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Abstract. We consider a multidimensional random walk in a product random environment with bounded steps, transience in some
spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit
theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle
is that the quenched mean of the walk behaves subdiffusively.

Résumé. Nous considérons une marche aléatoire multidimensionnelle en environnement aléatoire produit. La marche est à pas
bornés, transiente dans une direction spatiale donnée, et telle que le temps de régénération posséde un moment suffisamment
haut. Nous prouvons un principe d’invariance, ou un théorème limite central fonctionnel, sous presque tout environnement pour
la marche centrée et diffusivement normalisée. Le point principal derrière le principe d’invariance est que la moyenne trempée
(quenched) de la marche est sous-diffusive.

MSC: 60K37; 60F05; 60F17; 82D30
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1. Introduction and main result

We prove a quenched functional central limit theorem (CLT) for ballistic random walk in random environment
(RWRE) on the d-dimensional integer lattice Zd in dimensions d ≥ 2. Here is a general description of the model, fairly
standard since quite a while. An environment ω is a configuration of probability vectors ω = (ωx)x∈Zd ∈ Ω = P Z

d
,

where P = {(pz)z∈Zd : pz ≥ 0,
∑

z pz = 1} is the simplex of all probability vectors on Z
d . Vector ωx = (ωx,z)z∈Zd

gives the probabilities of jumps out of state x, and the transition probabilities are denoted by πx,y(ω) = ωx,y−x . To run
the random walk, fix an environment ω and an initial state z ∈ Zd . The random walk X0,∞ = (Xn)n≥0 in environment
ω started at z is then the canonical Markov chain with state space Z

d whose path measure P ω
z satisfies

P ω
z {X0 = z} = 1 and P ω

z {Xn+1 = y|Xn = x} = πx,y(ω).

On the space Ω we put its product σ -field S, natural shifts πx,y(Tzω) = πx+z,y+z(ω), and a {Tz}-invariant prob-
ability measure P that makes the system (Ω,S, (Tz)z∈Zd ,P) ergodic. In this paper P is an i.i.d. product measure on

P Z
d
. In other words, the vectors (ωx)x∈Zd are i.i.d. across the sites x under P.

1Supported in part by NSF Grant DMS-0505030.
2Supported in part by NSF Grants DMS-0402231 and DMS-0701091.



374 F. Rassoul-Agha and T. Seppäläinen

Statements, probabilities and expectations under a fixed environment, such as the distribution P ω
z above, are called

quenched. When the environment is also averaged out, the notions are called averaged, or also annealed. In par-
ticular, the averaged distribution Pz(dx0,∞) of the walk is the marginal of the joint distribution Pz(dx0,∞, dω) =
P ω

z (dx0,∞)P(dω) on paths and environments.
Several excellent expositions on RWRE exist, and we refer the reader to the lectures [3,20] and [23].
This paper investigates the directionally transient situation. That is, we assume that there exists a vector û ∈ Z

d

such that

P0{Xn · û → ∞} = 1. (1.1)

The key moment assumption (M) below is also expressed in terms of û so this vector needs to be fixed for the rest of
the paper. There is no essential harm in assuming û ∈ Z

d and this is convenient. Appendix B shows that at the expense
of a larger moment, an arbitrary û can be replaced by an integer vector û.

The transience assumption provides regeneration times, first defined and studied in the multidimensional setting
by Sznitman and Zerner [22]. As a function of the path X0,∞ regeneration time τ1 is the first time at which

sup
n<τ1

Xn · û < Xτ1 · û = inf
n≥τ1

Xn · û. (1.2)

The benefit here is that the past and the future of the walk lie in separate half-spaces. Transience (1.1) is equivalent to
P0(τ1 < ∞) = 1 (Proposition 1.2 in [22]).

To be precise, [22] is written under assumptions of uniform ellipticity and nearest-neighbor jumps. In an i.i.d.
environment many properties established for uniformly elliptic nearest-neighbor walks extend immediately to walks
with bounded steps without ellipticity assumptions, the above-mentioned equivalence among them. In such cases we
treat the point simply as having been established in earlier literature.

In addition to the product form of P, the following three assumptions are used in this paper: a high moment (M)
on τ1, bounded steps (S), and some regularity (R).

Hypothesis (M). E0(τ
p0
1 ) < ∞ for some p0 > 176d .

Hypothesis (S). There exists a finite, deterministic, positive constant r0 such that P{π0,z = 0} = 1 whenever |z| > r0.

Hypothesis (R). Let J = {z: Eπ0,z > 0} be the set of admissible steps under P. Then J �⊂ Ru for all u ∈ R
d , and

P{∃z: π0,0 + π0,z = 1} < 1. (1.3)

The bound on p0 in Hypothesis (M) is of course meaningless and only indicates that our result is true if p0 is large
enough. We have not sought to tighten the exponent because in any case the final bound would not be small with
our current arguments. After the theorem we return to discuss the hypotheses further. These assumptions are strong
enough to imply a law of large numbers: there exists a velocity v �= 0 such that

P0

{
lim

n→∞n−1Xn = v
}

= 1. (1.4)

Representations for v are given in (2.6) and Lemma 5.1. Define the (approximately) centered and diffusively scaled
process

Bn(t) = X[nt] − [nt]v√
n

. (1.5)

As usual [x] = max{n ∈ Z: n ≤ x} is the integer part of a real x. Let DRd [0,∞) be the standard Skorohod space of
R

d -valued cadlag paths (see [8] for the basics). Let Qω
n = P ω

0 (Bn ∈ ·) denote the quenched distribution of the process
Bn on DRd [0,∞).

The result of this paper concerns the limit of the process Bn as n → ∞. As expected, the limit process is a Brownian
motion with correlated coordinates. For a symmetric, nonnegative definite d × d matrix D, a Brownian motion with
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diffusion matrix D is the Rd -valued process {B(t): t ≥ 0} with continuous paths, independent increments, and such
that for s < t the d-vector B(t)−B(s) has Gaussian distribution with mean zero and covariance matrix (t − s)D. The
matrix D is degenerate in direction u ∈ R

d if utDu = 0. Equivalently, u · B(t) = 0 almost surely.
Here is the main result.

Theorem 1.1. Let d ≥ 2 and consider a random walk in an i.i.d. product random environment that satisfies tran-
sience (1.1), moment assumption (M) on the regeneration time, bounded step-size hypothesis (S), and the regularity
required by (R). Then for P-almost every ω distributions Qω

n converge weakly on DRd [0,∞) to the distribution of
a Brownian motion with a diffusion matrix D that is independent of ω. utDu = 0 iff u is orthogonal to the span of
{x − y: E(π0x)E(π0y) > 0}.

Equation (2.7) gives the expression for the diffusion matrix D, familiar for example from [18].
We turn to a discussion of the hypotheses. Obviously (S) is only for technical convenience, while (M) and (R) are

the serious assumptions.
Moment assumption (M) is difficult to check. Yet it is a sensible hypothesis because it is known to follow from

many concrete assumptions.
A RWRE is called non-nestling if for some δ > 0

P

{∑
z∈Zd

z · ûπ0,z ≥ δ

}
= 1. (1.6)

This terminology was introduced by Zerner [24]. Together with (S), non-nestling implies even uniform quenched
exponential moment bounds on the regeneration times. See Lemma 3.1 in [14].

Most work on RWRE takes as standing assumptions that π0,z is supported by the 2d nearest neighbors of the origin,
and uniform ellipticity: for some κ > 0,

P{π0,e ≥ κ} = 1 for all unit vectors e. (1.7)

Nearest-neighbor jumps with uniform ellipticity of course imply Hypotheses (S) and (R). In the uniformly elliptic
case, the moment bound (M) on τ1 follows from the easily testable condition (see [19])

E

[(∑
z∈Zd

z · ûπ0,z

)+]
> κ−1

E

[(∑
z∈Zd

z · ûπ0,z

)−]
.

A more general condition that implies Hypothesis (M) is Sznitman’s condition (T′), see Proposition 3.1 in [19].
Condition (T′) cannot be checked by examining the environment ω0 at the origin. But it is still an “effective” condition
in the sense that it can be checked by examining the environment in finite cubes. Moreover, in condition (T′) the
direction vector û can be replaced by a vector in a neighborhood. Consequently the vector can be taken rational, and
then also integral. Thus our assumption that û ∈ Zd entails no loss in generality.

Hypothesis (M) is further justified by a currently accepted assumption about uniformly elliptic RWRE. Namely, it
is believed that once a uniformly elliptic walk is ballistic (v �= 0) the regeneration time has all moments (see [19]).
Thus conditional on this supposition, the present work settles the question of quenched CLT for uniformly elliptic,
multidimensional ballistic RWRE with bounded steps.

Hypotheses (M) and (S) are used throughout the paper. Hypothesis (R) on the other hand makes only one important
appearance: to guarantee the nondegeneracy of a certain Markov chain (Lemma 7.13). Yet it is Hypothesis (R) that is
actually necessary for the quenched CLT.

Hypothesis (R) can be violated in two ways: (a) the walk lies in a one-dimensional linear subspace, or (b) as-
sumption (1.3) is false in which case the walk follows a sequence of steps completely determined by ω and the only
quenched randomness is in the time taken to leave a site (call this the “restricted path” case). In case (b) the walk is
bounded if there is a chance that the walk intersects itself. This is ruled out by transience (1.1).

In the unbounded situation in case (b) the quenched CLT breaks down because the scaled variable n−1/2(Xn − nv)

is not even tight under P ω
0 . There is still a quenched CLT for the walk centered at its quenched mean, that is, for the
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process B̃n(t) = n−1/2{X[nt] − Eω
0 (X[nt])}. Furthermore, the quenched mean itself satisfies a CLT. Process Bn does

satisfy an averaged CLT, which comes from the combination of the diffusive fluctuations of B̃n and of the quenched
mean. (See [13] for these results.) The same situation should hold in one dimension also, and has been proved in some
cases [10,13,23].

Next a brief discussion of the current situation in this area of probability and the place of the present work in this
context. Several themes appear in recent work on quenched CLT’s for multidimensional RWRE.

(i) Small perturbations of classical random walk have been studied by many authors. The most significant re-
sults include the early work of Bricmont and Kupiainen [4] and more recently Sznitman and Zeitouni [21] for small
perturbations of Brownian motion in dimension d ≥ 3.

(ii) An averaged CLT can be turned into a quenched CLT by bounding the variances of quenched expectations of
test functions on the path space. This idea was applied by Bolthausen and Sznitman [2] to nearest-neighbor, uniformly
elliptic non-nestling walks in dimension d ≥ 4 under a small noise assumption. Berger and Zeitouni [1] developed
the approach further to cover more general ballistic walks without the small noise assumption, but still in dimension
d ≥ 4.

After the appearance of the first version of the present paper, Berger and Zeitouni combined some ideas from our
Section 6 with their own approach to bounding intersections. This resulted in an alternative proof of Theorem 1.1 in
the uniformly elliptic nearest-neighbor case that appeared in a revised version of article [1]. The proof in [1] has the
virtue that it does not require the ergodic invariant distribution that we utilize to reduce the proof to a bound on the
variance of the quenched mean.

(iii) Our approach is based on the subdiffusivity of the quenched mean of the walk. That is, we show that the
variance of Eω

0 (Xn) is of order n2α for some α < 1/2. This is achieved through intersection bounds. We introduced
this line of reasoning in [12], subsequently applied it to walks with a forbidden direction in [15], and recently to
non-nestling walks in [14]. Theorem 2.1 summarizes the general principle for application in the present paper.

It is common in this field to look for an invariant distribution P∞ for the environment process that is mutually
absolutely continuous with the original P, at least on the part of the space Ω to which the drift points. Instead of
absolute continuity, we use bounds on the variation distance between P∞ and P. This distance decays polynomially
in direction û, at a rate that depends on the strength of the moment assumption (M). From this we also get an ergodic
theorem for functions of the environment that are local in direction −û. This in turn would give the absolute continuity
if it were needed for the paper.

The remainder of the paper is for the proofs. The next section collects preliminary material and finishes with an
outline of the rest of the paper.

2. Preliminaries for the proof

Recall that we assume û ∈ Z
d . This is convenient because the lattice Z

d decomposes into levels identified by the
integer value x · û. See Appendix B for the step from a general û to an integer vector û.

Let us summarize notation for the reader’s convenience. Constants whose exact values are not important and
can change from line to line are often denoted by C. The set of nonnegative integers is N = {0,1,2, . . .}. Vec-
tors and sequences are abbreviated xm,n = (xm, xm+1, . . . , xn) and xm,∞ = (xm, xm+1, xm+2, . . .). Similar notation
is used for finite and infinite random paths: Xm,n = (Xm,Xm+1, . . . ,Xn) and Xm,∞ = (Xm,Xm+1,Xm+2, . . .).
X[0,n] = {Xk: 0 ≤ k ≤ n} denotes the set of sites visited by the walk. Dt is the transpose of a vector or matrix D.
An element of R

d is regarded as a d × 1 column vector. The left shift on the path space (Zd)N is (θkx0,∞)n = xn+k .
| · | denotes Euclidean norm on R

d .
E, E0, and Eω

0 denote expectations under, respectively, P, P0, and P ω
0 . P∞ will denote an invariant measure on

Ω , with expectation E∞. Abbreviate P ∞
0 (·) = E∞P ω

0 (·) and E∞
0 (·) = E∞Eω

0 (·) to indicate that the environment of
a quenched expectation is averaged under P∞. A family of σ -algebras on Ω that in a sense look towards the future is
defined by S� = σ {ωx : x · û ≥ �}.

Define the drift

D(ω) = Eω
0 [X1] =

∑
z

zπ0,z(ω).
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The environment process is the Markov chain on Ω with transition kernel

Π(ω,A) = P ω
0 {TX1ω ∈ A}.

The proof of the quenched CLT Theorem 1.1 utilizes crucially the environment process and its invariant distrib-
ution. A preliminary part of the proof is summarized in the next theorem quoted from [12]. This Theorem 2.1 was
proved by applying the arguments of Maxwell and Woodroofe [11] and Derriennic and Lin [6] to the environment
process.

Theorem 2.1 [12]. Let d ≥ 1. Suppose the probability measure P∞ on (Ω,S) is invariant and ergodic for the Markov
transition Π . Assume that

∑
z |z|2E∞[π0,z] < ∞ and that there exists an α < 1/2 such that as n → ∞

E∞
[∣∣Eω

0 (Xn) − nE∞(D)
∣∣2]= O

(
n2α
)
. (2.1)

Then as n → ∞ the following weak limit happens for P∞-a.e. ω: distributions Qω
n converge weakly on the space

DRd [0,∞) to the distribution of a Brownian motion with a symmetric, non-negative definite diffusion matrix D that
is independent of ω.

Proceeding with further definitions, we already defined above the first Sznitman–Zerner regeneration time τ1 as
the first time at which

sup
n<τ1

Xn · û < Xτ1 · û = inf
n≥τ1

Xn · û.

The first backtracking time is defined by

β = inf{n ≥ 0: Xn · û < X0 · û}. (2.2)

P0-a.s. transience in direction û guarantees that

P0(β = ∞) > 0. (2.3)

Otherwise the walk would return below level 0 infinitely often (see Proposition 1.2 in [22]). Furthermore, a walk
transient in direction û will reach infinitely many levels. At each new level it has a fresh chance to regenerate. This
implies that τ1 is P0-a.s. finite (Proposition 1.2. in [22]). Consequently we can iterate to define τ0 = 0, and for k ≥ 1

τk = τk−1 + τ1 ◦ θτk−1 .

For i.i.d. environments Sznitman and Zerner [22] proved that the regeneration slabs

Sk = (τk+1 − τk, (Xτk+n − Xτk
)0≤n≤τk+1−τk

,
{
ωXτk

+z: 0 ≤ z · û < (Xτk+1 − Xτk
) · û}) (2.4)

are i.i.d. for k ≥ 1, each distributed as the initial slab (τ1, (Xn)0≤n≤τ1 , {ωz: 0 ≤ z · û < Xτ1 · û}) under P0(·|β = ∞).
Strictly speaking, uniform ellipticity and nearest-neighbor jumps were standing assumptions in [22], but these as-
sumptions are not needed for the proof of the i.i.d. structure. From this and assumptions (1.1) and (M) it then follows
for k ≥ 1 that

E0
[
(τk+1 − τk)

p0
]= E0

[
τ

p0
1 |β = ∞]≤ E0(τ

p0
1 )

P0(β = ∞)
< ∞. (2.5)

From the renewal structure and moment estimates a law of large numbers (1.4) and an averaged functional central
limit theorem follow, along the lines of Theorem 2.3 in [22] and Theorem 4.1 in [18]. These references treat walks that
satisfy Kalikow’s condition, less general than Hypothesis (M). But the proofs only rely on the existence of moments
of τ1, now ensured by Hypothesis (M). The limiting velocity for the law of large numbers is

v = E0[Xτ1 |β = ∞]
E0[τ1|β = ∞] . (2.6)
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The averaged CLT states that the distributions P0{Bn ∈ ·} converge to the distribution of a Brownian motion with
diffusion matrix

D = E0[(Xτ1 − τ1v)(Xτ1 − τ1v)t |β = ∞]
E0[τ1|β = ∞] . (2.7)

Once we know that the P-a.s. quenched CLT holds with a constant diffusion matrix, this diffusion matrix must be
the same D as for the averaged CLT. We prove here the degeneracy statement of Theorem 1.1.

Lemma 2.1. Define D by (2.7) and let u ∈ Rd . Then utDu = 0 iff u is orthogonal to the span of {x − y:
E[π0,x]E[π0,y] > 0}.

Proof. The argument is a minor embellishment of that given for a similar degeneracy statement on pp. 123–124 of
[13] for the forbidden-direction case where π0,z is supported by z · û ≥ 0. We spell out enough of the argument to
show how to adapt that proof to the present case.

Again, the intermediate step is to show that utDu = 0 iff u is orthogonal to the span of {x − v: E[π0,x] > 0}. The
argument from orthogonality to utDu = 0 goes as in [13], p. 124.

Suppose utDu = 0 which is the same as

P0{Xτ1 · u = τ1v · u|β = ∞} = 1. (2.8)

Take x such that Eπ0,x > 0. Several cases need to be considered.
If x · û ≥ 0 but x �= 0 a small modification of the argument in [13], p. 123, works to show that x · u = v · u.
Suppose x · û < 0. Then take y such that y · û > 0 and Eπ0,y > 0. Such y must exist by the transcience assumption

(1.1).
If y is collinear with x and there is no other noncollinear vector y with y · û > 0, then, since the one-dimensional

case is excluded by Hypothesis (R), there must exist another vector z that is not collinear with x or y and such that
z · û ≤ 0 and Eπ0,z > 0.

Now for any n ≥ 1, let mn be the positive integer such that

(mny + 2z + nx) · û ≥ 0 but
(
(mn − 1)y + 2z + nx

) · û < 0.

