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Abstract. We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the
Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.

Résumé. Nous considérons des processus symétriques purement discontinus. Nous obtenons des estimations locales pour les pro-
babilités de sortie d’une boule, la continuité hölderienne des fonctions harmoniques et des noyaux de la chaleur, et la convergence
d’un suite de tels processus.
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1. Introduction

Suppose J : Rd × R
d → [0,∞) is a symmetric function satisfying

c1

|y − x|β1
≤ J (x, y) ≤ c2

|y − x|β2

if |y − x| ≤ 1 and 0 otherwise. Define the Dirichlet form

E (f,f ) =
∫ ∫ (

f (y) − f (x)
)2

J (x, y)dy dx, (1.1)

where we take the domain of E to be the closure with respect to the norm (‖f ‖L2(Rd ) +E (f,f ))1/2 of the class of
Lipschitz functions with compact support. When β1 = β2, the Dirichlet form and associated infinitesimal generator
are said to be of fixed order, namely, β1, while if β1 < β2, the generator is of variable order. The variable order case
allows for considerable variability in the jump intensities and directions.
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In [2] a number of results were proved for the Hunt process X associated with E , including exit probabilities, heat
kernel estimates, a parabolic Harnack inequality, and the possible lack of continuity of some harmonic functions. The
last is perhaps the most interesting: An example was given where there exist bounded harmonic functions that are not
continuous.

This paper could be considered a sequel to [2], although the set of authors for the present paper neither contains
nor is contained in the set of authors of [2]. We prove three main results, which we discuss in turn.

First we discuss estimates on exit probabilities. In [2] some estimates were obtained on P
x(τB(x,r) < t), where

τB(x,r) is the time of first exit of the ball of radius r centered at x. These estimates held for all x, but were very crude,
and were not sensitive to the behavior of J (x, y) when y is close to x. We show in Theorem 2.1 of the current paper
that to a large extent the behavior of these exit probabilities depend on the size of J (x, y) for y near x. We also allow
large jumps, which translates to allowing J (x, y) to be non-zero for |y − x| > 1. To illustrate our results, we mention
here Example 2.3, where we show that we get the fairly precise estimate

P
x(τB(x,r) ≤ t) ≤ c1tr

−s(x)

if

c2

|x − y|d+(s(x)∧s(y))
≤ J (x, y) ≤ c3

|x − y|d+(s(x)∨s(y))
, |x − y| ≤ 1,

where s takes values in a closed subinterval of (0,2) and |s(x) − s(y)| ≤ c4/ log(2/|x − y|); here c1, c2, c3 and c4 are
fixed positive finite constants.

Our motivation for obtaining better bounds on exit probabilities is to consider the question of when harmonic func-
tions and the heat kernel are continuous. The example in [2] shows this continuity need not always hold. However,
when J possesses a minimal amount of smoothness, we establish that indeed harmonic functions are Hölder contin-
uous, and the heat kernel is also Hölder continuous. (In particular, this holds under the conditions of Example 2.3.)
The technique for showing the Hölder continuity of harmonic functions is based on ideas from [4], where the non-
symmetric case was considered. More interesting is the part of the proof where we show that Hölder continuity of
harmonic functions plus global bounds on the heat kernel imply Hölder continuity of the heat kernel (see Propositions
3.3 and 3.4). This argument is of independent interest, and should be applicable in many other situations.

We mention here the paper [11], which studies, among other things, the Hölder continuity for harmonic functions
for anisotropic fractional Laplacians.

Finally, we suppose we have a sequence of functions Jn with corresponding Dirichlet forms and Hunt processes.
We show that if for each η > 0 the measures Jn(x, y)1(η<|y−x|<η−1) dx dy converge weakly to the measure
J (x, y)1(η<|y−x|<η−1) dx dy, and some uniform integrability holds, then the corresponding processes converge. Ob-
serve that only weak convergence is needed. This is in contrast to the diffusion case, where it is known that weak
convergence is not sufficient, and a much stronger type of convergence of the Dirichlet forms is required; see [10].

Our assumptions and results are stated and proved in the next three sections, the exit probabilities in Section 2,
the regularity in Section 3, and the weak convergence in Section 4. Throughout the paper, the letter c with or without
subscripts will denotes constants whose exact values are unimportant and which may change from line to line.

