we have for 1/v ≤ a < b,

lim
n→∞

1

n
ln

(
Qe

(
τn

n
∈ [a, b[

))
= lim

n→∞
1

n
ln

(
Qe

(
τn

n
∈ [a, b[

∣∣∣D(e) = ∞
))

, (3.7)

lim
n→∞

1

n
ln

(
P e

ω

(
τn

n
∈ [a, b[

))
= lim

n→∞
1

n
ln

(
P e

ω

(
τn

n
∈ [a, b[

∣∣∣D(e) = ∞
))

. (3.8)

Theorems 3.1 and 3.2 are proved in two distinct parts for sake of clarity. Proposition 3.3 is proved in Section 3.3.

3.1. Proof of Theorem 3.1

For any real numbers h ≥ 0 and b ≥ 1, any integer n ∈ N and any vertex x ∈ T with |x| = n, define

A(h,b, x) := {
ω: P e

ω(τn = Tx, τn ≤ bn,T←
e

> τn) ≥ e−hn
}
,

en(h, b) := EQ

[ ∑
|x|=n

1A(h,b,x)

]
.

We define also for any b ≥ 1

hc(b) := inf
{
h ≥ 0: ∃p ∈ N, ep(h, b) > 0

}
.

Lemma 3.4. There exists for any b ≥ 1 and h > hc(b), a real e(h, b) > 0 such that

lim
n→∞

1

n
ln

(
en(h, b)

) = ln
(
e(h, b)

)
.

Moreover, the function (h, b) → ln(e(h, b)) from {(h, b) ∈ R+ ×[1,+∞[: h > hc(b)} to R is concave, is nondecreas-
ing in h and in b, and

lim
h→∞ ln

(
e(h, b)

) = ln(m).

Proof. Let x ≤ y be two vertices of T with |x| = n and |y| = n + m. We observe that

A(h,b, y) ⊃ A(h,b, x) ∩ {
ω: P x

ω(τn+m = Ty, τn+m ≤ bm,T←
x

> τn+m) ≥ e−hm
}

=: A(h,b, x) ∩ Ax(h, b, y).

It yields that

en+m(h,b) ≥ EQ

[ ∑
|x|=n

1A(h,b,x)

∑
|y|=n+m,y≥x

1Ax(h,b,y)

]

= EQ

[ ∑
|x|=n

1A(h,b,x)

]
EQ

[ ∑
|x|=m

1A(h,b,x)

]
(3.9)

= en(h, b)em(h, b).

Let h > hc and p be such that ep(hc, b) > 0, where we write hc for hc(b). Then enp(hc, b) > 0 for any n ≥ 1. We
want to show that ek(h, b) > 0 for k large enough. By (2.4), ω(e, e1) ≥ c1 if ν(e) = 1 so that ek(− ln(c1), b) ≥ qk

1 . Let
nc be such that e−hcncc1 ≥ e−hnc . We check as before that for any n ≥ nc, and any r ≤ p, we have indeed

enp+r (h, b) ≥ enp(hc, b)er

(− ln(c1), b
)

≥ enp(hc, b)qr
1 > 0.
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Thus (3.9) implies that

lim
n→∞

1

n
ln

(
en(h, b)

) = sup

{
1

k
ln

(
ek(h, b)

)
, k ≥ 1

}
=: ln

(
e(h, b)

)
, (3.10)

with e(h, b) > 0. Similarly, we can check that

en

(
th1 + (1 − t)h2, tb1 + (1 − t)b2

) ≥ ent (h1, b1)en(1−t)(h2, b2),

which leads to

ln
(
e
(
th1 + (1 − t)h2, tb1 + (1 − t)b2

)) ≥ t ln
(
e(h1, b1)

) + (1 − t) ln
(
e(h2, b2)

)
,

hence the concavity of (h, b) → ln(e(h, b)). The fact that e(h, b) is nondecreasing in h and in b is direct. Finally,
lim suph→∞ ln(e(h, b)) ≤ ln(m) and lim infh→∞ ln(e(h, b)) ≥ lim infh→∞ ln(e1(h, b)) = ln(m) by dominated con-
vergence. �

In the rest of the section, we extend e(h, b) to R+ × [1,+∞[ by taking e(h, b) = 0 for h ≤ hc(b).

Corollary 3.5. Let S := {h ≥ 0: e(h, b) > 1} and S′ := {h ≥ 0: e(h, b) ≥ 1}. We have

sup
{
e−he(h, b),h ∈ S

} = sup
{
e−he(h, b),h ∈ S′}.

Proof. Let M := inf{h: e(h, b) > 1}. We claim that if h < M , then e(h, b) < 1. Indeed, suppose that there exists
h0 < M such that e(h0, b) ≥ 1. Then e(h0, b) = 1 by definition of M , so that e(h, b) is constant equal to 1 on [h0,M[.
By concavity, ln(e(h, b)) is equal to 0 on [h0,+∞[, which is impossible since it tends to ln(m) at infinity. The
corollary follows. �

We have the tools to prove Theorem 1.1.

