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Abstract. We focus on the problem of adaptive estimation of signal singularities from indirect and noisy observations. A typical
example of such a singularity is a discontinuity (change-point) of the signal or of its derivative. We develop a change-point estimator
which adapts to the unknown smoothness of a nuisance deterministic component and to an unknown jump amplitude. We show
that the proposed estimator attains optimal adaptive rates of convergence. A simulation study demonstrates reasonable practical
behavior of the proposed adaptive estimates.

Résumé. Nous étudions ici le problème d’estimation adaptative de singularités d’un signal à partir des observations indirectes
et bruitées. Par exemple, cette definition de singularité inclut des points de discontinuité (points de rupture) du signal ou de ses
derivées. Nous proposons un estimateur du point de rupture qui s’adapte à une regularité inconnue du paramètre de nuisance et
à l’amplitude inconnue du saut, et dont la vitesse de convergence est optimale. Nous illustrons les propriétés théoriques de cet
estimateur par quelques résultats de simulation.
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1. Introduction

Consider the following model in the space of sequences

yk = a exp(2πikθ) + gk + εσkξk, k ∈ N, (1)

where a ∈ R, θ ∈ [0,1] are unknown constants, g = (gk) ∈ CN is an unknown nuisance sequence, σ = (σk) ∈ CN is a
given sequence, and ξ = (ξk) ∈ CN is a sequence of independent standard complex-valued Gaussian random variables,
(�ξk,�ξk) ∼ N (0, I ). The goal is to estimate θ and a using observations yk , k ∈ N.

We consider the above problem under the assumption that the nuisance sequence (gk) belongs to a Sobolev ellipsoid

Gs(L) =
{

g ∈ CN
∣∣∣ ∞∑
k=1

|gk|2k2s ≤ L2

}
, s > −1

2
. (2)
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In addition we assume that

Assumption (A). For some β > 1/2 and 0 < σ ≤ σ̄

σ kβ ≤ |σk| ≤ σ̄ kβ, ∀k ∈ N. (3)

The motivation for considering model (1) under assumptions (2) and (3) is provided by the fact that various prob-
lems of change-point estimation from indirect observations can be stated in the form (1). In particular, the frequency
θ in (1) corresponds to the change-point, while the amplitude a relates to the jump amplitude. The following three
change-point estimation problems illustrate this relationship.

Estimation of a change-point in derivatives

Consider the Gaussian white noise model

dY(t) = f (t)dt + ε dW(t), t ∈ [0,1], (4)

where f is an unknown periodic function on [0,1], ε > 0, and W is the standard Wiener process. Assume that f is α

times differentiable, and f (α) is smooth apart from a single discontinuity of the first kind at the point θ ∈ [0,1]. We
are interested in estimating the change-point θ , and the amplitude a of the jump. When α is not integer then f (α) is
understood as the Weyl fractional derivative of f . Let m = 	α
 (where 	α
 stands for the integer part of α). We then
say that f (m) has a cusp of the order α − m at θ .

If f (α) has a single discontinuity of size a at θ ∈ [0,1], then it can be uniquely represented as

f (α)(t) = aV (t − θ) + q(t), t ∈ [0,1], (5)

where V (t) = 1/2 − t − 	t
 is the “saw-tooth” function, and q ∈ Gs(L), s > 1
2 . We note that (5) is the standard way

of representing discontinuous functions in the theory of Fourier series (see, e.g., [5], p. 9). Then the model (4) is
equivalent to the sequence-space model (1) where

g ∈ Gs−1(2πL) and σ 2
k = (2πk)2α+2. (6)

Indeed,

Vk =
{

(2πik)−1, k = 1,2, . . . ,

0, k = 0,

and, due to the periodicity of f , g0 = 0, the Fourier coefficients of the function f (α) in (5) are

f
(α)
k = a(2πik)−1e2πikθ + qk, k ∈ N+ and f

(α)
0 = 0.

On the other hand, the model (4) is clearly equivalent to

zk = fk + εηk, k = 0,1,2, . . . ,

where zk = ∫ 1
0 e2πikt dY(t), and ηk are i.i.d. standard complex-valued Gaussian random variables. Note that

f
(α)
k = (−2πik)αfk, k ∈ N+.

Thus we obtain for yk = (−1)α(2πik)α+1zk , gk = (2πik)qk and ξk = (−1)αiα+1ηk ,

yk = ae2πikθ + gk + σkεξk, k ∈ N+

with (σk) and (gk) which satisfy (6).
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Change-point estimation in the convolution white noise model

The white noise convolution model is given by the equation

dY(t) = (Kf )(t)dt + ε dW(t), t ∈ [0,1], (7)

where f is a periodic function on [0,1], ε > 0, W is the standard Wiener process, and the operator K is that of the
periodic convolution on [0,1]:

(Kf )(t) =
∫ 1

0
K(t − s)f (s)ds.

The function f is assumed to be smooth apart from a single discontinuity at θ ∈ [0,1]. The goal here is to estimate
the change-point θ and the jump amplitude a.

Suppose, as above that the decomposition f (t) = aV (t − θ)+ q(t) holds, and q ∈ Gs(L). Assume that the Fourier
coefficients (Kk) of the kernel K do not vanish, moreover, assume that for some α > 1/2 and 0 < c ≤ C < ∞ the
kernel K satisfies:

ckα ≤ ∣∣(Kk)
−1
∣∣≤ Ckα.

Using the same arguments as above, we conclude that the model (7) can be equivalently rewritten in the form (1) with

σk = 2πk
∣∣(Kk)

−1
∣∣, k ∈ N+, g ∈ Gs−1(2πL).

Observe that the relation (3) holds with β = α + 1, σ = 2πc and σ̄ = 2πC.