2. Exit probabilities

Suppose J : Rd × R
d → [0,∞) is jointly measurable and symmetric. We suppose throughout this paper that there

exist constants κ1, κ2, κ3 > 0 and β1, β2 ∈ (0,2) such that

κ1

|x − y|d+β1
≤ J (x, y) ≤ κ2

|x − y|d+β2
, |x − y| ≤ 1, (2.1)

and ∫
|x−y|>1

J (x, y)dy ≤ κ3, x ∈ R
d . (2.2)
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The constants β1, β2, κ1, κ2, κ3 play only a limited role in what follows and (2.1) and (2.2) are used to guarantee a
certain amount of regularity. Much more important is the α that is introduced in (2.6). Define a Dirichlet form E = EJ

by

E (f,f ) =
∫ ∫ (

f (y) − f (x)
)2

J (x, y)dy dx, (2.3)

where we take the domain to be the closure of the class of Lipschitz functions with compact support with respect to
the norm (‖f ‖2 + (E (f,f ))1/2). Let X be the Hunt process associated with the Dirichlet form E . Let B(x, r) denote
the open ball of radius r centered at x.

We remark that if we define J1(x, y) = J (x, y)1(|x−y|≤1) and define the corresponding Dirichlet form in terms
of J1, then the Hunt process X(1) corresponding to this Dirichlet form is conservative by [2], Theorem 1.1. Using a
construction due to Meyer (see [2], Remark 3.4 and [3], Section 3.1) we can use X(1) to obtain X. This is a probabilistic
procedure that involves adding jumps. Only finitely many jumps are added in any finite time interval, and we deduce
from this construction that X is also conservative.

Define

L1(x, s) =
∫

|x−w|≥s

J (x,w)dw, (2.4)

L2(x, s) =
∫

|x−w|≤s

|x − w|2J (x,w)dw. (2.5)

We now fix z0 ∈ R
d and r > 0 and assume that there exist constants κ4 and α = α(z0, r) ∈ (0,2) such that

J (x, y) ≥ κ4|x − y|−d−α, x, y ∈ B(z0,3r). (2.6)

Here α may depend on z0 and r . Let

L(z0, r) = sup
x∈B(z0,3r)

L1(x, r) + sup
x∈B(z0,3r)

sup
s≤r

sd
[
s−2L2(x, s)

](d+α)/α
. (2.7)

From (2.6) we see that

L(z0, r) ≥ cr−α. (2.8)

Theorem 2.1. Suppose (2.1), (2.2) and (2.6) hold. There exist c1 and c2 (depending only on d , κ4 and α) such that if
r ∈ (0,1), then for x ∈ B(z0, r),

P
x(τB(x,r) < t) ≤ c1tL(z0, c2r).

Proof. Let x0, y0 be fixed, let r > 0, let R = |y0 − x0|, and suppose R ≥ 18(d + α)r/α. By (2.8), the result is
immediate if t > c0r

α where c0 = cα
2 /(cc1), so let us suppose t ≤ c0r

α . Define

J̃ (x, y) =
{

J (x, y) if x, y ∈ B(z0,3r) and |x − y| < R,
κ4|x − y|−d−α if max(|x − z0|, |y − z0|) ≥ 3r and |x − y| < R,
0 otherwise.

(2.9)

Let

δ = Rα

3(d + α)
, (2.10)

N(δ) = δ−α + sup
x∈B(z0,3r)

δ−2L2(x, δ), (2.11)

λ = 1

3δ
log

(
1/

(
N(δ)t

))
. (2.12)
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Define

J̃δ(x, y) = J̃ (x, y)1(|x−y|≤δ).

