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Abstract. We study the decay rate of large deviation probabilities of occupation times, up to time t , for the voter model η :Z2 ×
[0,∞) → {0,1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ ∈ (0,1).
In [Probab. Theory Related Fields 77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in
[log(t), log2(t)].

In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when the
deviation from ρ is maximal (i.e., η ≡ 0 or 1), and log(t) in all other situations. This answers some conjectures in [Probab.
Theory Related Fields 77 (1988) 401–413] and confirms nonrigorous analysis carried out in [Phys. Rev. E 53 (1996) 3078–3087],
[J. Phys. A 31 (1998) 5413–5429] and [J. Phys. A 31 (1998) L209–L215].

Résumé. On étudie le taux de décroissance des probabilités de grandes déviations des temps d’occupation, jusqu’à l’instant t , du
modèle du votant η :Z2 × [0,∞) → {0,1} ayant le noyau de transition d’une marche aléatoire simple et partant d’une distribution
produit de Bernoulli de paramètre ρ ∈ (0,1). Dans [Probab. Theory Related Fields 77 (1988) 401–413], Bramson, Cox et Griffeath
ont montré que l’ordre du taux de décroissance se situe dans [log(t), log2(t)].

Dans cet article, nous établissons les taux de décroissance exacts dépendant du niveau. On prouve que les taux de décroissance
sont log2(t) lorsque la déviation de ρ est maximale (i.e., η ≡ 0 ou 1), et log(t) dans toutes les autres situations. Ceci répond à
une conjecture de [Probab. Theory Related Fields 77 (1988) 401–413] et confirme l’analyse non rigoureuse effectuée dans [Phys.
Rev. E 53 (1996) 3078–3087], [J. Phys. A 31 (1998) 5413–5429] et [J. Phys. A 31 (1998) L209–L215].

MSC: Primary 60F10; 60K35; secondary 60J25; 82B21
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1. Introduction and main results

1.1. The voter model

We consider the simple voter model in Z
2 corresponding to the simple random walk. In general dimensions this voter

model is a Markov process on {0,1}Z
d

with operator

Ωf (η) = 1

2d

∑
x∈Zd

∑
y∼nx

(
f

(
ηx,y

) − f (η)
)
, (1.1.1)
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where x ∼n y means x and y are nearest neighbours on the Z
d lattice and ηx,y is the configuration

{
ηx,y(z) = η(z) for z �= x,
ηx,y(x) = η(y).

(1.1.2)

This process was introduced independently by Clifford and Sudbury [3] and by Holley and Liggett [11]. There the
basic results concerning equilibria were shown: for recurrent random walks (i.e., d ≤ 2) the only extremal equilibria
are δ0 and δ1 whereas for transient random walks there exists for each ρ ∈ [0,1] an extremal, translation invariant
ergodic equilibrium of density ρ, μρ (and these are the totality of extremal equilibria). In the transient case the
measures μρ are the limits for distributions of the process begun with initial measure νρ for which (η(x): x ∈ Z

d) are
i.i.d. Bernoulli (ρ) random variables. Details for this and much more can be found in Liggett [14].

In this note our analysis will rely heavily on the duality of the voter model with coalescing random walks (as ex-
ploited in [2] and [4–6]): given distinct space time points (xi, ti)

r
i=1 in Z

d ×[0,∞), the joint distribution of (ηti (xi))
r
i=1

can be determined via coalescing random walks (χi
t : t ≥ 0) defined as follows: (suppose without loss of generality

that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tr ) χi
t = xi for 0 ≤ t ≤ tr − ti , thereafter χi evolves as a simple random walk. If for i < j ,

s ≥ tr − ti , χi
s = χ

j
s , then χi

s′ = χ
j

s′ for all s′ ≥ s. That is the random walks are coalescing. Otherwise the random
walks evolve independently. The joint law of (ηt1(x1), ηt2(x2), . . . , ηtr (xr )) is that of (η0(χ

1
tr
), η0(χ

2
tr
), . . . , η0(χ

r
tr
)).

The clear exposition of the Harris construction of the voter model found in Durrett [8] is here recommended.
We will in this article be concerned with the behaviour, for t large, of

Tt

t
= 1

t

∫ t

0
ηs(0)ds (1.1.3)

for (ηs : s ≥ 0) a voter model begun with initial measure νρ , ρ ∈ (0,1). In the transient regime, the behaviour is
equivalent to that for a voter model begun with initial distribution μρ . This problem was discussed in a series of
papers by Cox and Griffeath [5] and [6] and Bramson, Cox and Griffeath [2]. It follows from the duality description
also, as noted in these articles, that Tt may be understood as follows.