Delay and amplitude estimation

Let S be a known periodic signal. Assume that we observe the trajectory Y = (Y (t)), t ∈ [0,1] where

dY(t) = [
aS(t − θ) + q(t)

]
dt + ε dW(t), t ∈ [0,1], (8)

a ∈ R\{0} is an unknown nuisance parameter, θ ∈ [0,1], q is an unknown smooth periodic nuisance function, ε > 0,
and W is the standard Wiener process. We are interested in estimation of the delay parameter θ and the signal ampli-
tude a.

Suppose that in the model (8) g ∈ Gs(L) and for some 1
2 < α < s and 0 < c ≤ C < ∞

ckα ≤ ∣∣S−1
k

∣∣≤ Ckα, k ∈ N+.

Obviously, the model (8) is equivalent to (1) with

σk = |S−1
k |, k ∈ N+, g ∈ Gs−α(CL),

and with ckα ≤ σk ≤ Ckα .
In the companion paper [2] (referred to hereafter as Part I), we studied the problem of minimax estimation of θ

and a in the model (1). Our estimators of the jump amplitude and of the change-point were based on the so-called
contrast functions

ĴN (t) =
∣∣∣∣∣

2N∑
k=N+1

yke−2πikt

∣∣∣∣∣
2

, t ∈ [0,1] (9)

ĤN(t) = 2πi
2N∑

k=N+1

2N∑
j=N+1

(k − j)ykȳj e−2πi(k−j)t = −Ĵ ′
N(t), t ∈ [0,1], (10)
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where N ≥ 1 is a window-size parameter to be chosen. The estimator aN of the jump magnitude |a| is given by

aN = N−1
√

max
t∈[0,1]

ĴN (t), (11)

while the estimate θN of the change-point θ is defined as a root of the equation ĤN(θ) = 0 on the interval with
endpoints θ̂+ and θ̂−, where

θ̂+ ≡ arg max
t∈[0,1]

ĤN(t), θ̂− ≡ arg min
t∈[0,1]

ĤN(t). (12)

These estimators are based on a characterization of a and θ in terms of deterministic counterparts JN and HN

of ĴN and ĤN that are obtained from (9) and (10) by substituting a exp(2πikθ) for yk . In particular, θ is the unique
global maximizer of JN , and the corresponding maximal value equals a2N2. Furthermore, if θ+ and θ− are the unique
global maximizer and minimizer of HN , then θ is the unique zero on the segment with the endpoints θ− and θ+ (it
is also the midpoint of this segment). In Part I it was shown that the functions ĴN and ĤN converge to JN and HN

uniformly on [0,1].
The choice of the window parameter N in (11) and (12) is crucial to achieve the optimal estimation accuracy. In

Part I we have shown that if parameters s and L of the class Gs(L) are known, then N can be chosen (depending on s

and L) in such a way that aN and θN possess optimal minimax properties. In particular, if N = c(L/(ε
√

ln ε−1))1/(β+s)

with some constant c = c(β, s), then the estimator aN is rate-optimal. On the other hand, construction of rate-optimal
estimators for the change-point θ and the optimal rates of convergence are different for two zones: 1/2 < β ≤ 3/2,
and β > 3/2. When 1/2 < β ≤ 3/2 then the optimal choice of N depends on the amplitude |a| of the jump but
does not depend on the regularity parameters s and L of the nuisance deterministic sequence (gk). If β > 3/2 then
the optimal choice of N depends on s and L but does not depend on |a|. We believe that the case β > 3/2 is more
interesting because here the estimation problem is “truly inverse.” Furthermore, in the case 1/2 < β ≤ 3/2, in order
to construct the adaptive estimator it suffices to substitute an estimator ã of the amplitude |a| into the estimator of θ .
For instance, one can use to this end the adaptive estimator â of |a| described below. That is the main reason, as far as
the change-point estimation problem is concerned, that we limit our study to the case β > 3/2.

In this paper we develop adaptive estimators of |a| and θ which do not require prior knowledge of the parameters
of the class Gs(L). We show that these estimators are rate optimal in the sense of [3] and [4]. The main results of
this paper are given in Section 2. Simulation results, presented in Section 3, show reasonable practical behavior of the
proposed estimators. The proofs are relegated to the Appendix.

2. Main results

We start a description of the adaptive jump amplitude estimator.

2.1. Adaptive jump amplitude estimator

The construction is based on the general adaptation scheme by Lepski [3]. In order to implement this scheme in the
context of the jump amplitude estimation we need to control the stochastic error of the estimator aN defined in (11). It
was shown in Part I, Section 4.1 that the stochastic terms are determined via the complex-valued stationary Gaussian
process wN(t) =∑2N

k=N+1 σkξke−2πikt , t ∈ [0,1] with zero mean, and variance

σ 2
w(N) ≡ 2

2N∑
k=N+1

σ 2
k . (13)

In view of Assumption (A), there exist constants cβ ≤ Cβ < ∞ depending only on β such that

cβσNβ+1/2 ≤ σw(N) ≤ Cβσ̄Nβ+1/2, for any N ∈ N+. (14)
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Put N̄ ≡ 	ε−2
. For N = 2, . . . , N̄ we set

σ̄w(N) = Cβσ̄Nβ+1/2. (15)

Let λ ≥ 1 be a parameter to be specified. Consider the following iterative procedure:

Algorithm 1.

1. Compute the estimate aN̄ with the window parameter N̄ and the values

α−
0 = aN̄ − 10ελN̄−1σ̄w(N̄), α+

0 = aN̄ + 10ελN̄−1σw(N̄).

2. For N = N̄ − 1, . . . ,2 compute the estimate aN with the window parameter N . If

α−
N+1 ≤ aN + 10ελN−1σ̄w(N) and aN − 10ελN−1σ̄w(N) ≤ α+

N+1,

declare N admissible and compute the brackets

α−
N = max

{
α−

N+1, aN − 10ελN−1σ̄w(N)
}
,

α+
N = min

{
α+

N+1, aN + 10ελN−1σ̄w(N)
}
.

