
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2008, Vol. 44, No. 1, 104–128
DOI: 10.1214/07-AIHP111
© Association des Publications de l’Institut Henri Poincaré, 2008

LAMN property for hidden processes: The case of
integrated diffusions

Arnaud Glotera and Emmanuel Gobetb

aUniversité de Marne–la–Vallée, Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050, 5 Boulevard Descartes,
77454 Marne–la–Vallée Cedex 2, France. E-mail: arnaud.gloter@univ-mlv.fr.

bENSIMAG, INP Grenoble, Laboratoire de Modélisation et Calcul UMR 5523, B.P. 53, 38041 Grenoble Cedex 9, France.
E-mail: emmanuel.gobet@imag.fr.

Received 10 May 2006; accepted 20 November 2006

Abstract. In this paper we prove the Local Asymptotic Mixed Normality (LAMN) property for the statistical model given by the
observation of local means of a diffusion process X. Our data are given by

∫ 1
0 X(s+i)/n dμ(s) for i = 0, . . . , n−1 and the unknown

parameter appears in the diffusion coefficient of the process X only. Although the data are neither Markovian nor Gaussian we
can write down, with help of Malliavin calculus, an explicit expression for the log-likelihood of the model, and then study the
asymptotic expansion. We actually find that the asymptotic information of this model is the same one as for a usual discrete
sampling of X.

Résumé. Dans ce papier nous démontrons la propriété LAMN pour le modèle statistique constitué par l’observation des moyennes
locales d’une diffusion X. Nos données sont définies comme

∫ 1
0 X(s+i)/n dμ(s) avec i = 0, . . . , n − 1 et le paramètre inconnu

apparaît seulement dans le coefficient de diffusion du processus X. Bien que cette observation ne soit ni Gaussienne ni Markovienne
nous pouvons, par le calcul de Malliavin, obtenir une expression pour la log-vraisemblance du modèle. Nous sommes alors capables
de calculer l’information asymptotique et montrons qu’elle est la même que pour l’observation ponctuelle de la diffusion.
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1. Statement of the problem and main results

1.1. Introduction

Model
Let us consider the family of strong solutions Xθ to the following scalar equation

dXθ
t = a

(
Xθ

t , θ
)

dBt + b
(
Xθ

t

)
dt, (1)

Xθ
0 = ξ0, (2)

where B is a one-dimensional Brownian motion. We suppose that θ lies in some compact interval Θ of R and that
ξ0 is a real constant, which does not depend on θ, and thus is known to the statistician.
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Observations
We consider μ some probability measure on [0,1] and assume that our observation of the process is given by the local
means of X associated with this measure, with sampling of size 1/n:

Xj = Xj,n :=
∫ 1

0
X(s+j)/n dμ(s), for j = 0, . . . , n − 1. (observations)

In the sequel this case is referred to as the integrated diffusion case. This is an indirect observation of the process
X and the observation is no more the realization of a Markov chain. Thus, this framework is deeply related to the
inference of hidden processes. We assume that μ does not depend on θ and is known by the statistician. When μ

is equal to the Lebesgue measure, the observation is the discrete sampling of It = ∫ t

0 Xs ds. This is presumably the
simplest case of the observation of only one component of a bidimensional diffusion process (Xt , It )0�t�1, which is
known in the literature as the standard integrated diffusion case. Clearly, the usual case of pointwise observation of X

is obtained if μ is some Dirac measure. However, we will exclude that the measure has mass only on the end points
of the interval, and hence make the assumption:

μ
(
(0,1)

)
> 0. (3)

This paper is concerned with the Local Asymptotic Mixed Normality property of this statistical model.

Motivation
Taking as the observation the integrated process is actually quite natural. For instance, it arises when the realization
of the process has been observed after passage through an electronic filter. Also, in random mechanics (see [19]),
X models the velocity of the system and in general, we observe its position, i.e. the integral of X. The modeling of
ice-core data can be made through an integrated diffusion process (see [2]). Integrated processes also play an important
role in finance, when modeling the stochastic volatility (see, for instance, [1] and references therein).

Literature background
Despite of these numerous motivations, few statistical studies deal with this situation. Gloter [7,8] provides an esti-
mator in the multiplicative case a(x, θ) = θa(x) and proves its consistency and asymptotic normality. The case of
a low frequency observation (local means over interval of length 1) is studied by Ditlevsen and Sørensen [3], using
prediction-based estimating functions. On the other hand, for a direct observation of the diffusion X, there are many
contributions in the literature: see [5,24] and references therein. None of these works deal with the problem of optimal
estimation in the integrated diffusion model.

Here, we directly address the problem of the LAMN property, whose fundamental consequence is to provide
information on the minimal dispersion for an estimator of the parameter θ (see [14,16,17,21,24]). Such properties,
for the observation of a discrete sampling of the diffusion, have been established in the one-dimensional setting by
Dohnal [4], and then extended by Gobet [10,11] to the multidimensional setting, both in the high frequency and
ergodic framework. For this, Malliavin calculus techniques were used and paved the way to possibly handle more
general situations than Markovian observations. This is exactly this way we follow in this work, to tackle the case of
integrated diffusion.

Outlook
We guess that this model captures the main difficulty of most hidden models: the lack of Markov property for the ob-
servation. Hence, the method developed below (augmented observation, Malliavin calculus representation, Gaussian
approximation) may be useful to treat more general situations. Among the natural situations coming from applications,
one can think of the measurement of a stochastic phenomenon blurred by some noise, or stochastic volatility models
widely used in finance [6]. This can be formalized as follows: the system X θ is governed by the (d + d ′)-dimensional
stochastic differential equation

X θ
t = X θ

0 +
∫ t

0
A
(

X θ
s , θ

)
dBs +

∫ t

0
B
(

X θ
s

)
ds,

where only a discrete sampling of the first d components is observable. This is left to further research.
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1.2. Main results

Before going into the details of our results, we present a very simple example which gives some insight on the type of
results that one can expect.

Example 1 (Multiplicative Brownian case). Assume that the model is

Xθ
t = θBt

(corresponding to b ≡ 0 and a(·, θ) = θ, ξ0 = 0).

1. Consider a first situation where one observes the diffusion at discrete times. Hence, the observation is (Xi/n)0�i�n,
or equivalently (Zi = θ(Bi/n − B(i−1)/n) = θGi)1�i�n, where Gi are independent centered Gaussian variables,
with a known variance. Thus, the estimation of θ2 is achieved at rate

√
n, with a minimal variance equal to 2θ4.

2. Now consider a second situation where one observes only the integrated diffusion at discrete times. Hence, the
observation is (�Xi = θ

∫ 1
0 B(s+i)/nμ(ds) = θG′

i )1�i�n, where (G′
i )i is a centered Gaussian vector, with a known

covariance matrix. In addition, this matrix is invertible and thus, θ2 can be estimated with the same rate and
asymptotic variance as before.

This means that observing the process at discrete times or its integrated version lead to the same accuracy in the
parameter estimation. The results of this paper state that this is true, even for the more general models (1) and (2),
which is far from intuitive.