Proof of Theorem 1.1. For b ∈ [1,+∞[, let

Ja(b) := − sup
{−h + ln(e(h, b)), h ≥ 0

}
,

Jq(b) := − sup
{−h + ln(e(h, b)), h ∈ S

}
.

Define then for any b ≤ 1/v,

Ia(b) = Ja(b),

Iq(b) = Jq(b).

We immediately see that Ia ≤ Iq . The convexity of Ja and Jq stems from the convexity of the function h− ln(e(h, b)).
Indeed, let J represent either Ja or Jq and let 1 ≤ b1 ≤ b2 and t ∈ [0,1]. Denote by h1, h2, b and h the reals that
verify

J (b1) = h1 − ln
(
e(h1, b1)

)
,

J (b2) = h2 − ln
(
e(h2, b2)

)
,

h := th1 + (1 − t)h2,

b := tb1 + (1 − t)b2.
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We observe that

J (b) ≤ h − ln
(
e(h, b)

)
≤ t

(
h1 − ln

(
e(h1, b1)

)) + (1 − t)
(
h2 − ln

(
e(h2, b2)

)) = tJ (b1) + (1 − t)J (b2)

which proves the convexity. We show now that, for any b ≥ 1,

lim
n→∞

1

n
ln

(
Qe(τn < T←

e
, τn ≤ bn)

) = −Ja(b), (3.11)

lim
n→∞

1

n
ln

(
P e

ω(τn < T←
e
, τn ≤ bn)

) = −Jq(b). (3.12)

We first prove (3.11). Since Qe(τn < T←
e
, τn ≤ bn) ≥ e−hnen(h, b) for any h ≥ 0, we have

lim inf
n→∞

1

n
ln

(
Qe(τn < T←

e
, τn ≤ bn)

) ≥ −Ia(b).

Turning to the upper bound, take a positive integer k. We observe that

Qe(τn < T←
e
, τn ≤ bn) ≤

k−1∑
�=0

e−n�/ken

(
(� + 1)/k, b

)
≤ ken/k sup

{
e−hnen(h, b),h ≥ 0

}
.

Therefore,

lim sup
n→∞

1

n
ln

(
Qe(τn < T←

e
, τn ≤ bn)

) ≤ 1

k
− Ja(b).

Letting k tend to infinity gives the upper bound of (3.11).
To prove Eq. (3.12), let k be still a positive integer and h ∈ S. Denote by Vpk(T) the set of vertices |x| = pk such

that P
x�−1
ω (τ�k < T←

x �−1
, τ�k = Tx�

≤ bk) ≥ e−hk for any � ≤ p, where x� represents the ancestor of x at generation �k.

Call V (T) := ⋃
p≥0 Vpk(T) the subtree thus obtained. We observe that V is a Galton–Watson tree of mean offspring

ek(h, b). Let

Tk,h := {T: V (T) is infinite}.
Take T ∈ Tk,h. For any x ∈ Vpk , we have

P e
ω(τpk < T←

e
, τpk = Tx ≤ bpk)

≥ P e
ω(τk < T←

e
, τk = Tx1 ≤ bk) · · ·P xk−1

ω (τpk < T←
x k−1

, τpk = Tx ≤ bk) ≥ e−hpk.

It implies that

P e
ω(τpk < T←

e
, τpk ≤ bpk) ≥ e−hpk#Vpk(T).

By the Seneta–Heyde theorem (see [2], page 30, Theorem 3),

lim
p→∞

1

p
ln

(
#Vpk(T)

) = ln
(
ek(h, b)

)
, Q-a.s.

It follows that, as long as T ∈ Tk,h,

lim inf
p→∞

1

pk
ln

(
P e

ω(τpk < T←
e
, τpk ≤ bpk)

) ≥ −h + 1

k
ln

(
ek(h, b)

)
.
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Notice that

P e
ω(τn < T←

e
, τn ≤ bn) ≥ P e

ω(τpk < T←
e
, τpk ≤ bpk) min|x|=pk

P x
ω

(
τn < T←

x
, τn ≤ b(n − pk)

)
,

where p := �n
k
. Since A is bounded, there exists c17 > 0 such that

∑ν(y)

i=1 ω(y, yi) ≥ c17 ∀y ∈ T. It yields that

min|x|=pk
P x

ω

(
τn < T←

x
, τn = (n − pk)

) ≥ ck
17,

Hence,

lim inf
n→∞

1

n
ln

(
P e

ω(τn < T←
e
, τn ≤ bn)

) ≥ −h + 1

k
ln

(
ek(h, b)

)
. (3.13)

Take now a general tree T. Notice that since h ∈ S, Q(Tk,h) > 0 for k large enough, and there exists almost surely a
vertex z ∈ T such that the subtree rooted at it belongs to Tk,h. It implies that for large k, (3.13) holds almost surely.
Then letting k tend to infinity and taking the supremum over all h ∈ S leads to

lim inf
n→∞

1

n
ln

(
P e

ω(τn < T←
e
, τn ≤ bn)

) ≥ −Jq(b).