3. Define the adaptive estimate âε as any point of the segment [α−
N̂

, α+
N̂

] (e.g. âε = (α+
N̂

+ α−
N̂

)/2), where N̂ is the
smallest admissible N .

Note that the adaptive estimator âε is well-defined as the set of admissible window parameters N is non-empty
(barN is always contained in this set). We also note that our construction depends only on a design parameter λ; it
will be chosen in the sequel.

For λ ≥ 1 define N∗, where

N∗ = min
{
N : 2ελN−1σ̄w(N) ≥ √

3LN−s−1/2}. (16)

Note that N∗ depends on the parameters s, L of the class Gs(L). If we knew the true values of L, s (and could choose
N = N∗ with λ = O(

√
ln ε−1)), that choice of N would lead to a rate-optimal estimator of |a|; see Part I, Section 3.2.

The next statement establishes an upper bound on the accuracy of âε .

Theorem 1. Assume that Assumption (A) holds with β > 1/2. Let λ ≥ 1, and let g ∈ Gs(L), with s > −1/2 and
L > 0 such that

ελ ≤ min
{
2−1/2,

[
cβσ (2L)−1]1/(2β+2s−1)

,L(Cβσ̄ )−1}. (17)

Then there is a set AJ (λ) ⊆ Ω such that

P
(

AJ (λ)
)≥ 1 − c(β)λN̄2e−2λ2

, (18)

and for any ω ∈ AJ (λ),∣∣âε − |a|∣∣≤ 20ελN−1∗ σ̄w(N∗). (19)

The result of Theorem 1 shows that under proper choice of the design parameter λ, the event AJ (λ) is of large
probability, and on AJ (λ) the estimation accuracy is controlled by the expression on the RHS of (19). An immediate
corollary of the above result is as follows:
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Corollary 1. Let âε denote the adaptive estimator given by Algorithm 1 and associated with λ = c(β)
√

ln ε−1. Let
g ∈ Gs(L) with parameters s > −1/2, 0 < L < ∞ such that (17) holds. Assume that β > 1/2. Then there exists a
constant C = C(β, s) such that(

E
∣∣âε − |a|∣∣2)1/2 ≤ CL(2β−1)/(2s+2β)

(
σ̄ ε

√
ln ε−1

)(2s+1)/(2s+2β)
, for any a ∈ R. (20)

Comparing (20) to the results of Theorems 1 and 2 of Part 1, we conclude that the adaptive estimator âε is rate-
optimal.

2.2. Adaptive change-point estimator

Let us start the presentation of the adaptive change-point estimator with some informal discussion. As we have em-
phasized in the introductory section, the optimal choice of window parameter N depends on the regularity parameters
s and L and does not depend on the jump amplitude |a| when β > 3/2. However, recall that when the jump amplitude
is small, consistent estimation of the change-point is impossible. This is the case, in particular, when (cf. Theorem 5
of Part 1)

|a| ≤ cL(2β−1)/(2s+2β)
(
σ̄ ε

√
ln ε−1

)(2s+1)/(2s+2β)

for some constant c > 0. If we recall now the definition of N∗ in (16) with λ ∼ √
ln ε−1, we notice that the the “critical”

amplitude value, i.e. the minimal jump amplitude for which consistent change-point estimation is conceivable, satisfies

|a| ≥ cλεN−1∗ σ̄w(N∗).

In other words, the properties of the minimax change-point estimator θ̂∗ are quite different in two zones of the (N, |a|)
“plane” (see Fig. 1). In the zone of detection, which lies under the plot |a| = cλεN−1σ̄w(N), the estimator is not
consistent. In the zone of estimation above the graph, the estimation of the change-point is feasible. Clearly, an adaptive
change-point estimator will exhibit an analogous behavior. We expect its zone of estimation to be “comparable” to
that of the minimax estimator, and its rate in this zone to be (up to a log factor in ε) the same as the minimax rate.

The following construction of the adaptive change-point estimator θ̃ depends on two design parameters, λ and κ;
they will be specified in what follows.

Fig. 1. “Typical” zone of estimation and zone of detection.
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Let N̄ and N∗ be defined as above, and let âε be the adaptive estimate of |a| defined in the previous section. For
N ∈ {2, . . . , N̄} we define

ψ(N) ≡ 20ελN−1σ̄w(N), ψ∗ ≡ ψ(N∗). (21)

Now, fix κ ≥ 1, and define T as a subset of {2, . . . , N̄},
T = {

N ∈ {2, . . . , N̄}: âε ≥ 2κψ(N)
}
. (22)

If T is non-empty we denote N0 = maxN∈T N , Nm = minN∈T N and put T = {N0,N1, . . . ,Nm} where N0 > N1 >

· · · > Nm (here m + 1 ≤ N̄ − 1 is the cardinality of T ).
If the set T is empty we set the adaptive estimator θ̂ε = 0, otherwise we perform the following iterative procedure:

Algorithm 2.

1. Compute the estimate θN0 with the window parameter N0 and the values

τ−
N0

= θN0 − 77πελâ−1
ε N−2

0 σ̄w(N0), τ+
N0

= θN0 + 77πελâ−1
ε N−2

0 σ̄w(N0).

2. For Ni ∈ T , i = 1, . . . ,m compute the estimate θNi
with the window parameter Ni . If τ−

Ni−1
≤ θNi

+
77πελâ−1

ε N−2
i σ̄w(Ni) and θNi

−77πελâ−1
ε N−2

i σw(Ni) < τ+
Ni−1

, declare Ni admissible and compute the brackets

τ−
Ni

= max
{
τ−
Ni−1

, θNi
− 77πελâ−1

ε N−2
i σ̄w(Ni)

}
,

τ+
Ni

= min
{
τ+
Ni−1

, θNi
+ 77πελâ−1

ε N−2
i σ̄w(Ni)

}
.

3. Define the adaptive estimate θ̂ε = (τ+
N̂

+ τ−
N̂

)/2) as the center of the interval [τ−
N̂

, τ+
N̂

], where N̂ is the smallest
admissible N ∈ T .