Let the walk first take mn y-steps, followed by one z-step, then n x-steps, followed by another z-step, again mn

y-steps, and then regenerate (meaning that β ◦ θ2mn+n+2 = ∞). This path is non-self-intersecting and, by the mini-
mality of mn, backtracks enough to ensure that the first regeneration time is τ1 = 2mn + n + 2. Hence

P0{Xτ1 = 2mny + nx + 2z, τ1 = 2mn + n + 2|β = ∞} ≥ (Eπ0,y)
2mn(Eπ0,x)

n(Eπ0,z)
2 > 0

and then by (2.8)

(nx + 2mny + 2z) · u = (n + 2mn + 2)v · u. (2.9)

Since y · û > 0 we have already shown that y · u = v · u. Taking n ↗ ∞ implies x · u = v · u.
If y is not collinear with x, repeat the above argument, but without using any z-steps and hence with simply n = 1.
When x = 0 making the walk take an extra step of size 0 along the path, an almost identical argument to the above

can be repeated. Since we have shown that y ·u = v ·u for any y �= 0 with Eπ0,y > 0, this allows to also conclude that
0 · u = v · u.

Given utDu = 0, we have established x · u = v · u for any x with Eπ0,x > 0. Now follow the proof in [13],
p. 123–124, to its conclusion. �

Here is an outline of the proof of Theorem 1.1. It all goes via Theorem 2.1.

(i) After some basic estimates in Section 3, we prove in Section 4 the existence of the ergodic invariant distrib-
ution P∞ required for Theorem 2.1. P∞ is not convenient to work with so we still need to do computations with P.



Quenched CLT for RWRE 379

For this purpose Section 4 proves that in the direction û the measures P∞ and P come polynomially close in variation
distance and that the environment process satisfies a P0-a.s. ergodic theorem. In Section 5 we show that P∞ and P

are interchangeable both in the hypotheses that need to be checked and in the conclusions obtained. In particular, the
P∞-a.s. quenched CLT coming from Theorem 2.1 holds also P-a.s. Then we know that the diffusion matrix D is the
one in (2.7).

The bulk of the work goes towards verifying condition (2.1), but under P instead of P∞. There are two main stages
to this argument.

(ii) By a decomposition into martingale increments the proof of (2.1) reduces to bounding the number of common
points of two independent walks in a common environment (Section 6).

(iii) The intersections are controlled by introducing levels at which both walks regenerate. These joint regeneration
levels are reached fast enough and the relative positions of the walks from one joint regeneration level to the next are a
Markov chain. When this Markov chain drifts away from the origin it can be approximated well enough by a symmetric
random walk. This approximation enables us to control the growth of the Green function of the Markov chain, and
thereby the number of common points. This is in Section 7 and in Appendix A devoted to the Green function bound.

Appendix B shows that the assumption that û has integer coordinates entails no loss of generality if the moment
required is doubled. The proof given in Appendix B is from Berger and Zeitouni [1]. Appendix C contains a proof
(Lemma 7.13) that requires a systematic enumeration of a large number of cases.

The end result of the development is the bound

E
[∣∣Eω

0 (Xn) − E0(Xn)
∣∣2]= O

(
n2α
)

(2.10)

on the variance of the quenched mean, for some α ∈ (1/4,1/2). The parameter α can be taken arbitrarily close to 1/4
if the exponent p0 in (M) can be taken arbitrarily large. The same is also true under the invariant measure P∞, namely
(2.1) is valid for some α ∈ (1/4,1/2). Based on the behavior of the Green function of a symmetric random walk,
optimal orders in (2.10) should be n1/2 in d = 2, logn in d = 3, and constant in d ≥ 4. Getting an optimal bound in
each dimension is not a present goal, so in the end we bound all dimensions with the two-dimensional case.

The requirement p0 > 176d of Hypothesis (M) is derived from the bounds established along the way. There is
room in the estimates for us to take one simple and lax route to a sufficient bound. Start from (A.3) with p1 = p2 =
p0/6 as dictated by Proposition 7.10 and (7.29). Taking p0 = 220 gives the bound Cn22/32. Feed this bound into
Proposition 6.1 where it sets ᾱ = 11/32. Next in (6.3) take α − ᾱ = 1/8 to get the requirement p0 > 176d . Finally in
(5.3) take α − ᾱ = 1/32 which places the demand p0 > 160d . With d ≥ 2 all are satisfied with p0 > 176d . (Actually
11/32 + 1/8 + 1/32 = 1/2 but since the inequalities are strict there is room to keep α strictly below 1/2.)

Sections 3–6 are valid for all dimensions d ≥ 1, but Section 7 requires d ≥ 2.

3. Basic estimates for ballistic RWRE

In addition to the regeneration times already defined, let

Jm = inf{i ≥ 0: τi ≥ m}.

Lemma 3.1. Let P be an i.i.d. product measure and satisfy Hypotheses (S) and (M). We have these bounds:

E0
[
τ

p0
�

]≤ C�p0 for all � ≥ 1, (3.1)

sup
m≥0

E0
[|τJm − m|p]≤ C for 1 ≤ p ≤ p0 − 1, (3.2)

sup
m≥0

E0

[∣∣∣ inf
n≥0

(Xm+n − Xm) · û
∣∣∣p]≤ C for 1 ≤ p ≤ p0 − 1, (3.3)

sup
m≥0

P0
{
(Xn+m − Xm) · û ≤ √

n
}≤ Cn−p for 1 ≤ p ≤ p0 − 1

2
. (3.4)



380 F. Rassoul-Agha and T. Seppäläinen

Proof. Equation (3.1) follows from (2.5) and Jensen’s inequality.
The proof of (3.2) comes by a renewal argument. Let Yj = τj+1 −τj for j ≥ 1 and V0 = 0, Vm = Y1 +· · ·+Ym. The

forward recurrence time of this pure renewal process is gn = min{k ≥ 0: n + k ∈ {Vm}}. A decomposition according
to the value of τ1 gives

τJn − n = (τ1 − n)+ +
n−1∑
k=1

1{τ1 = k}gn−k. (3.5)

First we bound the moment of gn. For this write a renewal equation

gn = (Y1 − n)+ +
n−1∑
k=1

1{Y1 = k}gn−k ◦ θ,

where θ shifts the sequence {Yk} so that gn−k ◦ θ is independent of Y1. Only one term on the right can be nonzero, so
for any p ≥ 1

g
p
n = ((Y1 − n)+

)p +
n−1∑
k=1

1{Y1 = k}(gn−k ◦ θ)p.

Set z(n) = E0[((Y1 − n)+)p]. Assumption p ≤ p0 − 1 and (2.5) give E0[Yp+1
1 ] < ∞ which implies

∑
z(n) < ∞.

Taking expectations and using independence gives the equation

E0g
p
n = z(n) +

n−1∑
k=1

P0{Y1 = k}E0g
p
n−k.

Induction on n shows that

E0g
p
n ≤

n∑
k=1

z(k) ≤ C for all n.

Raise (3.5) to the power p, take expectations, use Hypothesis (M), and substitute this last bound in there to complete
the proof of (3.2).

Equation (3.3) follows readily. Since the walk does not backtrack after time τJm and steps are bounded by Hypoth-
esis (S),∣∣∣ inf

n≥0
(Xm+n − Xm) · û

∣∣∣= ∣∣∣ inf
n: m≤n≤τJm

(Xn − Xm) · û
∣∣∣≤ r0|û|(τJm − m).

Apply (3.2) to this last quantity.
Lastly we show (3.4). For a < b define

Va,b =
∑
i≥1

1{a < τi < b}.

Then (Xm+n − Xm) · û ≤ √
n implies Vm,m+n ≤ √

n. Recall the i.i.d. structure of slabs (Sk)k≥1 defined in (2.4). For
the first inequality note that either there are no regeneration times in [m,m + n), or there is one and we restart at the
first one.

P0
{
Vm,m+n ≤ √

n
}

≤ P0{τJm − m ≥ n} + P0
{
V0,n ≤ √

n|β = ∞}+ n−1∑
k=1

P0{τJm − m = k}P0
{
V0,n−k ≤ √

n − 1|β = ∞}
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≤ P0{τJm − m ≥ n} + P0{τ[√n]+1 ≥ n|β = ∞} + C

n−1∑
k=1

k−2pP0{τ[√n] ≥ n − k|β = ∞}

≤ C

np
+ Cnp

n−1∑
k=1

1

k2p(n − k)2p
≤ C

np
.

We used (3.2) in the second inequality and then again in the third inequality, along with (3.1). For the last inequality
split the sum according to k ≤ n/2 and k > n/2, in the former case bound 1/(n − k) by 2/n, and in the latter case
bound 1/k by 2/n. �

4. Invariant measure and ergodicity

For integers � define the σ -algebras S� = σ {ωx : x · û ≥ �} on Ω . Denote the restriction of the measure P to the
σ -algebra S� by P|S�

. In this section we prove the next two theorems. The variation distance of two probability
measures is dVar(μ, ν) = sup{μ(A) − ν(A)} with the supremum taken over measurable sets A. E∞ denotes expec-
tation under the invariant measure P∞ whose existence is established below. The corresponding joint measure on
environments and paths is denoted by P ∞

0 (dω,dx0,∞) = P∞(dω)P ω
0 (dx0,∞) with expectation E∞

0 .

Theorem 4.1. Assume P is product and satisfies Hypotheses (S) and (M), with p0 > 4d + 1. Then there exists a
probability measure P∞ on Ω with these properties.

(a) Hypothesis (S) holds P∞-almost surely.
(b) P∞ is invariant and ergodic for the Markov transition kernel Π .
(c) For all � ≥ 1

dVar(P∞|S�
,P|S�

) ≤ C�1−p0 . (4.1)

(d) Under P ∞
0 the walk has these properties:

(i) For 1 ≤ p ≤ p0 − 1

E∞
0

[∣∣∣ inf
n≥0

Xn · û
∣∣∣p]≤ C. (4.2)

(ii) For 1 ≤ p ≤ (p0 − 1)/2 and n ≥ 1,

P ∞
0

{
Xn · û ≤ n1/2}≤ Cn−p. (4.3)

More could be said about P∞. For example, following [22], one can show that P∞ comes as a limit, and has a
renewal-type representation that involves the regeneration times. But we cover only properties needed in the sequel.
Along the way we establish this ergodic theorem under the original environment measure.

Theorem 4.2. Assumptions as in the above Theorem 4.1. Let Ψ be a bounded S−a-measurable function on Ω , for
some 0 < a < ∞. Then

lim
n→∞n−1

n−1∑
j=0

Ψ (TXj
ω) = E∞Ψ P0-almost surely. (4.4)

Theorem 4.2 tells us that there is a unique invariant P∞ in a natural relationship to P, and also gives the absolute
continuity P∞|S−a

� P|S−a
. Limit (4.4) cannot hold for all bounded measurable Ψ on Ω because this would imply

the absolute continuity P∞ � P on the entire space Ω . A counterexample that satisfies (M) and (S) but where the
quenched walk is degenerate was given by Bolthausen and Sznitman [2], Proposition 1.5. Whether regularity assump-
tion (R) or ellipticity will make a difference here is not presently clear. For the simpler case of space–time walks
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(see description of model in [12]) with nondegenerate P ω
0 absolute continuity P∞ � P does hold on the entire space.

Theorem 3.1 in [2] proves this for nearest-neighbor jumps with some weak ellipticity. The general case is no harder.

Proof of Theorems 4.1 and 4.2. Let Pn(A) = P0{TXnω ∈ A}. A computation shows that

fn(ω) = dPn

dP
(ω) =

∑
x

P ω
x {Xn = 0}.

By Hypothesis (S) we can replace the state space Ω = P Z
d

with the compact space Ω0 = P Z
d

0 , where

P0 = {(pz) ∈ P : pz = 0 if |z| > r0
}
. (4.5)

Compactness gives a subsequence {nj } along which nj
−1∑nj

m=1 Pm converges weakly to a probability measure
P∞ on Ω0. Hypothesis (S) transfers to P∞ by virtue of having been included in the state space Ω0. We have verified
part (a) of Theorem 4.1.

Due to Hypothesis (S) Π is Feller-continuous. Consequently the weak limit nj
−1∑nj

m=1 Pm → P∞ together with
Pn+1 = PnΠ implies the Π -invariance of P∞.

Next we derive the bound on the variation distance. On metric spaces total variation distance can be characterized
in terms of continuous functions:

dVar(μ, ν) = 1

2
sup

{∫
f dμ −

∫
f dν: f continuous, sup |f | ≤ 1

}
.

This makes dVar(μ, ν) lower semicontinuous which we shall find convenient below.
Fix � > 0. Then

dPn|S�

dP|S�

= E

[∑
x

P ω
x

{
Xn = 0,max

j≤n
Xj · û ≤ �

2

} ∣∣∣S�

]

+
∑
x

E

[
P ω

x

{
Xn = 0,max

j≤n
Xj · û >

�

2

} ∣∣∣S�

]
. (4.6)

The L1(P)-norm of the second term is

∑
x

Px

{
Xn = 0,max

j≤n
Xj · û >

�

2

}
= P0

{
max
j≤n

Xj · û > Xn · û + �

2

}
≡ In,�.

The integrand in the first term on the right-hand side of (4.6) is measurable with respect to σ(ωx : x · û ≤ �/2) and
therefore independent of S�. So this term is equal to the nonrandom constant

∑
x

Px

{
Xn = 0,max

j≤n
Xj · û ≤ �

2

}

= 1 − P0

{
max
j≤n

Xj · û > Xn · û + �

2

}
= 1 − In,�.

Altogether,

dVar(Pn|S�
,P|S�

) ≤ 1

2

∫ ∣∣∣∣dPn|S�

dP|S�

− 1

∣∣∣∣dP ≤ In,�.
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Now write

1

n

n∑
k=1

Ik,� = 1

n

n∑
k=1

P0

{
max
j≤k

Xj · û > Xk · û + �

2

}

≤ 1

n
E0

[
τ1∧n∑
k=1

1

{
max
j≤k

Xj · û > Xk · û + �

2

}]
+ 1

n

n∑
k=2

E0

[
(τk − τk−1)1

{
Xτk

· û − Xτk−1 · û >
�

2

}]

≤ n−1E0[τ1 ∧ n] + n − 1

n
E0

[
τ11

{
τ1 >

�

2r0

} ∣∣∣ β = ∞
]

≤ Cn−1 + C�1−p0 .

The last inequality came from Hypothesis (M) and Hölder’s inequality. Let n → ∞ along the relevant subsequence
and use lower semicontinuity and convexity of the variation distance. This proves part (c).

Concerning backtracking: notice first that due to (3.3) we have

Ek

[
Eω

0

(∣∣∣ inf
n≥0

Xn · û
∣∣∣p)]= E0

[
E

TXk
ω

0

(∣∣∣ inf
n≥0

Xn · û
∣∣∣p)]= E0

[∣∣∣ inf
n≥0

(Xn+k − Xk) · û
∣∣∣p]≤ Cp.

Since Eω
0 (| inf0≤n≤N Xn · û|p) is a continuous function of ω, the definition of P∞ along with the above estimate and

monotone convergence imply (4.2). (e.i) has been proved.
Write once again, using (3.4)

Ek

[
P ω

0

{
Xn · û ≤ √

n
}]= E0

[
P

TXk
ω

0

{
Xn · û ≤ √

n
}]= P0

{
(Xn+k − Xk) · û ≤ √

n
}≤ Cn−p.

Since P ω
0 {Xn · û ≤ √

n} is a continuous function of ω, the definition of P∞ along with the above estimate imply (4.3)
and proves (e.ii).

As the last point we prove the ergodicity. Let Ψ be a bounded local function on Ω . It suffices to prove that for
some constant b

lim
n→∞E∞

0

∣∣∣∣∣n−1
n−1∑
j=0

Ψ (TXj
ω) − b

∣∣∣∣∣= 0. (4.7)

By an approximation it follows from this that for all F ∈ L1(P∞)

n−1
n−1∑
j=0

ΠjF(ω) → E∞F in L1(P∞). (4.8)

By standard theory (Section IV.2 in [16]) this is equivalent to ergodicity of P∞ for the transition Π .
We combine the proof of Theorem 4.2 with the proof of (4.7). For this purpose let a be a positive integer and Ψ a

bounded S−a+1-measurable function. Let

ϕi =
τa(i+1)−1∑

j=τai

Ψ (TXj
ω).

From the i.i.d. regeneration slabs and the moment bound (3.1) follows the limit

lim
m→∞m−1

τam−1∑
j=0

Ψ (TXj
ω) = lim

m→∞m−1
m−1∑
i=0

ϕi = b0 P0-almost surely, (4.9)

where the constant b0 is defined by the limit.



384 F. Rassoul-Agha and T. Seppäläinen

To justify limit (4.9) more explicitly, recall the definition of regeneration slabs given in (2.4). Define a function Φ

of the regeneration slabs by

Φ(S0, S1, S2, . . .) =
τ2a−1∑
j=τa

Ψ (TXj
ω).

Since each regeneration slab has thickness in û-direction at least 1, the Ψ -terms in the sum do not read the envi-
ronments below level zero and consequently the sum is a function of (S0, S1, S2, . . .). Next one can check for k ≥ 1
that

Φ(Sa(k−1), Sa(k−1)+1, Sa(k−1)+2, . . .)

=
τ2a(Xτa(k−1)+·−Xτa(k−1)

)−1∑
j=τa(Xτa(k−1)+·−Xτa(k−1)

)

Ψ
(
TXτa(k−1)+j −Xτa(k−1)

(TXτa(k−1)
ω)
)= ϕk.

Now the sum of ϕ-terms in (4.9) can be decomposed into

ϕ0 + ϕ1 +
m−2∑
k=1

Φ(Sak, Sak+1, Sak+2, . . .).

The limit (4.9) follows because the slabs (Sk)k≥1 are i.i.d. and the finite initial terms ϕ0 + ϕ1 are eliminated by the
m−1 factor.

Let αn = inf{k: τak ≥ n}. Bound (3.1) implies that n−1(τa(αn−1) − τaαn) → 0 P0-almost surely. Consequently (4.9)
yields the next limit, for another constant b:

lim
n→∞n−1

n−1∑
j=0

Ψ (TXj
ω) = b P0-almost surely. (4.10)

By boundedness this limit is valid also in L1(P0) and the initial point of the walk is immaterial by shift-invariance
of P. Let � > 0 and abbreviate

Gn,x(ω) = Eω
x

[∣∣∣∣∣n−1
n−1∑
j=0

Ψ (TXj
ω) − b

∣∣∣∣∣1
{

inf
j≥0

Xj · û ≥ X0 · û − �1/2

2

}]
.

Let

I = {x ∈ Z
d : x · û ≥ �1/2, |x| ≤ r0�

}
.

If � is large enough relative to a, then for x ∈ I the function Gn,x is S�1/2/3-measurable. Use the bound (4.1) on the
variation distance and the fact that the functions Gn,x(ω) are uniformly bounded over all x,n,ω.

P∞

{∑
x∈I

P ω
0 [X� = x]Gn,x(ω) ≥ ε1

}
≤
∑
x∈I

P∞
{
Gn,x(ω) ≥ ε1

C�d

}
≤ C�dε−1

1

∑
x∈I

E∞Gn,x ≤ C�dε−1
1

∑
x∈I

EGn,x + C�2dε−1
1 �(1−p0)/2.

