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Abstract. We present an analogue of the Harer–Zagier recursion formula for the moments of the Gaussian Orthogonal Ensemble
in the form of a five term recurrence equation. The proof is based on simple Gaussian integration by parts and differential equations
on Laplace transforms. A similar recursion formula holds for the Gaussian Symplectic Ensemble. As in the complex case, the result
is interpreted as a recursion formula for the number of 1-vertex maps in locally orientable surfaces with a given number of edges
and faces. This moment recurrence formula is also applied to a sharp bound on the tail of the largest eigenvalue of the Gaussian
Orthogonal Ensemble and, by moment comparison, of families of Wigner matrices.

Résumé. Ce travail présente un analogue de la relation de récurrence de Harer et Zagier pour les moments de l’Ensemble Orthogo-
nal Gaussien sous la forme d’une récurrence à cinq termes. La démonstration s’appuie sur des intégrations par parties gaussiennes
et des équations différentielles sur les transformées de Laplace. Une relation similaire est établie pour l’Ensemble Symplectique
Gaussien. Comme dans le cas complexe, cette relation s’interprète comme une formule de récurrence pour le nombre de cartes
enracinées à nombre de faces et de côtés donné plongées dans des surfaces localement orientées. Cette relation de récurrence sur
les moments fournit également une borne sur la loi de la plus grande valeur propre de l’Ensemble Orthogonal Gaussien et, par
comparaison de moments, de familles de matrices de Wigner.
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1. Introduction

Consider a N × N random matrix X = XN from the Gaussian Unitary Ensemble (GUE). That is, X is distributed
according to the probability distribution

P(dX) = 1

Z
exp

(−Tr
(
X2)/2

)
dX (1)

on the space HN of N × N Hermitian matrices where dX is Lebesgue measure on HN
∼= R

N2
and Z = ZN the

normalizing constant. This probability measure is invariant under the action of the unitary group on HN . Equivalently,
X = XN = (XN

ij )1≤i,j≤N is a N ×N random Hermitian matrix such that the entries above the diagonal are independent
complex (real on the diagonal) Gaussian random variables with mean zero and variance 1 (the real and imaginary parts
are independent centered Gaussian variables with variance 1

2 ).
The real case is known as the Gaussian Orthogonal Ensemble (GOE), that is the probability distribution on the

space SN of N × N symmetric matrices X = XN given by

P(dX) = 1

Z
exp

(−Tr
(
X2)/4

)
dX (2)
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(where now dX is Lebesgue measure on SN
∼= R

N(N+1)/2). This distribution is invariant by the orthogonal group.
Equivalently, X = XN = (XN

ij )1≤i,j≤N is a N × N random real symmetric random matrix such that the entries XN
ij ,

1 ≤ i ≤ j ≤ N , are independent centered real-valued Gaussian random variables with variance 1 (2 on the diagonal).
For such a symmetric or Hermitian random matrix X = XN , denote by λN

1 ≤ · · · ≤ λN
N the (real) eigenvalues of

XN . It is a classical result due to Wigner [21] that, almost surely,

1

N

N∑
i=1

δλN
i /

√
N → μ (3)

in distribution as N → ∞, where μ is the semicircle law with density 1
2π (4 − x2)1/2 with respect to Lebesgue mea-

sure on (−2,+2). One basic technique towards this result, going back to [21], is the moment method to show the
convergence of 1

N
E(Tr((XN/

√
N)

p
)) to the p-moment (p ∈ N) of the semicircle law.

In their algebraic investigation of the genus series of the numbers of ways of obtaining an orientable Riemann
surface of given genus by identifying in pairs the sides of a 2p-gon [7], Harer and Zagier put forward a recursion
formula for the (even) moments

aN
p = E

(
Tr

((
XN

)2p))
, p ∈ N,

of the GUE (the odd moment being zero by symmetry). They namely established with combinatorial tools the follow-
ing statement.

Theorem 1. For every integer p ≥ 2, and every N ≥ 1,

(p + 1)aN
p = (4p − 2)NaN

p−1 + (p − 1)(2p − 1)(2p − 3)aN
p−2

(aN
0 = N , aN

1 = N2).

The Harer–Zagier recursion formula was revisited in [12] and [6]. In particular, Haagerup and Thorbjørnsen [6]
connected this algebraic formula to the description of the moment generating function of the GUE as a confluent
hypergeometric function using classical expansions associated with Hermite polynomials.

The real GOE case is known to be more complicated, and the possibility of an analogue of Theorem 1 in this case
is explicitely raised in [6]. In this note, we propose such a recursion formula for the moments of the GOE in the form
of a five term recurrence equation. Denote, for every integer p, by

bN
p = E

(
Tr

((
XN

)2p))
the even moments of the GOE (the odd moment being zero by symmetry).

