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Abstract. We study the gradient flow for the relative entropy functional on probability measures over a Riemannian manifold.
To this aim we present a notion of a Riemannian structure on the Wasserstein space. If the Ricci curvature is bounded below we
establish existence and contractivity of the gradient flow using a discrete approximation scheme. Furthermore we show that its
trajectories coincide with solutions to the heat equation.

Résumé. Nous étudions les flux gradients dans l’espace des mesures de probabilité sur une variété Riemannienne pas nécessaire-
ment compacte. Dans ce but nous munissons l’espace de Wasserstein avec une sorte de structure Riemannienne. Si la courbure de
Ricci de la variété est bornée inférieurement nous démontrons qu’il existe un flux gradient contractif pour l’entropie relative. Il est
construit explicitement en utilisant une approximation variationelle discrète. De plus ses trajectoires Coïncident avec les solutions
à l’équation de la chaleur.
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1. Introduction and statement of the main results

Since the work of Otto (see e.g. [7]) it is known that many equations of diffusion type on R
n might be interpreted

as gradient flows for an appropriate functional on the Wasserstein space of probability measures equipped with the
L2-Wasserstein metric. In this context the heat equation corresponds to the relative entropy, H(μ) = ∫

logρ dμ if
μ = ρ · vol. This interpretation has been made rigorous since giving precise meaning to the notion of gradient flow
in an abstract metric space. We refer to the book of Ambrosio, Gigli and Savaré [1] for a comprehensive treatment
of gradient flows in metric spaces. As a standard example they show that there exists a unique gradient flow of
the relative entropy functional on the Wasserstein space P2(R

n) whose trajectories coincide with solutions to the
heat equation. These results have partly been extended from the Euclidean to the Riemannian setting. Savaré [11]
showed that there exists a unique gradient flow for certain functionals on metric spaces whose squared distance
satisfies a concavity property. As special case this includes energy functionals on the Wasserstein space over a compact
Riemannian manifold. In an independent related work Ohta [10] established existence of a unique gradient flow for
(geodesically-)semiconvex functionals on Wasserstein spaces over compact Alexandrov spaces. In the special case
of a compact Riemannian manifold with nonnegative sectional curvature he proves coincidence of the trajectories
of the gradient flow for the free energy with solutions to the Fokker–Planck equation. However if the manifold is
non-compact the picture is less complete. If the Ricci curvature is bounded below Villani ([14], Chapter 23) shows
that smooth sufficiently integrable solutions to a large class of diffusive PDE’s constitute trajectories of the gradient
flow for the associated functional. The assumption of a lower bound on the Ricci curvature is essential to guarantee
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that the entropy functional is displacement K-convex, i.e. K-convex along geodesics in the Wasserstein space (cf.
Definition 3.4).

In this paper we present a notion of Riemannian structure on the Wasserstein space to define gradient flows adopting
the approach in [1]. We will study in detail the gradient flow for the relative entropy functional under the assumption
of a lower bound on the Ricci curvature. Building on the results of Villani we show that its trajectories actually
coincide with solutions to the heat equation. This yields contractivity of the gradient flow in the Wasserstein distance.
Furthermore we provide a time discrete approximation of the gradient flow, thus explicitly constructing its trajectories
and establishing existence.

Throughout this paper let M be a smooth (of class C3), connected and complete Riemannian manifold with Rie-
mannian volume m. We denote by P2(M) the Wasserstein space of probability measures on M equipped with the
L2-Wasserstein distance dW (see Section 2). We shall assume that the Ricci curvature is bounded below, i.e. Ric ≥ K

for some K ∈ R in the sense that Ricx(ξ , ξ) ≥ K|ξ |2 for all x ∈ M, ξ ∈ TxM. In the first part of this paper we will
develop a notion of Riemannian structure on the Wasserstein space which provides the framework to give a precise
definition of gradient flows in P2(M) (see Definition 3.7). For the present purpose of this introduction say that a tra-
jectory of the gradient flow for the relative entropy H is an absolutely continuous curve (μt )t≥0 in P2(M) satisfying
the evolution variational inequality

d

dt

1

2
d2
W(μt , σ ) + K

2
d2
W(μt , σ ) ≤ H(σ) − H(μt) ∀σ ∈ D(H), (1)

where D(H) = {μ ∈ P2(M): H(μ) < ∞}. We will see later (4.5) that the gradient flow of H satisfies this property.
Our main results are the following:

Theorem 1. There exists a unique gradient flow σ : [0,∞) × P2(M) → D(H) ⊂ P2(M) for the relative entropy H

and it satisfies

dW (μt , νt ) ≤ e−KtdW (μ0, ν0) for all μ0, ν0 ∈ P2(M), t > 0,

where μt = σ(t,μ0), νt = σ(t, ν0).

Theorem 2. Let (μt )t≥0 be a continuous curve in P2(M). Then the following are equivalent:

(i) (μt )t≥0 is a trajectory of the gradient flow for the relative entropy H ,
(ii) μt is given by μt(dx) = ρt (x) · m(dx) for t > 0, where (ρt )t>0 is a solution to the heat equation

∂tρt (x) = �ρt(x) on (0,∞) × M

satisfying the conditions

H(ρt · m) < ∞ ∀t > 0 and
∫ s1

s0

∫
M

|∇ρt |2
ρt

dmdt < ∞ ∀0 < s0 < s1. (2)

The structure of this paper is as follows. In Sections 2 and 3 we will lay down the foundation to define gradient
flows in P2(M) without any assumption on the Ricci curvature. We shall adopt the approach of [1] which they apply
in the case of R

n. We will use the Riemannian structure of the underlying space to endow the Wasserstein space with a
notion of a Riemannian differentiable structure which gives the theory of gradient flows an appealing formal analogy
to the classical setting. In Section 2 we will introduce a notion of tangent bundle to P2(M) which allows us to assign
a tangent vector to an absolutely continuous curve (μt )t in P2(M). Heuristically this is the vector field governing the
evolution of μt via the continuity equation, chosen in such a way that the kinetic energy is minimal. We will establish a
subdifferential calculus for functionals on P2(M) in Section 3. Our definition of gradient flows in P2(M) is modeled
on classical gradient flows of smooth functionals on a Riemannian manifold by demanding that the tangent to the
curve belongs to the subdifferential of the functional. We transpose the arguments and constructions of [1], Chapters
8 and 10, from R

n to the Riemannian setting. From then on we will focus on the relative entropy functional and
assume that Ric ≥ K . Building on the results in [14] we compute explicitly its subdifferential in Section 4. This
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will yield coincidence of the gradient flow with the heat flow as stated in Theorem 2 and make it possible to derive
contractivity of the gradient flow and thus uniqueness. To establish existence we will introduce in Section 5 the time
discrete variational approximation scheme of Otto. By this mean we will construct trajectories of the gradient flow for
initial measures with finite entropy. In Section 6 we will use the contractivity to extend the gradient flow semigroup
to arbitrary initial measures and thus conclude the proof of Theorem 1.

2. Metric and Riemannian structure of P2(M)

Recall that (M, 〈·, ·〉) is a smooth (of class C3) connected complete Riemannian manifold. Let m denote the Rie-
mannian volume and d the Riemannian distance on M . The Wasserstein space over M is defined as the space of Borel
probability measures on M with finite second moment:

P2(M) :=
{
μ ∈ P (M)

∣∣∣ ∫
M

d2(x0, x)dμ(x) < ∞ for some (hence all) x0 ∈ M

}
.

Given μ,ν ∈ P2(M) their L2-Wasserstein distance is defined by

dW (μ, ν) := inf

{∫
M×M

d2(x, y)dπ(x, y)

∣∣∣ π is a coupling of μ and ν

}1/2

. (3)

Here a probability measure π ∈ P (M × M) is called a coupling of μ and ν if its marginals are μ and ν, i.e.
π(A×M) = μ(A), π(M ×A) = ν(A) for all Borel sets A ⊂ M . For any μ,ν ∈ P2(M) there is at least one minimizer
of (3) called an optimal coupling [14], Theorem 4.1. Formula (3) defines a metric on P2(M) (see [14], Definition 6.1),
in fact (P2(M), dW ) is a polish space. We denote the subspace of probability measures absolutely continuous w.r.t. the
volume measure m by P ac

2 (M). The variational problem (3) is a particular instance of the Monge–Kantorovich mass
transfer problem for the cost function d2. See [14], Part I, for a comprehensive treatment of optimal transportation on
Riemannian manifolds. Let us recall the following results.

Proposition 2.1. Let μ ∈ P ac
2 (M) and ν ∈ P2(M). Then there exists a unique minimizer π in (3) and π = (id,F )#μ

for a μ-a.e. uniquely determined Borel map F :M → M .
Moreover, π -a.e. pair (x, y) is connected by a unique minimizing geodesic. Hence there exists a μ-a.s. unique

vector field Ψ ν
μ such that for μ-a.e. x ∈ M :

(i) F(x) = expx(Ψ
ν
μ(x)),

(ii) t �→ expx(tΨ
ν
μ(x)), t ∈ [0,1] is a minimizing geodesic.