By (4.10) EGn,x → 0 for any fixed x. Thus from above we get for any fixed �,

limn→∞ E∞
0

[
1{X� ∈ I}Gn,X�

]≤ ε1 + C�2dε−1
1 �(1−p0)/2.
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The reader should bear in mind that the constant C is changing from line to line. Finally, take p ≤ (p0 − 1)/2 and use
(4.2) and (4.3) to write

limn→∞ E∞
0

∣∣∣∣∣n−1
n−1∑
j=0

Ψ (TXj
ω) − b

∣∣∣∣∣
≤ limn→∞ E∞

0

[
1{X� ∈ I}

∣∣∣∣∣n−1
n+�−1∑
j=�

Ψ (TXj
ω) − b

∣∣∣∣∣1
{

inf
j≥�

Xj · û ≥ X� · û − �1/2

2

}]

+ CP ∞
0 {X� /∈ I} + CP ∞

0

{
inf
j≥�

Xj · û < X� · û − �1/2

2

}
≤ limn→∞ E∞

0

[
1{X� ∈ I}Gn,X�

]
+ CP ∞

0

{
X� · û < �1/2}+ CP ∞

0

{
inf
j≥0

Xj · û < −�1/2

2

}
≤ ε1 + C�2dε−1

1 �(1−p0)/2 + C�−p + C�−p/2.

Consequently, if we first pick ε1 small enough then � large, we will have shown (4.7). For the second term on the last
line we need p0 > 4d + 1. Ergodicity of P∞ has been shown. This concludes the proof of Theorem 4.1.

Theorem 4.2 has also been established. It follows from the combination of (4.7) and (4.10). �

5. Change of measure

There are several stages in the proof where we need to check that a desired conclusion is not affected by choice
between P and P∞. We collect all instances of such transfers in this section. The standing assumptions of this section
are that P is an i.i.d. product measure that satisfies Hypotheses (M) and (S), and that P∞ is the measure given by
Theorem 4.1. We show first that P∞ can be replaced with P in the key condition (2.1) of Theorem 2.1.

Lemma 5.1. The velocity v defined by (2.6) satisfies v = E∞(D). There exists a constant C such that∣∣E0(Xn) − nE∞(D)
∣∣≤ C for all n ≥ 1. (5.1)

Proof. We start by showing v = E∞(D). The finite step-size condition in the definition of (4.5) of P0 makes the
function D(ω) bounded and continuous on Ω0. By the Cesàro definition of P∞,

E∞(D) = lim
j→∞

1

nj

nj −1∑
k=0

Ek(D) = lim
j→∞

1

nj

nj −1∑
k=0

E0
[
D(TXk

ω)
]
.

Hypothesis (S) implies that the law of large numbers n−1Xn → v holds also in L1(P0). From this and the Markov
property

v = lim
n→∞

1

n

n−1∑
k=0

E0[Xk+1 − Xk] = lim
n→∞

1

n

n−1∑
k=0

E0
[
D(TXk

ω)
]
.

We have proved v = E∞(D).
The variables (Xτj+1 − Xτj

, τj+1 − τj )j≥1 are i.i.d. with sufficient moments by Hypotheses (M) and (S). With
αn = inf{j ≥ 1: τj − τ1 ≥ n} Wald’s identity gives

E0[Xταn
− Xτ1] = E0[αn]E0[Xτ1 |β = ∞],

E0[ταn − τ1] = E0[αn]E0[τ1|β = ∞].
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Consequently, by the definition (2.6) of v,

E0[Xn] − nv = vE0[ταn − τ1 − n] − E0[Xταn
− Xτ1 − Xn].

The right-hand side is bounded by a constant again by Hypotheses (M) and (S) and by (3.2). �

Proposition 5.2. Assume that there exists an ᾱ < 1/2 such that

E
[∣∣Eω

0 (Xn) − E0(Xn)
∣∣2]= O

(
n2ᾱ
)
. (5.2)

Let α ∈ (ᾱ,1) and assume that

p0 >
5d

α − ᾱ
. (5.3)

Then condition (2.1) is satisfied with α.

Proof. Assumption (5.3) permits us to choose p such that

2d
1 − ᾱ

α − ᾱ
< p ≤ p0 − 1

2
.

Due to the strict inequality above there is room to choose 0 < ε < d−1(α − ᾱ) such that p > 2d + 2ε−1(1 − α). Let
� = nε and j = �2.

By (5.1) assumption (5.2) turns into

E
[∣∣Eω

0 (Xn) − nv
∣∣2]= O

(
n2ᾱ
)
. (5.4)

Define A� = {infn≥0 Xn · û ≥ �}. The next calculation starts with Π -invariance of P∞.

E∞
[∣∣Eω

0 (Xn) − nv
∣∣2]

= E∞
0

[∣∣ETXj
ω

0 (Xn − nv)
∣∣2]

≤ E∞
0

[∣∣ETXj
ω

0 (Xn − nv)
∣∣2,Xj · û > �

]+ 4r2
0n2P ∞

0 {Xj · û ≤ �}

≤ 2E∞
0

[∣∣ETXj
ω

0 (Xn − nv,A−�/2)
∣∣2,Xj · û > �

]
+ 8r2

0 n2E∞
0

[
P

TXj
ω

0

(
Ac

−�/2

)
,Xj · û > �

]+ 4r2
0n2P ∞

0 {Xj · û ≤ �}
≤ 2

∑
x: |x|≤r0j

and x·û>�

E∞
[∣∣ETxω

0 (Xn − nv,A−�/2)
∣∣2]

+ 8r2
0 n2

∑
x: |x|≤r0j

and x·û>�

E∞
[
P

Txω
0

(
Ac

−�/2

)]+ 4r2
0 n2P ∞

0 {Xj · û ≤ �}

(switch from E∞ back to E by (4.1))

≤ 2
∑

x: |x|≤r0j

and x·û>�

E
[∣∣ETxω

0 (Xn − nv,A−�/2)
∣∣2]+ 8r2

0n2
∑

x: |x|≤r0j

and x·û>�

E
[
P

Txω
0

(
Ac

−�/2

)]

+ C(r0j)dr2
0 n2�−p + 4r2

0n2P ∞
0 {Xj · û ≤ �}

≤ 2
∑

x: |x|≤r0j

and x·û>�

E[|Xn − nv|2] + 16r2
0n2

∑
x: |x|≤r0j

and x·û>�

P0
(
Ac

−�/2

)+ C(r0j)dr2
0n2�−p + 4r2

0 n2P ∞
0 {Xj · û ≤ �}
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(use form (5.4) of the assumption; apply (3.3) to P0(A
c
−�/2) and (4.3) to P ∞

0 {Xj · û ≤ �}; recall that j = �2 = n2ε)

≤ Cjdn2ᾱ + Cjdn2�−p + Cn2j−p ≤ C
(
n2ᾱ+2dε + n2dε+2−pε + n2−2pε

)
.

The first two exponents are < 2α by the choice of p and ε, and the last one is less than the second one. �

Once we have verified the assumptions of Theorem 2.1 we have the CLT under P∞-almost every ω. But the goal
is the CLT under P-almost every ω. As the final point of this section we prove the transfer of the central limit theorem
from P∞ to P. This is where we use the ergodic theorem, Theorem 4.2. Let W be the probability distribution of the
Brownian motion with diffusion matrix D.

Lemma 5.3. Suppose the weak convergence Qω
n ⇒ W holds for P∞-almost every ω. Then the same is true for

P-almost every ω.

Proof. It suffices to show that for any δ > 0 and any bounded uniformly continuous F on DRd [0,∞)

lim
n→∞Eω

0

[
F(Bn)

]≤ ∫ F dW + δ P-a.s.

By considering also −F this gives Eω
0 [F(Bn)] → ∫ F dW P-a.s. for each such function. A countable collection of

them determines weak convergence.
Fix such an F and assume |F | ≤ 1. Let c = ∫ F dW and

h(ω) = lim
n→∞Eω

0

[
F(Bn)

]
.

For � > 0 recall the events

A−� =
{

inf
n≥0

Xn · û ≥ −�
}

and define

h�(ω) = lim
n→∞Eω

0

[
F(Bn),A−�

]
and

Ψ�(ω) = 1

{
ω: h̄�(ω) ≤ c + 1

2
δ,P ω

0

(
Ac

−�

)≤ 1

2
δ

}
.

The assumed quenched CLT under P∞ gives P∞{h̄ = c} = 1. Therefore, P∞-a.s.

Ψ�(ω) = 1

{
ω: P ω

0

(
Ac

−�

)≤ 1

2
δ

}
.

From (4.2) we know that if � is fixed large enough, then E∞Ψ� > 0. Since Ψ� is S−�-measurable Theorem 4.2 implies
that

n−1
n∑

j=1

Ψ�(TXj
ω) → E∞Ψ� > 0 P0-a.s.

But {h̄� ≤ c + 1
2δ,P ω

0 (Ac
−�) ≤ 1

2δ} ⊂ {h̄ ≤ c + δ}. We conclude that the stopping time

ζ = inf
{
n ≥ 0: h̄(TXnω) ≤ c + δ

}
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is P0-a.s. finite. From the definitions we now have

limn→∞ E
TXζ

ω

0

[
F(Bn)

]≤ ∫ F dW + δ P0-a.s.

Then by bounded convergence

limn→∞ Eω
0 E

TXζ
ω

0

[
F(Bn)

]≤ ∫ F dW + δ P-a.s.

Since ζ is a finite stopping time, the strong Markov property, the uniform continuity of F and bounded step size
Hypothesis (S) imply

limn→∞ Eω
0

[
F(Bn)

]≤ ∫ F dW + δ P-a.s.

This concludes the proof. �

6. Reduction to path intersections

The preceding sections have reduced the proof of the main result Theorem 1.1 to proving the estimate

E
[∣∣Eω

0 (Xn) − E0(Xn)
∣∣2]= O

(
n2α
)

for some α <
1

2
. (6.1)

The next reduction takes us to the expected number of intersections of the paths of two independent walks X and
X̃ in the same environment. The argument uses a decomposition into martingale differences through an ordering of
lattice sites. This idea for bounding a variance is natural and has been used in RWRE earlier by Bolthausen and
Sznitman [2].

Let P ω
0,0 be the quenched law of the walks (X, X̃) started at (X0, X̃0) = (0,0) and P0,0 = ∫ P ω

0,0P(dω) the averaged
law with expectation operator E0,0. The set of sites visited by a walk is denoted by X[0,n) = {Xk: 0 ≤ k < n} and |A|
is the number of elements in a discrete set A.

Proposition 6.1. Let P be an i.i.d. product measure and satisfy Hypotheses (M) and (S). Assume that there exists an
ᾱ < 1/2 such that

E0,0
[|X[0,n) ∩ X̃[0,n)|

]= O
(
n2ᾱ
)
. (6.2)

Let α ∈ (ᾱ,1/2). Assume

p0 >
22d

α − ᾱ
. (6.3)

Then condition (6.1) is satisfied for α.

Proof. For L ≥ 0, define B(L) = {x ∈ Z
d : |x| ≤ L}. Fix n ≥ 1 and let (xj )j≥1 be some fixed ordering of B(r0n)

satisfying

∀i ≥ j : xi · û ≥ xj · û.

For B ⊂ Z
d let SB = σ {ωx : x ∈ B}. Let Aj = {x1, . . . , xj }, ζ0 = E0(Xn), and for j ≥ 1

ζj = E
[
Eω

0 (Xn)|SAj

]
.
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(ζj − ζj−1)j≥1 is a sequence of L2(P)-martingale differences. By Hypothesis (S) Xn ∈ B(r0n) and so

E
[∣∣Eω

0 (Xn) − E0(Xn)
∣∣2]= |B(r0n)|∑

j=1

E
[|ζj − ζj−1|2

]
. (6.4)

For z ∈ Z
d define half-spaces

H(z) = {x ∈ Z
d : x · û > z · û}.

Since Aj−1 ⊂ Aj ⊂ H(xj )
c,

E
[|ζj − ζj−1|2

]
=
∫

P(dωAj
)

∣∣∣∣∫ ∫ P(dωAc
j
)P(dω̃xj

)
{
Eω

0 (Xn) − E
〈ω,ω̃xj

〉
0 (Xn)

}∣∣∣∣2
≤
∫ ∫

P(dωH(xj )c )P(dω̃xj
)

∣∣∣∣∫ P(dωH(xj ))
{
Eω

0 (Xn) − E
〈ω,ω̃xj

〉
0 (Xn)

}∣∣∣∣2. (6.5)

Above 〈ω, ω̃xj
〉 denotes an environment obtained from ω by replacing ωxj

with ω̃xj
.

We fix a point z = xj to develop a bound for the expression above, and then return to collect the estimates. Abbre-
viate ω̃ = 〈ω, ω̃xj

〉. Consider two walks that both start at 0, one obeys environment ω and the other obeys ω̃. Couple
them so that they stay together until the first time they visit z. Until a visit to z happens, the walks are identical. Let

Hz = min{n ≥ 1: Xn = z}
be the first hitting time of site z and write∫

P(dωH(z))
(
Eω

0 (Xn) − Eω̃
0 (Xn)

)
(6.6)

=
∫

P(dωH(z))

n−1∑
m=0

P ω
0 {Hz = m}(Eω

z [Xn−m − z] − Eω̃
z [Xn−m − z])

=
∫

P(dωH(z))

n−1∑
m=0

∑
�>0

P ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
(6.7)

× (Eω
z [Xn−m − z] − Eω̃

z [Xn−m − z]).
Decompose H(z) = H�(z) ∪ H′

�(z), where

H�(z) = {x ∈ Z
d : z · û < x · û < z · û + �

}
and H′

�(z) = {x ∈ Z
d : x · û ≥ z · û + �

}
.

Take a single (�,m) term from the sum in (6.7) and only the expectation Eω
z [Xn−m − z], and split it further into two

terms:∫
P(dωH(z))P

ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
Eω

z [Xn−m − z]

=
∫

P(dωH(z))P
ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
Eω

z [Xτ�+n−m − Xτ�
] (6.8)

+
∫

P(dωH(z))P
ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
Eω

z [Xn−m − Xτ�+n−m + Xτ�
− z]. (6.9)
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Regeneration time τ� with index � is used simply to guarantee that the post-regeneration walk Xτ�+· stays in H′
�(z).

Below we make use of this to get independence from the environments in H′
�(z)

c .
Integral (6.8) is developed further as follows.∫

P(dωH(z))P
ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
Eω

z [Xτ�+n−m − Xτ�
]

=
∫

P(dωH�(z))P
ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}∫
P(dωH′

�(z)
)Eω

z [Xτ�+n−m − Xτ�
]

=
∫

P(dωH�(z))P
ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
Ez[Xτ�+n−m − Xτ�

|SH′
�(z)

c ]

=
∫

P(dωH�(z))P
ω
0

{
Hz = m,� − 1 ≤ max

0≤j≤m
Xj · û − z · û < �

}
E0[Xn−m|β = ∞]. (6.10)

The last equality above comes from the regeneration structure, see Theorem 1.4 in [22]. The σ -algebra SH′
�(z)

c is
contained in the σ -algebra G� defined by (1.29) of [22] for the walk starting at z.

The last quantity (6.10) above reads the environment only until the first visit to z, hence does not see the distinction
between ω and ω̃. Consequently when integral (6.7) is developed separately for ω and ω̃ into the sum of integrals
(6.8) and (6.9), integrals (6.8) first develop into (6.10) separately for ω and ω̃ and then cancel each other.

We are left with two instances of integral (6.9), one for both ω and ω̃. Put these back into the (�,m) sum in
(6.7). Include also the square around this expression from line (6.5). These expressions for ω and ω̃ are bounded
separately with identical steps and added together in the end. Thus we first separate the two by an application of
(a + b)2 ≤ 2(a2 + b2). We continue the argument for the expression for ω with this bound on the square of (6.7):

2

{∑
�>0

n−1∑
m=0

∫
P(dωH(z))P

ω
0

{
Hz = m,� − 1 ≤ max

0≤k≤m
Xk · û − z · û < �

}∣∣Eω
z (Xn−m − Xτ�+n−m + Xτ�

− z)
∣∣}2

(apply the step bound (S))

≤ 8r2
0

∫
P(dωH(z))

{∑
�>0

P ω
0

{
Hz < n,� − 1 ≤ max

0≤k≤Hz

Xk · û − z · û < �
}
Eω

z (τ�)

}2

(introduce ε = (α − ᾱ)/4 > 0)

≤ 16r2
0nε
∑
�≤nε

∫
P(dωH(z))P

ω
0 {Hz < n}2Eω

z

(
τ 2
�

)
+ 16r2

0

∑
�>nε

∫
P(dωH(z))P

ω
0

{
Hz < n,� − 1 ≤ max

0≤k≤Hz

Xk · û − z · û < �
}
Eω

z

(
τ 2
�

)
[pick conjugate exponents p > 1 and q > 1]

≤ 16r2
0nε
∑
�≤nε

(∫
P(dωH(z))P

ω
0 {Hz < n}2q

)1/q(∫
P(dωH(z))E

ω
z

[
τ

2p

�

])1/p

+ 16r2
0

∑
�>nε

(∫
P(dωH(z))E

ω
z

[
τ

2p
�

])1/p

×
(∫

P(dωH(z))P
ω
0

{
Hz < n,� − 1 ≤ max

0≤k≤Hz

Xk · û − z · û < �
}q)1/q

.
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The step above requires p0 ≥ 2p. This and what is needed below can be achieved by choosing

p = d

α − ᾱ
and q = d

d − (α − ᾱ)
.

Now put the above bound and its counterpart for ω̃ back into (6.5), and continue with another application of Hölder’s
inequality:

E
[|ζj − ζj−1|2

]
≤ 32r2

0nε
∑
�≤nε

E
[
P ω

0 {Hxj
< n}2q

]1/q
E0
[
τ

2p
�

]1/p

+ 32r2
0

∑
�>nε

E0
[
τ

2p
�

]1/p
E

[
P ω

0

{
Hxj

< n, � − 1 ≤ max
0≤k≤Hxj

Xk · û − xj · û < �
}q]1/q

(apply (3.1))

≤ Cn4ε
E
[
P ω

0 {Hxj
< n}2q

]1/q

+ C
∑
�>nε

�2
E

[
P ω

0

{
Hxj

< n, � − 1 ≤ max
0≤k≤Hxj

Xk · û − xj · û < �
}q]1/q

(utilize q > 1)

≤ Cn4ε
E
[
P ω

0 {Hxj
< n}2]1/q

+ C
∑
�>nε

�2
n−1∑
k=0

∑
|x|≤r0n

E0

[
P ω

0 {Xk = x}P ω
x

{∣∣∣ inf
m≥0

Xm · û − x · û
∣∣∣≥ � − 1

}]1/q

≤ Cn4εP0,0{xj ∈ X[0,n) ∩ X̃[0,n)}1/q + Cnd+1
∑
�>nε

�2P0

{∣∣∣ inf
m≥0

Xm · û
∣∣∣≥ � − 1

}1/q

≤ Cn4εP0,0{xj ∈ X[0,n) ∩ X̃[0,n)}1/q + Cn2α−d .