Before stating our main results, we define the working assumptions of this paper. The coefficients a : R × Θ → R

and b : R → R, are assumed to satisfy the following set of conditions (as usual, derivatives w.r.t. θ are denoted with a
dot: for instance, ∂θa = ȧ).

Assumption (R).

(1) The function a : R × Θ → R is C 1+γ for some γ ∈ (0,1) (it admits a derivative which is γ -Hölder). The one-
dimensional functions x �→ a(x, θ), x �→ ȧ(x, θ), x �→ b(x) are assumed to be C 3(R).

(2) The functions a, ȧ and b and all their derivatives with respect to x are bounded uniformly in θ .
(3) We have the nondegeneracy condition, for some a: a(x, θ) > a > 0 for all x, θ .

Actually, the uniform controls in (R) can be weakened to local ones, using extra techniques of space localization
(see Lemma 4.1 in [10]). We omit further details. An extension of our results to a multidimensional parameter θ and
to time dependent coefficients is straightforward, in the same way as it is done in [10] and [11].

We denote by P
θ the law on C([0,1]) of the process Xθ , and then simply denote X the canonical process on

C([0,1]). We let pn,θ denote the law on R
n of the observation On := (Xj )j=0,...,n−1, when the true value of the

parameter is θ . And for θ0, θ1 two values of the parameter we introduce the likelihood ratio,

Zn
θ0,θ1

= dpn,θ1

dpn,θ0

(
On

)
. (4)

The main result is that this statistical model satisfies the so called LAMN property. For this denote the sequence
un := n−1/2, and let θ0 ∈ Θ and h ∈ R such that θ0 + unh ∈ Θ , ∀n. Then, by the following theorem, the model has
the LAMN property for the likelihood at point θ0, with rate un and conditional information:

Iθ0 = 2
∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds.

Theorem 1. Assume (R), then we have the expansion,

logZn
θ0,θ0+unh = hNn − 1

2
h2In + Rn,
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where In
P

θ0−→
n→∞ Iθ0 , Rn

P
θ0−→

n→∞ 0 and there exists an extra random variable N ∼ N (0,1) independent of the process X

such that, Nn converges in law under P
θ0 to N

√
Iθ0 .

Moreover this convergence is stable: for any random variable F measurable with respect to the X, we have the

convergence in law (F,Nn)
law−→

n→∞(F,N
√

Iθ0). In particular, it implies the joint convergence under P
θ0 :

(In,Nn)
law−→

n→∞
(

Iθ0 ,N
√

Iθ0

)
.

Remark 1. Let us stress that the rate un = n−1/2 and the information Iθ0 are the same one as for the pointwise
observation (see [5]). This corroborates the intuition from Example 1.

We will not be able to prove directly this result, instead we shall consider first the easier problem where one can
observe additionally the exact value of the diffusion at some instants. This device was proved to be useful in [9] for
the study of a Gaussian diffusion process observed with noise that leads to non-Markovian observations, too.

Let k = kn be an integer in {1, . . . , n} and define L = Ln := �n/k, then we consider the set of random variables:

On,aug = On ∪ {Xkl/n, l = 1, . . . ,L} ∪ {X1}.
Since this set of variables contains more data than the initial set, we call it the augmented observation set. Clearly, we
can split this set into blocks, B0, . . . ,BL, where for l = 0, . . . ,L − 1,

Bl = {Xkl, . . . ,Xkl+k−1,Xk(l+1)/n}
and BL = {XkL, . . . ,Xn−1,X1}. Note that if kL = n we consider that the last block is empty, and (immediate) mod-
ifications should take care of this in the sequel, however, to have shorter notations we will not explicitly write these
modifications.

The advantage of this set of augmented observation is that using the Markov property of X, the law the block Bl

conditional to the previous blocks (Bl′)l′<l only depends on the last variable, Xkl/n, of the block Bl−1.
Denote by pn,aug,θ the law of On,aug on R

n+L+1 and introduce the likelihood ratio for the augmented observation:

Z
n,aug
θ0,θ1

= dpn,aug,θ1

dpn,aug,θ0

(
On,aug). (5)

Theorem 2. There exists a sequence kn → ∞, such that the augmented model satisfies the LAMN property:

logZ
n,aug
θ0,θ0+unh = hN

aug
n − 1

2
h2I

aug
n + R

aug
n ,

where I
aug
n

P
θ0−→

n→∞ Iθ0 , R
aug
n

P
θ0−→

n→∞ 0 and there exists an extra random variable N ∼ N (0,1) independent of the process

X such that, N
aug
n converges in law under P

θ0 to N
√

Iθ0 . Moreover, this convergence is stable.

From Theorem 2 and from the consequences of the LAMN property, an asymptotically optimal estimator θn in
the augmented model should satisfy that

√
n(θn − θ0) is asymptotically distributed under Pθ0 as 1√

Iθ0
N . However,

any estimator in the initial model of observation On can be seen as an estimator in the augmented model, hence the
Theorem 2 is sufficient by itself to imply a lower bound for estimation in the initial model.

Remark 2. The fact that kn → ∞ means that the data added in the observation are sparse compared to the initial
data. Actually, the Theorem 2 holds for any sequence kn whose growth to ∞ is slow enough.

If we assume now that kn = k ∈ N remains fixed as n → ∞, the number of data (Xkl/n)l=0,...,L added to the model
is not negligible compared to the number of initial data. Hence, the statistical properties of the augmented model shall
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depend on k and thus differ from the statistical properties of the initial model given in Theorem 1. Actually we have
the following LAMN property for the augmented model in that case.

Theorem 3. If a sequence kn = k is fixed, then the augmented model satisfies the LAMN property with rate un = n−1/2

and conditional information equal to:

Ik,θ0 = 2

(
k + 1

k

)∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds.

As expected, the conditional information is greater by a factor (k + 1)/k, due to the nonnegligibility of the added
observations. Actually this factor should be read as 1 + 1

k
, meaning that an addition of 1

k
% of data increases the

information in the same way. Local means and values at discrete points are not redundant (as expected from the
multiplicative Brownian case, see Example 1) and moreover, they bring an equal information. Considering k = 1 is
interesting, since we observe then on each block [i/n, (i + 1)/n] both the exact value Xi/n and a mean Xi . It appears
that the asymptotic information is then twice the information given by the observation of only the exact values (or
only the means).

1.3. Outline of the paper

In Section 2 we study the score function given by the observation of only one block of data (B0 for instance). We
first focus on the existence of a density for a block of data; and in the case of a block of size 2, (n1/2

∫ 1
0 (Xs/n −

X0)dμ(s), n1/2(X1/n − X0)) we give original lower and upper bounds of Gaussian type for the density. It is useful
for our proof of the LAMN property, but it is also interesting for itself.

In Section 2.2 we present an exact expression for the score function of a block of data B0 (see Theorem 5). This
result is the key point in the proof of the LAMN property, it extends a former result of Gobet [10,11] which gave the
score function for the observation of Xθ

1/n. In Section 2.3 we study an explicit approximation for the score function
when the sampling interval 1/n tends to zero and the length of the block k/n remains moderate so that one can
consider the coefficients of the diffusion X almost constant on the interval [0, k/n]. The key point is the Gaussian
approximation for the diffusion given in Section 2.3.1.