Proof. In the case of a compact Riemannian manifold (or compactly supported μ and ν) these results are due to
McCann (cf. [9], Theorem 9). For a proof that the optimal coupling is unique and deterministic in the noncompact
case see [14], Theorem 10.41. In fact the proof also shows that π -a.e. pair (x, y) is connected by a unique minimizing
geodesic (cf. also [14], (10.32)). �

The vector field Ψ ν
μ will be referred to as the optimal transport vector field. Note that we have the identity:

d2
W(μ,ν) = ∫ |Ψ ν

μ|2 dμ . One easily checks that

t �→ μt = exp
(
tΨ ν

μ

)
#μ, t ∈ [0,1],

is a (constant speed) geodesic in P2(M) connecting μ to ν. It turns out that this is the unique geodesic connecting μ to
ν and that any two measures in P2(M) can be connected by geodesic (cf. [14], Corollaries 7.22, 7.23). By uniqueness
of the optimal transport vector field it is immediate that Ψ

μt
μ = t · Ψ ν

μ.
We say that a sequence μn of probability measures on M converges weakly to μ if for every bounded and continu-

ous function f ∈ C0
b(M) :

∫
f dμn → ∫

f dμ. It can be shown ([14], Theorem 6.9) that convergence in the metric dW

is equivalent to weak convergence of probability measures plus convergence of second moments.
When considering curves in the metric space P2(M) our usual regularity assumption will be absolute continuity.
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Definition 2.2 (Locally absolutely continuous curves). Let (X,d) be a metric space and I ⊂ R an open interval. A
curve c : I −→ X is said to be locally absolutely continuous of order p (denoted by c ∈ AC

p

loc(I,X)) if there exists
u ∈ L

p

loc(I ) such that

d
(
c(s), c(t)

) ≤
∫ t

s

u(τ )dτ ∀s ≤ t ∈ I. (4)

It can be shown ([1], Theorem 1.1.2) that for every locally absolutely continuous curve c the metric derivative

∣∣c′∣∣(t) := lim
h→0

d(c(t + h), c(t))

|h|
exist for a.e. t ∈ I and is the minimal u in (4).

We now endow P2(M) with a kind of Riemannian differentiable structure and construct the tangent space
TμP2(M) to the Wasserstein space at a given measure μ. We employ the approach of Ambrosio–Gigli–Savaré ([1],
Chapter 8) and transpose their construction for the Euclidean case P2(R

n) to our Riemannian setting. Let us denote
by L2(μ,T M) the Hilbert space of measurable vector fields w :M −→ T M,w(x) ∈ TxM with finite 2-norm:

‖w‖L2(μ,T M) =
(∫

M

〈
w(x),w(x)

〉
x

dμ(x)

)1/2

.

Definition 2.3. Let μ ∈ P2(M). We define TμP2(M) := {∇ϕ | ϕ ∈ C∞
c (M)}L2(μ,T M)

.

Here C∞
c (M) denotes the space of smooth compactly supported functions on M . TμP2(M) is a Hilbert space

endowed with the natural L2 scalar product which is our formal analogue to a Riemannian metric. We have the
following characterization of tangent vector fields in terms of a minimizing property.

Lemma 2.4. Let μ ∈ P2(M) and v ∈ L2(μ,T M). Then the following are equivalent:

(i) v ∈ TμP2(M),
(ii) ‖v + w‖L2(μ,T M) ≥ ‖v‖L2(μ,T M) ∀w ∈ L2(μ,T M) such that div(wμ) = 0.

If equality holds in (ii) for some w ∈ L2(μ,T M) with div(wμ) = 0 then w = 0.
Here div(wμ) = 0 is to be understood in the sense of distributions, i.e.∫

M

〈∇ϕ,w〉dμ = 0 ∀ϕ ∈ C∞
c (M).

Proof. Note that {w ∈ L2(μ,T M)|div(wμ) = 0} is the orthogonal complement of the closed subspace TμP2(M) in
L2(μ,T M). Then the assertions are straightforward. �

Note that if we denote by Π the orthogonal projection onto TμP2(M) then by (ii) we have that ‖w‖L2(μ,T M) ≥
‖Πw‖L2(μ,T M) for all w ∈ L2(μ,T M).

Our definition of tangent bundle to P2(M) is justified by the following proposition.

Proposition 2.5. Let I be an open interval and (μt )t ∈ AC2
loc(I,P2(M)) with metric derivative |μ′| ∈ L2

loc(I ). Then
there exists a vector field v : I × M → T M, (t, x) �→ vt (x) ∈ TxM with ‖vt‖L2(μt ,T M) ∈ L2

loc(I ) such that

vt ∈ Tμt P2(M) for a.e. t ∈ I (5)

and the continuity equation

∂tμt + div(vtμt ) = 0 in I × M (6)
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holds in the sense of distributions, i.e.∫
I

∫
M

(
∂tϕ(t, x) + 〈

vt (x),∇ϕ(t, x)
〉)

dμt(x)dt = 0 ∀ϕ ∈ C∞
c (I × M).

The vector field vt is uniquely determined in L2(μt , T M) by (5) and (6) for a.e. t ∈ I and we have ‖vt‖L2(μt ,T M) =
|μ′|(t).

Conversely, let (μt )t∈I be a curve in P2(M) satisfying (6) for some vector field (vt )t with∫ r

s

‖vt‖2
L2(μt ,T M)

dt < ∞ ∀s < r ∈ I.

Then (μt )t is locally absolutely continuous in I and |μ′|(t) ≤ ‖vt‖L2(μt ,T M).

We will view the vector field vt characterized by the previous proposition as the tangent vector to the curve (μt )t
at time t . Note that among all vector fields satisfying (6) this one is also unique such that ‖vt‖L2(μt ,T M) is minimal for
a.e. t ∈ I . By Lemma 2.4 this minimality is characterized by vt ∈ Tμt P2(M). Intuitively, if we picture μt as a cloud
of gas, the tangent vector field is the unique velocity field governing the evolution of μt via the continuity equation
with minimal kinetic energy.

By Proposition 2.5 we recover in our Riemannian setting the Benamou–Brenier formula (7) [3], which shows that
our formal Riemannian structure on P2(M) is consistent with the metric space structure. For any μ0,μ1 ∈ P2(M),
we have

d2
W(μ0,μ1) = min

{∫ 1

0
‖wt‖2

L2(μt ,T M)
dt

}
, (7)

where the minimum is taken over all absolutely continuous curves (μt )t∈[0,1] connecting μ0 to μ1 with tangent vector
field (wt )t . Just recall that |μ′|(t) ≤ ‖wt‖L2(μt ,T M) for any admissible curve to see that d2

W(μ0,μ1) is dominated by
the right-hand side. Choose a geodesic and its tangent vector field to obtain equality.

Proof of Proposition 2.5. It suffices to prove the case, where |μ′| ∈ L2(I ). Indeed, in the general case exhaust I by
compact intervals. By uniqueness the resulting vector fields yield a well defined vector field on I . So note first that
for every ϕ ∈ C∞

c (I × M) the map t �→ μt(ϕ) is in AC2(I,R). Indeed choosing an optimal coupling πs,t of μs and
μt and applying the Hölder inequality we have

∣∣μt(ϕ) − μs(ϕ)
∣∣ =

∣∣∣∣
∫

M×M

ϕ(x) − ϕ(y)dπs,t (x, y)

∣∣∣∣ ≤ Lip(ϕ)dW (μs,μt )

which implies absolute continuity. To estimate the metric derivative of μt(ϕ) consider the upper semicontinuous and
bounded map

H(x,y) :=
{∣∣∇ϕ(x)

∣∣ if x = y,
|ϕ(x)−ϕ(y)|

d(x,y)
if x �= y

and set πh := πs+h,s . By Hölder inequality we obtain

|μs+h(ϕ) − μs(ϕ)|
|h| ≤ 1

|h|
∫

M×M

d(x, y)H(x, y)dπh ≤ dW (μs+h,μs)

|h|
(∫

M×M

H 2(x, y)dπh

)1/2

.

Let (μt )t be metrically differentiable in s. As h → 0 the marginals of πh converge weakly to μs and therefore πh

must converge weakly to (id, id)#μs the unique optimal coupling of μs and μs (cf. [14], Theorem 5.20). Hence, we
have

lim sup
h→0

|μs+h(ϕ) − μs(ϕ)|
|h| ≤ ∣∣μ′∣∣(s)(∫

M

|∇ϕ|2 dμs

)1/2

= ∣∣μ′∣∣(s)‖∇ϕ‖L2(μs ,T M). (8)
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Now set Q := I ×M and define a measure on Q by λ = ∫
I
μt dt . Let ϕ ∈ C∞

c (Q). Then we have using Fatou’s lemma
and (8)∣∣∣∣

∫
Q

∂sϕ dλ

∣∣∣∣ = lim
h↓0

∣∣∣∣
∫

Q

ϕ(s, x) − ϕ(s − h,x)

h
dλ(s, x)

∣∣∣∣ = lim
h↓0

∣∣∣∣
∫

I

1

h

(
μs

(
ϕ(s, ·)) − μs+h

(
ϕ(s, ·)))ds

∣∣∣∣
≤

∫
I

∣∣μ′∣∣(s)(∫
M

|∇ϕ|2(s, x)dμs(x)

)1/2

ds ≤
(∫

I

∣∣μ′∣∣2
(s)ds

)1/2

‖∇ϕ‖L2(λ,T M).