For the upper bound in (3.12), we observe that, for any integer k,

P e
ω(τn < T←

e
, τn ≤ bn) ≤

k−1∑
�=0

e−�n/k
∑
|x|=n

1A((�+1)/k,b,x).

By Markov’s inequality, we have

Q
( ∑

|x|=n

1A(h,b,x) >
(
e(h, b) + 1/k

)n
)

≤ en(h, b)

(e(h, b) + 1/k)n
≤

(
e(h, b)

e(h, b) + 1/k

)n

,

by (3.10). An application of the Borel–Cantelli lemma proves that
∑

|x|=n 1A(h,b,x) ≤ (e(h, b) + 1/k)n for all but a
finite number of n, Q-a.s. In particular, if e(h, b) + 1/k < 1, then

∑
|x|=n 1A(h,b,x) = 0 for n large enough. Conse-

quently, for n large,

P e
ω(τn < T←

e
, τn ≤ bn) ≤ en/kk sup

{
e−hn(e(h, b) + 1/k)n,h: e(h, b) + 1/k ≥ 1

}
.

We find that

lim sup
n→∞

1

n
ln

(
P e

ω(τn < T←
e
, τn ≤ bn)

) ≤ 1/k + sup
{−h + ln

(
e(h, b) + 1/k

)
, h: e(h, b) + 1/k ≥ 1

}
.

Let k tend to infinity and use Corollary 3.5 to complete the proof of (3.12).
We observe that

P e
ω(τn < T←

e
, τn ≤ bn) − P e

ω(τn < T←
e

< ∞, τn ≤ bn) ≤ P e
ω(T←

e
= ∞, τn ≤ bn)

≤ P e
ω(τn < T←

e
, τn ≤ bn).

But P e
ω(τn < T←

e
< ∞, τn ≤ bn) ≤ P e

ω(τn < T←
e
, τn ≤ bn)maxi=1,...,ν(e)(1−β(ei)). Since maxi=1,...,ν(e)(1−β(ei)) <

1 almost surely, we obtain that

lim
n→∞

1

n
ln

(
P e

ω(τn ≤ bn)|D(e) = ∞) = −Jq(b). (3.14)
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In the annealed case, notice that Se(τn < T←
e

< ∞, τn ≤ bn) = Se(τn < T←
e
, τn ≤ bn)EP[1 − β] which leads similarly

to

lim
n→∞

1

n
ln

(
Se(τn ≤ bn)

) = −Ja(b). (3.15)

We can now finish the proof of the theorem. The continuity has to be proved only at b = 1 (since Ja and Jq are convex
on [1,+∞[), which is directly done with the arguments of [5], Section 4. We let b < 1/v = ESe [Γ1]/ESe [|XΓ1 |] and
we observe that for any constant c18 > 0,

Se(τn ≤ bn) ≤ Se(τn < Γc18n) + Se(Γc18n ≤ bn).

Choose c18 such that b(ESe [Γ1])−1 < c18 < (ESe [|XΓ1 |])−1. Use Cramér’s theorem with Facts A and B to see that
Se(τn < Γc18n) and Se(Γc18n ≤ bn) decrease exponentially. Then, Se(τn ≤ bn) has an exponential decay and, by (3.15),
Ia(b) > 0 which leads to Iq(b) > 0 since Ia ≤ Iq . We deduce in particular that Ia and Iq are strictly decreasing.
Furthermore, P e

ω(τn ≤ bn|D(e) = ∞) tends to 1 almost surely when b > 1/v, which in virtue of (3.14), implies that
Jq(b) = 0. By continuity, Iq(1/v) = 0 and therefore Ia(1/v) = 0. Finally, let a < b, b ∈ [1,1/v].

P e
ω

(
an < τn ≤ bn|D(e) = ∞) = P e

ω

(
τn ≤ bn|D(e) = ∞) − P e

ω

(
τn ≤ an|D(e) = ∞)

.

Equation (3.2) follows since Iq is strictly decreasing. The same argument proves (3.1). �

3.2. Proof of Theorem 3.2

The proof is the same as before by taking for b ≥ 1,

Ã(h, b, x) := {
ω: P e

ω(τn = Tx,T←
e

> τn ≥ bn) ≥ e−hn
}
,

ẽn(h, b) := EQ

[ ∑
|x|=n

1Ã(h,b,x)

]
,

S̃ := {
h: ẽ(h, b) > 1

}
.

Define also for any b ≥ 1,

J̃a(b) := − sup
{−h + ln

(̃
e(h, b)

)
, h ≥ 0

}
,

J̃q(b) := − sup
{−h + ln

(̃
e(h, b)

)
, h ∈ S̃

}
,

and for any b ≥ 1/v,

Ia(b) := J̃a(b),

Iq(b) := J̃q(b).