Observe first that the estimate θ̂ε is well-defined: if T is non-empty, the set of admissible window parameters
always includes N0, else, we have θ̂ε = 0.

A reader familiar with Lepski’s adaptive estimation procedure will notice an interesting characteristic of the pro-
posed method. In the original Lepski procedure, in order to choose the adaptive estimator θ̂ from an ordered family
of estimators θi, i ∈ I , each estimate θi is to be compared with all subordinated estimators θk,0 ≤ k < i. However, in
Algorithm 2 above only the estimates θNi

with Ni ∈ T are compared. This modification of the Lepski method can be
briefly justified as follows: suppose for a moment that the exact value |a| of the jump amplitude is known. For each
2 ≤ N ≤ N̄ we have two possibilities: either |a| ≥ κψ(N) = cλεN−1σ̄w(N) or |a| < κψ(N). Let us consider in more
detail the second possibility. Suppose that the window parameter N is the “optimal” one. Then |a| < κψ(N) implies
that the corresponding minimax estimator is in the zone of detection where consistent estimation of θ is impossible. In
this case any estimate θ̂ε ∈ [0,1] is rate-minimax. Now, if the window parameter is not the “optimal” one, excluding
the estimator θN from the set of tested estimators would not alter the properties of θ̂ε . Hence, in both cases, one can
safely exclude such θN from the set of candidate estimators. Now it suffices to substitute the pilot estimate âε for the
true value |a| to obtain the proposed adaptive algorithm.

The next statement establishes an upper bound on the accuracy of the estimate θ̂ε .

Theorem 2. Suppose that Assumption (A) holds with β > 3/2. Let λ ≥ 1, and let g ∈ Gs(L), with s > −1/2 and
L > 0 such that (17) is valid, and

ελ ≤ 6−(β+s)L(Cβσ)−1. (23)

Let κ ≥ 80π, and assume that

|a| ≥ 3κψ∗. (24)
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Then there exists a set AH (λ) ⊆ Ω of probability at least 1 − c(β)λN̄2e−2λ2
, such that on AH (λ) one has

|θ̂ε − θ | ≤ 155πελ|a|−1N−2∗ σ̄w(N∗).

Corollary 2. Let Assumption (A) hold with β > 3/2. Let θ̂ε denote the adaptive estimator given by Algorithm 1
and associated with λ = 2

√
ln ε−1 and κ ≥ 80π. Assume that g ∈ Gs(L) with s > −1/2, 0 < L < ∞ such that

(17) and (23) are valid and let

ϕε(s,L,a) = |a|−1L(2β−3)/(2β+2s)
(
σ̄ ε

√
ln ε−1

)(2s+3)/(2s+2β)
. (25)

Assume that for some constant c1 = c1(s, β)

|a| ≥ c1L
(2β−1)/(2s+2β)

(
σ̄ ε

√
ln ε−1

)(2s+1)/(2s+2β)
. (26)

Then there exists a constant c2 = c2(s, β) such that(
E|θ̂ε − θ |2)1/2 ≤ c2ϕε(s,L,a). (27)

Corollary 2 is an immediate consequence of Theorem 2; its proof is therefore omitted. Let us compare the bound
of Corollary 2 with that of Theorem 3 of Part I. One observes that the two bounds coincide (up to a different choice of
constants) if one substitutes ε in the bound of Theorem 3 of Part I with ε

√
ln ε−1. Following [4] we refer to the factor√

ln ε−1 as the price of adaptation. We now prove that in the change-point estimation problem, this price cannot be
avoided even in the simple case when the class G contains at least two nuisance sequences with different regularity
parameters.

Theorem 3. Let Assumption (A) hold. If β > 3/2 then for any s0 > −1/2, s1 > −1/2, s0 �= s1, any a �= 0 and L > 0,
there are two signals

f
(i)
k = a exp

(
2πikθ(i)

)+ g
(i)
k , k ∈ N, i = 0,1,

such that g(i) ∈ Gsi (L) with the following property: for any estimator θ̂ of θ ∈ {θ(0), θ (1)} from observation (yk) as
in (1), one has

max
f ∈{f (0),f (1)}

ϕ−1
ε (s,L,a)

(
E|θ̂ − θ |2)1/2 ≥ c.

Here ϕε(·) is defined as in (25) and c is a positive constant depending only on β and s0 and s1.

3. Simulation results

We have conducted a simulation study in order to evaluate practical performance of the adaptive change-point estima-
tion procedures. The algorithms described in Section 2 depend on constants that guarantee adaptive optimality. These
constants are derived from upper bounds on the stochastic terms that characterize the contrast functions ĴN and ĤN .
Note that ĴN and ĤN are quadratic functions of observations. In Part I we remarked that the change-point and jump
amplitude estimation in model (1) can be based on the following contrast function that is linear in the observations (yk)

M̂N(t) ≡ �
( 2N∑

k=N+1

yke−2πikt
)
.
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This contrast is an empirical counterpart of the function

MN(t) = a�
(

2N∑
k=N+1

yk exp
(−2πik(t − θ)

))

= a
sinπN(t − θ)

sinπ(t − θ)
cos

[
(3N + 1)π(t − θ)

]
.

Although theoretical analysis of the bias of estimators based on M̂N(·) is much more involved, tight bounds on
the stochastic error terms are easily derived. This is especially important for adaptive estimation because adaptive
procedures use bounds on the stochastic error terms. Therefore in our experiments we implemented the estimators
based on the function M̂N(·).