Theorem 2. For every integer p ≥ 4, and every N ≥ 1,

(p + 1)bN
p = (4p − 1)(2N − 1)bN

p−1 + (2p − 3)
(
10p2 − 9p − 8N2 + 8N

)
bN
p−2

− 5(2p − 3)(2p − 4)(2p − 5)(2N − 1)bN
p−3

− 2(2p − 3)(2p − 4)(2p − 5)(2p − 6)(2p − 7)bN
p−4

(bN
0 = N , bN

1 = N2 + N , bN
2 = 2N3 + 5N2 + 5N , bN

3 = 5N4 + 22N3 + 52N2 + 41N).

An alternate recursion formula coupled with the moments of the GUE is somewhat more convenient to generate
tables of the moments bN

p and for a number of applications.
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Theorem 3. For every integer p ≥ 2, and every N ≥ 1,

bN
p = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bN
p−2

+ aN
p − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aN
p−2

(bN
0 = N , bN

1 = N2 + N).

Note that, by induction, bN
p ≥ aN

p for every p. Here are a few values of the numbers aN
p (taken from [7]) and bN

p :

aN
0 = N,

aN
1 = N2,

aN
2 = 2N3 + N,

aN
3 = 5N4 + 10N2,

aN
4 = 14N5 + 70N3 + 21N,

aN
5 = 42N6 + 420N4 + 483N2,

bN
0 = N,

bN
1 = N2 + N,

bN
2 = 2N3 + 5N2 + 5N,

bN
3 = 5N4 + 22N3 + 52N2 + 41N,

bN
4 = 14N5 + 93N4 + 374N3 + 690N2 + 509N,

bN
5 = 42N6 + 386N5 + 2290N4 + 7150N3 + 12143N2 + 8229N.

In both cases, the factor of highest degree (in N ) is given by the Catalan number χp = (2p)!
p!(p+1)! , p ∈ N, which describes

the 2pth moment of the semicircular law in (3).
Denote by AN

p = N−p−1aN
p and BN

p = N−p−1bN
p the respective moments normalized according to Wigner’s

law (3). It is then immediate from the recursion equation in Theorem 1 that AN
p → χp as N → ∞ for every fixed

p. Together with Theorem 3, BN
p → χp also. It may in fact even be observed from the recursion formula of Theo-

rem 1 that for every fixed p and every N ≥ 1,

χp ≤ AN
p ≤ χp + Cp

N2
,

where Cp > 0 only depends on p. Combined with the linear recurrence equation for the Catalan numbers χp =
4p−2
p+1 χp−1, it actually follows more precisely that the 1/N2 correction term αp given by

AN
p = χp + αp

N2
+ O

(
1

N4

)

solves the recurrence equation

αp = 4p − 2

p + 1
αp−1 + p(p − 1)

4
χp, p ≥ 2
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(α0 = α1 = 0), yielding thus

αp = 1

4
χp

p∑
�=0

�(� − 1) = 1

12
(p − 1)p(p + 1)χp, p ≥ 0. (4)

As is classical, the approximation rate is only of the order of 1
N

in the GOE case, that is

χp ≤ AN
p ≤ BN

p ≤ χp + Cp

N
.

Again, we have more precisely from the coupled recursion equation of Theorem 3 that the 1/N correction term βp

given by

BN
p = χp + βp

N
+ O

(
1

N2

)

satisfies

βp = 4βp−1 + χp−1, p ≥ 2

(β0 = 0, β1 = 1), yielding

βp = 1

2

[
4p − (p + 1)χp

]
, p ≥ 0, (5)

in accordance with the description by Schultz in [16], Theorem 8.1.
The method of proof of Theorems 1–3 we develop here is based on the classical orthogonal polynomial descrip-

tion of the mean spectral measure (cf. [12]). More precisely, we try to reach differential equations on the Laplace
transforms (moment generating functions) of the spectral measures that will represent the moment recursion formu-
las. This is achieved in [6] for the GUE through the explicit representation of this moment generating function as
a confluent hypergeometric function. It is not clear whether this is still possible in the GOE case (see, however, the
end of Section 3). We instead use simple Gaussian integration by parts arguments to directly reach such a differential
equation. Along these lines, the reference [11] develops to this task a general approach based on Markov operators and
integration by parts to yield differential equations on Laplace transforms for the classical unitary invariant models. For
the matter of completeness and illustration, we reproduce in the next section the argument from [11] in the Hermite
case that leads to the GUE recursion formula of Theorem 1. This methodology turns out to be well suited to the real
case despite the more complicated form of the mean spectral measure, and Theorem 2 is addressed in this way in
Section 3. A first step yields a differential equation for the Laplace transform of the GOE spectral measure coupled
with the GUE Laplace transform yielding the recursion formula of Theorem 3. The Gaussian Symplectic Ensemble
(GSE) is analyzed similarly in Section 4, with in addition a duality relation between the moments of the GSE of size
N and the (formal) moments of the GOE of size −2N , in accordance with [13]. The real and symplectic Laguerre and
Jacobi ensembles might possibly be analyzed similarly (for the complex case, see [6,11]).