A Harris system for the voter model (ηt : t ≥ 0) is a collection of independent rate 1
2d

Poisson processes Nx,y for
every ordered pair x, y with y ∼n x. From this system η· evolves by stipulating that for x ∈ Z

d, ηt (x) changes value (or
flips) only at times t in Nx,y for some y ∼n x. At such a time t we put ηt (x) = ηt (y). If for t ∈ Nx,y, ηt−(x) = ηt (y)

then there is no change in value for η·(x) at time t . Given this system we can define for each x ∈ Z
d and t ≥ 0 dual

simple random walks, (Z
x,t
s : 0 ≤ s ≤ t) with Z

x,t
0 = x, as follows:

Zx,t
s �= Z

x,t
s− ⇐⇒ t − s ∈ NZ

x,t
s− ,w (1.1.4)

for some w ∼n Z
x,t
s− . In which case Zx,t· jumps from Z

x,t
s− to w at time s.

The importance of these random walks lies in the following properties:

(1) ηt (x) = η0(Z
x,t
t ) and

(2) the random walks {Zx,t· }x∈Zd are independent until they meet.

Furthermore it may be seen that if 0 ≤ t ≤ t ′ then the random walks Zx,t· and Zx,t ′· are coalescing in the sense that

(3) if for some s ∈ [0, t], Z
x,t
s = Z

x,t ′
t ′−t+s

, then Z
x,t
u = Z

x,t ′
t ′−t+u

for all s ≤ u ≤ t .

Thus we have a system of coalescing random walks (χs
v , v ∈ [0, s]) = Z0,s

v on Z
d , so that χs

0 = 0 and by property

(3) above if for 0 ≤ v ≤ s ≤ s′, χs
v = χs′

s′−s+v
, then χs

u = χs′
s′−s+u

for all v ≤ u ≤ s. We call the collection of random
walks {χs· }s≥0 the coalescing random walks associated with η·(0).

Let Ox = λt ({s ∈ [0, t]: χs
s = x}) with λt the Lebesgue measure on [0, t], then

Tt =
∑

x∈{χs
s :s∈[0,t]}

Oxη0(x). (1.1.5)
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For η0 distributed as product measure νρ the duality representation immediately yields

Var

(
Tt

t

)
= 1

t2

∫ t

0

∫ t

0
Cov

(
ηs(0), ηs′(0)

)
ds′ ds

= 1

t2

∫ t

0

∫ t

0
P

(
χs

s = χs′
s′

)
ρ(1 − ρ)ds′ ds. (1.1.6)

For s > s′, P(χs
s = χs′

s′ ) is easily seen to be the probability that a random walk issuing from the origin hits the origin
during the interval [s − s′, s + s′]. If one chooses s, s′ uniformly on [0, t] this probability is easily seen to tend to zero
as t → ∞ for transient random walks. However for recurrent random walks it may tend to zero as t → ∞ (for d = 2)
or it may tend to a non zero limit (d = 1). From this we obtain: for η0 distributed by νρ ,

Tt

t
−→ ρ in probability if and only if d ≥ 2. (1.1.7)

In fact, the convergence in (1.1.7) holds a.s. (see Cox and Griffeath [5]).

1.2. Asymptotic behavior of occupation time

Bramson, Cox and Griffeath [2] obtained large deviation bounds: for each α ∈ (ρ,1] there exist positive finite con-
stants C1 = C1(d), C2 = C2(d,α) such that, for t sufficiently large,{

e−C1 log2(t) ≤ Pνρ (Tt ≥ αt) ≤ e−C2 log(t) if d = 2,
e−C1bt ≤ Pνρ (Tt ≥ αt) ≤ e−C2bt if d ≥ 3,

(1.2.1)

with

bt =

⎧⎪⎨
⎪⎩

√
t if d = 3,
t

log t
if d = 4,

t if d ≥ 5.

(1.2.2)

By symmetry arguments, the large deviation regime is the same for the deviations Tt/t ≤ α with α ∈ [0, ρ).