Let X̃ be the Hunt process corresponding to J̃ and X̃(δ) the Hunt process associated with J̃δ .
We have the Nash inequality (see, e.g., (3.9) of [2]):

‖u‖2+2α/d

2 ≤ c

(∫ ∫
|x−y|<δ

(u(x) − u(y))2

|x − y|d+α
dy dx + δ−α‖u‖2

2

)
‖u‖2α/d

1 . (2.13)

Using (2.6) we obtain from this that

‖u‖2+2α/d

2 ≤ c

(∫ ∫ (
u(x) − u(y)

)2
J̃δ(x, y)dy dx + δ−α‖u‖2

2

)
‖u‖2α/d

1 . (2.14)

Let ψ(x) = λ(R − |x − x0|)+. Set

Γ (f,f )(x) =
∫ (

f (y) − f (x)
)2

J̃δ(x, y)dy.

Since |et − 1|2 ≤ t2e2t , |ψ(x) − ψ(y)| ≤ λ|x − y| and J̃δ(x, y) = 0 unless |x − y| < δ, then

e−2ψ(x)Γ
(
eψ, eψ

)
(x) =

∫
|x−y|≤δ

(
eψ(x)−ψ(y) − 1

)2
J̃δ(x, y)dy

≤ e2λδλ2
∫

|x−y|≤δ

|x − y|2J̃δ(x, y)dy. (2.15)

Since δ ≥ 6r , then by our definition of J̃ we have that the integral on the last line of (2.15) is bounded by
supx∈B(z0,3r) L2(x, δ) + δ2−α. We therefore have

e−2ψ(x)Γ
(
eψ, eψ

)
(x) ≤ e2λδλ2δ2N(δ)

≤ e3λδN(δ).

We obtain in the same way the same upper bound for e2ψ(x)Γ (e−ψ, e−ψ)(x). So by [6], Theorem 3.25, we have

pδ(t, x0, y0) ≤ ct−d/αetδ−α

e−λR+ce3λδN(δ)t , (2.16)

where pδ is the transition density for X̃(δ). (Note that by [2], Theorem 3.1, the transition density pδ(t, x, y) exists for
x, y ∈ R

d \ N , where N is a set of capacity zero, called a properly exceptional set. We will take x0, y0 ∈ R
d \ N .)

Since t ≤ rα ≤ cδα , we then get

pδ(t, x0, y0) ≤ ct−d/αe−λR = ct−d/α
(
N(δ)t

)R/3δ
.

Our bound now becomes

pδ(t, x0, y0) ≤ ct−d/αt1+d/αN(δ)(d+α)/α

= ctN(δ)(d+α)/α.

Since δ ≥ 6r , then

‖J̃ − J̃δ‖∞ ≤ cδ−(d+α),
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so by [3], Lemma 3.1 and by (2.10)

p(t, x0, y0) ≤ pδ(t, x0, y0) + ctδ−(d+α)

≤ ct
[

sup
x∈B(z0,3r)

δ−2L2(x, δ) + δ−α
](d+α)/α + ctR−(d+α),

where p(t, x0, y0) is the transition density for X̃. Since

sup
x∈B(z0,3r)

δ−2L2(x, δ) + δ−α ≤ cδ−2
[

sup
x∈B(z0,3r)

L2(x, r) + δ2−α
]

≤ cR−2 sup
x∈B(z0,3r)

L2(x, r) + cR−α,

then, because X̃ is conservative, integrating over R ≥ cr with respect to dy0 gives us

P
x0

(|X̃t − x0| ≥ cr
) ≤ ctrd

[
r−2 sup

x∈B(z0,3r)

L2(x, cr)
](d+α)/α + ctr−α ≤ c1tL(z0, c2r).

By [2], Lemma 3.8, we then have

P
x0

(
sup
s≤t

|X̃s − x0| > r
)

≤ c1tL(z0, c2r).

We now use Meyer’s construction to compare X̃ to X. Using this construction we obtain, for x ∈ B(z0, r),

P
x(Xs 
= X̃s for some s ≤ t) ≤ t sup

x′∈B(z0,2r)

∫
B(z0,3r)c

∣∣J (
x′, y

) − J̃
(
x′, y

)∣∣dy

≤ c1tL(z0, c2r).