The recursion formula for the moments of the GOE is then applied to the enumeration problem of 1-vertex maps
in locally orientable surfaces, the original purpose of the Harer–Zagier recursion formula (in the orientable case).
We obtain here the analogous result for unoriented maps, completing in this regard the investigation by Goulden and
Jackson [5], where a closed formula for the genus series is put forward.

The last section is devoted to the application of these recursion equations to a sharp moment bound and a small
deviation inequality on the largest eigenvalue of the GOE at the Tracy–Widom rate. By simple comparison, the result
may be used for classes of Wigner matrices including sign matrices.

The unitary and orthogonal invariance crucially allows for the calculation of the joint law of the eigenvalues
(λN

1 , . . . , λN
N) of X = XN of both the GUE and GOE, which in turn may be analyzed by the so-called orthogonal

polynomial method (cf. [4,8,12]). Denote by P�, � ≥ 0, the orthogonal polynomials for the standard Gaussian mea-
sure dγ (x) = e−x2/2 dx√

2π
on R, normalized in L2(γ ), the so-called Hermite polynomials (cf. [18]). Following [12], in
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the case of the GUE, the mean spectral density is given on every bounded measurable function f on R by

E
(
Tr

(
f

(
XN

))) = E

(
N∑

i=1

f
(
λN

i

)) =
∫

R

f (x)

N−1∑
�=0

P 2
� (x)dγ (x). (6)

In case of the GOE,

E
(
Tr

(
f

(
XN

))) = E

(
N∑

i=1

f
(
λN

i

)) =
∫

R

f (x)μN
GOE(x)dγ (x), (7)

where

μN
GOE =

N−1∑
�=0

P 2
� +

√
πN

8
ϕψPN−1 + ϕPN−1∫

ϕPN−1 dγ
1N odd

with

ϕ(x) = ex2/4 and ψ(x) = ψN(x) =
∫

R

sgn(x − y)ϕ(y)PN(y)dγ (y), x ∈ R.

In particular therefore, aN
p = ∫

x2p
∑N−1

�=0 P 2
� dγ and bN

p = ∫
x2pμN

GOE dγ , p ∈ N.
Formulas (6) and (7) will be used towards the proofs of Theorems 1–3 together with simple integration by parts

arguments with respect to the standard Gaussian measure γ and the Hermite polynomials. Recall in particular that,
for every smooth function f on R,∫

xf dγ =
∫

f ′ dγ. (8)

For each integer N , the Hermite polynomial PN is an eigenvector with eigenvalue −N of the Ornstein–Uhlenbeck
operator L acting on smooth functions f as Lf = f ′′ − xf ′. For smooth functions f and g, the operator L satisfies
the integration by parts formula with respect to γ ,∫

f (−Lg)dγ =
∫

f ′g′ dγ. (9)

In particular therefore,

N

∫
f PN dγ =

∫
f (−LPN)dγ =

∫
f ′P ′

N dγ. (10)

Formula (8) is a particular case of (10) with P1 ≡ x. Note also that PN is an even (resp. odd) function if N is even
(resp. odd) and that, with the normalization chosen here, P ′

N = √
NPN−1.

2. GUE moment recursion formula

As announced, we reproduce here the integration by parts argument developed in [11] to prove Theorem 1 (see also
[6,12]). With respect to the more general investigation of [11], we outline, for the matter of clarity, a somewhat more
direct exposition.

According to the spectral distribution of the GUE, we investigate the Laplace transform, or moment generating
function, u of the mean spectral density, that is

u(t) = uN(t) = E
(
Tr

(
etXN )) = E

(
N∑

i=1

etλN
i

)
, t ∈ R.
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By the orthogonal polynomial representation (6),

u = u(t) =
∫

etx

N−1∑
�=0

P 2
� dγ.

The idea is to show that u satisfies a second-order differential equation which then immediately leads to the three term
recurrence equation of Theorem 1.

To this task, first note that for any smooth function f on R, and any N ≥ 1,

∫
f ′

N−1∑
�=0

P 2
� dγ = √

N

∫
f PN−1PN dγ. (11)

One argument goes as follows. The recurrence relation for the Hermite polynomials PN , N ∈ N, is given by (cf. [18])

xPN = √
N + 1PN+1 + √

NPN−1.

(This may be seen as a consequence of the fact that PN is eigenvector of L with eigenvalue −N and that P ′
N =√

NPN−1.) As a consequence, for every �,(
P 2

�

)′ − xP 2
� = P�

[
2P ′

� − xP�

] = √
�P�−1P� − √

� + 1P�P�+1.

Summing over � = 0, . . . ,N − 1,

(
N−1∑
�=0

P 2
�

)′
− x

(
N−1∑
�=0

P 2
�

)
= −√

NPN−1PN.

Integrating against a smooth function f with respect to γ and making use of (8) yields the conclusion (11).
As a consequence of (11), to investigate u we rather analyze

ρ = ρ(t) =
∫

etxPN−1PN dγ, t ∈ R,

since tu = √
Nρ. Actually, it will be convenient to investigate first

σ = σ(t) =
∫

etxP 2
N dγ, t ∈ R.