1.3. Results

Given the bounds of [2] cited in the previous section, in so far as the exponential order of large deviations is concerned,
the only outstanding case is the two-dimensional one. Throughout the rest of the paper, we assume that d = 2. The
following two results constitute a full resolution of the question of exponential order for the large deviations of Tt .

Theorem 1.3.1. There exist positive finite constants C1,C2 such that, for t sufficiently large,

e−C1 log2(t) ≤ Pνρ (Tt = t) ≤ e−C2 log2(t). (1.3.1)

Theorem 1.3.2. For each α ∈ (ρ,1), there exist positive finite constants C1 = C1(α), C2 = C2(α) such that, for t
sufficiently large,

e−C1 log(t) ≤ Pνρ (Tt ≥ αt) ≤ e−C2 log(t). (1.3.2)

By (1.2.1), it only remains to prove the upper bound in Theorem 1.3.1 and lower bound in Theorem 1.3.2. If g(t)

and h(t) are real functions, we write g(t) � h(t) as t → ∞ when

0 < lim inf
t→∞ g(t)/h(t) ≤ lim sup

t→∞
g(t)/h(t) < ∞. (1.3.3)
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2. Discussion

The study of Tt was initiated by Cox and Griffeath [5] who noted that the question of its large deviations belonged
naturally with related issues arising in the Ising and percolation models, but that in contrast (and due to the tractable
duality) with these, progress in identifying the effect at low dimensions was possible. Nevertheless questions remain.

The behavior of Tt in low dimensions has motivated studies in the Physics community. Due to the recurrence of
simple random walks, as t → ∞, the simple voter model forms larger and larger clusters when d ≤ 2 (a more detailed
analysis of clustering can be found in [6]). Therefore, a consensus of opinion is approached as t → ∞. In words, that
means that the system coarsens. A natural question is to study, for such a coarsening system, the asymptotic behavior
of the persistence probability P(Tt = t), i.e., the probability that a given site will never change its state as time goes to
infinity. To be in accordance with the physicist terminology, consider the voter model ζ : Zd × [0,∞) → {−1,1} (as
a spin system) with opinions −1 and +1. Define the mean magnetization at time t by

M(t) = 1

t

∫ t

0
ζ(0, s)ds, M(t) ∈ [−1,1]. (2.0.4)

In the case considered the initial distribution was symmetric w.r.t. −1 and 1 and so E(M(t)) = 0. Then for all x > 0,
the distribution of the mean magnetization, P(t, x) = P(M(t) ≥ x), and R(t, x) = P(M(s) ≥ x,∀s ≤ t) represent the
deviation of M(t) from its mean and the probability of persistent large deviations, respectively. Then, assuming that
ζ(0,0) = 1,

P(t,1) = R(t,1) = P
(
ζ(0, s) = 1,∀0 ≤ s ≤ T

)
(2.0.5)

is the so-called persistent probability and corresponds to the object of study of Theorem 1.3.1. Ben-Naim, Frachebourg
and Krapivsky [1] showed convincingly via numerical methods that there exists some C > 0 such that

P(t,1) � e−C log2(t), t � 1. (2.0.6)

Howard and Godrèche [12] confirm nonrigorously this result both by using path-integral methods and Monte Carlo
simulations. After a sharper analysis, Dornic and Godrèche [7] concluded that

P(t, x) � e−I (x) log(t) and R(t, x) � e−J (x) log2(t), t � 1 (2.0.7)

with limx→1 I (x) = ∞ and limx→1 J (x) = C for some constant C > 0. This is in accordance with Theorems 1.3.1
and 1.3.2.

3. Proofs

3.1. Proof of Theorem 1.3.1

Let χ = (χt )t≥0 = (χt
s , s ∈ [0, t])t≥0 be the coalescing random walks associated with η·(0) for a voter model

(ηt : t ≥ 0). Denote by P and E, respectively, probability and expectation associated with χ . The dual relationship
between voter model and coalescing random walks lead to the following lemma (see Bramson, Cox and Griffeath [2],
Section 1 for details).

Lemma 3.1.1. For all t > 0

Pνρ (Tt = t) = E
(
ρ#χt )

, (3.1.1)

where #χt denote the number of distinct sites in the collection {χs
s : 0 ≤ s ≤ t}.

Then, the proof of Theorem 1.3.1 reduces to the following proposition.
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Proposition 3.1.2. There exist K1,K2 > 0 so that

P
(
#χt ≤ K1 log2(t)

) ≤ e−K2 log2(t) (3.1.2)

for all t > 0 sufficiently large.