Let V := {∇ϕ | ϕ ∈ C∞
c (Q)}L2(λ,T M)

. The previous estimate shows that the linear functional

L(∇ϕ) := −
∫

Q

∂sϕ dλ

can be uniquely extended to a bounded functional on V . By the Riesz representation theorem we obtain a unique v ∈ V
with ‖v‖2

L2(λ,T M)
≤ ‖|μ′|‖L2(I ) such that

∫
Q

〈v,∇ϕ〉dλ = L(∇ϕ) = −
∫

Q

∂sϕ dλ ∀ϕ ∈ C∞
c (Q).

Setting vt = v(t, ·) we obtain the continuity equation (6). Repeating the argument above with J ⊂ I the uniqueness

of the Riesz representation yields that v′ := v|J×M represents the restriction of L to {∇ϕ | ϕ ∈ C∞
c (J × M)}L2(λ,T M)

and in particular∫
J

‖vs‖2
L2(μs,T M)

ds = ∥∥v′∥∥2
L2(λ,T M)

≤
∫

J

∣∣μ′∣∣2
(s)ds.

Since J is arbitrary we obtain ‖vt‖L2(μt ,T M) ≤ |μ′|(t) for a.e. t ∈ I . Equality will follow from the converse implica-
tion.

Let us now show that vt ∈ Tμt P2(M) for a.e. t ∈ I . Let ϕn ∈ C∞
c (Q) such that ∇ϕn → v in L2(λ,T M) as n → ∞.

Then there is a subsequence (nk)k such that for a.e. t ∈ I :∇ϕnk
(t, ·) → vt in L2(μt , T M). This yields the claim.

Let w ∈ L2(λ,T M) be another vector field satisfying (5) and (6). Then div((wt − vt )μt ) = 0 for a.e. t . Hence
Lemma 2.4 yields ‖wt‖L2(μt ,T M) = ‖vt‖L2(μt ,T M).

Further u := 1
2 v + 1

2 w also satisfies (6) and ut ∈ Tμt P2(M). By the strict convexity of the L2-norm we infer that
vt = wt for a.e. t ∈ I .

It remains to show the converse implication. So let (μt )t∈I be a curve in P2(M) satisfying (6) for a square integrable
vector field (vt )t . In estimating the difference dW (μs,μt ) a recent result of Bernard ([4], Theorem 5.8) is very useful
as pointed out to the author by Savaré. It states that the solution (μt )t to the continuity equation for the vector field
(vt )t can be represented as a superposition of random solutions to the equation

γ̇ (t) = vt

(
γ (t)

)
. (9)

Precisely there exists a probability measure Π on the space of continuous curves C 0(I,M) such that

(et )#Π = μt ∀t ∈ I,

where et is the evaluation map. Moreover, Π -a.e. γ ∈ C 0(I,M) is differentiable at a.e. t ∈ I and satisfies (9). Since
(es, et )#Π is a coupling of μs and μt we can now estimate using Jensen’s inequality:

d2
W(μs,μt ) ≤

∫
d2(γ (s), γ (t)

)
dΠ(γ ) ≤

∫ (∫ t

s

|γ̇ |(r)dr

)2

dΠ(γ )

≤ (t − s)

∫ ∫ t

s

∣∣vr

(
γ (r)

)∣∣2 dr dΠ(γ ) = (t − s)

∫ t

s

∫
M

|vr |2 dμr dr.
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This implies that (μt )t is absolutely continuous and |μ′|(t) ≤ ‖vt‖L2(μt ,T M for a.e. t ∈ I . �

To conclude this section we shed some more light on the relation between tangent vector fields and optimal transport
maps. We observe that optimal transport vector fields Ψ ν

μ (see Proposition 2.1) are tangent to P2(M) at the initial
measure. Moreover, we recover the tangent to a curve in P2(M) as the limit of secants made up of transport maps.

Lemma 2.6. Let μ ∈ P ac
2 (M), ν ∈ P2(M) and let Ψ ν

μ be the optimal transport vector field. Then Ψ ν
μ ∈ TμP2(M).

Proof. Approximate μ and ν by compactly supported measures μn, νn. Proposition 13.2 of [14] shows that this can
be done in such a way, namely by compactly exhausting the set of geodesics along which mass is being transported,
that the optimal transport vector fields Ψ νn

μn
and Ψ ν

μ coincide a.e. on the support of μn. Possibly after setting Ψ νn
μn

= 0
outside supp(μn) we clearly have Ψ νn

μn
→ Ψ ν

μ in L2(μ,T M). In the compactly supported case Ψ νn
μn

is given as ∇ψ ,

where ψ is a function satisfying the so-called d2

2 -convexity property which is Lipschitz on supp(μn) ([14], Theorems
10.41 and 10.26). By setting ψ = 0 outside supp(μn) and regularizing (e.g. in local charts) we can find ψε ∈ C∞

c (M)

such that ∇ψε → ∇ψ m-a.e. Since μ is absolutely continuous the dominated convergence theorem yields convergence
in L2(μ,T M). This shows Ψ ν

μ ∈ TμP2(M). �

Lemma 2.7. Let (μt )t ∈ AC2
loc(I,P

ac
2 (M)) and (vt )t the tangent vector field characterized by Proposition 2.5. Then

we have for a.e. t ∈ I :

lim
h→0

1

h
Ψ

μt+h
μt = vt in L2(μt , T M). (10)

Proof. Choose a countable subset D ⊂ C∞
c (M) which is dense w.r.t. the norm

‖ϕ‖C1 := sup
x∈M

∣∣ϕ(x)
∣∣ + sup

x∈M

∥∥∇ϕ(x)
∥∥

x
.

Fix ϕ ∈ D and let η ∈ C∞
c (I ). By the continuity equation (6) and a change of variables we have

0 =
∫

I

∫
M

∂tη(t) · ϕ + 〈∇ϕ,vt 〉η(t)dμt dt

=
∫

I

[
− lim

h→0

μt+h(ϕ) − μt(ϕ)

h
+

∫
M

〈∇ϕ,vt 〉dμt

]
η(t)dt.

Since η is arbitrary we must have that for a.e. t ∈ I :

lim
h→0

μt+h(ϕ) − μt(ϕ)

h
=

∫
M

〈∇ϕ,vt 〉dμt . (11)

Since D is countable and the metric derivative exists a.e. we can find a negligible set of times N such that for every
t ∈ I \ N we have that (11) holds for every ϕ ∈ D and s �→ μs is metrically differentiable at t . Now fix t ∈ I \ N and
set

Ψ h := 1

h
Ψ

μt+h
μt .

Let Ψ 0 be a weak limit point of Ψ h in L2(μt , T M) as h → 0. For ϕ ∈ D we have using Taylor expansion

1

h

(
μt+h(ϕ) − μt(ϕ)

) = 1

h

∫
M

ϕ ◦ exp(hΨ h) − ϕ dμt =
∫

M

〈∇ϕ,Ψ h〉dμt + O(h).

Combining this with (11) we obtain∫
M

〈∇ϕ,Ψ 0〉dμt =
∫

M

〈∇ϕ,vt 〉dμt .
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By the density of D we conclude that in the sense of distributions

div
(
(Ψ 0 − vt ) · μt

) = 0. (12)

Since the L2-norm is weakly lower semicontinuous we have that

‖Ψ 0‖L2(μt ,T M) ≤ lim inf
h→0

‖Ψ h‖L2(μt ,T M) = lim
h→0

1

h
dW(μt+h,μt )

= ∣∣μ′∣∣(t) = ‖vt‖L2(μt ,T M). (13)

From (12) and (13) we infer with Lemma 2.4 that Ψ 0 = vt . Since weak convergence and convergence of the norm
imply strong convergence this yields the claim. �

3. Subdifferentials and gradient flows

Let Φ :P2(M) → (−∞,+∞] be a functional on the Wasserstein space. Denote by

D(Φ) := {
μ ∈ P2(M) | Φ(μ) < ∞}

the proper domain of Φ . We will establish a notion of (sub-)differential of Φ modeled on the classical one in linear
spaces. Recall that for a functional F :X → R ∪ {∞} on a Hilbert space X the subdifferential at a point x ∈ D(F) is
defined by

v ∈ ∂F (x) : ⇔ F(y) − F(x) ≥ 〈v, y − x〉 + o
(‖y − x‖).

To transpose this definition to the Wasserstein space we proceed as follows: if μ is the reference point we intend
the scalar product to be taken in L2(μ,T M) and the displacement vector y − x corresponds to the optimal transport
vector field Ψ ν

μ, which is defined if μ ∈ P ac
2 (M). Hence, we shall assume that

D(Φ) ⊂ P ac
2 (M).

Note that this is the case for the relative entropy functional.

Definition 3.1 (Subdifferential). Let μ ∈ D(Φ) and w ∈ L2(μ,T M). We say that w belongs to the subdifferential
∂Φ(μ) if

Φ(ν) − Φ(μ) ≥
∫

M

〈
w,Ψ ν

μ

〉
dμ + o

(
dW (μ, ν)

) ∀ν ∈ P2(M).

A vector field w ∈ ∂Φ(μ) is said to be a strong subdifferential if it also satisfies

Φ
(
exp(Ψ )#μ

) − Φ(μ) ≥
∫

M

〈w,Ψ 〉dμ + o
(‖Ψ ‖L2(μ,T M)

) ∀Ψ ∈ L2(μ,T M).

Note that the vector w in the definition of subdifferential only acts on tangent vectors by Lemma 2.6. We conclude
that the orthogonal projection Πw on TμP2(M) is in ∂Φ(μ) whenever w is. The following lemma shows that subd-
ifferentials in TμP2(M) are strong subdifferentials. It is a direct adaption of [2], Proposition 4.2, to the Riemannian
setting.