In the last step we used (3.3) with an exponent p̃ = 3q + qε−1(2d + 1 − 2α). This requires p̃ ≤ p0 − 1 which follows
from (6.3). Finally put these bounds in the sum in (6.4) and develop the last bound:

E
[∣∣Eω

0 (Xn) − E0(Xn)
∣∣2] = |B(r0n)|∑

j=1

E
[|ζj − ζj−1|2

]

≤ Cn4ε

|B(r0n)|∑
j=1

P0,0{xj ∈ X[0,n) ∩ X̃[0,n)}1/q + Cn2α

≤ Cn4ε
(
nd
)1−1/q

(|B(r0n)|∑
j=1

P0,0{xj ∈ X[0,n) ∩ X̃[0,n)}
)1/q

+ Cn2α

≤ Cn4ε+d−d/q+2ᾱ/q + Cn2α,

where we used the assumption (6.2) in the last inequality. With q = d(d − (α − ᾱ))−1 and ε = (α − ᾱ)/4 as chosen
above, the last line is O(n2α). Equation (6.1) has been verified. �
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7. Bound on intersections

The remaining piece of the proof of Theorem 1.1 is this estimate:

E0,0
[|X[0,n) ∩ X̃[0,n)|

]= O
(
n2α
)

for some α <
1

2
, (7.1)

where X and X̃ are two independent walks driven by a common environment with quenched distribution P ω
x,y[X0,∞ ∈

A, X̃0,∞ ∈ B] = P ω
x (A)P ω

y (B) and averaged distribution Ex,y(·) = EP ω
x,y(·).

To deduce the sublinear bound we introduce joint regeneration times at which both walks regenerate on the same
level in space (but not necessarily at the same time). Intersections happen only within the joint regeneration slabs, and
the expected number of intersections decays at a polynomial rate in the distance between the points of entry into the
slab. From joint regeneration to regeneration the difference of the two walks is a Markov chain. This Markov chain can
be approximated by a symmetric random walk. Via this preliminary work the required bound boils down to deriving a
Green function estimate for a Markov chain that can be suitably approximated by a symmetric random walk. This part
is relegated to Appendix A. Except for the appendices, we complete the proof of the functional central limit theorem
in this section.

To aid our discussion of a pair of walks (X, X̃) we introduce some new notation. We write θm,n for the shift on
pairs of paths: θm,n(x0,∞, y0,∞) = (θmx0,∞, θny0,∞). If we write separate expectations for X and X̃ under P ω

x,y , these
are denoted by Eω

x and Ẽω
y .

By a joint stopping time we mean a pair (α, α̃) that satisfies {α = m, α̃ = n} ∈ σ {X0,m, X̃0,n}. Under the distribution
P ω

x,y the walks X and X̃ are independent. Consequently if α ∨ α̃ < ∞ P ω
x,y -almost surely then for any events A and B ,

P ω
x,y

{
(X0,α, X̃0,α̃) ∈ A, (Xα,∞, X̃α̃,∞) ∈ B

}
= Eω

x,y

[
1
{
(X0,α, X̃0,α̃) ∈ A

}
P ω

Xα,X̃α̃

{
(X0,∞, X̃0,∞) ∈ B

}]
.

This type of joint restarting will be used without comment in the sequel.
The backtracking time β is as before in (2.2) and for the X̃ walk it is β̃ = inf{n ≥ 1: X̃n · û < X̃0 · û}. When the

walks are on a common level their difference lies in the hyperplane

Vd = {z ∈ Z
d : z · û = 0

}
. (7.2)

From a common level there is a uniform positive chance for simultaneously never backtracking.

Lemma 7.1. Assume û-transience (1.1) and the bounded step Hypothesis (S). Then

η ≡ inf
x−y∈Vd

Px,y{β ∧ β̃ = ∞} > 0. (7.3)

Proof. By shift-invariance it is enough to consider the case P0,x for x ∈ Vd . By the independence of environments
and the bound r0 on the step size,

P0,x{β = β̃ = ∞} ≥ P0

{
β >

|x|
4r0

}2

− 2P0

{ |x|
4r0

< β < ∞
}
.

As |x| → ∞ the right-hand side above converges to 2η1 = P0{β = ∞}2 > 0. Then we can find L > 0 such that

|x| > L �⇒ P0,x{β ∧ β̃ = ∞} > η1 > 0. (7.4)

It remains to check that P0,x{β ∧ β̃ = ∞} > 0 for any fixed x ≤ |L|. The case x = 0 is immediate because P0,0{β =
β̃ = ∞} = 0 implies P ω

0 {β = ∞}2 = 0 P-a.s. and therefore contradicts transience (2.3).
Let us assume that x �= 0.
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If J = {z: Eπ0,z > 0} ⊂ Ru, transience implies u · û > 0. Then x + Ru and Ru do not intersect and independence
gives P0,x{β = β̃ = ∞} = P0{β = ∞}2 > 0. (We did not invoke Hypothesis (R) to rule out this case to avoid appealing
to (R) unnecessarily.)

Let us now assume that J �⊂ Ru for any u.
The proof is completed by constructing two finite walks that start at 0 and x with these properties: the walks do

not backtrack below level 0, they reach a common fresh level � at entry points that are as far apart as desired, and this
pair of walks has positive probability. Then if additionally the walks regenerate at level � (an event independent of the
one just described) the event β ∧ β̃ = ∞ has been realized. We also make these walks reach level � in such a manner
that no lower level can serve as a level for joint regeneration. This construction will be helpful later on in the proof of
Lemma 7.13.

To construct the paths let z and w be two nonzero noncollinear vectors such that z · û > 0, Eπ0z > 0, and Eπ0w > 0.
Such exist: the assumption that J not be one-dimensional implies the existence of some pair of noncollinear vectors
w, w̃ ∈ J . Then transience (1.1) implies the existence of z ∈ J with z · û > 0. Either w or w̃ must be noncollinear
with z.

The case w · û > 0 is easy: let one walk repeat z-steps and the other one repeat w-steps suitably many times. We
provide more detail for the case w · û ≤ 0.

Let n > 0 and m ≥ 0 be the minimal integers such that −nw · û = mz · û. Since mz + nw �= 0 by noncollinearity
but (mz + nw) · û = 0 there must exist a vector ũ such that ũ · û = 0 and mz · ũ + nw · ũ > 0. Replacing x by −x if
necessary we can then assume that

nw · ũ + mz · ũ > 0 ≥ x · ũ. (7.5)

Interchangeability of x and −x comes from symmetry and shift-invariance:

P0,x{β ∧ β̃ = ∞} = P0,−x{β ∧ β̃ = ∞}.

The point of (7.5) is that the path {(iz)mi=0, (mz + jw)nj=0} points away from x in direction ũ.
Pick k large enough to have |x − kmz − knw| > L. Let the X walk start at 0 and take km z-steps followed by kn

w-steps (returning back to level 0) and then km + 1 z-steps (ending at a fresh level). Let the X̃ walk start at x and
take km + 1 z-steps. These two paths do not self-intersect or intersect each other, as can be checked routinely though
somewhat tediously.

The endpoints of the paths are 2kmz + z + knw and x + kmz + z which are on a common level, but further than L

apart. After these paths let the two walks regenerate, with probability controlled by (7.4). This joint evolution implies
β ∧ β̃ = ∞ so by independence of environments

P0,x{β ∧ β̃ = ∞} ≥ (Eπ0z)
3km+2(Eπ0w)knη1 > 0. �

We now begin the development towards joint regeneration times for the walks X and X̃. Define the stopping time

γ� = inf{n ≥ 0: Xn · û ≥ �}

and the running maximum

Mn = sup{Xi · û: i ≤ n}.

We write γ (�) when subscripts or superscripts become complicated. M̃n and γ̃� are the corresponding quantities for
the X̃ walk.

Let h be the greatest common divisor of

L = {� ≥ 0: P0(∃n: Xn · û = �) > 0
}
. (7.6)

First we observe that all high enough multiples of h are accessible levels from 0.
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Lemma 7.2. There exists a finite �0 such that for all � ≥ �0

P0{∃n: Xn · û = h�} > 0.

Proof. The point is that L is closed under addition. Indeed, if �1 and �2 are in L, then let x
(i)
0,ni

, i ∈ {1,2}, be two paths

such that x
(i)
0 = 0, x

(i)
ni

· û = �i , and P0{X0,ni
= x

(i)
0,ni

} > 0. Let k1 be the smallest index such that x
(1)
k1

= x
(1)
n1 + x

(2)
k2

for some k2 ∈ [0, n2]. The set of such k1 is not empty because k1 = n1 and k2 = 0 satisfy this equality. Now the path
(x

(1)
0,k1

, x
(1)
n1 + x

(2)
k2+1,n2

) starts at 0, ends on level �1 + �2 and has positive P0-probability.
The familiar argument [7], Lemma 5.4, Chapter 5, shows that all large enough multiples of h lie in L. �

Next we show that all high enough multiples of h can be reached as fresh levels without backtracking.

Lemma 7.3. There exists a finite �1 such that for all � ≥ �1

P0{Xγh�
· û = h�,β > γh�} > 0. (7.7)

Proof. Pick and fix a step x such that Eπ0,x > 0 and x · û > 0. Then x · û = kh for some k > 0. For any 0 ≤ j ≤ k −1,
by appeal to Lemma 7.2, we find a path σ (j), with positive P0-probability, going from 0 to a level �h with � = j modk.
By deleting initial and final segments if necessary and by shifting the reduced path, we can assume that σ (j) visits a
level in khZ only at the beginning and a level in jh + khZ only at the end. In particular, σ (0) is the single point 0.

Let y(j) be the endpoint of σ (j). Pick m = m(j) large enough so that the path σ̃ (j) = ((ix)0≤i<m,mx + σ (j),mx +
y(j) + (ix)1≤i≤m) stays at or above level 0 and ends at a fresh level. It has positive P0-probability because its con-
stituent pieces all do. Note that the only self-intersections are those that possibly exist within the piece mx +σ (j), and
even these can be removed by erasing loops from σ (j) as part of its construction if so desired. Let �1 be the maximal
level attained by σ̃ (0), . . . , σ̃ (k−1).

Given � ≥ �1 let j = �modk. Path σ̃ (j) followed by appropriately many x-steps realizes the event in (7.7) and has
positive P0-probability. �

Next we extend the estimation to joint fresh levels of two walks reached without backtracking.

Lemma 7.4. Let �2h be the next multiple of h after r0|û| + �1h with �1 as in Lemma 7.3. There exists η > 0 with this
property: uniformly over all x and y such that x · û, y · û ∈ [0, r0|û|] ∩ hZ,

Px,y

{∃i: ih ∈ [0, �2h],Xγih
· û = X̃γ̃ih

· û = ih,β > γih, β̃ > γ̃ih

}≥ η. (7.8)

Proof. Let x · û = �h and y · û = �̃h. Lemma 7.3 gives a positive P0-probability path σ = z0,n that connects 0 to level
�2h − �h and stays above level 0. Choose σ̃ = z̃0,ñ similarly for �̃. If the paths x + σ and y + σ̃ intersect, redefine
x + σ to follow y + σ̃ from the first time it intersects y + σ̃ . The probability in (7.8) is bounded below by

Px,y{X0,n = x + σ, X̃0,ñ = y + σ̃ } > 0.

Uniformity over x, y comes from observing that there are finitely many possible such positive lower bounds be-
cause we have finitely many admissible initial levels � and �̃ and finitely many ways to intersect the shifts of the
corresponding paths. �

Define the first common fresh level to be

L = inf{�: Xγ�
· û = X̃γ̃�

· û = �}.
If the walks start on a common level then this initial level is L. Iteration of Lemma 7.4 shows that L is always a.s.
finite provided the walks start on levels in hZ. (This and more is proved in Lemma 7.5.)
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Next we define, in stages, the first joint regeneration level of two walks (X, X̃) that start at initial points X0, X̃0 on
a common level λ0 ∈ hZ. First define

J =
{

Mβ∧β̃ ∨ M̃β∧β̃ + h if β ∧ β̃ < ∞,

∞ if β ∧ β̃ = ∞,

and then

λ =
{

L ◦ θγJ ,γ̃J = inf{� ≥ J : Xγ�
· û = X̃γ̃�

· û = �} if J < ∞,
∞ if J = ∞.

If λ < ∞, then λ is the first common fresh level after at least one walk backtracked. Also, λ = ∞ iff neither walk
backtracked. Let

λ1 = L ◦ θγ (λ0+h),γ̃ (λ0+h)

which is the first common fresh level strictly above the initial level λ0. For n ≥ 2 as long as λn−1 < ∞ define succes-
sive common fresh levels

λn = λ ◦ θ
γλn−1 ,γ̃λn−1 .

Joint regeneration at level λn is signaled by λn+1 = ∞. Consequently the first joint regeneration level is

Λ = sup{λn: λn < ∞}.
Λ < ∞ a.s. because by Lemma 7.1 at each common fresh level λn the walks have at least chance η > 0 to simultane-
ously not backtrack. The first joint regeneration times are

(μ1, μ̃1) = (γΛ, γ̃Λ). (7.9)

The present goal is to get moment bounds on μ1 and μ̃1. To be able to shift levels back to level 0 we fix represen-
tatives from all non-empty levels. For all j ∈ L0 = {z · û: z ∈ Z

d} pick and fix v̂(j) ∈ Z
d such that v̂(j) · û = j . By

the definition of h as the greatest common divisor of L in (7.6) and the group structure of L0, v̂(j) is defined for all
j ∈ hZ.

Lemma 7.5. For m ≥ 1 and p ≤ p0

sup
x,y∈Vd

Px,y{Λ > m} ≤ Cpm−p. (7.10)

Proof. Recall �2 from Lemma 7.4. Consider m > 2�2h and let n0 = [m/(2�2h)].
Iterations of (7.3) utilized below proceed as follows: for k ≥ 2 and any event B that depends on the paths

(X0,γ (λk−1), X̃0,γ̃ (λk−1)),

Px,y{λk < ∞, λk−1 < ∞,B}
= Px,y

{
(β ∧ β̃) ◦ θ

γλk−1 ,γ̃λk−1 < ∞, λk−1 < ∞,B
}

=
∑
z,w

Px,y{Xγ(λk−1) = z, X̃γ̃ (λk−1) = w,λk−1 < ∞,B}Pz,w{β ∧ β̃ < ∞}

≤ Px,y{λk−1 < ∞,B}(1 − η).

The product comes from dependence on disjoint environments: the event {β ∧ β̃ < ∞} does not need environments
below the starting level z · û = w · û, while the event {Xγ(λk−1) = z, X̃γ̃ (λk−1) = w,B} only reads environments strictly
below this level.
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After the sum decomposition below iterate (7.3) to bound Px,y{λn0 < ∞} and to go from λn < ∞ down to
λk+1 < ∞ inside the sum. Then weaken λk+1 < ∞ to λk < ∞. Note that λ1 < ∞ a.s. so this event does not con-
tribute a 1 − η factor and hence there is only a power (1 − η)n0−1 for the middle term.

Px,y{Λ > 2m}

≤ Px,y{λ1 > m} + Px,y{λn0 < ∞} +
n0−1∑
n=2

n−1∑
k=1

Px,y

{
λn < ∞,

m

n
< λ ◦ θγλk

,γ̃λk − λk < ∞
}

≤ Px,y{λ1 > m} + (1 − η)n0−1 (7.11)

+
n0−1∑
n=2

n−1∑
k=1

(1 − η)n−k−1Px,y

{
λk < ∞,

m

n
< λ ◦ θγλk

,γ̃λk − λk < ∞
}
. (7.12)

Separate probability (7.12) into two parts:

Px,y

{
λk < ∞,

m

n
< λ ◦ θγλk

,γ̃λk − λk < ∞
}

≤ 2Px,y

{
λk < ∞,

m

2n
< Mβ∧β̃ ◦ θγλk

,γ̃λk + h − λk < ∞
}

(7.13)

+ Px,y

{
λk < ∞, J ◦ θγλk

,γ̃λk < ∞,
m

2n
< (L ◦ θγJ ,γ̃J − J ) ◦ θγλk

,γ̃λk

}
. (7.14)

For probability (7.13)

Px,y

(
λk < ∞,

m

2n
< Mβ∧β̃ ◦ θγλk

,γ̃λk + h − λk < ∞
)

=
∑

z·û=z̃·û=0

Px,y

{
λk < ∞,Xγλk

= z + v̂(λk), X̃γ̃λk
= z̃ + v̂(λk)

}
Pz,z̃

{
m

2n
< Mβ∧β̃ + h < ∞

}

≤ CPx,y{λk < ∞}
(

n

m

)p

≤ · · · ≤ C(1 − η)k−1
(

n

m

)p

. (7.15)

The independence above came from the fact that the variable Mβ∧β̃ needs environments only on levels at or above the

initial level. Starting at level 0, on the event β ∧ β̃ < ∞ we have

Mβ∧β̃ + h ≤ r0|û|β ∧ β̃ + h ≤ C(τ1 + τ̃1).

Then we invoked Hypothesis (M) for the moments of τ1 and τ̃1. Finally iterate (7.3) again as prior to (7.12).
Probability (7.14) does not develop as conveniently because L needs environments below the starting level. To

remove this dependence we use the event E defined below. Start by rewriting (7.14) as follows.

Px,y

{
λk < ∞, J ◦ θγλk

,γ̃λk < ∞,
m

2n
< (L ◦ θγJ ,γ̃J − J ) ◦ θγλk

,γ̃λk

}
=
∑
j∈hZ

∑
z,z̃

Ex,y

[
λk < ∞, J ◦ θγ (λk),γ̃ (λk) = j,Xγj

= z, X̃γ̃j
= z̃, P ω

z,z̃

{
m

2n
< L − j

}]
. (7.16)

Fix j for the moment. We bound the probability in (7.16). Let s0 and s1 be the integers defined by

(s0 − 1)�2h < j ≤ s0�2h < · · · < s1�2h ≤ j + m

2n
< (s1 + 1)�2h.
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In the beginning of the proof we assured that m
2n

> �2h so s0 and s1 are well defined. Define

E = {∃i: ih ∈ [0, �2h],Xγih
· û = X̃γ̃ih

· û = ih,β > γih, β̃ > γ̃ih

}
,

an event that guarantees a common fresh level in a zone of height �2h without backtracking. We use E in situations
where the levels of the initial points are in [0, r0|û|] ∩ hZ and then E only needs environments {ωa : a · û ∈ [0, �2h)}.
For any integer s ∈ [s0, s1 − 1] we do the following decomposition.

P ω
z,z̃

{
L > (s + 1)�2h

}
≤ P ω

z,z̃

{
L > s�2h,

(
Xγ(s�2h)+· − v̂(s�2h), X̃γ̃ (s�2h)+· − v̂(s�2h)

) ∈ E c
}

≤
∑
w,w̃

P ω
z,z̃{L > s�2h,Xγ (s�2h) = w, X̃γ̃ (s�2h) = w̃}P Tv̂(s�2h)ω

w−v̂(s�2h),w̃−v̂(s�2h)

{
E c
}
.