Indeed, combining Lemma 3.1.1 and Proposition 3.1.2, we get

Pνρ (Tt = t) = E
(
ρ#χt

1
{
#χt ≤ K1 log2(t)

}) + E
(
ρ#χt

1
{
#χt > K1 log2(t)

})
≤ P

(
#χt ≤ K1 log2(t)

) + ρK1 log2(t)

≤ e−C2 log2(t), (3.1.3)

where in the last inequality we choose K1 small enough and t sufficiently large. This completes the proof of Theo-
rem 1.3.1. The next section is devoted to the proof of Proposition 3.1.2.

3.2. Proof of Proposition 3.1.2

The overall strategy is to show that on an interval [3t/4, t] with probability of the order 1 − e−C1 log(t) for some
universal C1 > 0, the stream of coalescing random walks produces C1 log(t) distinct random walks which hit the
annulus B(0,

√
2t) \ B(0,

√
t), where B(0, t) = {x ∈ Z

2: |x| ≤ t} (t ≥ 0), before time t/2 and do not leave in dual
time [t/2, t]. If we call this event At , then it can be shown that At,At/2,At/4, . . . are independent, each producing with
probability 1 − e−C1 log(t), of the order log(t) distinct random walks. This will be enough to show Proposition 3.1.2.

In order to prove Proposition 3.1.2, we need a number of preparatory results concerning ordinary and coalescing
random walks. Let X = (X(u): u ≥ 0) be a simple random walk on Z

2 with continuous time transition probability
kernel pu( · ). Denote by P x its probability law starting from x ∈ Z

2 and for all y ∈ Z
2, t > 0, let

τy = inf
{
u > 0: X(u) = y

}
and σt = inf

{
u > 0: |X(u)| ≥ t

}
. (3.2.1)

We refer to Lawler [13] for hitting probabilities for the two-dimensional simple random walk:

Lemma 3.2.1. Uniformly for x ∈ Z
2 \ {0}, |x| ≤ √

t ,

P x(τ0 < σ√
t ) � log(

√
t) − log(|x|)

log(
√

t)
as t → ∞ (3.2.2)

and

P x (τ0 < t) � log(
√

t) − log(|x|) + 1

log(
√

t)
as t → ∞. (3.2.3)

Proof. The proof can be found in Lawler [13], Proposition 1.6.7 in the case of discrete time random walks. The
transfer to continuous time is easy. �

We now consider two independent simple random walks {X(u): u ≥ 0} and {Y(u): u ≥ s}, both starting from 0 in
the sense that X(0) = 0 = Y(s). We are interested in the probability that{∃s ≤ u ≤ t : X(u) = Y(u)

} := AX,Y (s, t). (3.2.4)

Lemma 3.2.2. There exists positive constants K3,K4 so that for s ∈ (t/ log(t), t/2) and t large,

K3
log(t) − log(s)

log(t)
≤ P

(
AX,Y (s, t)

) ≤ K4
log(t) − log(s)

log(t)
. (3.2.5)
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Proof. We first show the lower bound P(AX,Y (s, t)). We condition on the value of X(s). Thus, P(AX,Y (s, t)|X(s) =
x) is equal to P x(τ0 < 2(t − s)), since (Y (s + u) − X(u))u≥0 is a speed two random walk. Then given the constraints
on s we have

P
(
AX,Y (s, t)|X(s) = x

) ≥ P x(τ0 < t). (3.2.6)

So

P
(
AX,Y (s, t)

) ≥
∑

|x|≤√
s/2

P
(
X(s) = x

)
P x(τ0 < t)

≥ C
∑

|x|≤√
s/2

P
(
X(s) = x

) log(t) − log(s)

log(t)
, (3.2.7)

by Lemma 3.2.1, for universal strictly positive C. This in turn is

≥ CC′ log(t) − log(s)

log(t)
, (3.2.8)

by the central limit for X(s). For the opposite inequality we obtain, arguing similarly, that

P

(
AX,Y (s, t) ∩

{∣∣Y(s)
∣∣ ≥

√
s

2

})
≤ C′′ log(t) − log(s)

log(t)
. (3.2.9)

So it suffices to bound appropriately

P

(
AX,Y (s, t) ∩

{∣∣Y(s)
∣∣ <

√
s

2

})
=

�log2(
√

s)�∑
i=1

P
(
AX,Y (s, t) ∩ {∣∣Y(s)