The observations yk , k = 1, . . . ,N0 = 	ε−2
 are generated in the frequency domain according to the model (1) for
three different noise levels ε = 0.1,0.5,0.25. Via the inverse Fourier transform, this scheme is equivalent to a non-
parametric regression model with regular design of step size 1/N0, and Gaussian zero mean errors with unit variance.
The sequence σk is chosen to be σk = (2πk)β . For instance, the value β = 2, as explained before, corresponds to the
problem of estimating a change-point in the first derivative. The nuisance sequence (gk) is chosen so that it belongs to
the ellipsoid Gs(L) [see (2)]. Below we present results of an experiment with β = 2 and s = 3, L = 60. The nuisance
sequence gk ∈ Gs(L) is chosen to mask in the best way the change-point. The detailed description of such a sequence
is given in the proof of the lower bound of Theorem 6 of Part 1.

Figure 2 displays a time domain observation corresponding the setup described above for ε = 0.1. The
pure jump signal is the integral of the saw–tooth function; it models the jump in the first derivative. The
combined signal represents the sum of the pure jump signal and the worst-case nuisance component from
G3(60).

In Figs 3 and 4 we present the results of an experiment with M = 100 randomly generated observation samples
(the values of θ are drawn from the uniform distribution on [0,1]). We present in Fig. 3 the the mean square error of
the estimator âε of |a|, and that of the estimator θ̂ε of θ , as a function of ε. In Fig. 4 the corresponding boxplots are
provided.

Fig. 2. The pure jump signal, combined signal and noisy observations.
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Fig. 3. The log of the MSE of the estimator âε (left) and that of the estimator θ̂ε (right) as a function of log ε−1.

Fig. 4. Boxplot of the error âε − |a| (left) and that of θ̂ε − θ (right) as a function of ε.

Appendix

A.1. Proof of Theorem 1

Let us first recall some notations used in Part I. The complex-valued Gaussian process {wN(t), t ∈ [0,1]} is defined
as wN(t) =∑2N

k=N+1 σkξke−2πikt and

AJ (λ;N) =
{
ω ∈ Ω: sup

t∈[0,1]

∣∣wN(t)
∣∣≤ 2λσw(N)

}
.

Let

ρJ (N) ≡ 2

(
2N∑

k=N+1

|gk|
)2

+ 2|a|N
2N∑

k=N+1

|gk|.
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We also put

AJ (λ) =
N̄⋂

N=2

AJ (λ;N).

The bound (18) for the probability of AJ (λ) is readily given by Lemma 6 of Part I.
Following Part I, we denote by JN(t) the “ideal” version of the contrast function

JN(t) ≡ a2

∣∣∣∣∣
2N∑

k=N+1

exp
(−2πik(t − θ)

)∣∣∣∣∣
2

.

It was shown in Part I that if the event AJ (λ;N) occurs, and if g ∈ Gs(L) then

sup
t∈[0,1]

∣∣ĴN (t) − JN(t)
∣∣ ≤ ΔJ (λ;N) ≡ ρJ (N) + 8ε2λ2σ 2

w(N) + 4ελ|a|Nσw(N)

(28)
≤ 6L2N−2s+1 + 2

√
3|a|LN−s+3/2 + 8ε2λ2σ 2

w(N) + 4ελ|a|Nσw(N).

For the sake of completeness, we also reproduce the following result from Part I.

Lemma 1. Let aN be the estimate of |a| associated with the window parameter N . Then for any λ ≥ 1 on the set
AJ (λ;N)

∣∣aN − |a|∣∣≤ min

{
ΔJ (λ;N)

N2(|a| ∨ aN)
,
Δ

1/2
J (λ;N)

N

}
, for any N ≥ 1.

Note first that under the premises of Theorem 1, 2 ≤ N∗ ≤ N̄ . Indeed, by definition (16), N∗ ≤ [√3(2cβσ )−1 ×
L(ελ)−1]1/(β+s) + 1. Then the assumption (17) implies that this upper bound is ≤ (ελ)−2.

Step 1. Observe that by definition of N∗, we have from (28) that for any N ≥ N∗ and ω ∈ AJ (λ):

ΔJ (λ;N)

N2
≤ ρJ (N)

N2
+ 8ε2λ2 σ 2

w(N)

N2
+ 4ελ|a|σw(N)

N

≤ 16ε2λ2 σ̄ 2
w(N)

N2
+ 8ελ|a| σ̄w(N)

N
.

Suppose now that for a given N the “true amplitude” |a| satisfies

|a| ≥ 8ελN−1σ̄w(N).

Then

ΔJ (λ;N)

N2
≤ 2|a|ελN−1σ̄w(N) + 8|a|ελN−1σ̄w(N) ≤ 10ελ|a|N−1σ̄w(N).

Then by Lemma 1,

∣∣aN − |a|∣∣≤ ΔJ (λ;N)

N2|a| ≤ 10ελN−1σ̄w(N).

On the other hand, if |a| < 8ελN−1σ̄w(N) then

ΔJ (λ;N)N−2 ≤ 16ε2λ2N−2σ̄ 2
w(N) + 64ε2λ2N−2σ̄ 2

w(N) = 80ε2λ2N−2σ̄ 2
w(N).
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Again, by Lemma 1,

∣∣aN − |a|∣∣≤ Δ
1/2
J (λ;N)

N
≤ 9ελN−1σ̄w(N).

We conclude that on AJ (λ), for N∗ ≤ N ≤ N̄ the following holds:∣∣aN − |a|∣∣≤ 10ελN−1σ̄w(N). (29)

Step 2. Let us suppose for an instant that N∗, which is defined in (16), is admissible. Then N̂ ≤ N∗ and, by
definition, âε belongs to the intersection of segments

SN = [
aN − 10ελN−1σ̄w(N), aN − 10ελN−1σ̄w(N)

]
for all N∗ ≤ N ≤ N̄ . In particular, âε ∈ SN∗ , and, due to (29),∣∣âε − |a|∣∣ ≤ |âε − aN∗ | +

∣∣aN∗ − |a|∣∣≤ 10ελN−1∗ σ̄w(N∗) + ∣∣aN∗ − |a|∣∣
≤ 10ελN−1∗ σ̄w(N∗) + 10ελN−1∗ σ̄w(N∗) ≤ 20ελN−1∗ σ̄w(N∗).