Lemma 3.2. Let μ ∈ D(Φ) and w ∈ ∂Φ(μ) ∩ TμP2(M). Then w is a strong subdifferential.

Proof. We argue by contradiction. Suppose w is not a strong subdifferential. Then there is δ > 0 and a sequence
(un)n∈N ⊂ L2(μ,T M) such that

εn := ‖un‖L2(μ,T M) → 0 and Φ(μn) − Φ(μ) −
∫

M

〈w,un〉dμ ≤ −δεn, (14)
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where μn := exp(un)#μ. Setting Ψ n := Ψ
μn
μ we have

‖Ψ n‖L2(μ,T M) = dW (μ,μn) ≤ ‖un‖L2(μ,T M) = εn → 0. (15)

Hence by the definition of subdifferential there is N such that

Φ(μn) − Φ(μ) ≥
∫

M

〈w,Ψ n〉dμ − δ

2
εn ∀n > N. (16)

Combining (14) and (16) yields:∫
M

〈w,Ψ n − un〉dμ ≤ − δ

2
εn ∀n > N. (17)

Note that by (14) and (15) (Ψ n/εn)n and (un/εn)n are bounded sequences in L2(μ,T M). Hence up to extracting a
subsequence we can assume that

Ψ n

εn

⇀ Ψ ,
un

εn

⇀ u weakly in L2(μ,T M).

Dividing by εn in (17) and passing to the limit as n → ∞ yields∫
M

〈w,Ψ − u〉dμ ≤ − δ

2
. (18)

Now let ϕ ∈ C∞
c (M). As ‖un‖,‖Ψ n‖ → 0 we obtain by Taylor expansion that for some constant C and all n large

enough:

0 =
∫

M

ϕ
(
expx

(
Ψ n(x)

)) − ϕ
(
expx

(
un(x)

))
dμ

≤
∫

M

〈∇ϕ,Ψ n − un〉dμ + C
(‖Ψ n‖2 + ‖un‖2). (19)

Now dividing by εn and passing to the limit in (19) yields:∫
M

〈∇ϕ,Ψ − u〉dμ ≥ 0 ∀ϕ ∈ C∞
c (M).

Since w belongs to TμP2(M) in which gradients of smooth functions are dense we also have∫
M

〈w,Ψ − u〉dμ ≥ 0

in contradiction to (18). Hence w must be a strong subdifferential. �

As a metric substitute for the norm of the gradient of a functional we define the metric slope.

Definition 3.3 (Metric slope). For μ ∈ D(Φ) we define:

|∂Φ|(μ) := lim sup
ν→μ

(Φ(μ) − Φ(ν))+

dW (μ, ν)
. (20)

Note that if w ∈ ∂Φ(μ) it is immediate from the definitions that |∂Φ|(μ) ≤ ‖w‖L2(μ,T M). In the sequel we will
exploit that the functional we consider enjoys a certain convexity property along geodesics in P2(M). More precisely:
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Definition 3.4. Let K ∈ R. The functional Φ is called (displacement) K-convex, if for each pair μ0,μ1 ∈ D(Φ) there
exists a geodesic (μt )t∈[0,1] in P2(M) such that for each t ∈ [0,1]:

Φ(μt ) ≤ tΦ(μ1) + (1 − t)Φ(μ0) − t (1 − t)
K

2
d2
W(μ0,μ1). (21)

Note that in our case there is exactly one geodesic connecting μ0 to μ1 by Proposition 2.1 since we assume that
D(Φ) ⊂ P ac

2 (M). This notion of convexity for functionals on the Wasserstein space has been introduced by McCann
in [8]. For K-convex functionals the subdifferential can be characterized by a variational inequality.

Lemma 3.5. Let Φ be K-convex and let μ ∈ D(Φ),w ∈ L2(μ,T M). Then w ∈ ∂Φ(μ) iff

Φ(ν) − Φ(μ) ≥
∫

M

〈
w,Ψ ν

μ

〉
dμ + K

2
d2
W(μ,ν) ∀ν ∈ P2(M). (22)

The metric slope can be represented as

|∂Φ|(μ) = sup
ν �=μ

(
Φ(μ) − Φ(ν)

dW (ν,μ)
+ K

2
dW (ν,μ)

)+
. (23)

Proof. The if implication is obvious. So let w ∈ ∂Φ(μ) and ν ∈ D(Φ) (otherwise, there is nothing to prove). Let
(μt )t∈[0,1] be the geodesic between μ and ν. K-convexity (21) yields:

Φ(μt ) − Φ(μ)

t
≤ Φ(ν) − Φ(μ) − (1 − t)

K

2
d2
W(μ,ν). (24)

By the definition of subdifferential we also have:

lim inf
t↓0

Φ(μt) − Φ(μ)

t
≥ lim inf

t↓0

1

t

∫
M

〈
w,Ψ μt

μ

〉
dμ =

∫
M

〈
w,Ψ ν

μ

〉
dμ,

where we have used the fact that Ψ
μt
μ = t · Ψ ν

μ and dW (μ,μt ) = t · dW (μ, ν). To obtain the nontrivial inequality for
the metric slope we use again (24) and

lim inf
t↓0

Φ(μt) − Φ(μ)

t
= lim inf

t↓0

Φ(μt) − Φ(μ)

dW (μ,μt )
dW (μ, ν) ≥ −|∂Φ|(μ) · dW (μ, ν). �

Proposition 3.6 (Chain rule). Let Φ be K-convex. Let (a, b) be an open interval and (μt )t ∈ AC2((a, b),D(Φ))

with tangent vector field (vt )t . Assume that

∫ a

b

|∂Φ|(μt ) · ∣∣μ′∣∣(t)dt < ∞. (25)

Then the map t �→ Φ(μt) is absolutely continuous in (a, b) and we have for a.e. t :

d

dt
Φ(μt ) =

∫
M

〈ξ ,vt 〉dμt ∀ξ ∈ ∂Φ(μt ). (26)

Proof. For absolute continuity of the map t �→ Φ(μt ) see the proof of [1], Corollary 2.4.10, which relies on (23). In
view of (25) and Lemma 2.7 we have for a.e. t

|∂Φ|(μt ) < ∞,
1

h
Ψ

μt+h
μt

h→0→ vt in L2(μt ), s �→ Φ(μs) is differentiable at t.
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Let us compute the derivative of Φ(μs) at such a time t : for ξ ∈ ∂Φ(μt ) we can estimate

Φ(μt+h) − Φ(μt) ≥
∫

M

〈
ξ ,Ψ

μt+h
μt

〉
dμt + K

2
d2
W(μt ,μt+h)

= h

∫
M

〈ξ ,vt 〉dμt + h

∫
M

〈
ξ ,

1

h
Ψ

μt+h
μt − vt

〉
dμt + K

2
d2
W(μt ,μt+h)

= h

∫
M

〈ξ ,vt 〉dμt + o(h).

Dividing by h and taking left and right limits yields the claim

d

dt

+
Φ(μt) ≥

∫
M

〈ξ ,vt 〉dμt ≥ d

dt

−
Φ(μt).

�

With the notions of tangent and subdifferential at hand we can now define gradient flows in the Wasserstein space
P2(M) in analogy to gradient flows of smooth functionals on Riemannian manifolds.

Definition 3.7 (Gradient flow). Let (μt )t≥0 be a continuous curve in P2(M) which belongs to AC2
loc((0,∞),P2(M)).

Let (vt )t be the tangent vector field characterized by Proposition 2.5. We say that (μt )t≥0 is a trajectory of the gradient
flow for Φ if it satisfies the gradient flow equation

−vt ∈ ∂Φ(μt ) for a.e. t > 0. (27)

Observe that the gradient flow equation implies that |μ′|(t) · |∂Φ|(μt ) ≤ ‖vt‖2
L2(μt ,T M)

. The right-hand side is in

L1
loc(R+) so Proposition 3.6 yields that the map t �→ Φ(μt) is locally absolutely continuous in (0,∞) and for a.e.

t > 0:

− d

dt
Φ(μt ) = ‖vt‖2

L2(μt ,T M)
. (28)

In particular Φ(μt ) < ∞ for all t >0. Integrating (28) we obtain the so called energy identity:

Φ(μb) − Φ(μa) = −
∫ b

a

‖vt‖2
L2(μt ,T M)

dt ∀0 < a < b. (29)

4. Identification of the gradient flow for the relative entropy

In this section we shall turn to the relative entropy functional and compute its subdifferential. This will yield the proof
of Theorem 2.