∣∣ ∈ [√
s2−i−1,

√
s2−i

)})
+ P

(
Y(s) = 0

)
. (3.2.10)

Given the condition that s ≤ t/2,

log(t) − log(s)

log(t)
≥ log(2)

log(t)
� P

(
Y(s) = 0

)
(3.2.11)

for s ≥ t/ log(t), so we may ignore the term P(Y (s) = 0). By the local central limit theorem (see e.g. Durrett [9]),

P
(
Y(s) ∈ [√

s2−i−1,
√

s2−i
)) ≤ K2−2i (3.2.12)

for universal K . By Lemma 3.2.1 and given the condition that s ∈ (t/ log(t), t/2),

P
(
AX,Y (s, t)

∣∣∣∣Y(s)
∣∣ ∈ [√

s2−i−1,
√

s2−i
)) ≤ 1

log(t)

(
log(t) − log(s) + (2i + 3) log(2) + 2

)
. (3.2.13)

Combining (3.2.12) and (3.2.13), we get

�log2(
√

s)�∑
i=1

P
(
AX,Y (s, t) ∩ {∣∣Y(s)

∣∣ ∈ [√
s2−i−1,

√
s2−i

)})

≤ K

�log2(
√

s)�∑
i=1

2−2i log(t) − log(s) + (2i + 3) log(2) + 2

log(t)
≤ K ′ log(t) − log(s)

log(t)
, (3.2.14)

for some K ′ > 0 and we are done. �
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Corollary 3.2.3. Given C > 1 let

R =
⌈

log(t)

5C

⌉
(3.2.15)

and let (Y k(t): t ≥ tk), 0 ≤ k ≤ R, be independent random walks starting at

Y k(tk) = 0 with tk = kCt

log(t)
. (3.2.16)

Then, there exists some universal (not depending on C) strictly positive K5 so that, for all t sufficiently large,

E(V ) ≤ K5

C
with V =

R∑
k=1

1
{
AY 0,Y k

(tk, t)
}
. (3.2.17)

Remark 3.2.4. E(V |Y 0) is a functional of the random walk path independent of the random walks Y k , 1 ≤ k ≤ R,
and can and will be considered as defined for any random walk starting at the origin, see Corollary 3.2.8.

Proof of Corollary 3.2.3. By Lemma 3.2.2, for all t sufficiently large

E(V ) ≤ −K5

�log(t)/(5C)�∑
k=1

log(kC/ log(t))

log(t)
≤ −K5

C

∫ log(t)/(5C)+1

0

C

log(t)
log

(
Cx

log(t)

)
dx

≤ −K5

C

∫ 1

0
log(x)dx = K5

C
. (3.2.18)

�

We now collect a few nice properties of our random walks: let (X(u): u ≥ 0) be a simple random walk starting at
X(0) = 0. For t ≥ 0, recall that B(0, t) = {x ∈ Z

2: |x| ≤ t}.
Lemma 3.2.5. For all t ≥ 0 and for whatever finite choice of C ≥ 1,

P 0(X(u) ∈ B
(
0, t1/3) for some u ∈ (

t1 − 1, t
)) −→ 0 as t → ∞, (3.2.19)

for t1 = Ct/ log(t).

Remark 3.2.6. We will explain the choice of t1 − 1 later (see Remark 3.2.10).

Proof of Lemma 3.2.5. First, remark that

P

(
X(t1) ≥

√
t

log(t)

)
↑ 1 as t → ∞. (3.2.20)

For any random process (Z(t): t ≥ 0) on Z
2 denote

St (Z) = inf
{
s:

∣∣Z(s)
∣∣ ≤ t

}
. (3.2.21)

Therefore, in order to prove (3.2.19), it suffices to prove that for all |x| ≥ √
t/ log(t)

P x
(
St1/3(X) < t

) → 0 as t → ∞. (3.2.22)

But this follows from random walks embedding into Brownian motions and the fact that (3.2.22) is fulfilled when a
two-dimensional Brownian motion is considered instead of X. �

The following is simply a consequence of the invariance principle.
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Lemma 3.2.7. As t → ∞,

P 0
(∣∣X(u)

∣∣ ∈ (√
t,

√
2t

)∀ t

4
≤ u ≤ t

)
→ P

(∣∣B(u)
∣∣ ∈ (

1,
√

2
)∀1

4
≤ u ≤ 1

)
= α > 0, (3.2.23)

where B denotes a standard two-dimensional Brownian motion.