Our aim is thus to show that σ satisfies a second-order differential equation. To this task, apply first (8) to get

σ ′ =
∫

xetxP 2
N dγ = tσ + 2

∫
etxP ′

NPN dγ. (12)

Taking the derivative again,

σ ′′ − 2tσ ′ + (
t2 − 1

)
σ = 2

∫
etxP ′

N
2 dγ + 2

∫
etxP ′′

NPN dγ. (13)

Now, by (10) and (12),

Nσ =
∫

etxPN(−LPn)dγ = t

∫
etxP ′

NPN dγ +
∫

etxP ′
N

2 dγ

= t

2

(
σ ′ − tσ

) +
∫

etxP ′
N

2 dγ
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so that

2
∫

etxP ′
N

2 dγ = −tσ ′ + (
t2 + 2N

)
σ. (14)

In the same way, starting from (12),

N
(
σ ′ − tσ

) = 2
∫

etxP ′
N(−LPN)dγ

= 2t

∫
etxP ′

N
2 dγ + 2

∫
etxP ′

NP ′′
N dγ,

so that, together with (14),

2
∫

etxP ′
NP ′′

N dγ = (
t2 + N

)
σ ′ − t

(
t2 + 3N

)
σ. (15)

Now, P ′
N = √

NPN−1 is an eigenfunction of L with eigenvalue −(N − 1). Thus by (10) again for N − 1, and (12),

(N − 1)
(
σ ′ − tσ

) = 2
∫

etxPN

(−LP ′
N

)
dγ

= 2t

∫
etxPNP ′′

N dγ + 2
∫

etxP ′
NP ′′

N dγ.

Together with (15),

2t

∫
etxPNP ′′

N dγ = −(
t2 + 1

)
σ ′ + t

(
t2 + 2N + 1

)
σ. (16)

It remains to insert (16) and (14) into (13) to get that σ solves the second-order differential equation in t ,

tσ ′′ + σ ′ − t
(
t2 + 4N + 2

)
σ = 0 (17)

which is the desired claim.
From (12) and P ′

N = √
NPN−1, σ ′ − tσ = 2

√
Nρ. From this equation and (17), it is not difficult to see that ρ

solves the differential equation

t2ρ′′ + tρ′ − [
t2(t2 + 4N

) + 1
]
ρ = 0.

Since, by (11),
√

Nρ = tu, this differential equation shows in turn that u satisfies

tu′′ + 3u′ − t
(
t2 + 4N

)
u = 0. (18)

The solution of this equation is a confluent hypergeometric function (cf. [6]). As announced, this differential equation
may immediately be translated into a three term recurrence equation on the (even) moments aN

p = ∫
x2p

∑N−1
�=1 P 2

� dγ

since, as an entire function,

u = u(t) =
∞∑

p=0

t2p

(2p)!a
N
p .

Theorem 1 is established in this way.
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3. GOE moment recursion formula

We follow here the same strategy as in the previous section, but have to work with the more delicate spectral distribu-
tion (7).

Recall ϕ(x) = ex2/4 and ψ(x) = ∫
sgn(x − y)ϕ(y)PN(y)dγ (y), x ∈ R. Note that ϕψ ′ =

√
2
πPN .

Set first

τ1 = τ1(t) =
∫

etxϕψPN−1 dγ, t ∈ R.

To start with,

τ ′
1 = 2tτ1 + 2

√
2

π
ρ + 2

∫
etxϕψP ′

N−1 dγ, (19)

where we recall that ρ = ∫
etxPN−1PN dγ . Taking again the derivative,

τ ′′
1 = 2τ1 + 2tτ ′

1 + 2

√
2

π
ρ′ + 2

∫
xetxϕψP ′

N−1 dγ. (20)

Now, by (10),

(N − 1)τ1 =
∫

etxϕψ(−LPN−1)dγ

= t

∫
etxϕψP ′

N−1 dγ + 1

2

∫
xetxϕψP ′

N−1 dγ +
√

2

π

∫
etxPNP ′

N−1 dγ.

Therefore, together with (19),

4(N − 1)τ1 = 2t

[
τ ′

1 − 2tτ1 − 2

√
2

π
ρ

]

+ 2
∫

xetxϕψP ′
N−1 dγ + 4

√
2

π

∫
etxPNP ′

N−1 dγ.

By difference with (20),

τ ′′
1 − (

4t2 + 4N − 2
)
τ1 =

√
8

π

(
ρ′ + 2tρ − 2

∫
etxPNP ′

N−1 dγ

)
. (21)

Now, by (8),

ρ′ = tρ +
∫

etxP ′
N−1PN dγ +

∫
etxPN−1P

′
N dγ. (22)

On the other hand, by (10) applied for N and N − 1,

Nρ = t

∫
etxPN−1P

′
N dγ +

∫
etxP ′

N−1P
′
N dγ

and

(N − 1)ρ = t

∫
etxPNP ′

N−1 dγ +
∫

etxP ′
NP ′

N−1 dγ.
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By difference,

ρ = t

∫
etxPN−1P

′
N dγ − t

∫
etxPNP ′

N−1 dγ.