In Section 3 we deduce from the previous results a proof of Theorems 2 and 3 and Section 4 deals on how to deduce
Theorem 1 from Theorem 2.

Finally, the Appendix contains the proof of some results of Section 2.1 together with some useful lemmas.

Notations
In our proofs, we will keep the same notation for constants which may change from one line to another. In particular,
the constants c, c(k), c(p), c(p, k) will stand for all finite, nonnegative and nondecreasing deterministic functions of
an index p (arising from Lp-norm) and of the block size k. These constants are independent of n, θ and depend on
the process Xθ , only through the bounds on the coefficients a, b and their derivatives.

2. Score function for a block of data

In this section we shall study the law of the blocks of data Bl ; recalling the Markov property of the process X it is
sufficient to focus on B0 = {X0, . . . ,Xk−1,Xk/n} assuming that the diffusion X now starts from some value x0. In
this section it is convenient to transform the short time asymptotic k/n → 0 into an almost stationarity property of
the coefficients. To this end, we introduce the rescaled process X n,θ

t = n1/2(Xθ
t/n − x0) (where Xθ solves (1) with

Xθ
0 = x0). It solves the equation

dX n,θ
t = an

(
X n,θ

t , θ
)

dWt + bn

(
X n,θ

t

)
dt, X n,θ

0 = 0, (6)

where W is a standard Brownian motion (arising from the rescaling of B), and

an(x, θ) = a
(
x0 + n−1/2x, θ

)
, bn(x) = n−1/2b

(
x0 + n−1/2x

)
. (7)
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Since for the score we are only concerned with the law of X n,θ , we can assume that W is independent of the rescaling
coefficient n.

2.1. The density of an integrated diffusion

In this section, we will present preliminary results on the density of the law of the mean of a diffusion process.
However, the proofs are postponed to Appendix A.1. To our knowledge, the lower and upper bounds for this density
are new results.

2.1.1. Existence of the density
Our first result actually deals with the two-dimensional variable given by solely one local mean and the exact value:

(
Un,θ ,V n,θ

) :=
(∫ 1

0
X n,θ

s dμ(s), X n,θ
1

)
law=

(
n1/2

∫ 1

0

(
Xθ

s/n − x0
)

dμ(s), n1/2(Xθ
1/n − x0

))
. (8)

Notice that by the Markov property, the preliminary study of this bi-dimensional variable will be a key step to obtain
results on the observation vector On.

Theorem 4. Assume (R), then the vector (Un,θ ,V n,θ ) admits a density pn
x0

(·, ·, θ) on R
2, and there exist two constants

c1 > c2 > 0, such that,

c−1
1 e−c1(u

2+v2) � p
n
x0

(u, v, θ) � c−1
2 e−c2(u

2+v2). (9)

The constants c1 and c2 only depend on the bounds on the coefficients a, b and their derivatives.

The proof of this theorem is given in Appendix A.1. The existence of the density is obtained by means of the
Malliavin calculus. On the other hand, the upper and lower bounds rely on the direct study of (Un,θ ,V n,θ ) around its
skeleton (see [12,13] for related works; and [18] for different methods involving Malliavin calculus).

The following is a direct corollary of Theorem 4:

Corollary 1. The vector B0 = {X0, . . . ,Xk−1,Xk/n} admits a positive density.

Proof. The bi-dimensional process (Xl,X(l+1)/n)l=0,...,k−1 is a Markov chain with transition density pxl
(xl, xl+1,

θ) = npn
xl

(n1/2(xl+1 − xl), n
1/2(xl+1 − xl), θ). Then it is clear that the vector B0 admits a positive density. �

2.1.2. Invertibility of the Malliavin covariance matrix of a block
Actually the existence of a density for the law of the random variable B0 will not be sufficient, and we need a
nondegeneracy condition for this variable.

Before this, let us precise briefly a few notations from the Malliavin calculus, used in the sequel (see [22,23]
for details). We let H be the Hilbert space L2([0,∞)) so that the Brownian motion (Wt )t∈[0,∞), appearing in (6),
is canonically associated to this Hilbert space via the standard L2 isometry. In this setting, for any p � 1 and nat-
ural number q , recall that the set D

q,p denotes the space of real valued Wiener functionals with q derivatives and
whose derivatives belong to Lp(Ω). If we denote by D the derivative operator then the space D

q,p is endowed
with the norm, ‖F‖q,p = [E(|F |p) + ∑q

j=1 E(‖DjF‖p

L2([0,∞)j )
)]1/p . The space of variable with q derivatives in

any Lp(Ω) is denoted D
q,∞ = ⋂

p�1 D
q,p . These definitions can be extended to random variables with values in

any Hilbert space V and the corresponding spaces are denoted D
q,p(V ), D

q,∞(V ) (see Section 1.5 in [22]). In par-
ticular, the operator D is then well defined from D

q,∞ to D
q−1,∞(H). Finally, the adjoint operator of D is the

Skohorod integral δ, and the Malliavin covariance matrix of an element F ∈ D
1,∞(Rd) is defined as the matrix

γF1,...,Fd
= [〈Dfi,D · Fj 〉H ]1�i,j�d .
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Now, we consider the variables

U
n,θ
0 :=

∫ 1

0
X n,θ

s dμ(s), (10)

U
n,θ
1 :=

∫ 1

0

(
X n,θ

s+1 − X n,θ
s

)
dμ(s), (11)

...

U
n,θ
k−1 :=

∫ 1

0

(
X n,θ

s+k−1 − X n,θ
s+k−2

)
dμ(s), (12)

U
n,θ
k :=

∫ 1

0

(
X n,θ

k − X n,θ
s+k−1

)
dμ(s). (13)

Note that the joint law of these k + 1 variables is, by rescaling, the same as the law of the vector composed with

variables of the first block B0: n1/2(X
θ

0 − x0,X
θ

1 − X
θ

0, . . . ,X
θ

k−1 − X
θ

k−2,X
θ
k/n − X

θ

k−1). These variables satisfy the
following nondegeneracy property whose proof is postponed to Appendix A.1.3.

Proposition 1. Under (R), (U
n,θ
0 , . . . ,U

n,θ
k ) ∈ D

3,∞. Denote by K(θ) the Malliavin covariance matrix of (U
n,θ
0 , . . . ,

U
n,θ
k ). It is a.s. an invertible matrix and for all p � 1, we have

E
(∣∣det

(
K(θ)

)∣∣−p) � c(p, k).

2.2. An exact expression using Malliavin calculus

In this section we intend to give an exact expression for the score function of the observation of B0 or equivalently for
the vector (U

n,θ
0 , . . . ,U

n,θ
k ) given by (10)–(13).

Under the condition (R), we know that there exists a version of the solution of (6) such that P -almost surely the

function θ → X θ
t is continuously differentiable for all t and τ

n,θ
t := ∂X n,θ

t

∂θ
is a solution of the stochastic equation (see

[20]):

dτ
n,θ
t = ∂an

∂x

(
X n,θ

t , θ
)
τ

n,θ
t dWt + ∂an

∂θ

(
X n,θ

t , θ
)

dWt + ∂bn

∂x

(
X n,θ

t

)
τ

n,θ
t dt,

(14)
τ

n,θ
0 = 0.