We verify that Ia ≤ Iq and both functions are convex. We have then for any b ≥ 1,

lim
n→∞

1

n
ln

(
Qe(T←

e
> τn ≥ bn)

) = −J̃a(b), (3.16)

lim
n→∞

1

n
ln

(
P e

ω(T←
e

> τn ≥ bn)
) = −J̃q(b). (3.17)

As before, we obtain

lim
n→∞

1

n
ln

(
Se(τn ≥ bn)

) = −J̃a(b),

lim
n→∞

1

n
ln

(
P e

ω

(
τn ≥ bn|D(e) = ∞)) = −J̃q(b).
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We have J̃a = J̃q = 0 on [1,1/v]. In the case i > ν−1
min, the positivity of Ia and Iq on ]1/v,+∞[ comes from Propo-

sition 2.1 and Cramér’s theorem, which implies that they are strictly increasing. Equations (3.3) and (3.4) follow in
that case. In the case i ≤ ν−1

min, we follow the strategy of [5]. Let η > 0. As in the proof of Proposition 2.2, we set
hn := �ln(n)/(6 ln(b)), and for some b ∈ N,

w+ := Q

(
ν∑

i=1

A(ei) ≥ 1 + η, ν(e) ≤ b

)
,

w− := Q

(
ν∑

i=1

A(ei) ≤ 1

1 + η
, ν(e) ≤ b

)
.

Taking b large enough, we have w+ > 0 and w− > 0. We say that T is a n-good tree if

• any vertex x of the hn first generations verifies ν(x) ≤ b and
∑ν(x)

i=1 A(xi) ≥ 1 + η,

• any vertex x of the hn following generations verifies ν(x) ≤ b and
∑ν(x)

i=1 A(xi) ≤ 1
1+η

.

Then we know that Qn := Q(T is n-good) ≥ exp(−n1/3+o(1)). Let Y ′ be a random walk starting from zero which
increases (resp. decreases) of 1 with probability 1+η

2+η
(resp. 1

2+η
). We define p′

n as the probability that Y ′ reaches −1
before hn. We show that (2.6) is still true (by the exactly same arguments), so that there exists a constant K > 0 and
a deterministic function O(nK) bounded by a factor of n → nK , such that

P e
ω(T←

e
> τ2hn ≥ n) ≥ O

(
nK

)−1(
p′

n

)n
. (3.18)

We have, by gambler’s ruin formula,

p′
n = 1 − 1

1 + (1/(1 + η)) + · · · + (1/(1 + η))hn
≥ 1

1 + η
.

Let kn := �nd with d ∈ (1/3,1/2) and let f ∈ (d,1 − d). We call an n-slow tree a tree in which we can find a vertex
|x| = kn such that Tx is n-good (where Tx is the subtree rooted at x), and for any y ≤ x, we have ν(y) ≤ exp(nf ).
We observe that if a tree is not n-slow, then either there exists a vertex before generation kn with more than exp(nf )

children, or any subtree rooted at generation kn is not n-good. This leads to

Q(T is not n-slow) ≤
kn∑

�=1

EGW [Z�]GW
(
ν > enf ) + EGW

[
(1 − Qn)

Zkn
]

≤ knm
knme−nf + (1 − Qn)

(1+ε)kn + GW
(
Zkn ≤ (1 + ε)kn

)
.

We notice that (1 − Qn)
(1+ε)kn ≤ exp(−(1 + ε)n

d+o(1)
). Moreover,

GW
(
Zkn ≤ (1 + ε)kn

) ≤ (1 + ε)knEGW

[
1

Zkn

]
.

Observe that for any k ≥ 0, EGW [ 1
Zk+1

] ≤ q1EGW [ 1
Zk

] + (1 − q1)EGW [ 1
X1+X2

] where X1 and X2 are indepen-

dent and distributed as Zk . We then verify EGW [ 1
X1+X2

] ≤ (u/2) ∧ v where u := EGW [min(X1,X2)
−1] and

v := EGW [max(X1,X2)
−1]. Since u + v = EGW [ 2

Zk
], we deduce that EGW [ 1

X1+X2
] ≤ 2

3EGW [ 1
Zk

], leading to

EGW [ 1
Zk+1

] ≤ (q1 + 2
3 (1 − q1))EGW [ 1

Zk
] ≤ (q1 + 2

3 (1 − q1))
k+1. We get

GW
(
Zkn ≤ (1 + ε)kn

) ≤
(

(1 + ε)

(
q1 + 2

3
(1 − q1)

))kn

,
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and, taking ε small enough,

Q(T is not n-slow) ≤ exp
(−nd+o(1)

)
. (3.19)

Let 1/v ≤ a < b. We want to show that (under the hypothesis i ≤ ν−1
min),

lim inf
n→∞

1

n
lnP e

ω

(
τn

n
∈ [a, b[,D(e) > τn

)
= 0. (3.20)

If this is proved, the Jensen’s inequality gives

lim inf
n→∞

1

n
ln Qe

(
τn

n
∈ [a, b[,D(e) > τn

)
= 0. (3.21)