Recall that the relative entropy H :P2(M) → [−∞,∞] is defined by

H(μ) :=
∫

M

ρ logρ dm, (30)

provided that μ is absolutely continuous with density ρ and ρ(logρ)+ is integrable. Otherwise set H(μ) := ∞. In
particular D(H) ⊂ P ac

2 (M). Convexity properties of this functional are intimately related to the curvature of M .
Sturm and others (see [12], Theorem 1.3) showed that H is displacement K-convex if and only if

Ricx(ξ , ξ) ≥ K · ‖ξ‖2 ∀x ∈ M, ξ ∈ TxM. (31)

So let us assume from now on that the Ricci curvature of M is bounded below by some K ∈ R in the sense of (31)
which we will denote in short by Ric ≥ K . Under this assumption the relative entropy functional H takes values in
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(−∞,∞], precisely we prove an estimate which will be useful later on. Fix a point o ∈ M and denote the second
moment by

m2(μ) :=
∫

M

d2(o, x)dμ(x). (32)

Lemma 4.1. Let Ric ≥ K . For any ε > 0 there exists a constant Cε > 0 depending only on ε such that for any
μ ∈ P2(M):

H(μ) ≥ −Cε − ε · m2(μ) > −∞. (33)

Proof. Let ε > 0. We can assume that μ = ρ · m ∈ P ac
2 (M), otherwise there is nothing to prove. Let c > 0 to be

chosen later and observe that r| log r| ≤ √
r for all r ∈ [0,1]. Using this in the second step we can bound H(μ)− as∫

M

(ρ logρ)− dm =
∫

{ρ≤e−cd(o,·)}
ρ| logρ|dm +

∫
{e−cd(o,·)<ρ≤1}

ρ| logρ|dm

≤
∫

M

e−c/2d(o,x) dm(x) + c

∫
M

d(o, x)ρ(x)dm(x)

≤
∫

M

e−c/2d(o,x) dm(x) + ε · m2(μ) + c2

4ε
,

where we used the elementary inequality cy ≤ εy2 + c2/(4ε). By the Bishop volume comparison theorem ([5], Theo-
rem 3.9), the volume of geodesic balls Br(o) in M grows at most exponentially, i.e. m(Br(o)) ≤ a(ebr −1) for suitable
constant a, b > 0. Hence we conclude that for c > 2b

∫
M

e−c/2d(o,x) dm(x) =
∫ 1

0
m

({
e−c/2d(o,x) ≥ t

})
dt < ∞,

which proves the claim. �

We now compute explicitly the subdifferential of the relative entropy functional starting with the following lemma
which shows that we can take “directional derivatives” of the entropy along the geodesic flow of smooth vector fields.
Let us denote by C∞

c (M,T M) the space of smooth compactly supported vector fields on M .

Lemma 4.2. Let ξ ∈ C∞
c (M,T M) and μ = ρ · m ∈ D(H). We set Tt := exp(tξ) for t ∈ R and μt := Tt #μ. Then we

have:

lim
t→0

H(μt ) − H(μ)

t
= −

∫
M

ρ · div ξ dm. (34)

Proof. For t sufficiently small Tt is a diffeomorphism. We denote by Jt := det(dTt ) its Jacobian determinant. Since
ξ is compactly supported and J0 = 1 there is c > 0 such that 1/c ≤ Jt (x) ≤ c for x ∈ M, t ∈ [−ε, ε] and ε small
enough. By the change of variables formula μt is again absolutely continuous with density ρt = (ρ · J −1

t ) ◦ T −1
t and

H(μt ) =
∫

M

F(ρt )dm =
∫

M

F

(
ρ

Jt

)
Jt dm < ∞,

where F(r) := r · log(r). Direct computation yields:

d

dt

(
F

(
ρ(x)

Jt (x)

)
Jt (x)

)
= −ρ(x)

J̇t (x)

Jt (x)
.
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Note that J0 = 1, J̇0 = div ξ (see [5], Section 3.4). Since J̇t J −1
t is bounded for t ∈ [−ε, ε] we can differentiate under

the integral and obtain

lim
t→0

H(μt ) − H(μ)

t
=

∫
M

d

dt

∣∣∣∣
t=0

F

(
ρ

Jt

)
Jt dm = −

∫
M

ρ · div ξ dm. �

The next proposition determines the subdifferential of the relative entropy functional. We shall denote by W 1,1(M)

the space of integrable functions on M whose distributional gradient is given by an integrable vector field.

Proposition 4.3. Let Ric ≥ K and μ = ρ · m ∈ D(H). Then the following are equivalent:

(i) |∂H |(μ) < ∞,
(ii) ρ ∈ W 1,1(M), ∇ρ = w · ρ for some w ∈ L2(μ,T M).

In this case w is the unique strong subdifferential at μ and |∂H |(μ) = ‖w‖L2(μ,T M). Further w ∈ TμP2(M).

Proof. Let |∂H |(μ) < ∞. By definition ρ is integrable. We have to show that the distributional gradient of ρ is
represented by a integrable vector field. By Lemma 4.2 we have that∣∣∣∣−

∫
M

ρ · div ξ dm

∣∣∣∣ = lim
t→0

∣∣∣∣H(μt ) − H(μ)

dW (μ,μt )

∣∣∣∣dW (μ,μt )

|t | ≤ |∂H |(μ) · ‖ξ‖L2(μ,T M)

holds for any ξ ∈ C∞
c (M,T M). Here we estimated dW (μ,μt ) with the coupling (id, exp(tξ))#μ. By the Riesz repre-

sentation theorem there is w ∈ L2(μ,T M) with ‖w‖L2(μ,T M) ≤ |∂H |(μ) such that

−
∫

M

ρ · div ξ dm =
∫

M

〈w, ξ〉dμ =
∫

M

〈w, ξ · ρ〉dm ∀ξ ∈ C∞
c (M,T M).

This shows that the distributional gradient of ρ is given by w · ρ which is indeed integrable since μ is a probability
measure: ‖w · ρ‖L1(m,T M) = ‖w‖L1(μ,T M) ≤ ‖w‖L2(μ,T M) < ∞.

Given (ii) Theorem 23.13 in [14] shows that w = ∇ρ/ρ is indeed a subdifferential at μ and hence |∂H |(μ) ≤
‖w‖L2(μ,T M). Since the orthogonal projection Πw of w on TμP2(M) is also in ∂H(μ) we have

|∂H |(μ) ≤ ‖Πw‖L2(μ,T M) ≤ ‖w‖L2(μ,T M) ≤ |∂H |(μ).

Hence we must have w ∈ TμP2(M) and w is a strong subdifferential by Lemma 3.2. It remains to show uniqueness.
So let v be another strong subdifferential at μ and ξ ∈ C∞

c (M,T M). With the notation of Lemma 4.2 we have

H(μt) − H(μ) ≥
∫

M

〈v, tξ 〉dμ + o(t).

Dividing by t and taking left and right limits we obtain

d

dt

∣∣∣∣
+

t=0
H(μt) ≥

∫
M

〈v, ξ〉dμ ≥ d

dt

∣∣∣∣
−

t=0
H(μt).

The same inequalities hold for w and Lemma 4.2 shows that the left and right derivatives coincide, hence it follows
that ∫

M

〈v − w, ξ〉dμ = 0 ∀ξ ∈ C∞
c (M,T M).

Thus we must have (v − w) · ρ = 0 m-a.e. on M and hence v = w μ-a.e. on M . �

The strategy to determine the subdifferential is inspired by similar arguments given in [1], Section 10.4, in the
special case of M = R

n. The main part of Proposition 4.3 showing that ∇ρ/ρ is a subdifferential at ρ · m is due to
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Villani [14]. The proof therein mainly relies on the K-convexity of the functional and covers a wide class of integral
functionals.

Now that we know explicitly the subdifferential we are prepared to prove our main Theorem 2 establishing the
equivalence of the gradient flow for the relative entropy with the heat flow.

Proof of Theorem 2. (i) ⇒ (ii): Let (μt )t be a trajectory of the gradient flow with tangent vector field (vt )t charac-
terized by Proposition 2.5. Recall from (28) that H(μt) < ∞ for all t > 0 and hence every μt has a density ρt . By the
definition of gradient flow we have −vt ∈ ∂H(μt ) for a.e. t > 0 and in particular |∂H |(μt ) < ∞. By the definition
of the tangent vector field vt ∈ Tμt P2(M) for a.e. t > 0. Hence Lemma 3.2 shows that vt is a strong subdifferential.
Now Proposition 4.3 characterizing the unique strong subdifferential yields that ρt ∈ W 1,1(M) and −vt = ∇ρt/ρt for
a.e. t > 0. Hence the continuity equation (6) becomes∫

I

∫
M

∂tϕ(t, x)ρt (x) − 〈∇ρt (x),∇ϕ(t, x)
〉
dm(x)dt = 0 ∀ϕ ∈ C∞

c

(
(0,∞) × M

)
,

i.e. (ρt )t>0 is a weak solution to the heat equation. It is well known that this already implies that (ρt )t>0 has a smooth
version solving the heat equation.

(ii) ⇒ (i): The heat equation for (ρt )t can be recast as a continuity equation for (μt )t :

∂tμt + div

(
−∇ρt

ρt

· μt

)
= 0.

From the integrability of −vt := ∇ρt

ρt
and Proposition 2.5 we infer that (μt )t is locally absolutely continuous in (0,∞).

Moreover, the integrability assumption (2) ensures that ‖∇ρt/ρt‖L2(μt ,T M) < ∞ for a.e. t > 0. Hence Proposition 4.3
again shows that −vt is the unique strong subdifferential at μt and vt ∈ Tμt P2(M) for a.e. t > 0. Hence (vt )t must be
the tangent vector field characterized by Proposition 2.5 and −vt ∈ ∂H(μt ) for a.e. t > 0. Thus (μt )t≥0 is a trajectory
of the gradient flow for H . �

The strategy to prove contractivity of the gradient flow in the Wasserstein distance is to control the infinitesimal
behavior of dW (μt , νt ) along two trajectories μt and νt . The crucial ingredient is (35) which can be read as a formula
of first variation in the Wasserstein space P2(M).