The main result of this section is an explicit representation for the derivative of the log-likelihood of one block. This
extends a former result given by Gobet (see [10,11]).

Theorem 5. The random vector (U
n,θ
0 , . . . ,U

n,θ
k ) admits a positive density on R

k+1, denoted by px0(u0, . . . , uk, θ).
For a.e. (u0, . . . , uk), this density is an absolutely continuous function with respect to the parameter θ and we have
the formula:

ṗx0

px0

(u0, . . . , uk, θ) = E

[
δ

( ∑
0�j,j ′�k

∂U
n,θ
j

∂θ
K(θ)−1

j,j ′DU
n,θ
j ′

)∣∣∣(Un,θ
j = uj

)
j=0,...,k

]
,

where K(θ)−1 is the inverse of the Malliavin covariance matrix of (U
n,θ
0 , . . . ,U

n,θ
k ).
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Proof. Denote Un,θ the Wiener functional, Un,θ = (U
n,θ
0 , . . . ,U

n,θ
k ) and let f : Rk+1 → R be a smooth function with

compact support. Then the function θ �→ E[f (Un,θ )] can be differentiated pointwise and:

∂

∂θ
E
[
f
(
Un,θ

)] = E

[
k∑

j=0

∂f

∂uj

(
Un,θ

)∂U
n,θ
j

∂θ

]
.

By Proposition 1, the Malliavin covariance matrix of Un,θ is invertible and a standard computation on Wiener func-
tionals (see formula (2.4), p. 81 in [22]) shows that: ∂f

∂uj
(Un,θ ) = ∑k

j ′=0 〈D(f (Un,θ )),DU
n,θ
j ′ 〉

H
K(θ)−1

j,j ′ . It follows

that ∂
∂θ

E[f (Un,θ )] is equal to

E

[
k∑

j=0

k∑
j ′=0

〈
D
(
f
(
Un,θ

))
,DU

n,θ
j ′

〉
H

K(θ)−1
j,j ′

∂U
n,θ
j

∂θ

]
= E

[〈
D
(
f
(
Un,θ

))
,Lθ

〉
H

]
,

where Lθ is the H -valued random variable:

Lθ :=
k∑

j=0

k∑
j ′=0

∂U
n,θ
j

∂θ
K(θ)−1

j,j ′DU
n,θ
j ′ . (15)

Introducing δ the adjoint operator of D, we get

∂

∂θ
E
[
f
(
Un,θ

)] = E
[
f
(
Un,θ

)
δ
(
Lθ

)]
. (16)

Let g be any smooth function with compact support on R. Using the integration by part formula and the equation (16)
we have:∫

dθ ġ(θ)E
(
f
(
Un,θ

)) = −
∫

dθ g(θ)
∂

∂θ
E
[
f
(
Un,θ

)] = −
∫

dθ g(θ)E
[
f
(
Un,θ

)
δ
(
Lθ

)]
= −

∫
dθ g(θ)E

[
f
(
Un,θ

)
E
[
δ
(
Lθ

)∣∣(Un,θ
0 , . . . ,U

n,θ
k

)]]
.

Introducing the density of the random vector Un,θ the equation above writes,∫
ġ(θ)dθ

∫
f (u0, . . . , uk)px0(u0, . . . , uk, θ)du0 · · ·duk

= −
∫

g(θ)dθ

∫
f (u0, . . . , uk)E

[
δ
(
Lθ

)∣∣(Un,θ
l = ul

)
l

]
px0(u0, . . . , uk, θ)du0 · · ·duk.

Now using Fubini’s theorem it can be seen that du0 · · ·duk-almost everywhere the function θ → px0(u0, . . . , uk, θ) is
absolutely continuous with

ṗx0(u0, . . . , uk, θ) = E
[
δ
(
Lθ

)∣∣(Un,θ
l = ul

)
l

]
px0(u0, . . . , uk, θ).

Hence the theorem is proved. �

Remark that the proof of Theorem 5 does not rely on the specific expression (10)–(13) and thus an analogous
representation for the score function seems achievable in many situations.

2.3. A Gaussian approximation for the log-likelihood

In this section we intend to give a tractable approximation for the score function of (U
n,θ
0 , . . . ,U

n,θ
k ).
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2.3.1. Approximation for the diffusion
We introduce X̃ θ

t = a(x0, θ)Wt and τ̃ θ
t = ȧ(x0, θ)Wt which stand – by (6) and (14) – for the first-order approximations

of X n,θ
t and τ

n,θ
t = ∂X n,θ

t

∂θ
. Then, we consider the quantities obtained by replacing in (10)–(13) the process X by this

Gaussian approximation

Ũ θ
0 := a(x0, θ)

∫ 1

0
Ws dμ(s) = a(x0, θ)

∫ 1

0
μ
([s,1])dWs, (17)

Ũ θ
j := a(x0, θ)

∫ 1

0
(Wj+s − Wj−1+s)dμ(s), for j = 1, . . . , k − 1,

= a(x0, θ)

∫ j

j−1
μ
([

0, s − (j − 1)
])

dWs + a(x0, θ)

∫ j+1

j

μ
([s − j,1])dWs, (18)

Ũ θ
k := a(x0, θ)

∫ 1

0
(Wk − Wk−1+s)dμ(s) = a(x0, θ)

∫ k

k−1
μ
([

0, s − (k − 1)
])

dWs, (19)

where we have repeatedly used the Fubini theorem for stochastic integrals (see [25], p. 176). In the next lemma, we
control the difference between the U

n,θ
j and their approximation in terms of Sobolev norm.

Lemma 1. For all k,p > 1, there exist constants c(k,p), c(p) such that for all j ∈ {0, . . . , k}:∥∥U
n,θ
j − Ũ θ

j

∥∥
2,p

� c(k,p)n−1/2,
∥∥Ũ θ

j

∥∥
3,p

� c(p), (20)∥∥∥∥∂U
n,θ
j

∂θ
− ∂Ũ

n,θ
j

∂θ

∥∥∥∥
2,p

� c(k,p)n−1/2,

∥∥∥∥∂Ũθ
j

∂θ

∥∥∥∥
3,p

� c(p), (21)

∀0 � j, j ′ � k,
∣∣E(

U
n,θ
j U

n,θ
j ′ − Ũ θ

j Ũ θ
j ′
)∣∣ � c(k)n−1. (22)

Proof. The inequalities on the right-hand side of (20), (21) are immediate by the definition of Ũ θ
j .

Comparing expressions of (10)–(13) with (17)–(19), the two remaining bounds in (20) and (21) will be a conse-
quence of the Minkowski inequality – for the Sobolev norm – and of the control on the diffusions:

sup
t�k

∥∥X n,θ
t − X̃ θ

t

∥∥
2,p

+ sup
t�k

∥∥τ
n,θ
t − τ̃ θ

t

∥∥
2,p

� n−1/2c(k,p).