It remains to show that N∗ is admissible for any ω ∈ AJ (λ), or, what is exactly the same, that the sets SN for
N∗ ≤ N ≤ N̄ have a common point. But (29) means precisely that |a| belongs to the intersection of all such sets SN .

A.2. Proof of Corollary 1

Let λ = c(β)
√

ln ε−1. We use the decomposition

E
(
âε − |a|)2 = E

(
âε − |a|)21

{
AJ (λ)

}+ E
(
âε − |a|)21

{
Ac

J (λ)
}
. (30)

For the first term of (30) we use the bound of Theorem 1:

E
(
âε − |a|)21

{
AJ (λ)

}≤ 20ελN−1∗ σ̄w(N∗) ≤ C(β, s)L(2β−1)/(2s+2β)
(
σ̄ ε

√
ln ε−1

)(2s+1)/(2s+2β)
.

Let now 2 ≤ N ≤ N̄ . By the definition of the estimator aN (cf. Lemma 1),

∣∣aN − |a|∣∣≤ min

{
ΔN(Ĵ , J )

N2|a| ,
Δ

1/2
N (Ĵ , J )

N

}
, for any N ≥ 1,

where

ΔN(Ĵ , J ) ≡
∣∣∣ max
t∈[0,1]

∣∣ĴN (t)
∣∣− max

t∈[0,1]
∣∣JN(t)

∣∣∣∣∣.
We now use the first of the above inequalities to bound the error in the case of “large” a, namely |a| ≥ 1. The
corresponding bound for the case of |a| < 1 can be obtained in the same way using the second inequality above. We
write:

|aN − a| = |a|−1N−2ΔN(Ĵ , J ) ≤ |a|−1N−2 max
t∈[0,1]

∣∣ĴN (t) − JN(t)
∣∣.

Thus,

|aN − a| ≤ |a|−1N−2
[
ρJ (N) + ε2 sup

t∈[0,1]

∣∣wN(t)
∣∣2 + ε|a|N sup

t∈[0,1]

∣∣wN(t)
∣∣]

≤ N−2[6L2N2 + 2
√

3LN2 + ε2ζ 2
N + εζN

]
,
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where we denoted ζN = supt∈[0,1] |wN(t)| and used the bound of Part I for ρJ (N) (cf. (28)). Now, assume that Ac
J (λ)

holds. We have:

E|âε − a|21
{

Ac
J (λ)

} ≤ E
(

max
2≤N≤N̄

|aN − a|21
(

Ac
J (λ)

))
≤ 2

(
6L2 + 2

√
3L

)2
P
(

Ac
J (λ)

)
+ 2ε4E

(
max

2≤N≤N̄

N−4ζ 4
N1

{
Ac

J (λ)
})

+ 2ε2E
(

max
2≤N≤N̄

N−4ζ 2
N1

{
Ac

J (λ)
})

= I1 + I2 + I3.

Our goal is to bound Ii , i = 1, . . . ,3. By (18) we have

I1 ≤ 2
(
6L2 + 2

√
3L

)2
P
{

Ac
J (λ)

}≤ c1
(
L4 + 1

)
λN̄2 exp

{−2λ2}. (31)

Furthermore,

I2 ≤ 2ε4
N̄∑

N=1

N−4E
(
ζ 4
N 1

{
Ac

J (λ)
})≤ 2ε4

N̄∑
N=1

N−4E
(
ζ 4
N 1

{
Ac

J (λ;N)
})

.

On the other hand, by Lemma 6 of Part 1,

E
(
ζ 4
N1

{
Ac

J (λ;N)
}) = E

(
ζ 4
N 1

{
ζ > 2λσw(N)

})=
∫ ∞

(2λσw(N))4
P
(
ζ 4
N > t

)
dt

= 4
(
2λσw(N)

)4
∫ ∞

1
t3P

(
ζN > 2λσw(N)t

)
dt

≤ c2σ
4
w(N)Nλ

∫ ∞

λ

t4e−2t2
dt ≤ c3σ

4
w(N)Nλ3e−2λ2

.

Because σw(N) ≤ σ̄w(N), and σ̄w(N) is monotone in N

I2 ≤ c3ε
4σ̄ 4

w(N̄)λ3e−2λ2
. (32)

In the same way we obtain the bound for I3:

I3 ≤ c4ε
2a2σ̄ 2

w(N̄)λe−2λ2
.

Along with (31) and (32) it implies that

E|aε − a|21
{

Ac
J (λ)

}≤ c5
[(

L4 + 1
)
λN̄2 + ε4σ̄ 4

w(N̄)λ2 + ε2σ̄ 2
w(N̄)

]
e−2λ2

.

When taking into account definitions of N̄ , σ̄w , and inequality L ≤ 1
2Cβσ̄ (ελ)−1 [see (17)] we finally obtain

E|aε − a|21
{

Ac
J (λ)

}≤ c6
[
σ̄ 4ε−8λ + σ̄ 4ε−8β+4λ2 + a2σ̄ 2ε−4β+2λ

]
e−2λ2

.

Now one can easily exhibit a constant c(β) such that for λ = c(β)
√

ln ε−1 the right-hand side above is bounded
with ε2.
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A.3. Proof of Theorem 2

Again, we start with notations and results of Part I. The set AH (λ;N) is defined as follows:

AH (λ;N) = AJ (λ;N) ∩
{
ω: sup

t∈[0,1]
∣∣vN(t)

∣∣≤ 2λσv

}
,

where vN(t) =∑2N
k=N+1 kσkξke−2πikt and σ 2

v = 2
∑2N

k=N+1 k2σ 2
k . Also

σ 2
u (N) = N4σ 2

w(N) + N2σ 2
v (N).