(The first inequality can be obtained by observing the processes X and X̃ killed on exiting B(z0,2r).) Therefore, for
x ∈ B(z0, r),

P
x
(

sup
s≤t

|Xs − x| > r
)

≤ P
x
(

sup
s≤t

|X̃s − x| > r
)

+ P
x(Xs 
= X̃s for some s ≤ t)

≤ c1tL(z0, c2r). �

Corollary 2.2. Suppose (2.1) and (2.2) hold. Suppose instead of (2.6) we have that

J (x, y) ≥ κ4|x − y|−d−α − K(x,y), x, y ∈ B(z0,3r), (2.17)

for a symmetric function K satisfying∫
|x−y|≤δ

K(x, y)dy ≤ κ5δ
−α (2.18)

for all x ∈ B(z0,3r) and all δ ≤ r . Then the conclusion of Theorem 2.1 still holds.

Proof. The only place the lower bound on J (x, y) plays a role is in deriving (2.14) from (2.13). If we have (2.17)
instead of (2.6), then in place of (2.14) we now have

‖u‖2+2α/d

2 ≤ c

(∫ ∫ (
u(x) − u(y)

)2
J̃δ(x, y)dy dx

+
∫ ∫

|x−y|≤δ

(
u(x) − u(y)

)2
K(x,y)dy dx + δ−α‖u‖2

2

)
‖u‖2α/d

1 . (2.19)
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But by our assumption on K(x,y), the double integral with K in the integrand is bounded by∫ (∫
|x−y|≤δ

K(x, y)dy

)
u(x)2 dx ≤ cδ−α‖u‖2

2. �

Example 2.3. Suppose ε > 0 and there exists a function s : Rd → (ε,2 − ε) such that∣∣s(x) − s(y)
∣∣ ≤ c/ log

(
2/|x − y|), |x − y| < 1. (2.20)

Suppose there exist constants c1, c2 such that

c1

|x − y|d+(s(x)∧s(y))
≤ J (x, y) ≤ c2

|x − y|d+(s(x)∨s(y))
. (2.21)

Suppose further that (2.2) holds. We show that L(z0, r) is comparable to r−s(z0) if r < 1.
To see this, note that

|x − y|s(x)−s(y) ≤ |x − y|−c/ log(2/|x−y|) ≤ ec, (2.22)

if |x − y| ≤ 1 and similarly we have

|x − y|s(x)−s(y) ≥ |x − y|c/ log(2/|x−y|) ≥ e−c. (2.23)

If we fix x and let

M(v) = sup
|x−w|=v

J (x,w),

then for v ≤ 1

M(v) ≤ sup
|x−w|=v

c

|x − w|d+s(x)
|x − w|−|s(x)−s(w)|

≤ c

vd+s(x)
.

We then estimate for r ≤ 1

L2(x, r) ≤ c

∫ r

0
v2M(v)vd−1 dv

≤ c

∫ r

0
v1−s(x) dv = cr2−s(x).

We can similarly obtain an upper bound for L1(x, r):

L1(x, r) ≤ c

∫ 1

r

M(v)vd−1 dv +
∫

|x−w|>1
J (x,w)dw

≤ c

∫ 1

r

v−1−s(x) dv + c

≤ cr−s(x) + c ≤ cr−s(x)

if r ≤ 1.
Next, for x ∈ B(z0,3r), we have r−s(x) is comparable to r−s(z0) for r ≤ 1. To see this,

c ≤ rs(x)−s(z0) ≤ r−|s(x)−s(z0)| ≤ c′
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as in (2.22) and (2.23).
If we take α in (2.6) to be infx∈B(z0,3r) s(x), then we conclude

L(x, r) ≤ cr−s(z0) + cr−α ≤ cr−s(z0), (2.24)

so

P
x(τr ≤ t) ≤ ctr−s(z0), x ∈ B(z0, r).

An analogous argument to the derivation of (2.24) shows that

L(x, r) ≥ cr−s(x0). (2.25)

3. Regularity

We suppose throughout this section that (2.1) and (2.2) hold. We suppose in addition first that there exists c such that∫
A

J (z, y)dy ≥ cL(x, r) (3.1)

whenever r ∈ (0,1), A ⊂ B(x,3r), |A| ≥ 1
3 |B(x, r)|, x ∈ R

d , and z ∈ B(x, r/2) and second there exist σ > 0 and
c > 0 such that

L1(x,λr)

L1(x, r)
≤ cλ−σ , x ∈ R

d , r ∈ (0,1), λ ∈ (1,1/r). (3.2)

It is easy to check that (3.1) and (3.2) hold for Example 2.3.
We say a function h is harmonic in a ball B(x0, r) if h(Xt∧τB(x0,r(1−ε))

) is a P
x martingale for q.e. x and every

ε ∈ (0,1).