To begin the iterative factoring write P ω
z,z̃

{ m
2n

< L − j} ≤ P ω
z,z̃

{L > s1�2h} and substitute the above decomposition
with s = s1 − 1 into (7.16). Notice that for each (w, w̃), the quenched probability

P
Tv̂((s1−1)�2h)ω

w−v̂((s1−1)�2h),w̃−v̂((s1−1)�2h)

{
E c
}

is a function of environments {ωa : a · û ∈ [(s1 − 1)�2h, s1�2h)} and thereby independent of everything else inside the
expectation Ex,y in (7.16), as long as s0 ≤ s1 − 1. By Lemma 7.4

Pw−v̂((s1−1)�2h),w̃−v̂((s1−1)�2h)

{
E c
}≤ 1 − η.

After this first round probability (7.14) is bounded, via (7.16), by∑
j∈hZ

∑
z,z̃

Ex,y

[
λk < ∞, J ◦ θγ (λk),γ̃ (λk) = j,Xγj

= z, X̃γ̃j
= z̃, P ω

z,z̃

{
L > (s1 − 1)�2h

}]
(1 − η).

This procedure is repeated s1 − s0 − 1 times to arrive at the upper bound

Px,y

{
λk < ∞, J ◦ θγλk

,γ̃λk < ∞,
m

2n
< (L ◦ θγJ ,γ̃J − J ) ◦ θγλk

,γ̃λk

}
≤ Px,y{λk < ∞}(1 − η)s1−s0−1

≤ CPx,y{λk < ∞}(1 − η)m/(2�2hn)

≤ CPx,y{λk < ∞}
(

n

m

)p

≤ C(1 − η)k−1
(

n

m

)p

.

In the last step we iterated (7.3) as earlier.
Substitute this upper bound and (7.15) back to lines (7.13) and (7.14). These in turn go back into the sum on

line (7.12). The remaining probability Px,y{λ1 > m} on line (7.11) is bounded by Ce−cm, by another iteration of
Lemma 7.4 with the help of event E .

To summarize, we have shown

Px,y{Λ > 2m} ≤ Ce−cm + C
∑
n≥1

n(1 − η)n−2
(

n

m

)p

≤ Cm−p.
�

Next we extend the tail bound to the regeneration times.

Lemma 7.6. Suppose p0 > 3. Then

sup
x,y∈Vd

Px,y[μ1 ∨ μ̃1 ≥ m] ≤ Cm−p0/3. (7.17)
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In particular, for any p < p0/3,

sup
x,y∈Vd

Ex,y

[|μ1 ∨ μ̃1|p
]≤ C. (7.18)

Proof. By (3.1), since x · û = 0 for x ∈ Vd , we can bound

Px,y{γ� ≥ m} = P0{γ� ≥ m} ≤ P0{τ� ≥ m} ≤ C

(
�

m

)p0

.

Pick conjugate exponents s = 3 and t = 3/2.

Px,y{μ1 ≥ m} ≤
∑
�≥1

Px,y{γ� ≥ m,Λ = �}

≤ C
∑
�≥1

P0{γ� ≥ m}1/sPx,y{Λ = �}1/t

≤ C
∑
�≥1

�p0/3

mp0/3

1

�2p0/3
≤ Cm−p0/3.

The same holds for μ̃1. �

After these preliminaries define the sequence of joint regeneration times by μ0 = μ̃0 = 0 and

(μi+1, μ̃i+1) = (μi, μ̃i) + (μ1, μ̃1) ◦ θμi,μ̃i . (7.19)

The previous estimates, Lemmas 7.5 and 7.6, show that common regeneration levels come fast enough. The next tasks
are to identify suitable Markovian structures and to develop a coupling. Recall again the definition (7.2) of Vd .

Proposition 7.7. Under the averaged measure Px,y with x, y ∈ Vd , the process (X̃μ̃i
− Xμi

)i≥1 is a Markov chain
on Vd with transition probability

q(x, y) = P0,x{X̃μ̃1 − Xμ1 = y|β = β̃ = ∞}. (7.20)

Note that the time-homogeneous Markov chain does not start from X̃0 − X0 because the transition to X̃μ̃1 − Xμ1

does not include the condition β = β̃ = ∞.

Proof. Let n ≥ 2 and z1, . . . , zn ∈ Vd . The proof comes from iterating the following steps.

P0,z{X̃μ̃i
− Xμi

= zi for 1 ≤ i ≤ n}
=
∑

w̃−w=zn−1

P0,z{X̃μ̃i
− Xμi

= zi for 1 ≤ i ≤ n − 2,Xμn−1 = w, X̃μ̃n−1 = w̃}

× Pw,w̃{X̃μ̃1 − Xμ1 = zn|β = β̃ = ∞}
=
∑

w̃−w=zn−1

P0,z{X̃μ̃i
− Xμi

= zi for 1 ≤ i ≤ n − 2,Xμn−1 = w, X̃μ̃n−1 = w̃}

× P0,zn−1{X̃μ̃1 − Xμ1 = zn|β = β̃ = ∞}
= P0,z{X̃μ̃i

− Xμi
= zi for 1 ≤ i ≤ n − 1}q(zn−1, zn).
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Factoring in the first equality above is justified by the fact that

P ω
0,z{X̃μ̃i

− Xμi
= zi for 1 ≤ i ≤ n − 2,Xμn−1 = w, X̃μ̃n−1 = w̃, X̃μ̃n

− Xμn = zn}
= P ω

0,z(A)P ω
w,w̃(B),

where A is a collection of paths staying below level w · û = w̃ · û, while

B = {X̃μ̃1 − Xμ1 = zn,β = β̃ = ∞}
is a collection of paths that stay at or above their initial level. �

The Markov chain Yk = X̃μ̃k
−Xμk

will be compared to a random walk obtained by performing the same construc-
tion of joint regeneration times to two independent walks in independent environments. To indicate the difference in
construction we change notation. Let the pair of walks (X, X̄) obey P0 ⊗ Pz with z ∈ Vd , and denote the first back-
tracking time of the X̄ walk by β̄ = inf{n ≥ 1: X̄n · û < X̄0 · û}. Construct the joint regeneration times (ρk, ρ̄k)k≥1
for (X, X̄) by the same recipe ((7.9), (7.19), and the equations leading to them) as was used to construct (μk, μ̃k)k≥1
for (X, X̃). Define Ȳk = X̄ρ̄k

− Xρk
. An analog of the previous proposition, which we will not spell out, shows that

(Ȳk)k≥1 is a Markov chain with transition

q̄(x, y) = P0 ⊗ Px[X̄ρ̄1 − Xρ1 = y|β = β̄ = ∞]. (7.21)

In the next two proofs we make use of the following decomposition. Suppose x · û = y · û = 0, and let (x1, y1) be
another pair of points on a common, higher level: x1 · û = y1 · û = � > 0. Then we can write{

(X0, X̃0) = (x, y),β = β̃ = ∞, (Xμ1, X̃μ̃1) = (x1, y1)
}

=
⋃

(γ,γ̃ )

{
X0,n(γ ) = γ, X̃0,n(γ̃ ) = γ̃ , β ◦ θn(γ ) = β̃ ◦ θn(γ̃ ) = ∞}. (7.22)

Here (γ, γ̃ ) range over all pairs of paths that connect (x, y) to (x1, y1), that stay between levels 0 and �− 1 before the
final points, and for which a joint regeneration fails at all levels before �. n(γ ) is the index of the final point along the
path, so for example γ = (x = z0, z1, . . . , zn(γ )−1, zn(γ ) = x1).

Proposition 7.8. The process (Ȳk)k≥1 is a symmetric random walk on Vd and its transition probability satisfies

q̄(x, y) = q̄(0, y − x) = q̄(0, x − y)

= P0 ⊗ P0{X̄ρ̄1 − Xρ1 = y − x|β = β̄ = ∞}.

Proof. It remains to show that for independent (X, X̄) the transition (7.21) reduces to a symmetric random walk. This
becomes obvious once probabilities are decomposed into sums over paths because the events of interest are insensitive
to shifts by z ∈ Vd .

P0 ⊗ Px{β = β̄ = ∞, X̄ρ̄1 − Xρ1 = y}
=
∑
w

P0 ⊗ Px{β = β̄ = ∞,Xρ1 = w, X̄ρ̄1 = y + w}

=
∑
w

∑
(γ,γ̄ )

P0
{
X0,n(γ ) = γ,β ◦ θn(γ ) = ∞}Px

{
X0,n(γ̄ ) = γ̄ , β ◦ θn(γ̄ ) = ∞} (7.23)

=
∑
w

∑
(γ,γ̄ )

P0{X0,n(γ ) = γ }Px{X0,n(γ̄ ) = γ̄ }(P0{β = ∞})2.
Above we used the decomposition idea from (7.22). Here (γ, γ̄ ) range over the appropriate class of pairs of paths

in Zd such that γ goes from 0 to w and γ̄ goes from x to y + w. The independence for the last equality above comes
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from noticing that the quenched probabilities P ω
0 {X0,n(γ ) = γ } and P ω

w {β = ∞} depend on independent collections
of environments.

The probabilities on the last line of (7.23) are not changed if each pair (γ, γ̄ ) is replaced by (γ, γ ′) = (γ, γ̄ − x).
These pairs connect (0,0) to (w,y −x +w). Because x ∈ Vd satisfies x · û = 0, the shift has not changed regeneration
levels. This shift turns Px{X0,n(γ̄ ) = γ̄ } on the last line of (7.23) into P0{X0,n(γ ′) = γ ′}. We can reverse the steps in
(7.23) to arrive at the probability

P0 ⊗ P0{β = β̄ = ∞, X̄ρ̄1 − Xρ1 = y − x}.
This proves q̄(x, y) = q̄(0, y − x).

Once both walks start at 0 it is immaterial which is labeled X and which X̄, hence symmetry holds. �

It will be useful to know that q̄ inherits all possible transitions from q .

Lemma 7.9. If q(z,w) > 0 then also q̄(z,w) > 0.

Proof. By the decomposition from (7.22) we can express

Px,y

{
(Xμ1, X̃μ̃1) = (x1, y1)|β = β̃ = ∞}= ∑

(γ,γ̃ )

EP ω(γ )P ω(γ̃ )P ω
x1

{β = ∞}P ω
y1

{β = ∞}
Px,y{β = β̃ = ∞} .

If this probability is positive, then at least one pair (γ, γ̃ ) must satisfy EP ω(γ )P ω(γ̃ ) > 0. This implies that
P(γ )P (γ̃ ) > 0 so that also

Px ⊗ Py

{
(Xμ1, X̃μ̃1) = (x1, y1)|β = β̃ = ∞}> 0. �

In the sequel we detach the notations Y = (Yk) and Ȳ = (Ȳk) from their original definitions in terms of the walks
X, X̃ and X̄, and use (Yk) and (Ȳk) to denote canonical Markov chains with transitions q and q̄ . Now we construct a
coupling.

Proposition 7.10. The single-step transitions q(x, y) for Y and q̄(x, y) for Ȳ can be coupled in such a way that,
when the processes start from a common state x �= 0,

Px,x{Y1 �= Ȳ1} ≤ C|x|−p0/6

for all x ∈ Vd . Here C is a finite positive constant independent of x.

Proof. We start by constructing a coupling of three walks (X, X̃, X̄) such that the pair (X, X̃) has distribution Px,y

and the pair (X, X̄) has distribution Px ⊗ Py .
First let (X, X̃) be two independent walks in a common environment ω as before. Let ω̄ be an environment inde-

pendent of ω. Define the walk X̄ as follows. Initially X̄0 = X̃0. On the sites {Xk: 0 ≤ k < ∞} X̄ obeys environment ω̄,
and on all other sites X̄ obeys ω. X̄ is coupled to agree with X̃ until the time

T = inf
{
n ≥ 0: X̄n ∈ {Xk: 0 ≤ k < ∞}}

when it hits the path of X.
The coupling between X̄ and X̃ can be achieved simply as follows. Given ω and ω̄, for each x create two indepen-

dent i.i.d. sequences (zx
k )k≥1 and (z̄x

k )k≥1 with distributions

Qω,ω̄
{
zx
k = y
}= πx,x+y(ω) and Qω,ω̄

{
z̄x
k = y
}= πx,x+y(ω̄).

Do this independently at each x. Each time the X̃-walk visits state x, it uses a new zx
k variable as its next step, and

never reuses the same zx
k again. The X̄ walk operates the same way except that it uses the variables z̄x

k when x ∈ {Xk}
and the zx

k variables when x /∈ {Xk}. Now X̄ and X̃ follow the same steps zx
k until X̄ hits the set {Xk}.
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It is intuitively obvious that the walks X and X̄ are independent because they never use the same environment.
The following calculation verifies this. Let X0 = x0 = x and X̃ = X̄ = y0 = y be the initial states, and Px,y the joint
measure created by the coupling. Fix finite vectors x0,n = (x0, . . . , xn) and y0,n = (y0, . . . , yn) and recall also the
notation X0,n = (X0, . . . ,Xn). The description of the coupling tells us to start as follows.

Px,y{X0,n = x0,n, X̄0,n = y0,n}

=
∫

P(dω)

∫
P(dω̄)

∫
P ω

x (dz0,∞)1{z0,n = x0,n}

×
∏

i: yi /∈{zk : 0≤k<∞}
πyi,yi+1(ω)

∏
i: yi∈{zk : 0≤k<∞}

πyi,yi+1(ω̄)

(by dominated convergence)

= lim
N→∞

∫
P(dω)

∫
P(dω̄)

∫
P ω

x (dz0,N )1{z0,n = x0,n}

×
∏

i: yi /∈{zk : 0≤k≤N}
πyi,yi+1(ω)

∏
i: yi∈{zk : 0≤k≤N}

πyi,yi+1(ω̄)

= lim
N→∞

∑
z0,N : z0,n=x0,n

∫
P(dω)P ω

x [X0,N = z0,N ]
∏

i: yi /∈{zk : 0≤k≤N}
πyi,yi+1(ω)

×
∫

P(dω̄)
∏

i: yi∈{zk : 0≤k≤N}
πyi,yi+1(ω̄)

(by independence of the two functions of ω)

= lim
N→∞

∑
z0,N :z0,n=x0,n

∫
P(dω)P ω

x {X0,N = z0,N }

×
∫

P(dω)
∏

i: yi /∈{zk : 0≤k≤N}
πyi,yi+1(ω)

∫
P(dω̄)

∏
i: yi∈{zk : 0≤k≤N}

πyi,yi+1(ω̄)

= Px{X0,n = x0,n}Py{X0,n = y0,n}.
Thus at this point the coupled pairs (X, X̃) and (X, X̄) have the desired marginals Px,y and Px ⊗ Py .
Construct the joint regeneration times (μ1, μ̃1) for (X, X̃) and (ρ1, ρ̄1) for (X, X̄) by the earlier recipes. Define

two pairs of walks stopped at their joint regeneration times:

(Γ, Γ̄ ) ≡ ((X0,μ1 , X̃0,μ̃1), (X0,ρ1 , X̄0,ρ̄1)
)
. (7.24)

Suppose the sets X[0,μ1∨ρ1) and X̃[0,μ̃1∨ρ̄1) do not intersect. Then the construction implies that the path X̄0,μ̃1∨ρ̄1

agrees with X̃0,μ̃1∨ρ̄1 , and this forces the equalities (μ1, μ̃1) = (ρ1, ρ̄1) and (Xμ1, X̃μ̃1) = (Xρ1, X̄ρ̄1). We insert an
estimate on this event.

Lemma 7.11. For x �= y in Vd ,

Px,y{X[0,μ1∨ρ1) ∩ X̃[0,μ̃1∨ρ̄1) �= ∅} ≤ C|x − y|−p0/3. (7.25)

Proof. Write

Px,y{X[0,μ1∨ρ1) ∩ X̃[0,μ̃1∨ρ̄1) �= ∅} ≤ Px,y

{
μ1 ∨ μ̃1 ∨ ρ1 ∨ ρ̄1 >

|x − y|
2r0

}
.
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The conclusion follows from (7.17), extended to cover also (ρ1, ρ̄1). �

From (7.25) we obtain

Px,y

{
(Xμ1, X̃μ̃1) �= (Xρ1, X̄ρ̄1)

}≤ Px,y{Γ �= Γ̄ } ≤ C|x − y|−p0/3. (7.26)

But we are not finished yet. To represent the transitions q and q̄ we must also include the conditioning on no
backtracking. For this generate an i.i.d. sequence (X(m), X̃(m), X̄(m))m≥1, each triple constructed as (X, X̃, X̄) above.
Continue to write Px,y for the probability measure of the entire sequence. Let also again

Γ (m) = (X(m)

0,μ
(m)
1

, X̃
(m)

0,μ̃
(m)
1

)
and Γ̄ (m) = (X(m)

0,ρ
(m)
1

, X̄
(m)

0,ρ̄
(m)
1

)
be the pairs of paths run up to their joint regeneration times.

Let M be the first m such that the paths (X(m), X̃(m)) do not backtrack, which means that

X
(m)
k · û ≥ X

(m)
0 · û and X̃

(m)
k · û ≥ X̃

(m)
0 · û for all k ≥ 1.

Similarly define M̄ for (X(m), X̄(m))m≥1. Both M and M̄ are stochastically bounded by geometric random variables
by (7.3).

The pair of walks (X(M), X̃(M)) is now distributed as a pair of walks under the measure Px,y{·|β = β̃ = ∞},
while (X(M̄), X̄(M̄)) is distributed as a pair of walks under Px ⊗ Py{·|β = β̄ = ∞}. Consider the two pairs of paths

(Γ (M), Γ̄ (M̄)) chosen by the random indices (M,M̄). We insert one more lemma.

Lemma 7.12. For x �= y in Vd ,

Px,y

{
Γ (M) �= Γ̄ (M̄)

}≤ C|x − y|−p0/6. (7.27)

Proof. Let Am be the event that the walks X̃(m) and X̄(m) agree up to the maximum μ̃
(m)
1 ∨ ρ̄

(m)
1 of their regeneration

times. The equalities M = M̄ and Γ (M) = Γ̄ (M̄) are a consequence of the event

{A1 ∩ · · · ∩ AM} =
⋃
m≥1

{M = m} ∩ A1 ∩ · · · ∩ Am,

for the following reason. As pointed out earlier, on the event Am we have the equality of the regeneration times
μ̃

(m)
1 = ρ̄

(m)
1 and of the stopped paths X̃

(m)

0,μ̃
(m)
1

= X̄
(m)

0,ρ̄
(m)
1

. By definition, these walks do not backtrack after the regen-

eration time. Since the walks X̃(m) and X̄(m) agree up to this time, they must backtrack or fail to backtrack together.
If this is true for each m = 1, . . . ,M , it forces M̄ = M , since the other factor in deciding M and M̄ are the paths X(m)

that are common to both. And since the paths agree up to the regeneration times, we have Γ (M) = Γ̄ (M̄).
Estimate (7.27) follows:

Px,y

{
Γ (M) �= Γ̄ (M̄)

}≤ Px,y

{
Ac

1 ∪ · · · ∪ Ac
M

}
≤

∞∑
m=1

Px,y

{
M ≥ m, Ac

m

}≤ ∞∑
m=1

(
Px,y{M ≥ m})1/2(Px,y

(
Ac

m

))1/2

≤ C|x − y|−p0/6.