The following bounds on σv(N) and σu(N) in terms of σw(N) can be easily derived:

Nσw ≤ σv ≤ 2Nσw, 2N2σw ≤ σu ≤ 3N2σw, ∀N. (33)

Define also AH (λ) =⋂N̄
N=2 AH (λ;N), and put

ρH (N) ≡ 8π

2N∑
k=N+1

k|gk|
2N∑

j=N+1

|gj | + 16π|a|N2
2N∑

j=N+1

|gj |.

It was shown in Proposition 2 of Part I that if g ∈ Gs(L) then on the set AH (λ;N)

sup
t∈[0,1]

∣∣ĤN(t) − HN(t)
∣∣≤ ΔH (λ;N)

≡ ρH (N) + 32πε2λ2σw(N)σv(N) + 16π|a|ελσu(N)

≤ 16π
(
2L2N−2s+2 + 2L|a|N−s+5/2 + 2ε2λ2σw(N)σv(N) + |a|ελσu(N)

)
. (34)

The following result has been proved in Part I.

Lemma 2. Let θ̂N be the estimate of the change-point associated with the window parameter N . Let λ ≥ 1 and N ≥ 6
be such that

ΔH (λ;N) ≤ a2N3

4
.

Then

|θN − θ | ≤
(

5

4
a2N4

)−1

ΔH (λ;N), ∀ω ∈ AH (λ;N).

Step 1. We start with the following lemma.

Lemma 3. Suppose that Assumption (A) holds with β > 3/2. Let g ∈ Gs(L) with s > −1/2 and L > 0 such that (17)
holds. Let κ ≥ 1 and (24) is valid. Then for any ω ∈ AJ (λ)

1. N∗ ∈ T ;
2. N /∈ T if N∗ < N ≤ N̄ and ψ(N)(2κ − 1) > |a|.
Proof. We first note that (17) ensures 1 ≤ N∗ ≤ N̄ . Now we check that (22) holds for N = N∗ when AJ (λ) occurs.
It follows from Theorem 1 that |âε − |a|| ≤ ψ∗ ≤ ψ(N), for any ω ∈ AJ (λ) and N∗ ≤ N ≤ N̄ . This along with (24)
implies that âε ≥ |a| − ψ∗ ≥ (3κ − 1)ψ∗ ≥ 2κψ∗. Hence N∗ ∈ T as claimed.

On the other hand, on AJ (λ), when N∗ < N ≤ N̄ and |a| < ψ(N)(2κ − 1),

âε ≤ a + ψ(N∗) < ψ(N)(2κ − 1) + ψ(N) < 2κψ(N),

and such N /∈ T . �
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Step 2. Assume that AH (λ) holds and recall that AJ (λ) ⊆ AH (λ). By Lemma 3, N∗ ∈ T . We will show that N∗ is
admissible. By definition of ΔH (λ;N) and by (33) we have

1

16π
ΔH (λ;N) ≤ 2L2N−2s+2 + 2L|a|N−s+5/2 + 2ε2λ2σw(N)σv(N) + |a|ελσu(N)

≤ 2L2N−2s+2 + 2L|a|N−s+5/2 + 4ε2λ2Nσ 2
w(N) + 3|a|ελN2σ̄w(N).

It follows from the definition of N∗ that for all N ≥ N∗

2L2N−2s+2 ≤ 8

3
ε2λ2N−1σ 2

w(N),

2L|a|N−s+5/2 ≤ 4√
3
ελ|a|Nσw(N).

Thus, for such N ,

1

16π
ΔH (λ;N) ≤ 7ε2λ2Nσ̄ 2

w(N) + 6ελ|a|N2σ̄w(N). (35)

Recall that ψ(N) = 20ελN−1σ̄w(N), hence for all N ≥ N∗, N ∈ T

ελN−1σ̄w(N) ≤ |a|
20(2κ − 1)

.

Now we have from (35):

ΔH (λ;N) ≤ 16π

(
7N3a2

400(2κ − 1)2
+ 3N3a2

10(2κ − 1)

)
,

(as κ ≥ 1) ≤ 127 · 16π

400(2κ − 1)
a2N3 ≤ 21π

(2κ − 1)
a2N3 ≤ a2N3

4
(36)

for κ ≥ 41π + 1/2. On the other hand, we can estimate ΔH (λ;N) as follows:

ΔH (λ;N) ≤ 16π

(
7ελN2|a|σ̄w(N)

20(2κ − 1)
+ 6ελ|a|N2σ̄w(N)

)
≤ (96π + 1)ελ|a|N2σ̄w(N). (37)

We conclude from (36) and (37) that the conditions of Lemma 2 are satisfied for N ≥ N∗ and

|θN − θ | ≤
(

5

4
a2N4

)−1

ΔH (λ;N) ≤ 4(96π + 1)

5|a| ελN−2σ̄w(N)

≤ 77πελN−2σ̄w(N)â−1
ε (38)

(recall that due to (24) âε ≤ 3κ+1
3κ

|a| on AJ (λ)). Now define

SN ≡ [
θN − 77πελâ−1

ε N−2σ̄w(N), θN + 77πελâ−1
ε N−2σ̄w(N)

]
, N ∈ T .

Then (38) implies that on AH (λ) the intersection of the segments SN with N ≥ N∗, N ∈ T contains (at least one
point) θ and N∗ is admissible.

Step 3. Thus we can write (cf. (38))

|θ̂ε − θ | ≤ |θ̂ε − θN∗ | + |θN∗ − θ |
≤ 77πελâ−1

ε N−2∗ σ̄w(N∗) + 77πελ|a|−1N−2∗ σ̄w(N∗)
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as âε ≥ 3κ − 1

3κ

|a|
)

≤ 77π
3κελN−2∗ σ̄w(N∗)

(3κ − 1)|a| + 77πελ|a|−1N−2∗ σ̄w(N∗)

≤ 155πελN−2∗ σ̄w(N∗).

This completes the proof.

A.4. Proof of Theorem 3

We start with the study of the minimax risk Rε of a 2-point estimation problem:

Rε = sup
i=0,1

φi(ε)
−1Ei(θi − θ̂ )2.