Together with (22), for t �= 0,

ρ′ + 2tρ − 2
∫

etxPNP ′
N−1 dγ

= 3tρ +
∫

etxPN−1P
′
N dγ −

∫
etxPNP ′

N−1 dγ

=
(

3t + 1

t

)
ρ.

Recall that
√

Nρ = tu. Therefore, Eq. (21) shows finally that τ1 solves the second-order differential equation in t ,

τ ′′
1 − (

4t2 + 4N − 2
)
τ1 =

√
8

πN

(
3t2 + 1

)
u. (23)

It is easy to see that, similarly, if we let

τ2 = τ2(t) =
∫

etxϕPN−1 dγ, t ∈ R,

then τ2 solves the equation

τ ′′
2 − (

4t2 + 4N − 2
)
τ2 = 0. (24)

Set

αN =
√

πN

8
and βN =

(∫
ϕPN−1 dγ

)−1

1N odd.

According to the spectral distribution (7) of the GOE, write τ = αNτ1 +βNτ2 that, as a consequence of (23) and (24),
solves the differential equation

τ ′′ − (
4t2 + 4N − 2

)
τ = (

3t2 + 1
)
u, (25)

where we recall that u is the moment generating function of the spectral distribution of the GUE.
Denote below by

v(t) = vN(t) = E
(
Tr

(
etXN )) = E

(
N∑

i=1

etλN
i

)
=

∫
etxμGOE dγ, t ∈ R,

the Laplace transform (moment generating function) of the spectral distribution of the GOE. Since by (7), v = u + τ ,
we thus conclude to the following statement.

Proposition 4. Under the preceding notation, v solves the differential equation

v′′ − (
4t2 + 4N − 2

)
v = u′′ − (

t2 + 4N − 3
)
u.

Since v(t) = ∑∞
p=0 t2pbN

p /(2p!), Proposition 4 immediately translates into a recurrence equation on the (even)

moments bN
p , p ∈ N, of the GOE coupled with the moments of the GUE to yield Theorem 3. Note that bN

1 = N2 + N

may be computed directly as E(Tr((XN)2)).
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We now make use of Proposition 4 to reach Theorem 2. Set

V = V (t) = v′′ − (
4t2 + 4N − 2

)
v

so that Proposition 4 reads V = u′′ − (t2 + 4N − 3)u. On the other hand, recall from Section 2 that u solves the
equation

tu′′ + 3u′ − t
(
t2 + 4N

)
u = 0. (26)

Therefore tV = 3(tu − u′). Taking the derivative and using (26) once more yields

tV ′ + (
t2 + 4

)
V = −12(N − 1)u.

Therefore

tV ′′ + (
t2 + 5

)
V ′ + 2tV = −12(N − 1)u′,

and together with tV = 3(tu − u′), it follows that V solves the differential equation

tV ′′ + 5V ′ − t
(
t2 + 4N − 2

)
V = 0.

Note that this is the generic second-order differential equation for confluent hypergeometric functions. Replacing V

by v′′ − (4t2 + 4N − 2)v then shows that v solves the fourth-order differential equation

tv(4) + 5v(3) − t
(
5t2 + 8N − 4

)
v′′ − (

36t2 + 20N − 10
)
v′

+ t
[
4t4 + (20N − 10)t2 + 16N2 − 16N − 44

]
v = 0. (27)

We then conclude to the recursion formula of Theorem 2 as for the GUE. The first terms are determined from Theo-
rem 3.

4. GSE moment recursion formula

In this short section, we briefly outline the corresponding recursion formula for the Gaussian Symplectic Ensemble
(GSE). A random Hermitian matrix X = XN = (XN

ij )1≤i,j≤N with real quaternion elements is said to belong to the

GSE if the real quaternions XN
ii , 1 ≤ i ≤ N , are independent normal with mean zero and variance 1 while the quater-

nion elements XN
ij , 1 ≤ i < j ≤ N , are independent and their four coordinates are independent Gaussian variables

with mean zero and variance 1
2 .

According again to [12], the mean spectral measure is given in this case by

E

(
N∑

i=1

f
(
λN

i

)) =
∫

R

f (x)μN
GSE(x)dγ (x),

where now

μN
GSE = 1

2

2N∑
�=0

P 2
� + 1

2

√
π(2N + 1)

8
ϕψ2N+1P2N.

Recall that here

ϕ(x) = ex2/4 and ψ2N+1(x) =
∫

R

sgn(x − y)ϕ(y)P2N+1(y)dγ (y), x ∈ R.
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Slight modifications of the arguments developed in the preceding section then yield analogous recursion formulas for
the even moments cN

p , p ∈ N, of the GSE. First, observe that the moment generating function w of the GSE satisfies

the differential equation of Proposition 4 with N replaced by 2N + 1 and with u = u2N+1 the moment generating
function of the GUE of size 2N + 1. As a consequence, w solves the fourth-order differential equation (27) with N

replaced by 2N + 1. The sequence of moments cN
p , p ∈ N, thus satisfied statements analogous to Theorems 2 and 3.