Proposition 4.4 (Contractivity of the gradient flow). Assume Ric ≥ K . Let (μt )t≥0 and (νt )t≥0 be two trajectories
of the gradient flow for H . Then

dW (μt , νt ) ≤ e−KtdW (μ0, ν0).

In particular for a given initial value μ0 there is at most one trajectory of the gradient flow.

Proof. Denote vt ,wt the tangent vector fields of (μt )t and (νt )t . By Theorem 2 and Proposition 4.3 we can assume
that vt = −∇ρt/ρt , where (ρt )t>0 solves the heat equation. Certainly ρt is strictly positive for every t > 0. Indeed,
by the maximum principle for the heat equation we have ρt (x) ≥ ∫

p(t − ε, x, y)ρε(y)dm(y), where p(s, x, y) is the
heat kernel on M which is strictly positive (cf. [6]). Hence vt is smooth and thus locally Lipschitz and so is wt for the
same reasons. Now we can apply [14], Theorem 23.9, to see that the Wasserstein distance is differentiable along these
curves and that we have for a.e. t > 0:

d

dt
d2
W(μt , νt ) = −2

∫
M

〈
vt ,Ψ

νt
μt

〉
dμt − 2

∫
M

〈
wt ,Ψ

μt
νt

〉
dνt . (35)

By Lemma 3.5, characterizing the subdifferential of a displacement convex functional, we also have for a.e. t > 0:∫
M

〈−vt ,Ψ
νt
μt

〉
dμt ≤ H(νt ) − H(μt ) − K

2
d2
W(μt , νt ),∫

M

〈−wt ,Ψ
μt
νt

〉
dνt ≤ H(μt ) − H(νt ) − K

2
d2
W(μt , νt ).
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Together we obtain:

d

dt
d2
W(μt , νt ) ≤ −2K · d2

W(μt , νt ).

Thus the assertion follows by an application of Gronwall’s lemma. �

The proof of contractivity given here is due to Villani, see [14], Theorem 23.25, but note the deviating definition
of gradient flow.

Remark 4.5. Note that if we apply [14], Theorem 23.9, for a trajectory (μt )t of the gradient flow and a constant curve
νt = σ (i.e. wt = 0) and invoke the K-convexity of H we obtain that

d

dt

1

2
d2
W(μt , σ ) = −

∫
M

〈
vt ,Ψ

σ
μt

〉
dμt ≤ H(σ) − H(μt) − K

2
d2
W(μt , σ ), (36)

which is the evolution variational inequality (1).

5. The discrete approximation scheme

To establish the existence of gradient flows for the relative entropy functional we will adapt the discrete variational
approximation scheme introduced by Otto in [7] to our Riemannian setting. Using this scheme we construct trajec-
tories for given initial value with finite entropy. The complete gradient flow with arbitrary initial values in P2(M) is
then constructed in the next section via an extension argument based on the contractivity in dW .

Throughout this section we shall assume Ric ≥ K . We will proceed as follows: Fix a time step τ > 0 and an initial
value μ0 ∈ D(H). Recursively define a sequence (μτ

n)n∈N of local minimizers by

μτ
0 := μ0, μτ

n := arg min
ν

(
H(ν) + d2

W(μτ
n−1, ν)

2τ

)
. (37)

We then define a discrete trajectory as the piecewise constant interpolant (μτ
t )t≥0 by

μτ
0 := μ0, μτ

t := μτ
n if t ∈ (

(n − 1)τ, nτ
]
. (38)

We will show that μτ
t → μt weakly as τ → 0 for every t > 0, such that (μt )t≥0 is a trajectory of the gradient flow for

H according to Definition 3.7.

Proposition 5.1. For every μ0 ∈ D(H) and every τ > 0 there exists a unique solution to the variational scheme (37).

Proof. It is enough to show that for every μ ∈ P2(M) the functional

Φ(τ,μ; ·) := H(·) + d2
W(μ, ·)

2τ
(39)

has a unique minimizer. Uniqueness follows from the fact that Φ(τ,μ; ·) is strictly convex in the usual sense, i.e.
Φ(τ,μ; sν + (1− s)ν ′) < sΦ(τ,μ;ν)+ (1− s)Φ(τ,μ;ν ′) for ν �= ν ′. The direct method of the calculus of variations
easily yields existence once we have established the following claims. Recall from (32) that m2 denotes the second
moment.

Claim 5.2. Let (νn)n be a minimizing sequence for the functional (39). Then

sup
n

{
m2(νn)

}
< ∞.

In particular the sequence is tight and hence admits a weak limit point ν ∈ P2(M).
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Claim 5.3. Let νn → ν weakly such that supn{m2(νn)} < ∞. Then

Φ(τ,μ;ν) ≤ lim infΦ(τ,μ;νn).

Proof of Claim 5.2. Using the estimate m2(νn) ≤ 2 · m2(μ) + 2 · d2
W(μ,νn) (which follows immediately from the

inequality d(o, x)2 ≤ 2d(o, y)2 + 2d(x, y)2 and the definition of dW ) and combining it with (33) we obtain:

Φ(τ,μ;νn) ≥ −m2(μ)

τ
− Cε +

(
1

2τ
− ε

)
m2(νn). (40)

Choosing ε < 1
2τ

we see that (m2(νn))n must be bounded. In particular the function d(o, ·) is uniformly integrable
w.r.t. (νn)n which ensures tightness ([1], Remark 5.1.5), and thus relative compactness by Prokhorov’s theorem. Any
weak limit point ν satisfies m2(ν) ≤ lim infm2(νn) < ∞ ([1], Lemma 5.1.7) and must hence belong to P2(M). �

Proof of Claim 5.3. Lower semicontinuity of d2
W(μ, ·) w.r.t. weak convergence is well known (cf. [14], Remark 6.12

or [1], Proposition 7.1.3). To conclude we note that H is also lower semicontinuous w.r.t. weak convergence on sets
of bounded second moment. We state this result separately in the next proposition for future reference. �

Proposition 5.4. Let Ric ≥ K . Let νn → ν weakly such that supn{m2(νn)} < ∞. Then

H(ν) ≤ lim inf
n→∞ H(νn).

In particular H is lower semicontinuous w.r.t. convergence in dW .

Proof. We reduce to the case of a finite reference measure instead of m. Define a probability measure γ := e−V · m,
where V (x) := c · d(o, x) + a for suitable constants a, c (recall from the proof of Lemma 4.1 that c · d(o, ·) is
integrable). Then write for ν = ρ · γ = ρe−V · m:

H(ν) =
∫

M

ρ logρ dγ −
∫

M

V dν =: H(ν|γ ) −
∫

M

V dν.

Lower semicontinuity of the relative entropy functional H(·|γ ) with finite reference measure γ w.r.t. weak conver-
gence is proven in [13], Lemma 4.1. Alternatively it follows immediately from the following representation formula
([2], Lemma 3.18, here M = R

n but the very same arguments hold in our case)

H(ν|γ ) = sup

{∫
M

φ dν −
∫

M

eφ − 1 dγ

∣∣∣φ ∈ C0
b(M)

}
.

Since the second moments of νn are bounded V is uniformly integrable w.r.t. (νn)n and we have νn(V ) → ν(V ) as
n → ∞, which proves the claim. Since convergence in dW implies weak convergence and convergence of second
moments we obtain in particular that H is l.s.c. on (P2(M), dW ). �

Proposition 5.5. For every μ0 ∈ D(H) there exists a unique trajectory of the gradient flow (μt )t≥0 with initial value
μ0. For every t ≥ 0 we have μτ

t → μt weakly as τ → 0.

Proof. Step 1: discrete equation. We start by making precise why we call μτ a discrete solution. Let us introduce the
piecewise constant velocity vector field

V
τ

t := − 1

τ
Ψ

μτ
n−1

μτ
n

, t ∈ (
(n − 1)τ, nτ

]
.

Then μτ satisfies the “discrete gradient flow equation”:

−V
τ

t ∈ ∂H
(
μτ

t

)
for every t > 0. (41)



The heat equation on manifolds 17

In view of our characterization of the subdifferential (Proposition 4.3) this follows immediately from the following
claim:

Claim 5.6. Let ν = ρ · m be a minimizer of Φ(τ,μ; ·). Then

−
∫

M

ρ · div ξ dm =
∫

M

〈
1

τ
Ψ μ

ν , ξ

〉
dν ∀ξ ∈ C∞

c (M,T M). (42)

This implies that ρ ∈ W 1,1(M) and 1
τ
Ψ

μ
ν = ∇ρ/ρ.

For later reference we rephrase (41) using (42) in the form∫
M

div ξ dμτ
t =

∫
M

〈
V

τ

t , ξ
〉
dμτ

t ∀ξ ∈ C∞
c (M,T M). (43)

Proof of Claim 5.6. For δ > 0 we set νδ := Tδ#ν, where Tδ(x) := expx(δξ(x)). Let π be the optimal coupling of μ

and ν. Since ν is a minimizer, we have

0 ≤ 1

δ

[
H(νδ) − H(ν) + d2

W(μ,νδ)

2τ
− d2

W(μ,ν)

2τ

]

≤ 1

δ

[
H(νδ) − H(ν)

] + 1

2τδ

[∫
M

d2(x,Tδ(y)
) − d2(x, y)dπ(x, y)

]
, (44)

where we used the coupling (id, Tδ)#π to estimate dW (μ, νδ). We want to pass to the limit as δ ↓ 0. Recall that for
π -a.e. (x, y), Ψ

μ
ν (y) is the initial velocity of a minimizing geodesic connecting y to x. Hence we deduce from the

first variation formula (see e.g. [5], 2.3) that

lim sup
δ↓0

1

δ

(
d2(x,Tδ(y)

) − d2(x, y)
) ≤ −2

〈
Ψ μ

ν (y), ξ (y)
〉
.