Here θ0 = 0, θ1 = θ , P0 and P1 are the corresponding probability distributions, φ1(ε) = θ2 and φ0(ε)φ1(ε)
−1 = δ.

The following result is fairly known (see, e.g., [1]), we present it here for the sake of completeness.

Lemma 4. Let Z1 = dP1
dP0

be the likelihood ratio and K(P1,P0) = − ∫
lnZ1 dP0 the Kullback–Leibler distance be-

tween P1 and P0. Then

Rε ≥ max
{
e−K(P0,P1)−δ,1 − δE0Z

2
1

}
.

Proof. Clearly, Rε is minorated with the Bayesian risk rε , which corresponds to the prior distribution P(i = 0) =
P(i = 1) = 1/2:

rε = inf
θ̂

[
φ0(ε)

−1

2
E0θ̂

2 + φ1(ε)
−1

2
E1(θ − θ̂ )2

]
= φ1(ε)

−1

2
inf
θ̂

E0
[
δ−1θ̂2 + (θ − θ̂ )2Z1

]
, (39)

Observe that θ∗ = δθZ1
1+δZ1

is the minimizer of (39), so that

rε = φ1(ε)
−1

2
E0

[
θ2Z1 − δθ2Z2

1

1 + δZ − 1

]
= φ1(ε)

−1θ2

2
E0

Z1

1 + δZ1
= 1

2
E0

Z1

1 + δZ1
.

Now by the Jensen inequality,

lnE0
Z1

1 + δZ1
≥ E0(lnZ1) − E0

(
ln(1 + δZ1)

)≥ E0(lnZ1) − δE0Z1 = −K(P0,P1) − δ.

On the other hand,

E0
Z1

1 + δZ1
≥ E0Z1 − δE0Z

2
1 = 1 − δE0Z

2
1 . �

Now consider the following 2-point problem (cf. proof of Theorem 6 of Part I): given observations yk = f
(i)
k +

εσkξk, i = 0,1 we are to estimate the parameter (change-point) θ ∈ {θ(0), θ (1)}, where

f
(0)
k = a, ∀k ∈ N+ and f

(1)
k = ae2πikh + g

(1)
k , ∀k ∈ N+,

where h > 0, and

g
(1)
k ≡

{
a(1 − e2πikh), 0 < k ≤ n,
0, k > n,

for some integer n to be chosen in the sequel. The hypotheses correspond to the model (1) with a(0) = a(1) = a,
θ(0) = 0, θ(1) = h, g

(0)
k = 0,∀k ∈ N+, and g

(1)
k as defined above.
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Let us put for the sake of definiteness s0 > s1 and L = 1. Clearly, g(0) ∈ Gs0(1). We will select n in such a way

that (g
(1)
k ) belongs to Gs1(1). We have

∞∑
k=1

∣∣g(1)
k

∣∣2k2s1 ≤ a2
n∑

k=1

∣∣1 − e2πikh
∣∣2k2s1 ≤ c1a

2 min
{
h2n2s+3, n2s1+1},

where c1 depends on s1 only. Choosing

n = n∗ ≡ c2
(|a|−1h−1)2/(2s1+3)

we obtain that (g
(1)
k ) ∈ Gs1(1), provided that n∗ ≤ h−1.

Let P0 and P1 denote the probability measures associated with observations (yk) in model (1) with (fk) = (f
(0)
k )

and (fk) = (f
(1)
k ), respectively. Note that the likelihood ratio Z1 = dP1

dP0
satisfies

Z1 = exp

(
−

∞∑
k=n∗+1

|yk − ae2πikh|2 − |yk − a|2
2ε2σ 2

k

)

= exp

(
−

∞∑
k=n∗+1

a(1 − e2πikh)ξk + a(1 − e−2πkh)ξk

2εσk

+ a2(1 − cos 2πkh)

ε2σ 2
k

)

= exp

( ∞∑
k=n∗+1

aηk(1 − cos 2πkh) + aζk sin 2πkh

εσk

− a2(1 − cos 2πkh)

ε2σ 2
k

)
,

where ηk and ζk are i.i.d. standard Gaussian random variables. Thus,

EZ2
1 = exp

(
2a2

ε2

∞∑
k=n∗+1

1 − cos 2πkh

σ 2
k

)
= exp

(
4a2

ε2

∞∑
k=n∗+1

sin2 πkh

σ 2
k

)
.

We can estimate the exponent as follows:

I ≡ 4a2

ε2

∞∑
k=n∗+1

sin2 πkh

σ 2
k

≤ 4a2

σ 2ε2

∞∑
k=n∗+1

k−2β sin2 πkh

≤ 4a2

σ 2ε2

(
π2h2

	(1/πh)
∑
k=n∗+1

k−2β+2 +
∞∑

k=	(1/πh)
+1

k−2β

)

≤ C
a2

σ 2ε2

(
h2n

−2β+3∗ + h2β−1). (40)

Let us choose for some small c3 > 0,

h = c3a
−2n

2β−3∗ ε2 ln ε−1 ⇐⇒ h = c4|a|−1(ε√ln ε−1
)(2s+3)/(2s+2β)

.

In view of (40), for ε small enough, I ≤ c5 ln ε−1 with some small constant c5. We conclude that for such choice of h

and n∗

E0Z
2
1 ≤ ε−c5 .

Let us now use Lemma 4. We set

φ0(ε) = c6|a|−1(ε√ln ε−1
)(2s0+3)/(2s0+2β)

, φ1(ε) = c6|a|−1(ε√ln ε−1
)(2s1+3)/(2s1+2β)

,
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so that

δ = φ0(ε)

φ1(ε)
≤ (

ε
√

ln ε−1
)(4β−6)(s0−s1)/((2s1+2β)(2s0+2β)) ≤ c7ε

c8(s0−s1)

(recall that β > 3/2). We can now choose the constants in a way to obtain δE0Z1 < 1. When applying Lemma 4 we
get the required statement.
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