Equations (3.3) and (3.4) follow. Therefore, we focus on the proof of (3.20).
Let n1 := n − kn − 2hn, δ > 0, and Gk := {|x| = k s.t. Tx is n-slow}. We have{

τn

n
∈ [a, b[, τ←

e
> τn

}
⊂ E5 ∩ E6 ∩ E7,

with

E5 :=
{
T←

e
> τn1,

τn1

n1
∈

[
1

v
− δ,

1

v
+ δ

[}
,

E6 := {Xτn1
∈ Gn1},

E7 :=
{
D(Xτn1

) > τn,
τn

n
∈

(
a − 1

v
+ δ, b − 1

v
− δ

)}
.

We look at the probability of the event E7 conditioned on E5 and E6. Therefore, we suppose that u := Xτn1
is known,

and that the subtree Tu rooted at u is a n-slow tree. There exists xn at generation n1 + kn such that Txn is a n-good

tree and ν(y) ≤ enf
for any u ≤ y < xn. Let also n be large enough so that kn ≤ δn. It implies that

P u
ω

(
D(u) > τn,

τn

n
∈

(
a − 1

v
+ δ, b − 1

v
− δ

))
≥ P u

ω

(
D(u) > Txn = kn

)
P xn

ω

(
D(xn) > τn,

τn

n
∈

(
a − 1

v
+ δ, b − 1

v
− 2δ

))
≥ exp

(−c21n
c22

)
P xn

ω

(
D(xn) > τn,

τn

n
∈

(
a − 1

v
+ δ, b − 1

v
− 2δ

))
for some c22 ∈ (0,1). By definition of a n-good tree, any vertex x descendant of xn and such that |x| ≤ n verifies
ν(x) ≤ b. Therefore, there exists a constant c23 > 0 such that P

y
ω(τn ≤ 2hn) ≥ c

2hn

23 for any y ≥ xn, |y| < n. By the
strong Markov property,

P xn
ω

(
D(xn) > τn,

τn

n
∈

(
a − 1

v
+ δ, b − 1

v
− 2δ

))
≥ P xn

ω

(
D(xn) > τn,

τn

n
≥ a − 1

v
+ δ

)
c

2hn

23 .

Let L := a − 1
v

+ δ. By Eq. (3.18),

P xn
ω

(
D(xn) > τn,

τn

n
≥ a − 1

v
+ δ

)
≥ O

(
nK

)−1
(

1

1 + η

)Ln

.
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Hence, by the strong Markov property,

lim inf
n→∞

1

n
lnP e

ω(E7|E5 ∩ E6) = lim inf
n→∞

1

n
lnP u

ω

(
D(u) > τn,

τn

n
∈

(
a − 1

v
+ δ, b − 1

v
− δ

))
≥ −L(1 + η).

This implies that

lim
n→∞

1

n
lnP e

ω

(
τn

n
∈ [a, b[,D(e) > τn

)
≥ lim inf

n→
1

n
lnP e

ω(E5 ∩ E6 ∩ E7)

(3.22)

≥ lim inf
n→∞

1

n
lnP e

ω(E5 ∩ E6) − L ln(1 + η).

Notice that

EQ
[
P e

ω

(
E5 ∩ Ec

6

)] = EQ
[
P e

ω(E5) − P e
ω(E5 ∩ E6)

]
= Q(E5)

(
1 − Q(T is n-slow)

)
≤ Q(E5) exp

(−nd+o(1)
)
,

by Eq. (3.19). By Markov’s inequality,

Q
(

P e
ω

(
E5 ∩ Ec

6

) ≥ 1

n2

)
≤ n2Q(E5)e

−nd+o(1)

.

The Borel–Cantelli lemma implies that almost surely, for n large enough,

P e
ω(E5 ∩ E6) ≥ P e

ω(E5) − 1

n2
.

We observe that P e
ω(E5) → P e

ω(T←
e

= ∞) when n goes to infinity. Therefore, Eq. (3.23) becomes

lim
n→∞

1

n
ln

(
P e

ω

(
τn

n
∈ [a, b[,D(e) > τn

))
≥ −

(
a − 1

v
+ δ

)
ln(1 + η).

We let η go to 0 to get

lim
n→∞

1

n
ln

(
P e

ω

(
τn

n
∈ [a, b[,D(e) > τn

))
= 0

which proves (3.20).

3.3. Proof of Proposition 3.3

The speed-up case is quite immediate. Indeed, reasoning on the last visit to the root, we have

Qe
(
τn ≤ bn,D(e) = ∞) ≤ Qe(τn ≤ bn) ≤ bnQe

(
τn ≤ bn,D(e) = ∞)

.

Therefore, by Theorem 3.1,

lim
n→∞

1

n
ln Qe(τn ≤ bn) = lim

n→∞
1

n
ln Qe

(
τn ≤ bn|D(e) = ∞)

.