We are ready to choose our constant C: we choose C so that for K5 as in Corollary 3.2.3 and α as above,

K5

C
≤ α2

104
. (3.2.24)

Corollary 3.2.8. For E(V |X) as defined in Remark 3.2.4 and t sufficiently large, the probability that the path
{(u,X(u)): 0 ≤ u ≤ t} is such that either:

(i) E(V |X) ≥ α/102, or
(ii) |X(u)| /∈ (

√
t,

√
2t) for some u ∈ (t/4, t], or

(iii) |X(u)| < t1/3 for some u ∈ [t1 − 1, t],
is at most 1 − 2α/3.

Proof. By Corollary 3.2.3 and our choice of C, we have

P

(
E(V |X) ≥ α

102

)
≤ 102K5

αC
≤ α

102
. (3.2.25)

Then, combining Lemmas 3.2.5–3.2.7 and (3.2.25), we get the claim. �

We consider the system of coalescing random walks (Xi(s): ti ≤ s ≤ t,0 ≤ i ≤ R) = (χ
t−ti
s−ti

: ti ≤ s ≤ t, 0 ≤ i ≤
R). We are interested in the number of distinct random walks at time t which satisfy

∣∣Xi(u)
∣∣ ∈ (√

t,
√

2t
)
, ∀u ∈

[
t

2
, t

]
, (3.2.26)

where Xi , 0 ≤ i ≤ R, are coalescing random walks defined in (3.2.16). We will in turn let the random walks evolve
until something “bad” happens. This will mean the violation of some given conditions: Define times:

(a) T i,a = inf{s ≥ ti+1:
∑R

j=i+1 P(Xj (v) = Xi(v) for some v ∈ [ti+1, s]|Xi) ≥ α/102};
(b) T i,b = inf{s ≥ ti+1 − 1: |Xi(s)| ≤ t1/3};
(c) T i,c = inf{s ≥ ti + t/4: |Xi(s)| /∈ (

√
t,

√
2t)};

(d) T i = t ∧ T i,a ∧ T i,b ∧ T i,c,

and kill (or freeze) the random walk Xi at time T i .

Remark 3.2.9. Note that in (c), since for all 0 ≤ i ≤ R, ti ≤ t/4, Xi will satisfy (3.2.26) if T i = t . Note that in (a),
because the coalescing random walks are stopped as soon as they meet and are independent up until they meet, we
can apply Corollary 3.2.3.

We first consider the consequence of our definition of T i : we define the random variables Ci,j , 0 ≤ i < j ≤ R, by

Ci,j = P
(
Xj(v) = Xi(v) for some v ∈ [

tj , T
i
]∣∣Xi, T i

)
. (3.2.27)

We have for any j ∈ {i + 1, i + 2, . . . ,R} that

Ci,j = P
(
Xj(v) = Xi(v) for some v ∈ [

ti , T
i
)∣∣Xi, T i

)
+ P

(
Xj

(
T i

) = Xi
(
T i

)
,Xj (v) �= Xi(v),∀v < T i

∣∣Xi, T i
)
. (3.2.28)
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By the definition of T i,b , |Xi(T i)| ≥ t1/3 − 1 unless T i < ti+1, in which case {(Xj (s), s): s ≥ tj } cannot hit
{(Xi(u),u): ti ≤ u ≤ T i}. Therefore, using a simple bound for ps( · ) (use e.g. continuous version of Lawler [13],
Theorem 1.2.1, inequality (1.10)), there exists some universal K > 0 so that

P
(
Xj

(
T i

) = Xi
(
T i

)
,Xj (v), �= Xi(v)∀v < T i

∣∣Xi,T i
) ≤ sup

|x|≥t1/3−1
sup
u≥0

pu(x)

≤ K

(t1/3 − 1)2
. (3.2.29)

Remark 3.2.10. It is above all here we see the validity of the of the definition of T i,b , since this assures that for any
ti+1 ≤ s ≤ T i , |Xi(s)| ≥ t1/3 − 1. Obviously the 1 is arbitrary and could be replace by any λ > 0.