The last step comes from the estimate in (7.25) for each Ac
m and the geometric bound on M . �

We are ready to finish the proof of Proposition 7.10. To create initial conditions Y0 = Ȳ0 = x let the walks start at
(X

(m)
0 , X̃

(m)
0 ) = (X

(m)
0 , X̄

(m)
0 ) = (0, x). Let the final outcome of the coupling be the pair

(Y1, Ȳ1) = (X̃(M)

μ̃
(M)
1

− X
(M)

μ
(M)
1

, X̄
(M̄)

ρ̄
(M̄)
1

− X
(M̄)

ρ
(M̄)
1

)
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under the measure P0,x . The marginal distributions of Y1 and Ȳ1 are correct (namely, given by the transitions (7.20)
and (7.21)) because, as argued above, the pairs of walks themselves have the right marginal distributions. The event
Γ (M) = Γ̄ (M̄) implies Y1 = Ȳ1, so estimate (7.27) gives the bound claimed in Proposition 7.10. �

The construction of the Markov chain is complete, and we return to the main development of the proof. It remains
to prove a sublinear bound on the expected number E0,0|X[0,n) ∩ X̃[0,n)| of common points of two independent walks
in a common environment. Utilizing the joint regeneration times, write

E0,0|X[0,n) ∩ X̃[0,n)| ≤
n−1∑
i=0

E0,0|X[μi,μi+1) ∩ X̃[μ̃i ,μ̃i+1)|. (7.28)

The term i = 0 is a finite constant by bound (7.17) because the number of common points is bounded by the number
μ1 of steps. For each 0 < i < n apply a decomposition into pairs of paths from (0,0) to given points (x1, y1) in the
style of (7.22): (γ, γ̃ ) are the pairs of paths with the property that⋃

(γ,γ̃ )

{
X0,n(γ ) = γ, X̃0,n(γ̃ ) = γ̃ , β ◦ θn(γ ) = β̃ ◦ θn(γ̃ ) = ∞}= {X0 = X̃0 = 0,Xμi

= x1, X̃μ̃i
= y1}.

Each term i > 0 in (7.28) we rearrange as follows.

E0,0|X[μi,μi+1) ∩ X̃[μ̃i ,μ̃i+1)|
=
∑
x1,y1

∑
(γ,γ̃ )

P0,0{X0,n(γ ) = γ, X̃0,n(γ̃ ) = γ̃ }Ex1,y1

[
1{β = β̃ = ∞}|X[0,μ1) ∩ X̃[0,μ̃1)|

]
=
∑
x1,y1

∑
(γ,γ̃ )

P0,0{X0,n(γ ) = γ, X̃0,n(γ̃ ) = γ̃ }Px1,y1{β = β̃ = ∞}Ex1,y1

[|X[0,μ1) ∩ X̃[0,μ̃1)||β = β̃ = ∞]
=
∑
x1,y1

P0,0{Xμi
= x1, X̃μ̃i

= y1}Ex1,y1

[|X[0,μ1) ∩ X̃[0,μ̃1)||β = β̃ = ∞].
We have used the product structure of P in the first and and last equalities. The last conditional expectation above is
handled by estimates (7.3), (7.17), (7.25) and Schwarz inequality:

Ex1,y1

[|X[0,μ1) ∩ X̃[0,μ̃1)||β = β̃ = ∞]≤ η−1Ex1,y1

[|X[0,μ1) ∩ X̃[0,μ̃1)|
]

≤ η−1Ex1,y1

[
μ1 · 1{X[0,μ1) ∩ X̃[0,μ̃1) �= ∅}]

≤ η−1(Ex1,y1 [μ2
1]
)1/2(

Px1,y1{X[0,μ1) ∩ X̃[0,μ̃1) �= ∅})1/2

≤ C
(
1 ∨ |x1 − y1|

)−p0/6 ≤ h(x1 − y1).

On the last line we defined

h(x) = C
(|x| ∨ 1

)−p0/6
. (7.29)

Insert the last bound back up, and appeal to the Markov property established in Proposition 7.7:

E0,0|X[μi,μi+1) ∩ X̃[μ̃i ,μ̃i+1)| ≤ E0,0
[
h(X̃μ̃i

− Xμi
)
]

=
∑
x

P0,0{X̃μ̃1 − Xμ1 = x}
∑
y

qi−1(x, y)h(y).

In order to apply Theorem A.1 from Appendix A, we check its hypotheses in the next lemma. Part (1.3) of Hy-
pothesis (R) enters here crucially to guarantee that the transition q has enough irreducibility.
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Lemma 7.13. The Markov chain (Yk)k≥0 with transition q(x, y) and the symmetric random walk (Ȳk)k≥0 with tran-
sition q̄(x, y) satisfy assumptions (A.i), (A.ii), (A.iii) and (A.iv) stated in the beginning of Appendix A. To ensure that
p1 > 15 as required by (A.iv), we assume p0 > 90.

Proof. From (7.18) and Hypothesis (S) we get moment bounds

E0,x |X̄ρ̄k
|p + E0,x |Xρk

|p < ∞

for p < p0/3. With p0 > 9 this gives assumption (A.i), namely that E0|Ȳ1|3 < ∞. (Lemma 7.6 is applied here to
(X, X̄) even though we wrote the proof only for (X, X̃).) Assumption (A.iii) comes from Lemma 7.9. Assumption
(A.iv) comes from Proposition 7.10.

The only part that needs work is assumption (A.ii). The required exponential exit time bound is achieved through
a combination of the following three steps, for constants δ > 0, L > 0 and a fixed vector b̂ �= 0:

P0[Y1 �= 0] ≥ δ, (7.30)

inf
0<|x|≤L

Px

[|Y1| > L
]≥ δ (7.31)

and

inf|x|>L

{
Px[Y1 = Y0 + b̂] ∧ Px[Y1 = Y0 − b̂]}≥ δ. (7.32)

Given any initial state x contained in a cube [−r, r]d , there is a sequence of at most 2r steps of the types covered
by the above estimates that takes the chain Y outside the cube, and this sequence of steps is taken with proba-
bility at least δ2r . Thus the exit time from the cube is dominated by 2r times a geometric random variable with
mean δ−2r .

To prove (7.30)–(7.32) we make use of

Px[Y1 = z] ≥ P0,x{β = β̃ = ∞, X̃μ̃1 = y + z,Xμ1 = y} (7.33)

which is a consequence of the definition of the transition (7.20) and valid for all x, y, z. To this end we construct
suitable paths for the X and X̃ walks with positive probabilities. We carry out the rest of the proof in Appendix C
because this requires a fairly tedious cataloguing of cases. �

Appendix A also requires 0 ≤ h(x) ≤ C(1 ∨ |x|)−p2 for p2 > 0. This we have without further requirements on
p0. Now that the assumptions have been checked, Theorem A.1 gives constants 0 < C < ∞ and 0 < η < 1/2 such
that

n−1∑
i=1

∑
y

qi−1(x, y)h(y) ≤ Cn1−η for all x ∈ Vd and n ≥ 1.

Going back to (7.28) and collecting the bounds along the way gives the final estimate

E0,0|X[0,n) ∩ X̃[0,n)| ≤ Cpn1−η

for all n ≥ 1. Taking p large enough, 1 − η can be made as close as desired to 1/2. This is (7.1) which
was earlier shown to imply condition (2.1) required by Theorem 2.1. Previous work in Sections 2 and 5 con-
vert the CLT from Theorem 2.1 into the main result Theorem 1.1. The entire proof is complete, except for the
Green function estimate furnished by Appendix A and the remainder of the proof of Lemma 7.13 in Appen-
dix C.
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Appendix A. A Green function estimate

This appendix can be read independently of the rest of the paper. Let us write a d-vector in terms of coordinates as
x = (x1, . . . , xd), and similarly for random vectors X = (X1, . . . ,Xd).

Let S be some subgroup of Z
d . Let Y = (Yk)k≥0 be a Markov chain on S with transition probability q(x, y), and

let Ȳ = (Ȳk)k≥0 be a symmetric random walk on S with transition probability q̄(x, y) = q̄(y, x) = q̄(0, y − x). Make
the following assumptions.

(A.i) A finite third moment for the random walk: E0|Ȳ1|3 < ∞.
(A.ii) Let Ur = inf{n ≥ 0: Yn /∈ [−r, r]d} be the exit time from a centered cube of side length 2r + 1 for the Markov

chain Y . Then there is a constant 0 < K < ∞ such that

sup
x∈[−r,r]d

Ex(Ur) ≤ Kr for all r ≥ 1. (A.1)

(A.iii) For every i ∈ {1, . . . , d}, if the one-dimensional random walk Ȳ i is degenerate in the sense that q̄(0, y) = 0 for
yi �= 0, then so is the process Y i in the sense that q(x, y) = 0 whenever xi �= yi . In other words, any coordinate
that can move in the Y chain somewhere in space can also move in the Ȳ walk.

(A.iv) For any initial state x �= 0 the transitions q and q̄ can be coupled so that

Px,x{Y1 �= Ȳ1} ≤ C|x|−p1 , (A.2)

where 0 < C,p1 < ∞ are constants independent of x and p1 > 15.

Let h be a function on S such that 0 ≤ h(x) ≤ C(|x| ∨ 1)−p2 for constants 0 < C,p2 < ∞. This section is devoted
to proving the following Green function bound on the Markov chain.

Theorem A.1. There are constants 0 < C,η < ∞ such that

n−1∑
k=0

Ezh(Yk) =
∑
y

h(y)

n−1∑
k=0

Pz{Yk = y} ≤ Cn1−η

for all n ≥ 1 and z ∈ S. If p1 and p2 can be taken arbitrarily large, then 1 − η can be taken arbitrarily close to (but
still strictly above) 1/2.

Precisely speaking, the bound that emerges is

n−1∑
k=0

Ezh(Yk) ≤ Cn{1−p2/(2p1−4)}∨{(1/2)+13/(2p1−4)}. (A.3)

The remainder of the section proves the theorem. Throughout C will change value but p1,p2 remain the constants in
the assumptions above.

For the proof we can assume that each coordinate walk Ȳ i (1 ≤ i ≤ d) is nondegenerate. For if the random walk has
a degenerate coordinate Ȳ j then assumption (A.iii) implies that also for the Markov chain Y

j
n = Y

j

0 for all times n ≥ 0.
Then we can project everything onto the remaining d − 1 coordinates. Given the starting point z of Theorem A.1
write the Markov chain as Yn = (zj , Y ′

n) where Y ′
n is the Z

d−1-valued Markov chain with transition q ′(x′, y′) =
q((zj , x

′), (zj , y
′)). Take the (d − 1)-dimensional random walk Ȳ ′

n = (Y 1
n , . . . , Y

j−1
n ,Y

j+1
n , . . . , Y d

n ). Replace h with
h′(x′) = h(zj , x

′). All the assumptions continue to hold with the same constants because |x′| ≤ |(zj , x
′)| and the exit

time from a cube only concerns the nondegenerate coordinates. The constants from the assumptions determine the
constants of the theorem. Consequently the estimate of the theorem follows with constants that do not depend on the
frozen coordinate zj .
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We begin by discarding terms outside a cube of side r = nε1 for a small ε1 > 0 that will be specified at the end of
the proof. For convenience, use below the �1 norm | · |1 on Z

d because its values are integers.

∑
|y|1>nε1

h(y)

n−1∑
k=0

Pz{Yk = y} ≤
n−1∑
k=0

∑
j≥[nε1 ]+1

Cj−p2Pz

{|Yk|1 = j
}

≤
n−1∑
k=0

Cn−p2ε1
∑

j≥[nε1 ]+1

Pz

{|Yk|1 = j
}≤ Cn1−p2ε1 .

Let

B = [−nε1, nε1
]d

.

Since h is bounded, it now remains to show that

n−1∑
k=0

Pz{Yk ∈ B} ≤ Cn1−η. (A.4)

For this we can assume z ∈ B since accounting for the time to enter B can only improve the estimate.
Bound (A.4) will be achieved in two stages. First we improve the assumed exponential exit time bound (A.1) to a

polynomial bound. Second, we show that often enough Y follows the random walk Ȳ during its excursions outside B .
The random walk excursions are long and thereby we obtain (A.4). Thus our first task is to construct a suitable
coupling of Y and Ȳ .

Lemma A.1. Let ζ = inf{n ≥ 1: Ȳn ∈ A} be the first entrance time of the random walk Ȳ into some set A ⊆ S. Then
we can couple the Markov chain Y and the random walk Ȳ so that

Px,x{Yk �= Ȳk for some 1 ≤ k ≤ ζ } ≤ CEx

[
ζ−1∑
k=0

|Ȳk|−p1

]
.

The proof shows that the statement works also if ζ = ∞ is possible, but we will not need this case.

Proof. For each state x create an i.i.d. sequence (Zx
k , Z̄x

k )k≥1 such that Zx
k has distribution q(x, x + ·), Z̄x

k has
distribution q̄(x, x + ·) = q̄(0, ·), and each pair (Zx

k , Z̄x
k ) is coupled so that P(Zx

k �= Z̄x
k ) ≤ C|x|−p1 . For distinct x

these sequences are independent.
Construct the process (Yn, Ȳn) as follows: with counting measures

Ln(x) =
n∑

k=0

1{Yk = x} and L̄n(x) =
n∑

k=0

1{Ȳk = x} (n ≥ 0)

and with initial point (Y0, Ȳ0) given, define for n ≥ 1

Yn = Yn−1 + Z
Yn−1
Ln−1(Yn−1)

and Ȳn = Ȳn−1 + Z̄
Ȳn−1

L̄n−1(Ȳn−1)
.

In words, every time the chain Y visits a state x, it reads its next jump from a new variable Zx
k which is then

discarded and never used again. And similarly for Ȳ . This construction has the property that, if Yk = Ȳk for 0 ≤ k ≤ n

with Yn = Ȳn = x, then the next joint step is (Zx
k , Z̄x

k ) for k = Ln(x) = L̄n(x). In other words, given that the processes
agree up to the present and reside together at x, the probability that they separate in the next step is bounded by
C|x|−p1 .
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Now follow self-evident steps.

Px,x{Yk �= Ȳk for some 1 ≤ k ≤ ζ }

≤
∞∑

k=1

Px,x

{
Yj = Ȳj ∈ Ac for 1 ≤ j < k,Yk �= Ȳk

}
≤

∞∑
k=1

Ex,x

[
1
{
Yj = Ȳj ∈ Ac for 1 ≤ j < k

}
PYk−1,Ȳk−1

{Y1 �= Ȳ1}
]

≤ C

∞∑
k=1

Ex,x

[
1
{
Yj = Ȳj ∈ Ac for 1 ≤ j < k

}|Ȳk−1|−p1
]

≤ CEx

ζ−1∑
m=0

|Ȳm|−p1
.

�

For the remainder of this section Y and Ȳ are always coupled in the manner that satisfies Lemma A.1.

Lemma A.2. Fix a coordinate index j ∈ {1, . . . , d}. Let r0 be a positive integer and w̄ = inf{n ≥ 1: Ȳ
j
n ≤ r0} the first

time the random walk Ȳ enters the half-space H = {x: xj ≤ r0}. Couple Y and Ȳ starting from a common initial point
x /∈ H. Then there is a constant C independent of r0 such that

sup
x /∈H

Px,x

{
Yk �= Ȳk for some k ∈ {1, . . . , w̄}}≤ Cr

2−p1
0 for all r0 ≥ 1.

The same result holds for H = {x: xj ≥ −r0}.

Proof. By Lemma A.1

Px,x

{
Yk �= Ȳk for some k ∈ {1, . . . , w̄}}

≤ CEx

[
w̄−1∑
k=0

|Ȳk|−p1

]
≤ CExj

[
w̄−1∑
k=0

∣∣Ȳ j
k

∣∣−p1

]
= C

∞∑
t=r0+1

t−p1g
(
xj , t
)
,

where for s, t ∈ [r0 + 1,∞)

g(s, t) =
∞∑

n=0

Ps

{
Ȳ

j
n = t, w̄ > n

}
is the Green function of the half-line (−∞, r0] for the one-dimensional random walk Ȳ j . This is the expected number
of visits to t before entering (−∞, r0], defined on p. 209 in [17]. The development in Sections 18 and 19 in [17] gives
the bound

g(s, t) ≤ C
(
1 + (s − r0 − 1) ∧ (t − r0 − 1)

)≤ C(t − r0), s, t ∈ [r0 + 1,∞). (A.5)

Here is some more detail. Shift r0 + 1 to the origin to match the setting in [17]. Then P19.3 on p. 209 gives

g(x, y) =
x∧y∑
n=0

u(x − n)v(y − n) for x, y ≥ 0,
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where the functions u and v are defined on p. 201. For a symmetric random walk u = v (E19.3 on p. 204). P18.7 on
p. 202 implies that

v(m) = 1√
c

∞∑
k=0

P{Z1 + · · · + Zk = m},

where c is a certain constant and {Zi} are i.i.d. strictly positive, integer-valued ladder variables for the underlying
random walk. (For k = 0 the sum Z1 + · · · + Zk is identically zero.) Now v(m) ≤ v(0) for each m because the Zi ’s
are strictly positive. (Either do induction on m, or note that for a particular realization of the sequence {Zi} a given m

can be attained for at most one value of k.) So the quantities u(m) = v(m) are bounded. This justifies (A.5).
Continuing from further above we get the estimate claimed in the statement of the lemma:

Ex

[
w̄−1∑
k=0

|Ȳk|−p1

]
≤ C
∑
t>r0

(t − r0)t
−p1 ≤ Cr

2−p1
0 .

�

For the next lemmas abbreviate Br = [−r, r]d for d-dimensional centered cubes.

Lemma A.3. There exist constants 0 < α1,A1 < ∞ such that

inf
x∈Br\Br0

Px

{
without entering Br0 chain Y exits Br by time A1r

3}≥ α1

r
(A.6)

for large enough positive integers r0 and r that satisfy

r2/(p1−2) ≤ r0 < r.

Proof. A point x ∈ Br \ Br0 has a coordinate xj ∈ [−r,−r0 − 1] ∪ [r0 + 1, r]. The same argument works for both
alternatives, and we treat the case xj ∈ [r0 + 1, r].