Of more interest perhaps is a recursion formula coupled with the moments b2N+1
p of the GOE of dimension 2N +1.

Since

μN
GSE = 1

2
μ2N+1

GOE − 1

2

ϕP2N∫
ϕP2N dγ

,

and since the Laplace transform τ2 of ϕP2N/
∫

ϕP2N dγ solves the differential equation τ ′′
2 − (4t2 + 8N + 2)τ2 = 0,

the following conclusion may be deduced.

Theorem 5. For every integer p ≥ 2, and every N ≥ 1,

2cN
p = (16N + 4)cN

p−1 + 8(2p − 2)(2p − 3)cN
p−2

+ b2N+1
p − (8N + 2)b2N+1

p−1 − 4(2p − 2)(2p − 3)b2N+1
p−2

(cN
0 = N,cN

1 = 2N2 − N).

A further connection with the moments of the GOE was suggested to us by Haagerup. Namely, w thus solves the
differential equation (27) with N replaced by 2N + 1. Then w(it), t ∈ R, solves the differential equation (27) with N

replaced by −2N . Checking the initial conditions cN
0 , cN

1 , cN
2 , cN

3 , for example with the help of Theorem 5 above, this
observation yields a duality identity between the moments cN

p of the GSE and the formal moments b−2N
p of the GOE

of size −2N in the form of the following statement. The duality between the Orthogonal and Symplectic Ensembles
was put forward by Mulase and Waldron in their paper [13] in terms of graphical and Feynman diagram expansions
of Gaussian integrals. The extension to multi-matrix models is discussed in the recent work [2].

Theorem 6. For every integer p, and every N ≥ 1,

2cN
p = (−1)p+1b−2N

p .

For example,

cN
0 = N,

cN
1 = 2N2 − N,

cN
2 = 8N3 − 10N2 + 5N,

cN
3 = 40N4 − 88N3 + 104N2 − 41N,

cN
4 = 224N5 − 744N4 + 1496N3 − 1380N2 + 509N,

cN
5 = 1344N6 − 6176N5 + 18320N4 − 28600N3 + 24286N2 − 8229N.

5. Map enumeration in locally orientable surfaces

In their work [7], Harer and Zagier described a map enumeration problem by Gaussian matrix integrals. For every
integer p, denote by εg(p) the number of ways of putting the consecutive sides of a 2p-gon into p pairs, each side
belonging to one and only one pair, and such that if the sides in each pair are identified, one obtains an orientable
surface of genus g. An alternate equivalent description characterizes εg(p) as the number of oriented 1-vertex maps
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with p edges and k faces imbedded into a (orientable) surface of genus g (k = p + 1 − 2g) (cf. [22] for an accessible
introduction). The numbers εg(p) are non-zero only for p ≥ 2g. By the Wick calculus for integrals of Gaussian
polynomials, Harer and Zagier showed that the pth moments aN

p , p ∈ N, of the GUE describes the generating series
in N ,

aN
p =

∑
g≥0

εg(p)Np+1−2g (28)

of the numbers εg(p). In particular, the recursion formula of Theorem 1 may be translated equivalently into the
following recursion formula for the numbers εg(p), g ≥ 1, p ≥ 2,

(p + 1)εg(p) = (4p − 2)εg(p − 1) + (p − 1)(2p − 1)(2p − 3)εg−1(p − 2) (29)

(with the boundary conditions ε0(p) = χp for every p). Note that, from (4), ε1(p) = 1
12 (p − 1)p(p + 1)χp . A purely

geometric proof of this formula seems still to be lacking (cf. [22]). This formula may also be used to give the closed
form

aN
p = (2p)!

2pp!
p∑

r=0

2r

(
p

r

)(
N

r + 1

)
(30)

(see [5,7,12]). A direct combinatorial and self-contained proof of the equality between the right-hand sides of (28)
and (30) is provided in [9]. Actually, setting ãN

p = (2pp!/(2p)!)aN
p , Theorem 1 shows that

(p + 1)ãN
p = 2NãN

p−1 + (p − 1)ãN
p−2, p ≥ 2.

This recursion equation is easily solved by the generating series

1 + 2
∞∑

p=0

ãN
p xp+1 =

(
1 + x

1 − x

)N

.

Expanding the binomial (1 + x)N(1 − x)−N then yields (30).
The real analogue has been studied by Goulden and Jackson [5] who described the generating series of the numbers

of pairings of the sides of a 2p-gon leading to unoriented surfaces. It will be more convenient to adopt the language
of 1-vertex maps for which the moments bN

p , p ∈ N, of the GOE represent the generating series

bN
p =

∑
k≥1

ηk(p)Nk,

where ηk(p) is the number of 1-vertex maps with p edges and k faces in locally orientable surfaces (of genus g such
that k = p + 1 − 2g for orientable surfaces and k = p + 1 − g for non-orientable ones). For example, in accordance
with [5], bN

2 = 2N3 + 5N2 + 5N . In particular, η1(2) = 5, that is there are 5 maps in locally orientable surfaces with
1 vertex, 2 edges and 1 face. As in the GUE case, ηp+1(p) = χp for every p, while, from (5), ηp(p) = 1

2 [4p − (p +
1)χp]. The numbers bN

p − aN
p describe the genus series for 1-vertex maps in non-orientable surfaces with p edges.