Furthermore by the triangle inequality we can bound the difference quotient above as

1

δ

∣∣d2(x,Tδ(y)
) − d2(x, y)

∣∣ ≤ 1

δ
d
(
y,Tδ(y)

) · (d(
y, d

(
Tδ(y)

)) + 2d(x, y)
) ≤ δC2 + 2C · d(x, y),

where C = sup{|ξ(x)|, x ∈ M}. Since d(x, y) is integrable w.r.t. π we can apply Fatou’s lemma to pass to the limsup
in the second term of (44). Combining with Lemma 4.2 we obtain

0 ≤ −
∫

M

ρ · div ξ dm −
∫

M

〈
1

τ
Ψ μ

ν , ξ

〉
dν. (45)

Since ξ was arbitrary we must have equality in (45) which yields the claim. �

Step 2: a priori estimates. Fix a time horizon T > 0. We show that there exists a constant C > 0 depending only
on T and μ0 such that for all m ≤ n, τ with nτ ≤ T :

m2
(
μτ

n

) ≤ C, (46)

−C ≤ H
(
μτ

n

) ≤ C, (47)

n∑
k=1

d2
W(μτ

k−1,μ
τ
k )

2τ
≤ C, (48)

dW

(
μτ

n,μ
τ
m

) ≤ √
τ(n − m)C. (49)
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Indeed, by definition of the approximation scheme we have

d2
W(μτ

k−1,μ
τ
k )

2τ
+ H

(
μτ

k

) ≤ H
(
μτ

k−1

)
,

n∑
k=1

d2
W(μτ

k−1,μ
τ
k )

2τ
≤ H(μ0) − H

(
μτ

n

)
, (50)

which yields the second inequality in (47). Arguing as in Claim 5.2, using Cauchy–Schwarz and finally applying
Lemma 4.1 we can estimate the second moments as:

m2
(
μτ

n

) ≤ 2d2
W

(
μτ

n,μ0
) + 2m2(μ0) ≤ 2n

n∑
k=1

d2
W

(
μτ

k−1,μ
τ
k

) + 2m2(μ0)

≤ 4τn
[
H(μ0) − H

(
μτ

n

)] + 2m2(μ0) ≤ 4T
[
H(μ0) + Cε + ε · m2

(
μτ

n

)] + 2m2(μ0).

Choosing ε < 1
4T

we obtain (46). This in turn implies the first inequality in (47) by Lemma 4.1. Clearly (47) and (50)
yield (48). Finally, to establish (49) we use again Cauchy–Schwarz, apply (50), (47) and obtain

dW

(
μτ

n,μ
τ
m

) ≤ 2τ

n∑
k=m+1

dW (μτ
k−1,μ

τ
k )

2τ
≤ √

2(n − m)τ

(
n∑

k=1

d2
W(μτ

k−1,μ
τ
k )

2τ

)1/2

≤ √
2(n − m)τ

[
H(μ0) − H

(
μτ

n

)]1/2
.

Step 3: limit trajectory. We show that there is a curve (μt )t≥0 such that up to extraction of a subsequence μ
τn
t converges

to μt for all t as τn → 0. By connecting μτ
n−1,μ

τ
n with a geodesic parametrized in ((n − 1)τ, nτ ] we obtain a curve

(μ̂τ
t )t∈[0,T ] satisfying for all s, t ∈ [0, T ]:

dW

(
μτ

t , μ̂
τ
t

) ≤ C
√

τ and dW

(
μ̂τ

s , μ̂
τ
t

) ≤ C
√

t − s. (51)

We want to apply the Arzelà–Ascoli theorem to the family (μ̂τ )τ>0 ⊂ C0([0, T ],P (M)), where P (M) is the space
of probability measures on M equipped with the topology of weak convergence. This topology can be metrized
for example by the Wasserstein distance d̃W corresponding to the bounded distance d̃ := d(1 + d)−1 on M which
induces the same topology as d (see [14], Corollary 6.11). Since dW is obviously stronger than d̃W , (51) im-
plies that the family (μ̂τ )τ>0 is uniformly equicontinuous in the weak topology. From (51) with s = 0 we infer
that

m2(μ̂
τ ) ≤ 2 · d2

W

(
μ̂τ ,μ0

) + 2 · m2(μ0) ≤ 2C2t + 2 · m2(μ0).

This implies that the second moments remain bounded and hence (μ̂τ )τ takes values in a relatively compact w.r.t.
weak convergence. Hence the Arzelà–Ascoli theorem yields relative compactness of (μ̂τ )τ>0 in C0([0, T ],P (M))

for every T > 0. So we can extract a subsequence τn → 0 such that

μ
τn
t → μt weakly ∀t ≥ 0.

By lower semicontinuity of the second moment and H (cf. Proposition 5.4) and the bounds (46), (47) we conclude
that μt belongs to P2(M) and that H(μt) < ∞. From (51) for s = 0 and weak lower semicontinuity of dW ([1], 7.1.3)
we deduce μt → μ0 in P2(M) as t → 0.

Step 4: limit velocity. We show that the family of discrete velocities (V
τn

)n admits limit points in a weak sense
which takes into account that the vector fields V

τn belong to different L2-spaces. Precisely we prove

Claim 5.7. There is a time dependent vector field v : (0,∞) × M → T M with

∫ T

0

∫
M

‖vt‖2 dμt dt < ∞ ∀T > 0, (52)
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such that up to extraction of a further subsequence∫ ∞

0

∫
M

〈
ξ t , V

τn

t

〉
dμ

τn
t dt

n→∞−→
∫ ∞

0

∫
M

〈ξ t ,vt 〉dμt dt ∀ξ ∈ C∞
c

(
(0,∞) × M,T M

)
. (53)

Proof. We will first prove the claim for a finite time horizon. Fix T > 0 and set QT := (0, T ) × M . Define measures
on (0,∞) × M by

μτn :=
∫ ∞

0
μ

τn
t dt, μ :=

∫ ∞

0
μt dt.

First observe that by (48)

S := sup
n

∫
QT

∥∥V
τn

∥∥2 dμτn = sup
n

N∑
k=1

d2
W(μ

τn

k−1,μ
τn

k )

τn

≤ 2C < ∞.

Choose a countable set {ξ j }j∈N dense in C∞
c (QT ,T M) w.r.t. the norm ‖ξ‖∞ := supQT

‖ξ(t, x)‖. By a diagonal
argument we find a subsequence again denoted by τn such that

L(ξ j ) := lim
n→∞

∫
QT

〈
ξ j ,V

τn
〉
dμτn

converges for all j ∈ N. If we denote by V := 〈ξ j , j ∈ N〉 the linear hull and extend by linearity we obtain a linear
functional L : V → R. Since weak convergence of μ

τn
t → μt for all t > 0 implies weak convergence μτn → μ we find

that L is continuous w.r.t. the L2(μ,T M)-norm. Indeed, we have for all ξ ∈ V :

∣∣L(ξ )
∣∣ = lim

n→∞

∣∣∣∣
∫

QT

〈
ξ ,V

τn
〉
dμτn

∣∣∣∣ ≤ S · lim inf
n→∞ ·

(∫
QT

‖ξ‖2 dμτn

)1/2

= S · ‖ξ‖L2(μ,T M).

From the Riesz theorem we obtain a vector field v ∈ L2(μ|QT
,T M) such that

lim
n

∫
QT

〈
ξ ,V

τn
〉
dμτn = L(ξ) =

∫
QT

〈ξ ,v〉dμ ∀ξ ∈ V .

From the density of {ξ j }j w.r.t. uniform convergence we conclude that∫
QT

〈
ξ ,V

τn
〉
dμτn

n→∞−→
∫

QT

〈ξ ,v〉dμ ∀ξ ∈ C∞
c (QT ,T M).

If T ′ > T we find that the vector field obtained for T ′ must coincide μ-a.e. on QT with the one obtained for T . Hence
successively repeating the previous construction for T → ∞ we obtain a vector field v : (0,∞) × M → T M and a
subsequence satisfying (52) and (53). �

Step 5: μ and v satisfy the continuity equation. Let ϕ ∈ C∞
c ((0,∞) × M) be a test function for the continuity

equation (6). Using Taylor expansion we find that∫
M

ϕt dμ
τn
t −

∫
M

ϕ dμ
τn
t−τn

=
∫

M

ϕ(t, x) − ϕ
(
t, exp

(−τnV
τn

t (x)
))

dμ
τn
t (x)

= τn ·
∫

M

〈∇ϕt ,V
τn

t

〉
dμ

τn
t + ε(τn,ϕ, t), (54)

where the error term is bounded as |ε(τn,ϕ, t)| ≤ Cϕτ 2
n‖V τn

t ‖2
L2(μ

τn
t )

for a constant Cϕ depending only on the second

derivatives of ϕ. Note that suppϕ ⊂ QT = (0, T ) × M for some T > 0. Using the weak convergence of μτn , (54) and
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(53) we have that:∫ ∞

0

∫
M

∂tϕ dμt dt = lim
n→∞

∫
QT

∂tϕ dμτn

= lim
n→∞

1

τn

∫
QT

[
ϕ(t + τn, x) − ϕ(t, x)

]
dμτn(t, x)

= − lim
n→∞

1

τn

∫
(0,T )

[∫
M

ϕ(t, ·)dμ
τn
t −

∫
M

ϕ(t, ·)dμ
τn
t−τn

]
dt

= − lim
n→∞

[∫
QT

〈∇ϕ,V
τn

〉
dμτ + 1

τn

∫
(0,T )

ε(τn,ϕ, t)dt

]

= −
∫ ∞

0

∫
M

〈∇ϕ,vt 〉dμt dt.