Combining (3.2.28) and (3.2.29) and summing over i ≤ j ≤ R with i < R, we obtain (recalling (a))

R∑
j=i+1

Ci,j ≤ α

102
+ RK

(t1/3 − 1)2

<
α

99
, (3.2.30)

for t sufficiently large.

Definition 3.2.11. We say 1 ≤ j ≤ R is good if

j−1∑
i=0

Ci,j ≤ 2α

99
. (3.2.31)

Lemma 3.2.12. At least R/2 of the j are good.

Proof. By (3.2.30), we have

R−1∑
i=0

R∑
j=i+1

Ci,j ≤ Rα

99
. (3.2.32)

Thus,

R∑
j=1

j−1∑
i=0

Ci,j ≤ Rα

99
, (3.2.33)

from which we obtain the result. �

Definition 3.2.13. We say a random walk {Xj(tj + u): u ≥ 0} is successful if

(i) the stopping time T j is equal to t ;
(ii) Xj does not hit a previous stopped random walk, i.e., for all i < j and s ∈ [tj , T i], Xi(s) �= Xj(s).

We consider now a somewhat unnatural filtration F0, F1, . . . , FR . Each of whose σ -fields will be based on the
Poisson processes generating the coalescing random walks. They are defined in the following way: F0 is trivial; F1
is the σ -field generated by (X0(u),0 ≤ u ≤ T 0); Fr with 2 ≤ r ≤ R is the σ -field generated by Fr−1 and the random
walk Xr−1 stopped at T r−1 ∨ Sr−1, where Sr−1 is the first time (Xr−1(u),u) hits a previous (stopped) random walk.
One way to see Fr is as the σ -field generated by the Harris system viewed along the paths of the Xi , i ≤ r − 1, that is
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to say with information on Nx,y for all y on interval I for Xi(s) = x on I . It is clearly seen that on the σ -field Fj , the
law of (Xj (s), s) is simply a space–time random walk which evolves until it hits a point (y, s) such that Xi(s) = y

for some i < j and s ≤ T i .

Corollary 3.2.14. If t is sufficiently large, for at least R/2 random walks Xj , 1 ≤ j ≤ R,

P
(
Xj is successful|Fj

) ≥ α

2
. (3.2.34)

Proof. By the definition of “being good” and Lemma 3.2.12, for at least R/2 random walks Xj , 1 ≤ j ≤ R, we have∑j−1
i=0 Cij ≤ 2α/99. Therefore, for those j ,

P
(
Xj hits a previous stopped random walk|Fj

) ≤
j−1∑
i=0

P
(
Xj hits Xi stopped|Fj

)

=
j−1∑
i=0

Ci,j ≤ 2α

99
. (3.2.35)

By Corollary 3.2.8, it follows that if j is good

P
(
Xj is successful|Fj

) ≥ 2α

3
− 2α

99
≥ α

2
> 0. (3.2.36)

�

As a consequence, we have the following result.

Corollary 3.2.15. There exists K6 > 0 not depending on t so that

P
(
at least K6 log(t) random walks

(
Xj : 1 ≤ j ≤ R

)
are successful

) ≥ 1 − e−K6 log(t). (3.2.37)

In consequence, for the system χt , except for an event of probability at most exp[−K6 log(t)], there exist at least
3t/4 ≤ s1 < s2 < · · · < s�K6 log(t)� ≤ t , such that

(i) χ
sj
u �= χ

sk
sk−sj +u for all 1 ≤ j < k ≤ K6 log(t) and 0 ≤ u ≤ sj ;

(ii) |χsj
u | ∈ (

√
t,

√
2t) for all 1 ≤ j ≤ K6 log(t) and sj − t/2 ≤ u ≤ sj .

Proof. By Corollary 3.2.14, at least R/2 of the 1 ≤ j ≤ R satisfy (3.2.34). For notational convenience only, we
assume that (3.2.34) holds for 1 ≤ j ≤ R/2. Let Zj = 1{Xj is successful}. Therefore,

P
(
Zj = 1|Z1,Z2, . . . ,Zj−1

) ≥ α

2
∀1 ≤ j ≤ R

2
. (3.2.38)

It follows that

P
(
at least αR/8 random walks

(
Xj : 1 ≤ j ≤ R

)
are successful

) ≥ P

(
R/2∑
i=1

Zi ≥ αR

8

)
. (3.2.39)

We suppose that (Uj : 1 ≤ j ≤ R/2) is an i.i.d. sequence with uniform distribution U ([0,1]) such that independently
of the Harris system