Using classical expansions associated with the Hermite polynomials, Goulden and Jackson found the following closed
form of the moments

bN
p = p!

p∑
r=0

22p−r

p∑
�=0

(
p − 1/2

p − �

)(
r + � − 1

r

)(
(N − 1)/2

�

)
+ aN−1

p . (31)

The strategy in [5] also relies on the spectral density (7), expressing the Hermite polynomials by their coefficients,
performing the integrations and then coming back to the Hermite polynomials by reverse formulas. It is not clear
whether this approach can also lead to recursion formulas, and conversely whether the recursion formulas can easily
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yield the closed form (31). Nevertheless, setting as in the complex case b̃N
p = (2pp!/(2p)!)bN

p , Theorem 3 shows that

the generating function ψ(x) = ∑∞
p=0 b̃N

p xp+1 solves the differential equation

4x
(
1 − 4x2)ψ ′ − 2

[
3 + (4N − 3)x

]
ψ = 4Nx − 3(1 − x)

[
1 −

(
1 + x

1 − x

)N]

which has an explicit solution. In any case, the recursion formulas of Theorems 2 and 3 are of course more efficient
to generate tables of the moments bN

p . An algorithm for map enumeration is presented in the recent [14].
In the next statement, we draw from Theorem 2 the analogue of the Harer–Zagier recursion formula (29) for the

numbers ηk(p).

Corollary 7. Denote by ηk(p) the number of unoriented 1-vertex maps with p edges and k faces. For every p ≥ 4,

(p + 1)ηk(p) = (8p − 2)ηk−1(p − 1) − (4p − 1)ηk(p − 1)

+ p(2p − 3)(10p − 9)ηk(p − 2) − 8(2p − 3)ηk−2(p − 2)

+ 8(2p − 3)ηk−1(p − 2) − 10(2p − 3)(2p − 4)(2p − 5)ηk−1(p − 3)

+ 5(2p − 3)(2p − 4)(2p − 5)ηk(p − 3)

− 2(2p − 3)(2p − 4)(2p − 5)(2p − 6)(2p − 7)ηk(p − 4)

with the convention that ηk(p) = 0 if k ≤ 0 or k > p + 1, and the boundary conditions ηp+1(p) = χp for every p,
η1(1) = 1, η1(2) = η2(2) = 5, η1(3) = 41, η2(3) = 52, η3(3) = 22.

6. Small deviation inequality on the largest eigenvalue

In this final section, we draw from the recursion equation of Theorem 3 a simple bound on the moments of the GOE
that entails the deviation inequality at the Tracy–Widom fluctuation regime.

Theorem 8. Let XN belong to the GOE of size N ≥ 1. For every integer p such that p3 ≥ N2,

E
(
Tr

((
XN

)2p)) ≤ C(4N)p
(

1 + p2

N2

)2p

,

where C > 0 is numerical.

Proof. First, we recall from [11] the corresponding bound for the GUE. As in the Introduction, set AN
p = N−p−1aN

p ,
p ∈ N, N ≥ 1. Then the Harer–Zagier formula from Theorem 1 reads, for every N ≥ 1 and p ≥ 2,

AN
p = 4p − 2

p + 1
AN

p−1 + 4p − 2

p + 1
· 4p − 6

p
· p(p − 1)

4N2
AN

p−2.

Recall the Catalan numbers

χp = 4p − 2

p + 1
χp−1 = (2p)!

p!(p + 1)! , p ∈ N.

Thus, by a simple induction, for every p,

AN
p ≤

(
1 + p2

4N2

)p

χp. (32)

Furthermore, by Stirling’s formula, there is a numerical constant C > 0 such that χp ≤ C4pp−3/2 for every p ≥ 1. In
particular, Theorem 8 holds for the GUE.
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We proceed along the same lines with the coupled recursion formula of Theorem 3 for the moments of the GOE.
Set similarly BN

p = N−p−1bN
p , p ∈ N, N ≥ 1. To this task, it will be convenient to work with the numbers DN

p =
BN

p − AN
p , p ∈ N, which, according to Theorem 3, satisfy

DN
p =

(
4 − 2

N

)
DN

p−1 + 4(2p − 2)(2p − 3)

N2
DN

p−2

+ 1

N
AN

p−1 + 3(2p − 2)(2p − 3)

N2
AN

p−2

for every p ≥ 2. Note that DN
0 = 0 and DN

1 = 1
N

. Define

EN
p = 1

N
AN

p−1 + 16p2

N2
AN

p−2, p ≥ 2

(EN
0 = EN

1 = 0), so that, for every p ≥ 2,

DN
p ≤ 4DN

p−1 + 16p2

N2
DN

p−2 + EN
p .