Theorem 3.1. Suppose (2.1), (2.2), (3.1) and (3.2) hold. There exist c1 and γ such that if h is bounded in R
d and

harmonic in a ball B(x0, r), then

∣∣h(x) − h(y)
∣∣ ≤ c1

( |x − y|
r

)γ

‖h‖∞, x, y ∈ B(x0, r/2). (3.3)

Proof. As in [7,8] we have the Lévy system formula:

E
x

[∑
s≤T

f (Xs−,Xs)

]
= E

x

[∫ T

0

(∫
f (Xs, y)J (Xs, y)dy

)
ds

]
(3.4)

for any nonnegative f that is 0 on the diagonal, for every bounded stopping time T , and q.e. starting point x. Given
this, the proof is nearly identical to that in [4], Theorem 2.2. �

We obtain a crude estimate on the expectation of the exit times.

Lemma 3.2. Assume the lower bound of (2.1). Then there exists c1 such that

E
xτr ≤ c1r

β1 , x ∈ R
d, r ∈ (0,1/2).
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Proof. The expression
∑

s≤t∧τr
1(|Xs−Xs−|>2r) is 1 if there is a jump of size at least 2r before time t ∧ τr , in which

case the process exits B(x, r) before or at time t , or 0 if there is no such jump. So

P
x(τr ≤ t) ≥ E

x
∑

s≤t∧τr

1(|Xs−Xs−|>2r)

= E
x

∫ t∧τr

0

∫
B(x,2r)c

J (Xs, y)dy ds

≥ cr−β1E
x[t ∧ τr ]

≥ cr−β1 tPx(τr > t),

using the lower bound of (2.1). Thus

P
x(τr > t) ≤ 1 − cr−β1 tPx(τr > t),

or P
x(τr > t) ≤ 1/2 if we take t = c−1rβ1 . This holds for every x ∈ R

d . Using the Markov property at time mt for
m = 1,2, . . . ,

P
x
(
τr > (m + 1)t

) ≤ E
x
[
P

Xmt (τr > t); τr > mt
] ≤ 1

2
P

x(τr > mt).

By induction P
x(τr > mt) ≤ 2−m. With this choice of t , our lemma follows. �

We next show λ-potentials are Hölder continuous. Let

Uλf (x) = E
x

∫ ∞

0
e−λtf (Xt )dt.

Proposition 3.3. Under the same assumption as in Theorem 3.1, there exist c1 = c1(λ) and γ ′ such that if f is
bounded, then∣∣Uλf (x) − Uλf (y)

∣∣ ≤ c1|x − y|γ ′ ‖f ‖∞.

Proof. Fix x0, let r ∈ (0,1/2) and suppose x, y ∈ B(x0, r/2). By the strong Markov property,

Uλf (x) = E
x

∫ τr

0
e−λtf (Xt )dt + E

x
(
e−λτr − 1

)
Uλf (Xτr )

+ E
xUλf (Xτr )

= I1 + I2 + I3,

and similarly when x is replaced by y. We have by Lemma 3.2

|I1| ≤ ‖f ‖∞E
xτr ≤ crβ1‖f ‖∞

and by the mean value theorem and Lemma 3.2

|I2| ≤ λE
xτr

∥∥Uλf
∥∥∞ ≤ crβ1‖f ‖∞,

and similarly when x is replaced by y. So∣∣Uλf (x) − Uλf (y)
∣∣ ≤ crβ1‖f ‖∞ + ∣∣ExUλf (Xτr ) − E

yUλf (Xτr )
∣∣. (3.5)
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But z → E
zUλf (Xτr ) is bounded in R

d and harmonic in B(x0, r), so by Theorem 3.1 the second term in (3.5) is
bounded by

c

( |x − y|
r

)γ ∥∥Uλf
∥∥∞.