We only prove the control on X n,θ since the proof for τn,θ is analogous. Recalling (6) and (7), we can write

X n,θ
t − X̃ θ

t =
∫ t

0

[
an

(
X n,θ

s , θ
) − a(x0, θ)

]
dWs +

∫ t

0
bn

(
X n,θ

s

)
ds

= 1√
n

∫ t

0

∫ 1

0
a′
x

(
x0 + uX n,θ

s√
n

, θ

)
X n,θ

s dudWs + 1√
n

∫ t

0
b

(
x0 + X n,θ

s√
n

)
ds. (23)

But we know [22] that under Assumption (R) the variables X n,θ belong to D
3,∞ with a control (independent of θ,n):

supu1,u2�s�k E(|D2
u1,u2

X n,θ
s |p) � c(p, k). This is sufficient to deduce ‖X n,θ

t − X̃ θ
t ‖2,p � n−1/2c(p, k) after a few

computations.
To obtain (22) note that by (20) it is sufficient to show E((U

n,θ
j − Ũ θ

j )Ũ θ
j ′) � c(k)n−1. This property will follow

again from an analogous relation on the diffusion,

sup
t,t ′�k

∣∣E((
X n,θ

t − X̃ θ
t

)
X̃ θ

t ′
)∣∣ � c(k)n−1.
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Indeed, from (23), the above expectation is equal to

n−1/2
∫ t∧t ′

0

∫ 1

0
E
[
a′
x

(
x0 + n−1/2uX n,θ

s , θ
)

X n,θ
s

]
dua(x0, θ0)ds

+ n−1/2
∫ t

0
E
[
b
(
x0 + n−1/2 X n,θ

s

)
Wt ′

]
a(x0, θ)ds.

Using |E[a′
x(x0, θ)X n,θ

s ]| = | ∫ s

0 a′
x(x0, θ)E[bn(X n,θ

u )]du| � cn−1/2, E[b(x0)Wt ′ ] = 0 and the boundedness of a′′
xx

and b′, we get the required estimate. �

2.3.2. Approximation for the log-likelihood
Let us denote the deterministic tridiagonal matrix K̃ of size (k + 1) × (k + 1),

K̃ =

⎡⎢⎢⎢⎢⎢⎢⎣

v1 c 0 0 0

c v1 + v2
. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . . v1 + v2 c

0 0 0 c v2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the entries of the matrix are:

v1 =
∫ 1

0
μ
([s,1])2ds, v2 =

∫ 1

0
μ
([0, s])2 ds, c =

∫ 1

0
μ
([0, s])μ([s,1])ds.

It can be easily checked that a2(x0, θ)K̃ is the covariance matrix of the Gaussian vector (Ũ θ
0 , . . . , Ũ θ

k ) and that it is
invertible using (3). Now the idea is to introduce the score function that would be produced from the observation of
this Gaussian vector. Hence we let:

Lx0(u0, . . . , uk, θ) = ȧ

a
(x0, θ)

{
a(x0, θ)−2

∑
0�j,j ′�k

uj K̃
−1
j,j ′uj ′ − (k + 1)

}
. (24)

In this section, we will show that this quantity is an approximation for the true score function ṗ
p

.

Theorem 6. Let us consider the difference

ṗx0

px0

(u0, . . . , uk, θ) − Lx0(u0, . . . , uk, θ) := rx0(u0, . . . , uk, θ). (25)

Then we have the following bounds:∣∣E[
rx0

(
U

n,θ
0 , . . . ,U

n,θ
k , θ

)]∣∣ � c(k)n−1, (26)

∀p � 1, E
[∣∣rx0

(
U

n,θ
0 , . . . ,U

n,θ
k , θ

)∣∣p]1/p � c(k,p)n−1/2. (27)

Proof. Keeping in mind the definition of Lθ (see (15)), we introduce its approximation based on the Gaussian quan-
tities defined above:

L̃θ :=
k∑

j=0

k∑
j ′=0

∂Ũθ
j

∂θ
a(x0, θ)−2K̃−1

j,j ′DŨθ
j ′ .

The first step is to obtain the following control on the difference r1 := Lθ − L̃θ :

∀p > 1, ‖r1‖D1,p(H) � c(k,p)n−1/2. (28)



114 A. Gloter and E. Gobet

Actually, it is a easy consequence of Lemma 1, Proposition 1 and the invertibility of K̃ , noting that the Malliavin
covariance matrix of Ũ θ coincides with the covariance matrix a2(x0, θ)K̃ of the Gaussian vector Ũ θ . We omit further
details.

The second step is to obtain a simple expression for δ(L̃θ ). To see this, we first use the relation for F ∈ D
1,∞, u ∈

D
1,∞(H), δ(Fu) = Fδ(u) − 〈D · F,u〉H (see [22]):

δ
(
L̃θ

) =
k∑

j=0

k∑
j ′=0

∂Ũθ
j

∂θ
a(x0, θ)−2K̃−1

j,j ′δ
(
D
(
Ũ θ

j ′
)) −

k∑
j=0

k∑
j ′=0

a(x0, θ)−2K̃−1
j,j ′

〈
D

∂Ũθ
j

∂θ
,DŨθ

j ′

〉
H

.

On the one hand, δ(D(Ũθ
j ′)) = Ũ θ

j ′ (δ ◦ D is the identity operator on the first chaos space). On the other hand, one has
∂Ũθ

j

∂θ
= ȧ(x0,θ)

a(x0,θ)
Ũ θ

j by (17)–(19). We deduce

δ
(
L̃θ

) = ȧ(x0, θ)

a(x0, θ)

k∑
j=0

k∑
j ′=0

Ũ θ
j a(x0, θ)−2K̃−1

j,j ′Ũ θ
j ′ − ȧ(x0, θ)

a(x0, θ)

k∑
j=0

k∑
j ′=0

a(x0, θ)−2K̃−1
j,j ′

〈
DŨθ

j ,DŨθ
j ′
〉
H

= ȧ(x0, θ)

a(x0, θ)

k∑
j=0

k∑
j ′=0

Ũ θ
j a(x0, θ)−2K̃−1

j,j ′Ũ θ
j ′ − ȧ(x0, θ)

a(x0, θ)
(k + 1).

Now set

r2 = ȧ(x0, θ)

a3(x0, θ)

∑
0�j,j ′�k

Ũ θ
j K̃−1

j,j ′Ũ θ
j ′ − ȧ(x0, θ)

a3(x0, θ)

∑
0�j,j ′�k

U
n,θ
j K̃−1

j,j ′U
n,θ
j ′ ,

and take the conditional expectation in the relation δ(Lθ ) = δ(L̃θ ) + δ(r1): by Theorem 5, we get (25) with
rx0(u0, . . . , uk, θ) = E(δ(r1)|(Un,θ

j )j = (uj )j ) + E(r2|(Un,θ
j )j = (uj )j ).

The final step in the proof is to show that rx0 satisfies conditions (26), (27). For the first condition, since the
Skorohod integral has zero mean, we have E[rx0(U

n,θ
0 , . . . ,U

n,θ
k , θ)] = E(r2) and we conclude using (22).

We now prove (27). The conditional expectation being a contraction on Lp it is sufficient to prove

E
(∣∣δ(r1)

∣∣p)1/p � c(p, k)n−1/2, E
(|r2|p

)1/p � c(p, k)n−1/2.