It already gives (3.5) since Ia is strictly decreasing on [1,1/v]. We do exactly the same for the quenched inequality.
Therefore, let us turn to the slowdown case, beginning with the annealed inequality (3.7). We follow the arguments
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of [5]. We still write i = ess infA. For technical reasons, we need to distinguish the cases where P(A = i) is null
or positive. We feel free to deal only with the case P(A = i) = 0, the other one following with nearly any change.
Moreover, we suppose without loss of generality that i > ν−1

min, since the two sides are equal to zero when i ≤ ν−1
min.

Let k ≥ 1. We write � = k[2] to say that � and k have the same parity. Following [5], we write for b > a > 1/v,

P e
ω(bn > τn ≥ an)

=
∑

�=k[2]

∑
|x|=k

P e
ω

(
bn > τn ≥ an, τn > �,X� = x, |Xi | > k,∀i = � + 1, . . . , τn

)
=

∑
�=k[2]

∑
|x|=k

P e
ω(τn > �,X� = x)P x

ω

(
bn − � > τn > an − �,D(x) > τn

)
.

By coupling, we have, for p := νmini > 1,

sup
|x|=k

P e
ω(τn > �,X� = x) ≤ P e

ω

(|X�| ≤ k
) ≤ P

(
S

p

� ≤ k
)
,

where S
p
� stands for a reflected biased random walk on the half line, which moves of +1 with probability p/1 + p

and of −1 with probability 1/1 + p. From (and with the notation of) Lemma 5.2 of [5], we know that for all � of the
same parity as k,

P
(
S

p
� ≤ k

) ≤ ck(1 + δk)
�P

(
S

p
� = k,1 ≤ Si ≤ k − 1, i = 1, . . . , � − 1

)
,

where ck < ∞ and δ = (δk) is a sequence independent of all the parameters and tending to zero. In particular, we
stress that δ do not depend on p. Hence, P e

ω(bn > τn ≥ an) is smaller than

ck(1 + δk)
bn

∑
�=k[2]

∑
|x|=k

P
(
S

p
� = k,1 ≤ Si ≤ k − 1, i = 1, . . . , � − 1

)
Wn(x, �),

where

Wn(x, �) := P x
ω

(
bn − � > τn ≥ an − �,D(x) > τn

)
.

We deduce that

P e
ω(bn > τn ≥ an) ≤ ck(1 + δk)

bn
∑

�=k[2]

∑
|x|=k

P e
ωp

(
τk = �,D(e) > �

)
Wn(x, �)

(3.23)
= νk

minck(1 + δk)
bn

∑
�=k[2]

∑
|x|=k

P e
ωp

(
τk = �,D(e) > �,X� = x

)
Wn(x, �),

where ωp represents the environment of the biased random walk on the νmin-ary tree such that for any vertex x,
P x

ωp
(X1 = xi) = p

νmin(1+p)
for each child xi , and P x

ω(X1 = ←
x ) = 1

1+p
. Taking the expectations yields that

Qe(bn > τn ≥ an) ≤ νk
minck(1 + δk)

bn
∑

�=k[2]

∑
|x|=k

P e
ωp

(
τk = �,D(e) > �,X� = x

)
EQ

[
Wn(x, �)

]
. (3.24)

Moreover, define for any |x| = k,

S +
k,�(T, x) = {{si}�i=0: |si+1| − |si | = 1, s0 = 0, k − 1 ≥ |si | > 0, s� = x

}
the set of paths on T which ends at x in � steps and stays between generation 1 and k − 1 before. We notice that, for
any environment ω,

P e
ω

(
τk = �,D(e) > �,X� = x

) =
∑

{s}∈S +
k,�(T,x)

∑
y∈T

ω(y,
←
y )N(y,

←
y )

ν(y)∑
i=1

ω(y, yi)
N(y,yi ), (3.25)
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where for each path {si}, N(z, y) stands for the number of passage from z to y. Let ε > 0, and Gk denote for any k

the set of trees such that any vertex x of generation less than k verifies ν(x) = νmin and A(x) ≤ ess inf A + ε. Let
p′ := νmin(ess inf A + ε). We observe that

P e
ωp

(
τk = �,D(e) > �,X� = x

) =
∑

{s}∈S +
k,�(T,x)

∑
y∈T

(
1

1 + p

)N(y,
←
y ) ν(y)∑

i=1

(
p

νmin(1 + p)

)N(y,yi )

.

Therefore, if T belongs to Gk , we have by Eq. (3.25),

P e
ωp

(
τk = �,D(e) > �,X� = x

) ≤
(

1 + p′

1 + p

)�

P e
ω

(
τk = �,D(e) > �,X� = k

)
.