If we use ‖Uλf ‖∞ ≤ 1
λ
‖f ‖∞ and set r = |x − y|1/2, then∣∣Uλf (x) − Uλf (y)

∣∣ ≤ (
c|x − y|β1/2 + c|x − y|γ /2)‖f ‖∞, (3.6)

and our result follows. �

Let Pt be the transition operators associated to the Uλ. Using the spectral theorem, there exists projection operators
Eμ on the space L2(Rd,dx) such that

f =
∫ ∞

0
dEμ(f ),

Ptf =
∫ ∞

0
e−μt dEμ(f ),

Uλf =
∫ ∞

0

1

λ + μ
dEμ(f ). (3.7)

Proposition 3.4. Under the same assumptions as in Theorem 3.1, if f is in L2(Rd ,dx), then Ptf is equal a.e. to a
function that is Hölder continuous.

Proof. Write 〈f,g〉 for the inner product in L2. Note that in what follows t is fixed. Each of our constants may
depend on t . If X(1) is the Hunt process associated with the Dirichlet form defined in terms of the kernel J1(x, y) =
J (x, y)1(|x−y|<1), we know from [2], Theorem 1.2, that X(1) has a transition density p(t, x, y) bounded by c. Using
[3], Lemma 3.1 and Meyer’s construction, we then can conclude that X also has a transition density bounded by c.
Define

h =
∫ ∞

0
(λ + μ)e−μt dEμ(f ).

Since supμ(λ + μ)2e−2μt ≤ c, then∫ ∞

0
(λ + μ)2e−2μt d

〈
Eμ(f ),Eμ(f )

〉
≤ c

∫ ∞

0
d
〈
Eμ(f ),Eμ(f )

〉 = c‖f ‖2
2,

and we see that h is a well defined function in L2.
Suppose g ∈ L1. Then ‖Ptg‖1 ≤ ‖g‖1 by the Fubini theorem and

∣∣Ptg(x)
∣∣ =

∣∣∣∣∫ p(t, x, y)g(y)dy

∣∣∣∣ ≤ c‖g‖1

by the fact that p(t, x, y) is bounded. So ‖Ptg‖∞ ≤ c‖g‖1, and it follows that ‖Ptg‖2 ≤ c‖g‖1. Using Cauchy–
Schwarz and the fact that

sup
μ

(λ + μ)e−μt/2 ≤ c < ∞,
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we have

〈h,g〉 =
∫ ∞

0
(λ + μ)e−μt d

〈
Eμ(f ),Eμ(g)

〉
≤

(∫ ∞

0
(λ + μ)e−μt d

〈
Eμ(f ),Eμ(f )

〉)1/2(∫ ∞

0
(λ + μ)e−μt d

〈
Eμ(g),Eμ(g)

〉)1/2

≤ c

(∫ ∞

0
d
〈
Eμ(f ),Eμ(f )

〉)1/2(∫ ∞

0
e−μt/2 d

〈
Eμ(g),Eμ(g)

〉)1/2

= c‖f ‖2‖Pt/2g‖2

≤ c‖f ‖2‖g‖1.

Taking the supremum over g ∈ L1 with L1 norm less than 1, ‖h‖∞ ≤ c‖f ‖2. But by (3.7)

Uλh =
∫ ∞

0
e−μt dEμ(f ) = Ptf, a.e.

and the Hölder continuity of Ptf follows by Proposition 3.3. �

Finally, we have:

Theorem 3.5. Under the same assumption as in Theorem 3.1, we can choose p(t, x, y) to be jointly continuous.

Proof. Fix y and let f (z) = p(t/2, z, y). f is bounded by c (depending on t ) and has L1 norm equal to 1, hence
f ∈ L2 with norm bounded by c. Note

Pt/2f (x) =
∫

p(t/2, x, z)f (z)dz =
∫

p(t/2, x, z)p(t/2, z, y)dz = p(t, x, y).

Using Proposition 3.4 shows that p(t, x, y) is Hölder continuous with constants independent of x and y. This and
symmetry gives the result. �

Remark 3.6. The above argument shows that the Hölder continuity of the transition densities can be derived from the
boundedness of the transition densities plus the Hölder continuity of harmonic functions holds. We expect this method
to be applicable in much more general contexts than just that of jump processes in R

d .