One way to realize the event in (A.6) is this: starting at xj , the Ȳ j walk exits [r0 + 1, r] by time A1r
3 through the

right boundary into [r + 1,∞), and Y and Ȳ stay coupled together throughout this time. Let ζ̄ be the time Ȳ j exits
[r0 + 1, r] and w̄ the time Ȳ j enters (−∞, r0]. Then w̄ ≥ ζ̄ . Thus the complementary probability of (A.6) is bounded
above by

Pxj

{
Ȳ j exits [r0 + 1, r] into (−∞, r0]

}+ Pxj

{
ζ̄ > A1r

3}+ Px,x

{
Yk �= Ȳk for some k ∈ {1, . . . , w̄}}. (A.7)

We treat the terms one at a time. From the development on pp. 253–255 in [17] we get the bound

Pxj

{
Ȳ j exits [r0 + 1, r] into (−∞, r0]

}≤ 1 − α2

r
(A.8)

for a constant α2 > 0, uniformly over 0 < r0 < xj ≤ r . In some more detail: P22.7 on p. 253, the inequality in the
third display of p. 255, and the third moment assumption on the steps of Ȳ give a lower bound

Pxj

{
Ȳ j exits [r0 + 1, r] into [r + 1,∞)

}≥ xj − r0 − 1 − c1

r − r0 − 1
(A.9)

for the probability of exiting to the right. Here c1 is a constant that comes from the term denoted in [17] by
M
∑N

s=0(1 + s)a(s) whose finiteness follows from the third moment assumption. The text on pp. 254–255 sug-
gests that these steps need the aperiodicity assumption. This need for aperiodicity can be traced back via P22.5 to
P22.4 which is used to assert the boundedness of u(x) and v(x). But as we observed above in the derivation of (A.5)
boundedness of u(x) and v(x) is true without any additional assumptions.
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To go forward from (A.9) fix any m > c1 so that the numerator above is positive for xj = r0 +1+m. The probability
in (A.9) is minimized at xj = r0 + 1, and from xj = r0 + 1 there is a fixed positive probability θ to take m steps to
the right to get past the point xj = r0 + 1 + m. Thus for all xj ∈ [r0 + 1, r] we get the lower bound

Pxj

{
Ȳ j exits [r0 + 1, r] into [r + 1,∞)

}≥ θ(m − c1)

r − r0 − 1
≥ α2

r
,

where α2 > 0 is a constant, and (A.8) is verified.
As in (A.5) let g(s, t) be the Green function of the random walk Ȳ j for the half-line (−∞, r0], and let g̃(s, t) be the

Green function for the complement of the interval [r0 + 1, r]. Then g̃(s, t) ≤ g(s, t), and by (A.5) we get this moment
bound:

Exj [ζ̄ ] =
r∑

t=r0+1

g̃
(
xj , t
)≤ r∑

t=r0+1

g
(
xj , t
)≤ Cr2.

Consequently, uniformly over xj ∈ [r0 + 1, r],

Pxj

[
ζ̄ > A1r

3]≤ C

A1r
. (A.10)

From Lemma A.2

Px

{
Yk �= Ȳk for some k ∈ {1, . . . , w̄}}≤ Cr

2−p1
0 . (A.11)

Putting bounds (A.8), (A.10) and (A.11) together gives an upper bound of

1 − α2

r
+ C

A1r
+ Cr

2−p1
0

for the sum in (A.7) which bounds the complement of the probability in (A.6). By assumption r
2−p1
0 ≤ r−2. So if A1

is fixed large enough, then the sum above is not more than 1 − α1/r for a constant α1 > 0, for all large enough r . �

We iterate the last estimate to get down to an iterated logarithmic cube.

Corollary A.1. Fix a constant c1 > 1 and consider positive integers r0 and r that satisfy

log log r ≤ r0 ≤ c1 log log r < r.

Then for large enough r

inf
x∈Br\Br0

Px

{
without entering Br0 chain Y exits Br by time r4}≥ r−3. (A.12)

Proof. Consider r large enough so that r0 is also large enough to play the role of r in Lemma A.3. Pick an integer γ

such that 3 ≤ γ ≤ (p1 − 2)/2. Put rk = r
γ k

0 for k ≥ 0 (r0 is still r0) and tn = A1
∑n

k=1 r
3γ k

0 , where A1 is the constant
from Lemma A.3.

We claim that for n ≥ 1

inf
x∈Brn\Br0

Px{without entering Br0 chain Y exits Brn by time tn} ≥
n∏

k=1

(
α1

rk

)
. (A.13)

Here α1 is the constant coming from (A.6) and we can assume α1 ≤ 1.
We prove (A.13) by induction. The case n = 1 is Lemma A.3 applied to r1 = r

γ

0 and r0. The inductive step comes
from the Markov property. Assume (A.13) is true for n and consider exiting Brn+1 without entering Br0 .
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(i) If the initial state x lies in Brn \ Br0 then by induction the chain first takes time tn to exit Brn without entering Br0

with probability bounded below by
∏n

k=1(α1/rk). If the walk landed in Brn+1 \ Brn take another time A1r
3
n+1 =

A1r
3γ n+1

0 to exit Brn+1 without entering Brn with probability at least α1/rn+1 (Lemma A.3 again). The times taken

add up to tn+1 and the probabilities multiply to
∏n+1

k=1(α1/rk).
(ii) If the initial state x lies in Brn+1 \Brn then apply Lemma A.3 to exit Brn+1 without entering Brn in time A1r

3
n+1 =

A1r
3γ n+1

0 with probability at least α1/rn+1.

This completes the inductive proof of (A.13).

Let N = min{k ≥ 1: rk ≥ r}. Then r
γ N−1

0 < r . If r is large enough, and in particular r0 is large enough to make
log log r0 > 0, then also N < 1 + (log log r)/(logγ ) < 2 log log r .

To prove the corollary take first n = N − 1 in (A.13). This gets the chain Y out of BrN−1 without entering Br0 . If
Y landed in Br \ BrN−1 , apply Lemma A.3 once more to take Y out of Br without entering BrN−1 . The probability of
achieving this is bounded below by

N−1∏
k=1

(
α1

rk

)
· α1

r
≥ αN

1 r
−γ N/(γ−1)

0 r−1 ≥ (log r)2 logα1r−γ /(γ−1)−1 ≥ r−3,

where again we required large enough r . For the time elapsed we get the bound

tN−1 + A1r
3 ≤ A1(N − 1)r

3γ N−1

0 + A1r
3 ≤ r4

for large enough r . �

The reader can see that the exponents in the previous lemmas can be tightened. But in the end the exponents still
get rather large so we prefer to keep the statements and proofs simple for readability. We come to one of the main
auxiliary lemmas of this development.

Lemma A.4. Let U = inf{n ≥ 0: Yn /∈ Br} be the first exit time from Br = [−r, r]d for the Markov chain Y . Then
there exists a finite positive constant C1 such that

sup
x∈Br

Ex[U ] ≤ C1r
13 for all 1 ≤ r < ∞.

Proof. First observe that supx∈Br
Ex[U ] < ∞ by assumption (A.1). Throughout, let positive integers r0 < r satisfy

log log r ≤ r0 ≤ 2 log log r so that in particular the assumptions of Corollary A.1 are satisfied. Once the statement is
proved for large enough r , we obtain it for all r ≥ 1 by increasing C1.

Let 0 = T0 = S0 ≤ T1 ≤ S1 ≤ T2 ≤ · · · be the successive exit and entrance times into Br0 . Precisely, for i ≥ 1 as
long as Si−1 < ∞

Ti = inf{n ≥ Si−1: Yn /∈ Br0} and Si = inf{n ≥ Ti : Yn ∈ Br0}.
Once Si = ∞ then we set Tj = Sj = ∞ for all j > i. If Y0 ∈ Br \ Br0 then also T1 = 0. From assumption (A.1)

sup
x∈Br0

Ex[T1] ≤ Kr0 ≤ (log r)2 logK. (A.14)

So a priori T1 is finite but S1 = ∞ is possible. Since T1 ≤ U < ∞ we can decompose as follows, for x ∈ Br :

Ex[U ] =
∞∑

j=1

Ex[U,Tj ≤ U < Sj ]

=
∞∑

j=1

Ex[Tj , Tj ≤ U < Sj ] +
∞∑

j=1

Ex[U − Tj , Tj ≤ U < Sj ]. (A.15)
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We first treat the last sum in (A.15). By an inductive application of Corollary A.1, for any z ∈ Br \ Br0 ,

Pz

{
U > jr4,U < S1

} ≤ Pz

{
Yk ∈ Br \ Br0 for k ≤ jr4}

= Ez

[
1
{
Yk ∈ Br \ Br0 for k ≤ (j − 1)r4}PY

(j−1)r4

{
Yk ∈ Br \ Br0 for k ≤ r4}] (A.16)

≤ · · · ≤ (1 − r−3)j .
Utilizing this, still for z ∈ Br \ Br0 ,

Ez[U,U < S1] =
∞∑

m=0

Pz{U > m,U < S1}

≤ r4
∞∑

j=0

Pz

{
U > jr4,U < S1

}≤ r7. (A.17)

Next we take into consideration the failure to exit Br during the earlier excursions in Br \ Br0 . Let

Hi = {Yn ∈ Br for Ti ≤ n < Si}

be the event that in between the ith exit from Br0 and entrance back into Br0 the chain Y does not exit Br . We shall
repeatedly use this consequence of Corollary A.1:

for i ≥ 1, on the event {Ti < ∞}, Px{Hi |FTi
} ≤ 1 − r−3. (A.18)

Here is the first instance.

Ex[U − Tj , Tj ≤ U < Sj ] = Ex

[
j−1∏
k=1

1Hk
· 1{Tj < ∞} · EYTj

(U,U < S1)

]

≤ r7Ex

[
j−1∏
k=1

1Hk
· 1{Tj−1 < ∞}

]
≤ r7(1 − r−3)j−1

.

Note that if YTj
above lies outside Br then EYTj

(U) = 0. In the other case YTj
∈ Br \ Br0 and (A.17) applies. So for

the last sum in (A.15):

∞∑
j=1

Ex[U − Tj , Tj ≤ U < Sj ] ≤
∞∑

j=1

r7(1 − r−3)j−1 ≤ r10. (A.19)

We turn to the second-last sum in (A.15). Separate the i = 0 term from the sum below and use (A.14) and (A.18):

Ex[Tj , Tj ≤ U < Sj ]

≤
j−1∑
i=0

Ex

[
j−1∏
k=1

1Hk
· 1{Tj < ∞} · (Ti+1 − Ti)

]

≤ (log r)2 logK
(
1 − r−3)j−1 (A.20)

+
j−1∑
i=1

Ex

[
i−1∏
k=1

1Hk
· (Ti+1 − Ti)1Hi

· 1{Ti+1 < ∞}
](

1 − r−3)j−1−i
.
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Split the last expectation as

Ex

[
i−1∏
k=1

1Hk
· (Ti+1 − Ti)1Hi

· 1{Ti+1 < ∞}
]

≤ Ex

[
i−1∏
k=1

1Hk
· (Ti+1 − Si)1Hi

· 1{Si < ∞}
]

+ Ex

[
i−1∏
k=1

1Hk
· (Si − Ti)1Hi

· 1{Ti < ∞}
]

≤ Ex

[
i−1∏
k=1

1Hk
· 1{Si < ∞} · EYSi

(T1)

]
+ Ex

[
i−1∏
k=1

1Hk
· 1{Ti < ∞} · EYTi

(S1 · 1H1)

]

≤ Ex

[
i−1∏
k=1

1Hk
· 1{Ti−1 < ∞}

](
(log r)2 logK + r7)

≤ (1 − r−3)i−1(
(log r)2 logK + r7). (A.21)

In the second-last inequality above, before applying (A.18) to the Hk’s, EYSi
(T1) ≤ (log r)2 logK comes from (A.14).

The other expectation is estimated by iterating Corollary A.1 again with z ∈ Br \ Br0 , as was done in calculation
(A.16):

Ez[S1 · 1H1 ] =
∞∑

m=0

Pz{S1 > m,H1}

≤
∞∑

m=0

Pz{Yk ∈ Br \ Br0 for k ≤ m}

≤ r4
∞∑

j=0

Pz

{
Yk ∈ Br \ Br0 for k ≤ jr4}≤ r7.

Insert the bound from line (A.21) back up into (A.20) to get the bound

Ex[Tj , Tj ≤ U < Sj ] ≤ (2(log r)2 logK + r7)j(1 − r−3)j−2
.

Finally, bound the second-last sum in (A.15):

∞∑
j=1

Ex[Tj , Tj ≤ U < Sj ] ≤ (2(log r)2 logKr6 + r13)(1 − r−3)−1
.

Take r large enough so that r−3 < 1/2. Combine the above bound with (A.15) and (A.19) to get

Ex[U ] ≤ r10 + 4(log r)2 logKr6 + 2r13 ≤ 4r13

when r is large enough. �

For the remainder of the proof we work with B = Br for r = nε1 . The above estimate gives us one part of the
argument for (A.4), namely that the Markov chain Y exits B = [−nε1, nε1]d fast enough.

Let 0 = V0 < U1 < V1 < U2 < V2 < · · · be the successive entrance times Vi into B and exit times Ui from B for
the Markov chain Y , assuming that Y0 = z ∈ B . It is possible that some Vi = ∞. But if Vi < ∞ then also Ui+1 < ∞
due to assumption (A.1), as already observed. The time intervals spent in B are [Vi,Ui+1) each of length at least 1.
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Thus, by applying Lemma A.4,

n−1∑
k=0

Pz(Yk ∈ B) ≤
n∑

i=0

Ez

[
(Ui+1 − Vi)1{Vi ≤ n}]

≤
n∑

i=0

Ez

[
EYVi

(U1)1{Vi ≤ n}] (A.22)

≤ Cn13ε1Ez

[
n∑

i=0

1{Vi ≤ n}
]
.

Next we bound the expected number of returns to B by the number of excursions outside B that fit in a time of
length n:

Ez

[
n∑

i=0

1{Vi ≤ n}
]

= Ez

[
n∑

i=0

1

{
i∑

j=1

(Vj − Vj−1) ≤ n

}]
≤ Ez

[
n∑

i=0

1

{
i∑

j=1

(Vj − Uj ) ≤ n

}]
. (A.23)

According to the usual notion of stochastic dominance, we say the random vector (ξ1, . . . , ξn) dominates
(η1, . . . , ηn) if

Ef (ξ1, . . . , ξn) ≥ Ef (η1, . . . , ηn)

for any function f that is coordinatewise nondecreasing. If the process {ξi : 1 ≤ i ≤ n} is adapted to the filtration
{Gi : 1 ≤ i ≤ n}, and P [ξi > a|Gi−1] ≥ 1 − F(a) for some distribution function F , then the {ηi} can be taken i.i.d.
F -distributed.

Lemma A.5. There exist positive constants c1, c2 such that the following holds: the excursion lengths {Vj − Uj : 1 ≤
j ≤ n} stochastically dominate i.i.d. variables {ηj } whose common distribution satisfies P{η ≥ a} ≥ c1a

−1/2 for
1 ≤ a ≤ c2n

2ε1(p1−2).

Proof. Since Pz{Vj − Uj ≥ a|FUj
} = PYUj

{V ≥ a}, where V means first entrance time into B , we shall bound

Px{V ≥ a} below uniformly over x /∈ B . Fix such an x and an index 1 ≤ j ≤ d such that xj /∈ [−r, r]. As before we
work through the case xj > r because the argument for the other case xj < −r is the same.

Let w̄ = inf{n ≥ 1: Ȳ
j
n ≤ r} be the first time the one-dimensional random walk Ȳ j enters the half-line (−∞, r]. If

both Y and Ȳ start at x and stay coupled together until time w̄, then V ≥ w̄. This way we bound V from below. Since
the random walk is symmetric and can be translated, we can move the origin to xj and use classic results about the
first entrance time into the left half-line, T̄ = inf{n ≥ 1: Ȳ

j
n < 0}. Thus

Pxj {w̄ ≥ a} ≥ Pr+1{w̄ ≥ a} = P0{T̄ ≥ a} ≥ α5√
a

(A.24)

for a constant α5. The last inequality follows for one-dimensional symmetric walks from basic random walk theory.
For example, combine Eq. (7) on p. 185 of [17] with a Tauberian theorem such as Theorem 5 on p. 447 of [9]. Or see
directly Theorem 1a on p. 415 of [9].

Now start both Y and Ȳ from x. Apply Lemma A.2 and recall that r = nε1 .

Px{V ≥ a} ≥ Px,x{V ≥ a,Yk = Ȳk for k = 1, . . . , w̄}
≥ Px,x{w̄ ≥ a,Yk = Ȳk for k = 1, . . . , w̄}
≥ Pxj {w̄ ≥ a} − Px,x

{
Yk �= Ȳk for some k ∈ {1, . . . , w̄}}

≥ α5√
a

− Cnε1(2−p1) ≥ α5

2
√

a
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if a ≤ α2
5(2C)−2n2ε1(p1−2). This lower bound is independent of x. We have proved the lemma. �

We can assume that the random variables ηj given by the lemma satisfy 1 ≤ ηj ≤ c2n
2ε1(p1−2), and we can assume

that c2 ≤ 1 and ε1 is small enough to have

2ε1(p1 − 2) ≤ 1 (A.25)

because this merely weakens the conclusion of the lemma. For the renewal process determined by {ηj } write

S0 = 0, Sk =
k∑

j=1

ηj and K(n) = inf{k: Sk > n}

for the renewal times and the number of renewals up to time n (counting the renewal S0 = 0). Since the random
variables are bounded, Wald’s identity gives

EK(n) · Eη = ESK(n) ≤ n + c2n
2ε1(p1−2) ≤ 2n,

while

Eη ≥
∫ c2n

2ε1(p1−2)

1

c1√
s

ds ≥ c3n
ε1(p1−2).

Together these give

EK(n) ≤ 2n

Eη
≤ C2n

1−ε1(p1−2).

Now we pick up the development from line (A.23). Since the negative of the function of (Vj − Uj )1≤i≤n in the
expectation on line (A.23) is nondecreasing, the stochastic domination of Lemma A.5 gives an upper bound of (A.23)
in terms of the i.i.d. {ηj }. Then we use the renewal bound from above.

Ez

[
n∑

i=0

1{Vi ≤ n}
]

≤ Ez

[
n∑

i=0

1

{
i∑

j=1

(Vj − Uj ) ≤ n

}]

≤ E

[
n∑

i=0

1

{
i∑

j=1

ηj ≤ n

}]
= EK(n) ≤ C2n

1−ε1(p1−2).

Returning back to (A.22) to collect the bounds, we have shown that

n−1∑
k=0

Pz{Yk ∈ B} ≤ Cn13ε1Ez

[
n∑

i=0

1{Vi ≤ n}
]

≤ Cn1+13ε1−ε1(p1−2) = Cn1−η.

Since p1 > 15 by assumption, η = ε1(p1 − 15) > 0. We can satisfy (A.25) with ε1 = (1/2)(p1 − 2)−1 in which case
the last bound is Cn(1/2)+13/(2p1−4).

Appendix B. Replacing direction of transience

Hypotheses (1.1) and (M) are made for a specific vector û. This appendix shows that, at the expense of a further factor
in the moment required, the assumption that û has integer coordinates entails no loss of generality. This appendix also
uses the assumption (S) that the magnitude of a step is bounded by r0. We learned the proof below from Berger and
Zeitouni [1].
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Assume some vector ŵ ∈ Rd satisfies P0{Xn · ŵ → ∞} = 1. Let {σk}k≥0 be the regeneration times in the direc-
tion ŵ. Assume E0(σ

p3
1 ) < ∞ for some p3 > 6. As explained in Section 2, transience and moments on ŵ imply the

law of large numbers

Xn

n
→ v = E0[Xσ1 |β̂ = ∞]

E0[σ1|β̂ = ∞] P0-almost surely, (B.1)

where β̂ = inf{n ≥ 0: Xn · ŵ < X0 · ŵ} is the first backtracking time in the direction ŵ. The limiting velocity v satisfies
ŵ · v > 0.