It entails that

1{T∈Gk}
∑

�=k[2]

∑
|x|=k

P e
ωp

(
τk = �,D(e) > �,X� = x

)
Wn(x, �)

≤ 1{T∈Gk}
(

1 + p′

1 + p

)bn ∑
�=k[2]

∑
|x|=k

P e
ω

(
τk = �,D(e) > �,X� = x

)
Wn(x, �)

(3.26)

= 1{T∈Gk}
(

1 + p′

1 + p

)bn

P e
ω

(
bn > τn ≥ an,D(e) > τn

)
≤

(
1 + p′

1 + p

)bn

P e
ω

(
bn > τn ≥ an,D(e) > τn

)
.

Taking expectations gives

Q(T ∈ Gk)
∑

�=k[2]

∑
|x|=k

P e
ωp

(τk = �,X� = x)EQ[Wn(x, �)]
(3.27)

≤
(

1 + p′

1 + p

)bn

Qe
(
bn > τn ≥ an,D(e) > τn

)
.

As before,

Qe
(
bn > τn ≥ an,D(e) = ∞) + Qe

(
bn > τn ≥ an,∞ > D(e) > τn

)
= Qe

(
bn > τn ≥ an,D(e) > τn

)
≥ Qe

(
bn > τn ≥ an,D(e) = ∞)

.

Since Qe(bn > τn ≥ an,∞ > D(e) > τn) ≤ Qe(bn > τn ≥ an,D(e) > τn)EQ[1 − β], we get

lim
n→∞

1

n
ln Qe

(
bn > τn ≥ an,D(e) > τn

) = lim
n→∞

1

n
ln Qe

(
bn > τn ≥ an|D(e) = ∞)

.

Consequently, we have by (3.24) and (3.27)

lim sup
n→∞

Qe(bn > τn ≥ an) ≤ b ln

(
1 + p′

1 + p
(1 + δk)

)
+ lim

n→∞
1

n
ln Qe

(
bn > τn ≥ an|D(e) = ∞)

.

Since Qe(cn > τn > bn) ≥ Qe(cn > τn > bn,D(e) = ∞), we prove Eq. (3.7) by taking p′ arbitrarily close to p, and
letting k tend to infinity.

We prove now the quenched equality (3.8). For any environment ω, construct the environment fp(ω) by setting
A(x) = i (:= ess inf A) for any |x| ≤ k. We construct also for p′ > p, an environment fp′(ω) by picking independently
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A(x) in [i,p′/νmin] for any x ≤ k, such that A(x) has the distribution of A conditioned on A ∈ [i,p′/νmin]. By
Eq. (3.23), we have almost surely

lim sup
n→∞

1

n
lnP e

ω(bn > τn ≥ an) ≤ lim sup
n→∞

1

n
P e

fp(ω)

(
bn > τn ≥ an,D(e) > τn

) + b ln(1 + δk).

Equation (3.26) applied to the environment fp′(ω), together with Theorem 3.2 shows that

lim sup
n→∞

1

n
lnP e

fp(ω)

(
bn > τn ≥ an,D(e) > τn

) ≤ −Iq(b) + b ln
1 + p′

1 + p
.

Let p′ tend to p to get that almost surely,

lim sup
n→∞

1

n
lnPfp(ω)

(
bn > τn ≥ an,D(e) > τn

) ≤ −Iq(b).

Therefore,

lim sup
n→∞

1

n
lnP e

ω(bn > τn ≥ an) ≤ −Iq(b) + b ln(1 + δk).

When k goes to infinity, we obtain

lim sup
n→∞

1

n
lnP e

ω(bn > τn > an) ≤ −Iq(b),

which gives Eq. (3.8).

3.4. Proof of Proposition 1.3

Recall that, for any θ ∈ R,

ψ(θ) := ln

(
EQ

[
ν(e)∑
i=1

ω(e, ei)
θ

])
.

Obviously, for any n ∈ N,

1

n
ln

(
Qe(τn = n)

) = ln

(
EQ

[
ν(e)∑
i=1

ω(e, ei)

])
= ψ(1).

This proves (1.8). For the quenched case, we have that

P e
ω(τn = n) =

∑
|x|=n

n−1∏
k=0

ω(xk, xk+1),

where xk is the ancestor of the vertex x at generation k. We observe that we are reduced to the study of a generalized
multiplicative cascade, as studied in [10]. The following lemma is well known in the case of a regular tree (see [7]
and [4]). We extend it easily to a Galton–Watson tree.

Lemma 3.6. We have limn→∞ 1
n

ln(
∑

|x|=n

∏n−1
k=0 ω(xk, xk+1)) = inf]0,1] 1

θ
ψ(θ).
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Proof. When ψ ′(1) < ψ(1), Biggins [3] shows that limn→∞ 1
n

ln(
∑

|x|=n

∏n−1
k=0 ω(xk, xk+1)) = ψ(1) = inf]0,1] 1

θ
×

ψ(θ). Therefore, let us assume that ψ ′(1) ≥ ψ(1). By the argument of [7], we obtain,

lim inf
n→∞

1

n
ln

( ∑
|x|=n

n−1∏
k=0

ω(xk, xk+1)

)
≥ inf]0,1]

1

θ
ψ(θ).