The first estimate follows from (28) and the continuity of the operator δ from D
1,p(H) to Lp . The second one is an

immediate consequence of Lemma 1. �

Remark 3. Let us note that the constants c(k), c(k,p) in Theorem 6 should increase as the block length k goes to
infinity since the Gaussian approximation ceases to be valid in that case. However, in the sequel we shall not need a
precise evaluation of this dependence on k since we will have the possibility to conveniently choose the growth rate of
k = kn.

In the following sections we will need this corollary of Theorem 6.

Corollary 2. We have for all p > 1,

E

[∣∣∣∣ ṗx0

px0

(
U

n,θ
0 , . . . ,U

n,θ
k , θ

)∣∣∣∣p] � c(k,p).

Proof. By Theorem 6 it is sufficient to show that E[|Lx0(U
n,θ
0 , . . . ,U

n,θ
k , θ)|p] � c(k,p). But from the expression

of Lx0 , this estimate is clear. �
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3. Asymptotic study for the augmented model

In this section we establish Theorem 2. Let us recall some notations: we now deal with the diffusion given by (1)
and (2); kn is some integer in {1, . . . , n}, Ln = �n/kn and our observation consists of the Ln + 1 blocks B0, . . . ,BLn

described in Section 1. The length of the block Bl is kn,l + 1, where kn,l = kn if l � Ln − 1 and kn,Ln = n − Lnkn.
For sake of simplicity in the sequel we sometimes omit the dependence with respect to n and l of the block size, and
let kn,l = k with a slight abuse of notation in particular for the last block of data.

To be able to use the results of the Section 2, we introduce on each block the random variables corresponding to
the definitions (10)–(13) for the first block. Hence for l ∈ {0, . . . ,Ln}, we define the kn,l + 1 following variables:

U0,l = n1/2(Xkl − Xkl/n),

U1,l = n1/2(Xkl+1 − Xkl),

...

Uk−1,l = n1/2(Xkl+k−1 − Xkl+k−2),

Uk,l = n1/2(Xk(l+1)/n − Xkl+k−1).

Clearly the observation of the (Uj,l) for l ∈ {0, . . . ,Ln}, j ∈ {0, . . . , kn,l} is equivalent to the observation of the Ln +1
blocks. Using the Markov property for the process X it appears that the law of the vector (Uj,l)j=0,...,kn,l

conditionally
to all the variables Uj,l′ with l′ < l, j ∈ {0, . . . , kn,l′ } is the same as conditionally to Xkl/n only; moreover this law –

conditionally to Xkl/n = x0 – coincides with that of the vector (U
n,θ
0 , . . . ,U

n,θ
k ) studied in Section 2. Thus it admits

the density pXkl/n
(u0, . . . , uk, θ) studied in Sections 2.2 and 2.3. Hence, the log-likelihood of the augmented model

admits the additive structure:

ln
(
Z

n,aug
θ0,θ0+unh

(
On,aug)) =

Ln∑
l=0

ln
pXkl/n

(U0,l , . . . ,Uk,l, θ0 + unh)

pXkl/n
(U0,l , . . . ,Uk,l, θ0)

=
Ln∑
l=0

∫ θ0+unh

θ0

ṗXkl/n
(U0,l , . . . ,Uk,l, s)

pXkl/n
(U0,l , . . . ,Uk,l, s)

ds.

Owing to Theorem 6, we deduce the decomposition

ln
(
Z

n,aug
θ0,θ0+unh

(
On,aug)) =

Ln∑
l=0

∫ θ0+unh

θ0

LXkl/n
(U0,l , . . . ,Uk,l, s)ds +

Ln∑
l=0

∫ θ0+unh

θ0

rXkl/n
(U0,l , . . . ,Uk,l, s)ds.

In the above decomposition, we will show in Sections 3.1 and 3.2 that the explicit term involving Lx0 governs the
asymptotic behavior of the log-likelihood ratio; the other term does not contribute in the limit.

3.1. Proof of Theorem 2: the explicit term

Let us introduce a slight modification of LXkl/n
, which has the advantage of being a smoother function w.r.t. θ :

ξl,n(θ) = ȧ

a
(Xkl/n, θ0)

{
a(Xkl/n, θ)−2

∑
0�j,j ′�k

Uj,lK̃
−1
j,j ′Uj ′,l − (k + 1)

}
, (29)

and we set N
aug
n = un

∑Ln

l=0 ξl,n(θ0) and I
aug
n = −u2

n

∑Ln

l=0
∂ξl,n

∂θ
(θ0).

Proposition 2. If kn → ∞ slowly enough,

Ln∑
l=0

∫ θ0+unh

θ0

LXkl/n
(U0,l , . . . ,Uk,l, s)ds = hN

aug
n − h2

2
I

aug
n + Rn, (30)
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where I
aug
n

P
θ0−→

n→∞ Iθ0 , Rn
P

θ0−→
n→∞ 0 and there exists an extra random variable N ∼ N (0,1) independent of the process X

such that, N
aug
n converges stably in law under P

θ0 to N
√

Iθ0 .

Proof. Comparing (24) with the definition of ξl,n(θ) above and using a Taylor expansion for ξl,n(θ) around θ0, we
get Eq. (30) with a remainder term Rn = R

(1)
n + R

(2)
n satisfying:

R(1)
n =

Ln∑
l=0

∫ θ0+unh

θ0

[
ȧ

a
(Xkl/n, s) − ȧ

a
(Xkl/n, θ0)

]{ ∑
0�j,j ′�k

Uj,lK̃
−1
j,j ′Uj ′,l

a(Xkl/n, s)2
− (k + 1)

}
ds, (31)

∣∣R(2)
n

∣∣ � c

Ln∑
l=0

u
2+γ
n

{ ∑
0�j,j ′�k

∣∣Uj,lK̃
−1
j,j ′Uj ′,l

∣∣} (32)

(for R
(2)
n we have used that θ �→ ȧ(x, θ) is γ -Hölder continuous). To complete the proof, we repeatedly use the

following classical convergence result about triangular arrays of random variables.

Lemma 2 ([5], Lemma 9). Let (χn
l )0�l�Ln

, U be random variables, with χn
l being F n

l+1-measurable. The two

following conditions imply
∑Ln

l=0 χn
l

P→ U :

Ln∑
l=0

E
[
χn

l

∣∣F n
l

] P→ U and
Ln∑
l=0

E
[(

χn
l

)2∣∣F n
l

] P→ 0.

• We first focus on N
aug
n . Let us introduce the sigma field F n

l = σ(X0;Bs, s � kl
n
) for l = 0, . . . ,Ln and F n

Ln+1 =
σ(X0;Bs, s � 1). Then the variable ξl,n(θ0) is F n

l+1-measurable and the asymptotic behavior of N
aug
n will fol-

low from Lemma 2. To make clearer this point we introduce the following approximation based on conditionally
Gaussian variables:

ξ̃l,n(θ) = ȧ

a
(Xkl/n, θ0)

{
a(Xkl/n, θ)−2

∑
0�j,j ′�k

Ũj,lK̃
−1
j,j ′Ũj ′,l − (k + 1)

}
. (33)

Here, Ũj,l is the Gaussian approximation under P
θ of Uj,l corresponding on the block Bl to the variables (17)–(19)

on the block B0:

Ũ0,l := a(Xkl/n, θ)n1/2
∫ 1

0
(B(kl+s)/n − Bkl/n)dμ(s),

Ũj,l := a(Xkl/n, θ)n1/2
∫ 1

0
(B(kl+j+s)/n − B(kl+j−1+s)/n)dμ(s) for j = 1, . . . , k − 1,

Ũk,l := a(Xkl/n, θ)n1/2
∫ 1

0
(Bk(l+1)/n − B(kl+k−1+s)/n)dμ(s).