Proposition B.1. Suppose û ∈ R
d satisfies û · v > 0. Then

P0{Xn · û → ∞} = 1.

For the first regeneration time τ1 in the direction û we have the estimate E0(τ
p0
1 ) < ∞ for 1 ≤ p0 < p3/2 − 2.

From this lemma we can choose a û with rational coordinates and then scale it by a suitable integer to get the
integer vector û assumed in (1.1) and Hypothesis (M). To get p0 > 176d as required by (M) of course puts an even
larger demand on p3.

Proof of Proposition B.1. Step 1. Transience in direction û.
Given n choose k = k(n) so that σk−1 < n ≤ σk . Then by the bounded step Hypothesis (S)∣∣∣∣1nXn · û − 1

n
Xσk

· û
∣∣∣∣≤ 1

n
|û|r0(σk − σk−1). (B.2)

By the moment assumption on σ1 the right-hand side converges P0-a.s. to zero while n−1Xσk
· û → v · û > 0, and so

in particular Xn · û → ∞. From this follows that the regeneration times {τk} in direction û are finite.
Step 2. Moment bound on the height Xτ1 · û of the first û-regeneration slab.
Let β be the û-backtracking time as defined in (2.2) and

M = sup
0≤n≤β

Xn · û.

Lemma 1.2 in [19] shows how the construction of the regeneration time leads to stochastic domination of Xτ1 · û

under P0 by a sum of geometrically many i.i.d. terms, each distributed like M plus a fixed constant under the measure
P0(·|β < ∞). Hence to prove E0[(Xτ1 · û)p] < ∞ it suffices to prove E0(M

p|β < ∞) < ∞. We begin with a lemma
that helps control the tail probabilities P {M > m|β < ∞}. For the arguments it turns out convenient to multiply m by
the constant |û|r0.

Lemma B.2. There exist δ0 > 0 such that this holds: if δ ∈ (0, δ0) there exists an m0 = m0(δ) < ∞ such that for
m ≥ m0 the event {M > m|û|r0, β < ∞} lies in the union of these three events:

σ[δm] ≥ m, (B.3)

σk − σk−1 ≥ δk for some k > [δm], (B.4)∣∣Xσk
− E0(Xσk

)
∣∣≥ δk for some k > [δm]. (B.5)

Proof of Lemma B.2. Assume that β < ∞ and M > m|û|r0, but conditions (B.3)–(B.5) fail simultaneously. We
derive a contradiction from this.

Fix k ≥ 1 so that

σk−1 < β ≤ σk. (B.6)
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Since the maximum step size is r0, at least m steps are needed to realize the event M > m|û|r0 and so β > m. Thus
negating (B.3) implies k > δm. The step bound, (B.6) and the negation of (B.4) imply

Xσk
· û ≤ Xβ · û + |û|r0(σk − σk−1) < |û|r0δk. (B.7)

Introduce the shorthands

a = E0(Xσ1) and b = E0(σ1|β̂ = ∞). (B.8)

By the i.i.d. property of the regeneration slabs from the second one onwards [recall the discussion around (2.4)]
E0(σk − σk−1) = b and E0(Xσk

) = a + b(k − 1)v for k ≥ 1. Thus negating (B.5) gives

Xσk
· û = (Xσk

− a − b(k − 1)v
) · û + a · û + b(k − 1)v · û

≥ −δk|û| − |a| · |û| + b(k − 1)v · û. (B.9)

Since v · û > 0, comparison of (B.7) and (B.9) reveals that it is possible to first fix δ > 0 small enough and then
m0 large enough so that, if m ≥ m0, then k > δm forces a contradiction between (B.7) and (B.9). This concludes the
proof of Lemma B.2. �

Next we observe that the union of (B.3)–(B.5) has probability ≤ Cm1−p3/2. The assumptions of ŵ-directional
transience and E0(σ

p3
1 ) < ∞ imply that P0(β̂ = ∞) > 0 and hence (by the i.i.d. slab property again) for k ≥ 2,

E0
[
(σk − σk−1)

p3
]= E0

[
σ

p3
1 |β̂ = ∞]≤ E0(σ

p3
1 )

P0(β̂ = ∞)
< ∞. (B.10)

For the next calculation, recall that for i.i.d. mean zero summands and p ≥ 2 the Burkholder–Davis–Gundy in-
equality [5] followed by Jensen’s inequality gives

E

[∣∣∣∣∣
n∑

j=1

Zj

∣∣∣∣∣
p]

≤ E

[(
n∑

j=1

Z2
j

)p/2]
≤ np/2E

(
Z

p

1

)
.

Recall a and b from (B.8). Shrink δ further (this can be done at the expense of increasing m0 in Lemma B.2) so that
δb < 1/4.

P0{σ[δm] ≥ m} ≤ P0

{
σ1 ≥ m

2

}
+ P0

{[δm]∑
k=2

(σk − σk−1 − b) ≥ m

4

}
≤ Cm−p3/2. (B.11)

For the second estimate use (B.10).∑
k>[δm]

P0{σk − σk−1 ≥ δk} ≤
∑

k>[δm]
C(δk)−p3 ≤ Cm1−p3 .

For the third estimate use Chebychev and for the sum of i.i.d. pieces repeat the Burkholder–Davis–Gundy estimate:

P0
{∣∣Xσk

− E0(Xσk
)
∣∣≥ δk

}≤ P0

{∣∣Xσ1 − a
∣∣≥ δk

2

}
+ P0

{∣∣Xσk
− Xσ1 − (k − 1)bv

∣∣≥ δk

2

}
≤ Ck−p3/2. (B.12)

Summing these bounds over k > [δm] gives Cm1−p3/2.
Collecting the above bounds for the events (B.3)–(B.5) and utilizing Lemma B.2 gives the intermediate bound

P0(M > m|β̂ < ∞) ≤ Cm1−p3/2 for large enough m. Hence E0(M
p|β̂ < ∞) < ∞ for p < p3/2 − 1. By the already

mentioned appeal to Lemma 1.2 in Sznitman [19] we can conclude Step 2 with the bound

E0
[
(Xτ1 · û)p

]
< ∞ for p <

p3

2
− 1. (B.13)

Step 3. Moment bound for τ1. We insert one more lemma.
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Lemma B.3. For � ≥ 1:

P0{|Xn − nv| ≥ δn for some n ≥ �} ≤ C�1−p3/2.

Proof of Lemma B.3. Fix a small η > 0.

P0
{|Xn − nv| ≥ δn for some n ≥ �

}
≤ P0{σ[η�] ≥ �} +

∑
j>η�

P0
{|Xn − nv| ≥ δn for some n ∈ [σj−1, σj ]

}
.

If η is small enough the first probability above is bounded by C�−p3/2 as in (B.11). For a term in the sum, note first
that if σj−1 ≥ ηj then the parameter n in the probability satisfies n ≥ ηj . Then replace time n with time σj at the
expense of an error of a constant times σj − σj−1:

P0
{|Xn − nv| ≥ δn for some n ∈ [σj−1, σj ]

}
≤ P0{σj−1 < ηj} + P0

{
|Xσj

− σjv| ≥ δηj

2

}
+ P0

{(|v| + r0
)
(σj − σj−1) ≥ δηj

2

}
.

The first probability after the inequality gives again Cj−p3/2 as in (B.11) if η is small enough. In the second one
the summands Xσj

− Xσj−1 − (σj − σj−1)v are i.i.d. mean zero for j ≥ 2 so we can argue in the same spirit as in
(B.12) to get Cj−p3/2. The last probability gives Cj−p3 by the moments of σj − σj−1. Adding the bounds gives the
conclusion. �

Now we finish the proof of Proposition B.1. To get a contradiction, suppose that p0 < p3/2 − 2 and E0(τ
p0
1 ) = ∞.

Pick ε ∈ (0,p3/2 − 2 − p0). Then there exists a subsequence {kj } such that P0(τ1 > kj ) ≥ k
−p0−ε
j . With the above

lemma and the choice of ε we have, for large enough kj

P0
{
τ1 > kj , |Xn − nv| < δn for all n ≥ kj

}≥ k
−p0−ε
j − Ck

1−p3/2
j ≥ Ck

−p0−ε
j .

On the event above

Xτ1 · û ≥ τ1v · û − δτ1|û| ≥ δ1kj

for another small δ1 > 0 if δ is small enough. Thus we have

P0{Xτ1 · û ≥ δ1kj } ≥ Ck
−p0−ε
j .

From this

δ
−p

1 E0
[
(Xτ1 · û)p

]≥ C
∑
j

k
p−1−p0−ε
j .

This sum diverges and contradicts (B.13) if p is chosen to satisfy p3/2 − 1 > p ≥ 1 + p0 + ε which can be done by
the earlier choice of ε. This contradiction implies that E0(τ

p0
1 ) < ∞ and completes the proof of Proposition B.1. �

Appendix C. Completion of a technical proof

In this appendix we finish the proof of Lemma 7.13 by deriving the bounds (7.30)–(7.32).
Proof of (7.30). By Hypothesis (R), there exist two nonzero vectors w �= z such that Eπ0,zπ0,w > 0. We will

distinguish several cases. In each case we describe two paths that the two walkers can take with positive probability.
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The two paths will start at 0, reach a fresh common level at distinct points, will not backtrack below level 0, and
will not have a chance of a joint regeneration at any previous positive level. Then the two walks can regenerate
with probability ≥ η > 0 (Lemma 7.1). Note that the part of the environment responsible for the two paths and the
part responsible for regeneration lie in separate half-spaces. Since P is product, a positive lower bound for (7.33) is
obtained and (7.30) thereby proved.

Case 1. w · û > 0, z · û > 0, and they are noncollinear. Let one walk take enough w-steps and the other enough
z-steps.

Case 2. w · û > 0, z · û > 0, and they are collinear. Since the walk is not confined to a line (Hypothesis (R)), there
must exist a vector y that is not collinear with z,w such that Eπ0y > 0.

Subcase 2.a. y · û < 0. Exchanging w and z, if necessary, we can assume w · û < z · û. Let n > 0 and m > 0 be
such that nw · û+my · û = 0. Let one walk take n w-steps then m y-steps, coming back to level 0, then n w-steps and
a z-step. The other walk takes n − 1 w-steps (staying with the first walk), a z-step, then a w-step.

Subcase 2.b. y · û ≥ 0. Let n ≥ 0 and m > 0 be such that nw · û = my · û. One walk takes a w-step, m y-steps, then
a z-step. The other walk takes a z-step, then n + 1 w-steps. Whenever the walks are on a common level, they will be
at distinct points.

Case 3. w · û = 0 while z · û > 0. The first walk takes a w-step then a z-step. The second walk takes a z-step. The
case when w · û > 0 and z · û = 0 is similar.

Case 4. w · û = z · û = 0. By û-transience, there exists a y with y · û > 0 and Eπ0y > 0. One walk takes a w-step,
the other a z-step, then both take a y-step.

The rest of the cases treat the situation when w · û < 0 or z · û < 0. Exchanging w and z, if necessary, we can
assume that w · û < 0.

Case 5. w · û < 0, z · û > 0, and they are noncollinear. This can be resolved as in the proof of Lemma 7.1 for x �= 0,
since now path intersections do not matter. More precisely, let n > 0 and m > 0 be such that nw · û = mz · û. The first
walk takes m z-steps, n w-steps, backtracking all the way back to level 0, then m + 1 z-steps. The other walk just
takes m + 1 z-steps.

Case 6. w · û < 0, z · û > 0, and they are collinear. Since the one-dimensional case is excluded, there must exist a
vector y noncollinear with them and such that Eπ0y > 0.

Subcase 6.a. y · û > 0. Let m > 0 and n > 0 be such that ny · û + mw · û = 0. Let k be a minimal integer such that
kz · û + y · û + mw · û ≥ 0. The first walk takes k z-steps, a y-step, m w-steps, n y-step and a z-step. The other walk
takes k z-steps, a y-step, staying so far with the first walk, then splits away and takes a z-step.

Subcase 6.b. y · û = 0. Let m > 0 and n > 0 be such that nz · û+mw · û = 0. The first walk takes n z-steps, a y-step,
m w-steps, backtracking all the way back to level 0, a y-step, then takes n + 1 z-step. The other walk takes n z-steps,
a y-step, staying with the first walk, then takes a z-step.

Subcase 6.c. y · û < 0. Let k > 0, � > 0, m > 0, and n > 0 be such that �z · û = k(w +y) · û and mz · û = ny · û. The
first walk takes � + m z-steps, n y-steps, k w-steps, k y-steps, backtracking back to level 0, then � + m + 1 z-steps.
The second walk takes � + m z-steps, n y-steps, staying with the other walk, then m + 1 z-steps.

Case 7. w · û < 0, z · û < 0, and they are collinear. Since the one-dimensional case is excluded, there exists a u

noncollinear with them and such that Eπ0u > 0. Furthermore, by û-transience, there exists a y such that y · û > 0 and
Eπ0y > 0. It could be the case that y = u.

Subcase 7.a. y is not collinear with w and z. Let k be the minimal integer such that w · û + ky · û > 0. Let n > 0
and m > 0 be such that ny · û+mz · û = 0. Let � by the minimal integer such that �y · û+w · û+mz · û ≥ 0. The first
walk takes � y-steps, a z-step, a w-step, m − 1 z-steps, then n + k y-steps. The other walk takes � y-steps, a w-step,
then k y-steps.

Subcase 7.b. y is collinear with w and z and u · û ≤ 0. Let m > 0 and n > 0 be such that m(z · û + u · û) = ny · û.
Let k be minimal such that ky · û + w · û + 2u · û > 0. Let � be the minimal integer such that �y · û + mz · û + w · û +
(m + 2)u · û ≥ 0. The first walk takes � y-steps, a u-step, a z-step, a w-step, m − 1 z-steps, m + 1 u-steps, then n + k

y-steps. The other walk takes also � y-steps and a u-step, but then splits from the first walk taking a w-step, a u-step,
and k y-steps.

The subcase when y is collinear with w and z and u · û > 0 is done by using u in place of y in the argument of
subcase 7.a.

Case 8. w · û < 0, z · û ≤ 0, and they are not collinear. By û-transience, ∃y : y · û > 0 and Eπ0y > 0.
Subcase 8.a. y is not collinear with w nor with z and ay + bw + z �= 0 for all integers a, b > 0. Let m > 0 and

n > 0 be such that mw · û + ny · û = 0. Let � be the minimal integer such that �y · û + mw · û + z · û ≥ 0. Let k be the
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minimal integer such that z · û + ky · û > 0. The first walk takes � y-steps, m w-steps, a z-step, then n + k y-steps.
The other walk takes also � y-steps, a z-step, then k y-steps.

Subcase 8.b. y is not collinear with w nor with z, there exist integers a, b > 0 such that ay + bw + z = 0 and
z · û = 0. One walk takes a y-steps, one z-step, and one y-step. The other walk takes a y-steps, b w-steps, then
(a + 1) y-steps.

Subcase 8.c. y is not collinear with w nor with z, there exist integers a, b > 0 such that ay + bw + z = 0 and
z · û < 0. Pick k,n > 0 such that kw · û = nz · û. Pick i, j > 0 so that iy · û + jkw · û = 0. The first walk takes
i y-steps, then jk w-steps followed by (i + 1) y-steps. The second walk takes i y-steps, then jn z-steps followed by
(i + 1) y-steps.

In subcases 8.b and 8.c there are no self-intersections because the pairs y,w and y, z are not collinear. Also, the
two paths cannot intersect because an intersection together with z = −ay − bw would force y and w to be collinear.

Subcase 8.d. y is collinear with z or with w. Exchanging z and w, if necessary, and noting that if z · û = 0 then
y cannot be collinear with z, we can assume that y is collinear with w. Let k > 0 and � > 0 be the minimal integers
such that kw · û + �y · û = 0. Let a ≥ 0 and b > 0 be the minimal integers such that ay · û + bz · û = 0. Let m be the
smallest integer such that my · û+ 2z · û > 0. Let n be the smallest integer such that ny · û+ (b + 2)z · û+ kw · û > 0.
Now, the first walk takes n y-steps, one z-step, k w-steps, (b + 1) z-steps, then � + m + a y-steps. The other walk
takes n y-steps, two z-steps, and then m y-steps.

Proof of (7.31). We appeal here to the construction done in the proof of Lemma 7.1. For x ∈ Vd \ {0} the paths
constructed there gave us a bound

Px

[|Y1| > L
]= P0,x

{
β = β̃ = ∞, |X̃μ̃1 − Xμ1 | > L

}≥ δ(x) > 0

for any given L. There was a stage in that proof where x may have been replaced by −x, so the above bound is valid
for either x or −x. But translation shows that

Px

[|Y1| = a
]= P−x

[|Y1| = a
]

and so we have the estimate for all x ∈ Vd \ {0}. Considering only finitely many x inside a ball gives a uniform lower
bound δ = min|x|≤L δ(x) > 0.

Proof of (7.32). The proof of Lemma 7.1 gave us two paths σ1 = {0 = x0, x1, . . . , xm1} and σ2 = {0 =
y0, y1, . . . , ym2} with positive probability and these additional properties: the paths do not backtrack below level 0, the
final points xm1 and ym2 are distinct but on a common level � = xm1 · û = ym2 · û > 0, and no level strictly between 0
and � can serve as a level of joint regeneration for the paths.

To recall more specifically from the proof of Lemma 7.1, these paths were constructed from two nonzero, non-
collinear vectors z,w ∈ J = {x: Eπ0,x > 0} such that z · û > 0. If also w · û > 0, then take σ1 = {(iz)0≤i≤m} and
σ2 = {(iw)0≤i≤n} where m,n are the minimal positive integers such that mz · û = nw · û. In the case z · û > 0 ≥ w · û
these paths were given by σ1 = {(iz)0≤i≤m, (mz+ iw)1≤i≤n, (mz+nw+ iz)1≤i≤m+1} and σ2 = {(iz)0≤i≤m+1}, where
now m ≥ 0 and n > 0 are minimal for mz · û = −nw · û.

Take L large enough so that |z1 − z2| > L guarantees that paths z1 + σ1 and z2 + σ2 cannot intersect. Let b̂ =
ym2 − xm1 ∈ Vd \ {0}. Then by the independence of environments and (7.3), for |x| > L,

Px[Y1 − Y0 = b̂] ≥ P0,x{β = β̃ = ∞, X̃μ̃1 = x + ym2,Xμ1 = xm1}
≥ P0,x{X0,m1 = σ1, X̃0,m2 = x + σ2, β ◦ θm1 = β̃ ◦ θm2 = ∞}

≥
(

m1−1∏
i=0

Eπxi,xi+1

)(
m2−1∏
i=0

Eπyi,yi+1

)
· η > 0.

The lower bound is independent of x. The same lower bound for Px[Y1 −Y0 = −b̂] comes by letting X follow σ2 and
X̃ follow x + σ1. This completes the proof of Lemma 7.13.
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