In the final equality we used the fact that due to (48) the second summand in the final limit is bounded by

Cϕτn

∫
[0,T ]

∥∥V
τn

t

∥∥2
L2(μ

τn
t )

dt = Cϕτ 2
n

N∑
k=1

1

τ 2
n

· d2
W

(
μ

τn

k−1,μ
τn

k

) ≤ 2CϕCτn

and thus tends to 0 as n → ∞. As ϕ ∈ C∞
c ((0,∞) × M) was arbitrary we conclude that the continuity equation holds

in the sense of distributions.
Step 6: (μt )t is a trajectory of the gradient flow. From step 5 and Proposition 2.5 we infer that (μt )t≥0 is locally

absolutely continuous in (0,∞). Step 3 already showed μt → μ0 in P2(M) and H(μt) < ∞ for all t > 0. Hence
μt has a density ρt . We will now pass to the limit in the discrete equation (43). Fix ξ ∈ C∞

c (M,T M) and consider
test functions of the form η(t) · ξ(x) for η ∈ C∞

c ((0,∞)). From the weak convergence of μ
τn
t for every t > 0 and

dominated convergence we obtain:∫ ∞

0
η(t)

∫
M

div ξ dμ
τn
t dt

n→∞−→
∫ ∞

0
η(t)

∫
M

div ξ dμt dt. (55)

On the other hand we have from the weak convergence of velocities (53):∫ ∞

0

∫
M

〈
V

τn

t , η(t) · ξ 〉
dμ

τn
t dt

n→∞−→
∫ ∞

0

∫
M

〈vt , η(t) · ξ 〉dμt dt. (56)

As the sequences on the left in (55) and (56) coincide by (43) we find that:∫ ∞

0
η(t)

∫
M

div ξ dμt dt =
∫ ∞

0
η(t)

∫
M

〈vt , ξ〉dμt dt,

and hence that for a.e. t > 0:∫
M

div ξ dμt =
∫

M

〈vt , ξ 〉dμt . (57)

Since C∞
c (M,T M) is separable w.r.t. convergence in the C1-norm we can find a negligible set of times N such that

(57) holds for all t ∈ (0,∞)\N and all ξ ∈ C∞
c (M,T M). This implies that ρt ∈ W 1,1(M) and vt = −∇ρt/ρt . Hence

the characterization of the subdifferential (Proposition 4.3) shows that

−vt ∈ ∂H(μt ) for a.e. t > 0

and that vt ∈ Tμt P2(M). Hence (vt )t is indeed the tangent vector field characterized by Proposition 2.5 and (μt )t
satisfies the gradient flow equation. Finally the uniqueness of gradient flows (Proposition 4.4) shows that μ and v do
not depend on the chosen subsequence τn and hence we have full convergence as τ → 0. �
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6. Conclusion of the proof

Before we can finish the proof of our main theorem we need the following lemma which is of independent interest. It
shows that the gradient flow has a regularizing effect.

Lemma 6.1. Let Ric ≥ K and (μt )t≥0 be a trajectory of the gradient flow for H . Then for all t > 0 and any ν ∈ D(H)

we have (with the convention 0/0 = 1 if K = 0):

H(μt) ≤ H(ν) + K

2(eKt − 1)
d2
W(μ0, ν). (58)

Proof. Let vt be the tangent vector field. We know from [14], Theorem 23.9 (cf. again the proof of Proposition 4.4)
and Lemma 3.5 characterizing the subdifferential of a K-convex functional that for a.e. s > 0

d

ds

1

2
d2
W(μs, ν) = −

∫
M

〈
vs ,Ψ

ν
μs

〉
dμs ≤ H(ν) − H(μs) − K

2
d2
W(μs, ν),

which immediately yields

d

ds

(
eKs

2
d2
W(μs, ν)

)
≤ eKs

[
H(ν) − H(μs)

]
.

Integrating in the interval (ε, t) and recalling from (28) that s �→ H(μs) is nonincreasing we obtain

eKt

2
d2
W(μt , ν) − 1

2
d2
W(με, ν) ≤ eKt − 1

K

[
H(ν) − H(μt )

]
.

Letting ε → 0 obviously yields the claim as the first term on the left is positive. �

Proof of Theorem 1. Uniqueness and contractivity of the gradient flow for H we have already proven in Proposi-
tion 4.4. Combining this with Proposition 5.5 we have obtained a K-contractive semigroup σ : [0,∞) × D(H) →
P2(M), such that μt := σ(t,μ0) is a trajectory of the gradient flow for every initial value μ0 ∈ D(H). By the con-
tractivity estimate

dW

(
σ(t,μ0), σ (t, ν0)

) ≤ e−KtdW (μ0, ν0)

there is a unique continuous extension of the semigroup σ to the closure D(H), which coincides with P2(M). Indeed,
observe that D(H) contains all measures of the form

μx,r = 1Br (x)/m
(
Br(x)

) · m

and their convex combinations. Hence all convex combinations of Dirac measures
∑

αiδxi
belong to D(H). It is

well know that the set of such measures is dense in P2(M) ([14], proof of 6.18) and thus we have D(H) = P2(M).
Now we have to show that the trajectories of the extended semigroup are still trajectories of the gradient flow. So let
μ0 ∈ P2(M) and choose μn

0 ∈ D(H) for n ∈ N, such that μn
0 → μ0 in P2(M). Then μt := σ(t,μ0) = limσ(t,μn

0).
Let (vn

t )t be the tangent vector fields for the curves (μn
t )t . By the definition of gradient flow we have for a.e. t > 0:

−vn
t ∈ ∂H

(
μn

t

)
. (59)

From Proposition 4.3 characterizing the subdifferential we infer that ρn
t ∈ W 1,1(M) and ∇ρn

t /ρn
t = −vn

t , where ρn
t is

the density of μn
t . In other words, this means that∫

M

div ξ dμn
t =

∫
M

〈
vn
t , ξ

〉
dμn

t ∀ξ ∈ C∞
c (M,T M). (60)
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Via (60) we will pass to the limit in (59). Fix some ν ∈ D(H). By (58) and lower semicontinuity of H (cf. Proposi-
tion 5.4) we have that for all t > 0:

H(μt ) ≤ lim inf
n→∞ H

(
μn

t

) ≤ H(ν) + K

2(eKt − 1)
d2
W(μ0, ν) < ∞.

Hence μt is absolutely continuous and has some density ρt . Fix T > δ > 0. Using the energy identity (29) and the
estimates (33), (58) we obtain:∫ T

δ

∫
M

∥∥vn
t

∥∥2 dμn
t dt = H

(
μn

δ

) − H
(
μn

T

)

≤ H(ν) + K

2(eKδ − 1)
d2
W

(
μn

0, ν
) + C1 + m2

(
μn

T

)
≤ C(δ,T ,μ0,μT ),

where C(δ,T ,μ0,μT ) is a constant depending only on δ, T , μ0 and μT and independent of n since μn
0,μ

n
T converge

in P2(M). Starting from this bound we can argue as in step 4 of Proposition 5.5 (with μ
τn
t ,V

τn

t replaced by μn
t ,vn

t )
to find a time dependent vector field v : (0,∞) × M → T M with∫ T

δ

‖vt‖2
L2(μt ,T M)

dt < ∞ ∀δ, T > 0

such that up to extraction of a subsequence we have for all ξ ∈ C∞
c ((0,∞) × M,T M):∫ ∞

0

∫
M

〈
ξ t ,vn

t

〉
dμn

t dt
n→∞−→

∫ ∞

0

∫
M

〈ξ t ,vt 〉dμt dt.

Hence we can pass to the limit in the continuity equation (6), i.e. for all ϕ ∈ C∞
c ((0,∞) × M):

0 =
∫ ∞

0

∫
M

∂tϕ + 〈
vn
t ,∇ϕ

〉
dμn

t dt
n→∞−→

∫ ∞

0

∫
M

∂tϕ + 〈vt ,∇ϕ〉dμt dt.

So (μt )t , (vt )t satisfy the continuity equation. Thus by Proposition 2.5 (μt )t is locally absolutely continuous in
(0,∞). Arguing as in step 6 of Proposition 5.5 we can pass to the limit in (60) and obtain that for a.e. t > 0 and
every ξ ∈ C∞

c (M,T M):∫
M

div ξ dμt =
∫

M

〈vt , ξ 〉dμt .

This implies that ρt ∈ W 1,1(M) and vt = −∇ρt/ρt . Hence the characterization of the subdifferential (Proposition 4.3)
shows that

−vt ∈ ∂H(μt ) for a.e. t > 0

and that vt ∈ Tμt P2(M). Hence (vt )t is indeed the tangent vector field characterized by Proposition 2.5 and (μt )t
satisfies the gradient flow equation. �
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