Observe that this vector (Ũj,l)j=0,...,k has, under P
θ and conditionally to Xkl/n = x0, the same law as the vector

(Ũ θ
j )j=0,...,k defined in Section 2.3. Thus its conditional law is Gaussian with covariance matrix a(Xkl/n, θ)2K̃ .

Hence, the variable ξ̃l,n(θ0) is F n
l+1-measurable and under P

θ0 , it is conditionally (to Xkl/n) distributed as a recen-
tered χ2(k + 1) variable. Thus, we deduce the following four properties:

(1) un

∑Ln

l=0 Eθ0 [̃ξl,n(θ0)|F n
l ] = 0;
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(2) Using u2
n = 1/n, Ln ∼ n/kn → ∞ and kn → ∞, one has

u2
n

Ln∑
l=0

Eθ0

[(̃
ξl,n(θ0)

)2∣∣F n
l

] = u2
n

Ln∑
l=0

2(kn + 1)

(
ȧ

a

)2

(Xkl/n, θ0)

= 2(kn + 1)

kn

∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds + o
P

θ0 (1) (34)

P
θ0−→ 2

∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds = Iθ0;

(3) u4
n

∑Ln

l=0 Eθ0[|̃ξl,n(θ0)|4|F n
l ] � cn−2Lnk

4
n � cn−1k3

n → 0, if kn goes to ∞ slowly enough;

(4) un

∑Ln

l=0 Eθ0 [̃ξl,n(θ0)[B(k+1)l/n − Bkl/n]|F n
l ] = 0.

From these four properties, it follows (see [15]) that un

∑Ln

l=0 ξ̃l,n(θ0) converges stably under P
θ0 to a mixed

Gaussian variable as in the statement of the proposition. To obtain the limit for N
aug
n , it is sufficient to prove

that

N
aug
n − un

Ln∑
l=0

ξ̃l,n(θ0)
P

θ0−→ 0. (35)

Due to Lemma 2, a sufficient condition consists in the two following points:

(1) un

∑Ln

l=0 Eθ0 [̃ξl,n(θ0) − ξl,n(θ0)|F n
l ] → 0 in probability;

(2) u2
n

∑Ln

l=0 Eθ0[(̃ξl,n(θ0) − ξl,n(θ0))
2|F n

l ] → 0 in probability.

But these two points can be shown using (20) and (22) of Lemma 1 (for kn slowly increasing).
• We now study I

aug
n . A direct differentiation of ξl,n(θ) (recall (29)) gives

ξ̇l,n(θ) = ȧ

a
(Xkl/n, θ0)

−2ȧ

a3
(Xkl/n, θ)

∑
0�j,j ′�k

Ul,j K̃
−1
j,j ′Ul,j ′ .

Then, with a few computations similar to the study of N
aug
n , we obtain (for appropriate kn):

(1)

u2
n

Ln∑
l=0

Eθ0

[
ξ̇l,n(θ0)|F n

l

] = u2
n

Ln∑
l=0

−2(kn,l + 1)
ȧ2

a2
(Xkl/n, θ0) + O

P
θ0

(
c(kn)√

n

)

= −2
(kn + 1)

kn

∫ 1

0

(
ȧ

a
(Xs, θ0)

)2

ds + o
P

θ0 (1)
P

θ0−→ −Iθ0; (36)

(2) u4
n

∑Ln

l=0 Eθ0[[ξ̇l,n(θ0)]2|F n
l ] � cn−1k4

n → 0.

Combined with Lemma 2, these two convergences imply that of I
aug
n to Iθ0 under P

θ0 .

• The remainder term Rn. Firstly, a direct use of (20) gives E(|R(2)
n |) � c(kn)n

−γ /2 → 0 if kn slowly goes to ∞.
Secondly, the convergence to zero of R

(1)
n = ∑Ln

l=0 R
(1)
n,l is more delicate and Lemma 2 is helpful for this. To this end

we evaluate the conditional expectation of R
(1)
n,l using (22) and the fact the (Ũj,l)j have the conditional covariance

matrix a(Xkl/n, θ)2K̃ :

Eθ0

[
R

(1)
n,l

∣∣F n
l

] =
∫ θ0+unh

θ0

[
ȧ

a
(Xkl/n, s) − ȧ

a
(Xkl/n, θ0)

]{
a(Xkl/n, θ0)

2

a(Xkl/n, s)2
− 1

}
(kn + 1)ds + O

(
n−1unc(kn)

)
.
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The function a being C 1+γ in θ , one gets:
∑Ln

l=0 |Eθ0[R(1)
n,l |F n

l ]| � cn−γ /2 + c(kn)
kn

n−1/2 → 0 for appropriate kn.

With similar considerations we evaluate the second conditional moment and obtain u2
n

∑Ln

l=0 Eθ0[(R(1)
n )2|F n

l ] �
c(kn)Lnu

2+2γ
n

n→∞−→ 0. �

3.2. Proof of Theorem 2: the negligible terms

It remains to prove that, as announced, there is convergence to zero of
∑Ln

l=0 ηl with ηl = ∫ θ0+unh

θ0
rXkl/n

(U0,l , . . . ,

Uk,l, s)ds. We aim at applying Lemma 2 by computing the first two conditional moments of ηl under P
θ0 . The main

difficulty here comes from the fact that we do not have an explicit expression for rx0((uj )j , θ). Indeed by Theorem 6
we know bounds for the moments En

θ,x0
(|rx0((Uj )j , θ)|p) where by En

x0,θ
we denote the expectation with respect to

the law of X n,θ solution of (6). This is a priori insufficient to compute the conditional moments of ηl under P
θ0 which

involve quantities such as En
θ0,x0

(|rx0((Uj )j , s)|p) for s �= θ0. Thus in Lemmas 7 and 8 in the Appendix we study the
transformation of such moments under change of measure.

Firstly, we evaluate the conditional expectation of ηl ,

Eθ0

[
ηl |F n

l

] =
∫ θ0+unh

θ0

En
θ0,x

[
rx

(
(Uj )j , s

)]
|x=Xkl/n

ds.

But |En
θ0,x

[rx((Uj )j , s)]| � |En
s,x[rx((Uj )j , s)]| + |En

θ0,x
[rx((Uj )j , s)] − En

s,x[rx((Uj )j , s)]| can be bounded us-

ing (26) and Lemma 8 in the Appendix by c(k)n−1 + |s − θ0|En
s,x[|rx((Uj )j , s)|α]1/α for some α � 1. Then by

(27) we deduce |E[ηl |F n
l ]| � c(kn)[unn

−1 + u2
nn

−1/2]. Finally, a block length kn slowly increasing guarantees∑Ln

l=0 Eθ0[ηl |F n
l ] P

θ0−→ 0.
Secondly and similarly, owing to Theorem 6 and Lemma 7 in the Appendix, we get E[η2

l |F n
l ] � c(kn)u

2
nn

−1 → 0.