4. Convergence

Suppose now that we have a sequence of symmetric jump kernels J n(x, y) satisfying (2.1), (2.2), (3.1) and (3.2) with
constants independent of n. Suppose in addition that

lim sup
η→0

sup
n,x

∫
|y−x|≥η−1

Jn(x, y)dy = 0, (4.1)

and for almost every η ∈ (0,1)

Jn(x, y)1(η,η−1)

(|y − x|)dx dy → J (x, y)1(η,η−1)

(|y − x|)dx dy (4.2)

weakly as n → ∞. Note that (2.1) implies that

lim sup
η→0

sup
n,x

∫
|y−x|≤η

|y − x|2Jn(x, y)dy = 0. (4.3)
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Let E n be the Dirichlet forms defined by (1.1) with J replaced by Jn; let P n
t , Uλ

n , and P
x
n be the associated

semigroup, resolvent and probabilities. Let Pt , Uλ, and P
x be the semigroup, resolvent and probabilities corresponding

to the Dirichlet form EJ defined by (1.1).
Under the above set-up we have:

Theorem 4.1. If f is bounded and continuous, then P n
t f converges uniformly on compacts to Ptf . For each t , for

q.e. x, P
x
n converges weakly to P

x on the space D([0, t]).
Proof. The first step is to show that any subsequence {nj } has a further subsequence {njk

} such that Uλ
njk

f con-
verges uniformly on compacts whenever f is bounded and continuous. The proof of this is similar to that of [5],
Proposition 6.2 or [1], Proposition 6.3, and we refer the reader to those papers.

Now suppose we have a subsequence {n′} such that the Uλ
n′f are equicontinuous and converge uniformly on

compacts whenever f is bounded and continuous with compact support. Fix such an f and let H be the limit of Uλ
n′f .

We will show

EJ (H,g) = 〈f,g〉 − λ〈H,g〉 (4.4)

whenever g is a Lipschitz function with compact support, where EJ is the Dirichlet form corresponding to the kernel
J . This will prove that H is the λ-resolvent of f with respect to EJ , that is, H = Uλf . We can then conclude that the
full sequence Uλ

n f converges to Uλf whenever f is bounded and continuous with compact support. The assertions
about the convergence of P n

t and P
x
n then follow as in [5], Proposition 6.2.

So we need to prove H satisfies (4.4). We drop the primes for legibility.
We know

E n
(
Uλ

n f,Uλ
n f

) = 〈
f,Uλ

n f
〉 − λ

〈
Uλ

n f,Uλ
n f

〉
. (4.5)

Since ‖Uλ
n f ‖2 ≤ (1/λ)‖f ‖2, we have by Cauchy–Schwarz that

sup
n

E n
(
Uλ

n f,Uλ
n f

) ≤ c < ∞.

Since the Uλ
n f are equicontinuous and converge uniformly to H on B(0, η−1) − B(0, η) for almost every η ∈ (0,1),

then ∫ ∫
η<|y−x|<η−1

(
H(y) − H(x)

)2
J (x, y)dy dx

≤ lim sup
n→∞

∫ ∫
η<|y−x|<η−1

(
Uλ

n f (y) − Uλ
n f (x)

)2
Jn(x, y)dy dx

≤ lim sup
n→∞

E n
(
Uλ

n f,Uλ
n f

) ≤ c < ∞.

Letting η → 0 (while avoiding the null set), we have

EJ (H,H) < ∞. (4.6)

Fix a Lipschitz function g with compact support and choose M large enough so that the support of g is contained
in B(0,M). Then∣∣∣∣∫ ∫

|y−x|≥η−1

(
Uλ

n f (y) − Uλ
n f (x)

)(
g(y) − g(x)

)
Jn(x, y)dy dx

∣∣∣∣
≤

(∫ ∫ (
Uλ

n f (y) − Uλ
n f (x)

)2
Jn(x, y)dy dx

)1/2

×
(∫ ∫

|y−x|≥η−1

(
g(y) − g(x)