Yj = Zj1
{
Uj ≤ α

/(
2P(Zj = 1|Z1,Z2, . . . ,Zj−1)

)}
. (3.2.40)

Therefore,
(
Yj : 1 ≤ j ≤ R/2

)
a sequence of i.i.d. random variables on {0,1} so that

P(Yj = 1) = α

2
and Yj ≤ Zj ∀1 ≤ j ≤ R/2. (3.2.41)
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Therefore,

P

(
R/2∑
i=1

Zi ≥ αR

8

)
≥ P

(
R/2∑
i=1

Yi ≥ αR

8

)
. (3.2.42)

But, by large deviations bound for Binomial process (see e.g. den Hollander [10], Chapter 1) and (3.2.15), we have

P

(
R/2∑
i=1

Yi ≥ αR

8

)
≥ 1 − e−Kα/4R

≥ 1 − e−Kα/(20C) log(t) (3.2.43)

for some universal K > 0 (not depending on t). Combining (3.2.39) and (3.2.42) and (3.2.43), and reducing constants
if necessary, we arrive at (3.2.37). �

Proof of Proposition 3.1.2. Let K1 be a small positive constant to be more fully specified later. Consider for all
0 ≤ i ≤ K1 log(t) the events Ai(t) =

{
there exist at least 3 × 2−i−2t ≤ s1 < s2 < · · · < s�K1 log(2−i t)� ≤ 2−i t , such that

(i) χ
sj
u �= χ

sk
sk−sj +u for all 1 ≤ j < k ≤ K1 log

(
2−i t

)
and 0 ≤ u ≤ sj ;

(ii)
∣∣χsj

u

∣∣ ∈ (√
2−i t ,

√
2−i+1t

)
for all 1 ≤ j ≤ K1 log

(
2−i t

)
and sj − 2−i−1t ≤ u ≤ sj

}
. (3.2.44)

Thus, under this definition, Corollary 3.2.15 says that

P
(
Ai(t)

) ≥ 1 − exp
[−K1 log

(
2−i t

)] ≥ 1 − exp

[
−K1

2
log(t)

]
(3.2.45)

if K1 is small enough. Therefore, we have that (after reducing K1):

(i) events Ai(t) are independent for 1 ≤ i ≤ K1 log(t);
(ii) P(Ai(t)) ≥ 1 − exp[−K1 log(t)].
If

∑
i≤K1 log(t) 1Ac

i
< K1 log(t/2), then #χt ≥ K1 log2(t). Therefore, there exists K2 > 0 so that

P
(
#χt ≤ K1 log2(t)

) ≤ P

( ∑
i≤K1 log(t)

1Ac
i
≥ K1 log

(
t

2

))

≤ 2K1 log(t) exp

[
−K2

1

2
log2(t)

]
≤ e−K2 log2(t). (3.2.46)

�

3.3. Proof of Theorem 1.3.2

Denote by #χ [r,s], 0 ≤ r ≤ s, the number of distinct sites in the collection {χu
u : r ≤ u ≤ s}. We refer to Bramson, Cox

and Griffeath [2], Section 2:

Lemma 3.3.1. There exists some positive finite constant K so that for all t > 1

E
(
#χ [t/2,t]) ≤ K log(t). (3.3.1)
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We are now ready to prove Theorem 1.3.2.

Proof of Theorem 1.3.2. For all α ∈ (ρ,1) and t ≥ 0, by Jensen’s inequality, we have

Pνρ (Tt ≥ αt) ≥ Pνρ

(∫ t

(1−α)t

1
{
ηs(0) = 1

}
ds = αt

)

≥ ρE
(
#χ [(1−α)t,t])

. (3.3.2)

Split time interval ((1 − α)t, t] so that

(
(1 − α)t, t

] ⊂
�− log2(1−α)�⋃

k=0

(
t2−k−1, t2−k

]
, (3.3.3)

then apply Lemma 3.3.1 to each χ [t2−k−1,t2−k], k = 0, . . . , �− log2(1 − α)� to obtain

E
(
#χ [(1−α)t,t]) ≤ K1 log(t) (3.3.4)

for K1 a finite positive constant large enough. Then, combining (3.3.2) and (3.3.4), we get

Pνρ (Tt ≥ αt) ≥ e−C1 log(t) (3.3.5)

for C1 large enough. �
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