Finally, let θ ∈]0, θc[ where ψ(θc) = inf]0,1] 1
θ
ψ(θ). Since (

∑
i ai)

θ ≤ ∑
i a

θ
i for any (ai)i with ai ≥ 0, it yields that

lim sup
n→∞

1

n
ln

( ∑
|x|=n

n−1∏
k=0

ω(xk, xk+1)

)
≤ 1

θ
lim sup
n→∞

1

n
ln

( ∑
|x|=n

n−1∏
k=0

ω(xk, xk+1)
θ

)
.

We see that (still by [3]) limn→∞ 1
n

ln(
∑

|x|=n

∏n−1
k=0 ω(xk, xk+1)

θ ) = ψ(θ). It remains to let θ tend to θc. �

4. The subexponential regime: Theorem 1.4

We prove (1.10) and (1.11) separately. We recall that the speed v of the walk verifies v = ESe [|XΓ1 |]
ESe [Γ1] .

Proof of Theorem 1.4: Eq. (1.10). Suppose that either “i < ν−1
min and q1 = 0” or “i < ν−1

min and s < 1.” Let a > 1/v

and c24 > 0 such that c24 < (ESe [XΓ1])−1. We have

Se(τn ≥ an) ≥ Se(Γnc24 ≥ an) − Se(Γnc24 > τn).

The second term on the right-hand side decays exponentially by Cramér’s theorem applied to the random walk
(|XΓn |, n ≥ 0) (recall that |XΓ1 | has exponential moments by Fact A). The simple inequality Se(Γnc24 ≥ an) ≥
Se(Γ1 ≥ an) thus implies by Proposition 2.2 the lower bound of (1.10). Hence, we turn to the upper bound of (1.10).
Part (i) of Lemma 6.3 of [5] states:

Lemma A (Dembo et al. [5]). Let Y1, Y2, . . . be an i.i.d. sequence with E(Y 2
1 ) < ∞. If P(Y1 ≥ x) ≤ exp(−cxγ ) for

some 0 < γ < 1, c > 0 and all x large enough, then for all t > E[Y1],

lim sup
n→∞

n−γ lnP

(
1

n

n∑
j=1

Yj ≥ t

)
≤ −c

(
t − E[Y1]

)γ
.

By Proposition 2.2, Y1 = Γ1 meets the conditions of the lemma. Therefore, take in Lemma A, Yi = Γi − Γi−1 and
t = a/c25 where c25 is such that(

ESe

[|XΓ1 |
])−1

< c25 < a
(
ESe [Γ1]

)−1
.

In particular, we have t > ESe [Γ1]. As a result, Se(Γn > tn) is stretched exponential. We also know that Se(|XΓnc25
| ≤

n) is exponentially small by Cramér’s theorem (1/c25 < ESe [|XΓ1 |]). The relation Se(τn ≥ an) ≤ Se(Γnc25 ≥ an) +
Se(|XΓnc25

| ≤ n) thus completes the proof. �

We finish with the case “Λ < ∞.”

Proof of Theorem 1.4: Eq. (1.11). Suppose that Λ < ∞ and let a, c24 and c25 be as before. We write

Se(Γnc24 ≥ an) ≥
nc24∑
k=1

Se
({Γk − Γk−1 ≥ an} ∩ {Γ� − Γ�−1 < an,∀� 
= k})

= nc24Se(Γ1 ≥ an)Se(Γ1 < an)nc24−1.
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By Proposition 2.4, Se(Γ1 ≥ an) = n−Λ+o(1). Therefore, Se(Γ1 < an)nc24−1 tends to 1 (since Λ > 1). Consequently,

Se(Γnc24 ≥ an) ≥ n1−Λ+o(1),

which gives the lower bound of (1.11), by the inequality Se(τn ≥ an) ≥ Se(Γnc24 ≥ an) − Se(Γnc24 > τn). Turn-
ing, to the upper bound, write as before Se(τn ≥ an) ≤ Se(Γnc25 ≥ an) + Se(|XΓnc25

| ≤ n). We already know that

Se(|XΓnc25
| ≤ n) is exponentially small. Let Hn := Γn − ESe [Γ1]n. When E[Hp

1 ] < ∞, Example 2.6.5 of [15] says
that if p ≥ 2,

P(Hn > x) ≤ (1 + 2/p)pnE
[
H

p

1

]
x−p + exp

(−2(p + 2)−2e−px2/
(
nE

[
H 2

1

]))
and Example 2.6.20 of [15], combined with Chebyshev’s inequality, shows that if 1 ≤ p ≤ 2,

P(Hn > x) ≤ (2 − 1/n)nE
[
H

p

1

]
x−p.

By Proposition 2.4, E[Hp

1 ] < ∞, for any p < Λ. We take x = ( a
c25

ESe [|XΓ1 |] − ESe [Γ1])n to see that Se(Γnc25 ≥
an) ≤ c(p)n1−p for any p < Λ. Let p tend to Λ in order to complete the proof of Eq. (1.11). �
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