)2
Jn(x, y)dy dx

)1/2

.
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The first factor is (E n(Uλ
n f,Uλ

n f ))1/2, while the second factor is bounded by

√
2‖g‖∞

(∫
B(0,M)

∫
|y−x|≥η−1

Jn(x, y)dx dy

)1/2

,

which, in view of (4.1), will be small if η is small. Similarly,∣∣∣∣∫ ∫
|y−x|≤η

(
Uλ

n f (y) − Uλ
n f (x)

)(
g(y) − g(x)

)
Jn(x, y)dy dx

∣∣∣∣
≤

(∫ ∫ (
Uλ

n f (y) − Uλ
n f (x)

)2
Jn(x, y)dy dx

)1/2

×
(∫ ∫

|y−x|≤η

(
g(y) − g(x)

)2
Jn(x, y)dy dx

)1/2

.

The first factor is as before, while the second is bounded by

‖∇g‖∞
(∫

B(0,M)

∫
|y−x|≤η

|y − x|2Jn(x, y)dx dy

)1/2

.

In view of (4.3), the second factor will be small if η is small. Similarly, using (4.6), we have∣∣∣∣∫ ∫
|y−x|/∈(η,η−1)

(
H(y) − H(x)

)(
g(y) − g(x)

)
J (x, y)dy dx

∣∣∣∣
will be small if η is taken small enough.

By (4.2), (2.1), (2.2) and the fact that the Uλ
n f are equicontinuous and converge to H uniformly on compacts, for

almost every η∫ ∫
|y−x|∈(η,η−1)

(
Uλ

n f (y) − Uλ
n f (x)

)(
g(y) − g(x)

)
Jn(x, y)dy dx

→
∫ ∫

|y−x|∈(η,η−1)

(
H(y) − H(x)

)(
g(y) − g(x)

)
J (x, y)dy dx.

It follows that

E n
(
Uλ

n f,g
) → EJ (H,g). (4.7)

But

E n
(
Uλ

n f,g
) = 〈f,g〉 − λ

〈
Uλ

n f,g
〉 → 〈f,g〉 − λ〈H,g〉.

Combining with (4.7) proves (4.4). �

Remark 4.2. One can modify the above proof to obtain a central limit theorem for symmetric Markov chains. Suppose
for each n we have a symmetric Markov chain on n−1

Z
d with unbounded range with conductances Cn

xy . If νn is the

measure that gives mass n−d to each point in n−1
Z

d , then we can define the Dirichlet form

En(f,f ) =
∑

x,y∈n−1Zd

(
f (x) − f (y)

)2
Cn

xy

with respect to the measure νn. Under appropriate assumptions analogous to those in Sections 2 and 3, one can show
that the semigroups corresponding to En converge to those of E and in addition there is weak convergence of the
probability laws. Since the details are rather lengthy, we leave this to the interested reader.
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Remark 4.3. We can also prove the following approximation of a jump process by Markov chains, which is a general-
ization of [9], Theorem 2.3. Suppose J : Rd ×R

d → [0,∞) is a symmetric measurable function satisfying (2.1), (2.2),
(3.1) and (3.2). Define the conductivity functions Cn :n−1

Z
d × n−1

Z
d → [0,∞) by

Cn(x, y) = n2d

∫
|x−ξ |∞<1/(2n)

∫
|y−ζ |∞<1/(2n)

J (ξ, ζ )dξ dζ for x 
= y ∈ n−1
Z

d

and Cn(x, x) = 0, where |x − y|∞ = max1≤i≤d |xi − yi |. Let X be the Hunt process corresponding to the Dirichlet
form given by (1.1). Then the sequence of processes corresponding to Cn converges weakly to X. Given Remark 4.2,
the proof is standard.

Remark 4.4. As we mentioned at the beginning of Section 2, the assumptions (2.1) and (2.2) are used to guarantee a
certain amount of regularity, namely, conservativeness and the existence of the heat kernel. However, one should be
able to relax these assumptions. We expect all of the results in this paper hold if instead of (2.1) and (2.2) we assume
(2.2), (2.6) for all z0 ∈ R

d and the following:∫
|x−y|≤1

|x − y|2J (x, y)dy ≤ κ5, x ∈ R
d .
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