By induction, it follows that for every p,

DN
p ≤ 4p

(
DN

1 +
p∑

�=0

4−�EN
�

)(
1 + p2

N2

)p

.

Now, by (32), it is easily checked that for p3 ≥ N2,

p∑
�=0

4−�EN
� ≤ C

N

(
1 + p2

N2

)p

for some numerical constant C > 0. Since BN
p = DN

p + AN
p , the conclusion follows. �

One major advance in modern random matrix theory is the Tracy–Widom fluctuation result [19] indicating that for
a random matrix XN from the GUE,

P
(
λN

N ≤ 2
√

N + sN−1/6) → F2(s), s ∈ R,

where λN
N is the largest eigenvalue of XN and F2 is the so-called Tracy–Widom distribution (cf. e.g. [8] for an

introduction). This law has a somewhat intricate description. For our purpose here, note that it is non-centered and its
behavior at +∞ is given by

C−1e−Cs3/2 ≤ 1 − F2(s) ≤ Ce−s3/2/C (33)

for s large and C numerical. A similar result holds for the GOE model [20] with a limiting distribution F1 of the same
nature, satisfying in particular also (33).

These Gaussian results have been extended by Soshnikov [17], using a moment comparison principle, to families
of symmetric (or Hermitian) Wigner matrices YN = (YN

ij )1≤i,j≤N with independent entries YN
ij , 1 ≤ i ≤ j ≤ N , with

E((YN
ij )2) = 1 and having a symmetric distribution with subgaussian tail, that is

E
((

YN
ij

)2p) ≤ (Cp)p

for some C > 0 and every p ∈ N. This moment hypothesis has been weakened in [15].
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In [1,10,11], it is shown that for the GUE, for every 0 < ε ≤ √
N ,

P
(
λN

N ≥ 2
√

N + ε
) ≤ Ce−N1/4ε3/2/C,

where C > 0 is numerical, in accordance thus with the Tracy–Widom asymptotics and (33) (choose ε = sN−1/6). On
the basis of Theorem 8, we show here the analogous bound in case of the GOE. The real case has the advantage to
produce similar bounds for classes of Wigner matrices by a simple moment comparison argument. In particular, this
result complements Soshnikov’s [17] extension of the Tracy–Widom theorem. Such comparisons may be developed
in the complex setting as well but take a less appealing form.

Corollary 9. Let YN = (YN
ij )1≤i,j≤N be a N × N symmetric matrix such that the entries YN

ij , 1 ≤ i ≤ j ≤ N , are
independent symmetric random variables such that, for every integer p,

E
((

YN
ij

)2p) ≤ E
((

XN
ij

)2p)
,

where XN is taken from the GOE of size N . Denote by λN
N(Y ) the largest eigenvalue of YN . Then, for every 0 < ε ≤√

N ,

P
(
λN

N(Y ) ≥ 2
√

N + ε
) ≤ Ce−N1/4ε3/2/C,

where C > 0 is numerical.

The proof of the corollary simply follows from the fact that, under the hypotheses,

E
(
Tr

((
YN

)2p)) = E

( ∑
1≤i1,...,i2p≤N

YN
i1i2

YN
i2i3

· · ·YN
i2pi1

)
≤ E

(
Tr

((
XN

)2p))

for every integer p. Then, by Markov’s inequality and Theorem 8, for every p such that p3 ≥ N2 and 0 < ε ≤ √
N ,

P
(
λN

N(Y ) ≥ 2
√

N + ε
) ≤ (

2
√

N + ε
)−2p

E

(
N∑

i=1

(
λN

i (Y )
)2p

)

≤ (
2
√

N + ε
)−2p

E
(
Tr

((
XN

)2p))
≤ C1

(
2
√

N + ε
)−2p

(4N)pe2p3/N2

≤ C1e−εp/2
√

N+2p3/N2
,

where C1 is the constant of Theorem 8. Assume first N1/4ε3/2 ≥ 103. Choose p to be the integer part of
√

ε
12N3/4.

Then p3 ≥ N2 and

e−εp/2
√

N+2p3/N2 ≤ √
ee−N1/4ε3/2/6

√
3.

Thus the inequality of the corollary follows in this case with C = max(
√

eC1,6
√

3). When N1/4ε3/2 ≤ 103,

P
(
λN

N(Y ) ≥ 2
√

N + ε
) ≤ 1 ≤ e1−(N1/4ε3/2/103)

and the result follows here with C = 103.
Examples of matrices YN include matrices such that YN

ij , 1 ≤ i ≤ j ≤ N , are independent and symmetric with

|YN
ij | ≤ 1 almost surely, in particular YN

ij = ±1 with equal probability. Another example consist of entries YN
ij with

symmetric distributions e−vij dx on R such that vij − x2

2 is convex. Such distributions are known [3] to be 1-Lipschitz
images of the standard Gaussian distribution γ so that the moment comparison of Corollary 9 holds.
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