Therefore, by Lemma 2, we have proved
∑Ln

l=0 ηl
P

θ0−→ 0. This ends the proof of Theorem 2.

3.3. Proof of Theorem 3

The proof is essentially the same as that of Theorem 2, the difference in the asymptotic information comes from the
difference in the limit of the quantities (34) and (36) when k is fixed.

4. LAMN property for the initial model

In this section we are back to the model where the observation is only On = (Xj )j=0,...,n−1 and we will prove
Theorem 1 by relying on the LAMN property for the augmented model.

A first intermediate result is that one can approximate the log-likelihood of the augmented model by a function of
the observation On.

Proposition 3. There exist random variables Γn measurable with respect to On such that:

ln
(
Z

n,aug
θ0,θ0+unh

(
On,aug)) − Γn

n→∞−→
P

θ0
0.

Proof. We have seen in Section 3 that ln(Z
n,aug
θ0,θ0+unh(On,aug)) = hN

aug
n − 1/2h2I

aug
n + o

P
θ0 (1) where the quantities

N
aug
n and I

aug
n were defined in Section 3.1.

Thus, the proof of the proposition consists in introducing a proper modification of these quantities which only
depends on the observations. We let for l = 0, . . . , kn

ξobs
l,n (θ) = ȧ

a
(Xkl−1, θ0)

{
a−2(Xkl−1, θ)

∑
1�j,j ′�k−1

Ul,j K̂
−1
j,j ′Ul,j ′ − (k − 1)

}
,
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with the convention X−1 = ξ0 is the known initial value of the diffusion and the matrix a2(x0, θ)K̂ is the covariance
matrix of the conditionally Gaussian vector (Ũ θ

1 , . . . , Ũ θ
k−1):

K̂ =

⎡⎢⎢⎢⎣
v1 + v2 c 0 0

c
. . .

. . . 0

0
. . .

. . . c

0 0 c v1 + v2

⎤⎥⎥⎥⎦ .

Clearly, ξobs
l,n (θ) only depends on the observation On since we have suppressed all occurrences of the variables

U0,l and Uk,l and replaced Xkl/n by Xkl−1 in the expression of ξl,n(θ) (compare with (29)). Then we let Nobs
n =

un

∑Ln

l=0 ξobs
l,n (θ0) and I obs

n = −u2
n

∑Ln

l=0
∂ξobs

l,n

∂θ
(θ0).

• Study of N
aug
n −Nobs

n . The first step is to consider the conditionally recentered chi-square approximation of ξobs
l,n (θ)

that we define as:

ξ̃obs
l,n (θ) = ȧ

a
(Xkl/n, θ0)

{
a−2(Xkl/n, θ)

∑
1�j,j ′�k−1

Ũl,j K̂
−1
j,j ′Ũl,j ′ − (k − 1)

}
. (37)

The first step is to prove the validity of the approximation:

un

Ln∑
l=0

{
ξobs
l,n (θ0) − ξ̃obs

l,n (θ0)
} P

θ0−→ 0. (38)

This is done similarly to the proof of N
aug
n − un

∑Ln

l=0 ξ̃l,n(θ0) → 0 in Proposition 2, by considering the first two
conditional moments, but here the first moment is more delicate to handle: the conditional moment Eθ0[ξobs

l,n (θ0) −
ξ̃obs
l,n (θ0)|F n

l ] is of the form (k − 1){g(Xkl/n) − g(Xkl−1)}h(Xkl−1) + O(c(kn)/n) for g and h two C 2 functions.

If we abruptly use the relation ‖Xkl/n − Xkl−1‖Lp � c(p)n−1/2 then we only deduce that un

∑Ln

l=0 Eθ0[ξobs
l,n (θ0) −

ξ̃obs
l,n (θ0)|F n

l ] remains bounded in probability. To show that it actually converges to zero, we have to apply again

Lemma 2 to the new triangular array of variables, un

∑Ln

l=0(k − 1){g(Xkl/n) − g(Xkl−1)}h(Xkl−1). Then by rather
long computations, using that ‖Xkl−1 − Xkl−2‖Lp � c(p)(k/n)1/2 and |Eθ0[Xkl/n −Xkl−1|F n

l−1]| � cn−1, we can
prove,

un

Ln∑
l=0

(k − 1)
∣∣Eθ0

[{
g(Xkl/n) − g(Xkl−1)

}
h(Xkl−1)

∣∣F n
l−1

]∣∣ � c(k)n−1/2 P
θ0−→ 0,

u2
n

Ln∑
l=0

(k − 1)2Eθ0

[{
g(Xkl/n) − g(Xkl−1)

}2
h(Xkl−1)

2
∣∣F n

l−1

]
� c(k)n−1 P

θ0−→ 0.

Thus, we deduce un

∑Ln

l=0 Eθ0[ξobs
l,n (θ0) − ξ̃obs

l,n (θ0)|F n
l ] → 0. The second condition u2

n

∑Ln

l=0 Eθ0[(ξobs
l,n (θ0) −

ξ̃obs
l,n (θ0))

2|F n
l ] � c(k)n−1 → 0 is easily obtained and we deduce (38).

Thus, in view of Eq. (35), it remains to prove that un

∑Ln

l=0{̃ξobs
l,n (θ0) − ξ̃l,n(θ0)} is negligible. But by Lemma 10

in the Appendix, comparing expressions (33) and (37), it appears that conditionally to F n
l the random variable

ξ̃obs
l,n (θ0) − ξ̃l,n(θ0) is a recentered χ2(2) variable, and hence the following properties hold:

un

Ln∑
l=0

Eθ0

(̃
ξobs
l,n (θ0) − ξ̃l,n(θ0)

∣∣F n
l

) = 0,
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u2
n

Ln∑
l=0

Eθ0

({̃
ξobs
l,n (θ0) − ξ̃l,n(θ0)

}2∣∣F n
l

) =
Ln∑
l=0

u2
n4

ȧ2

a2
(Xkl/n, θ0) � c

kn

→ 0.

These two properties imply by Lemma 2 the convergence to 0 under P
θ0 of un

∑Ln

l=0{̃ξobs
l,n (θ0) − ξ̃l,n(θ0)}, and thus

N
aug
n − Nobs

n

P
θ0−→ 0.

• Study of I
aug
n − I obs

n . Exactly as we proved that I
aug
n tends to Iθ0 we can show that I obs

n → Iθ0 . Thus the difference
is negligible.

Finally the proposition is obtained by setting Γn = hNobs
n − h2/2I obs

n . �

Then Theorem 1 is a consequence of the following proposition combined with Proposition 3 and Theorem 2.

Proposition 4. We have the convergence,

Zn
θ0,θ0+unh − eΓn

n→∞−→
P

θ0
0.

Proof. The starting point is the relation between the likelihood of the initial and of the augmented model: Zn
θ0,θ0+unh =

Eθ0[Zn,aug
θ0,θ0+unh|On]. By Proposition 3 we can write Z

n,aug
θ0,θ0+unh = eΓneεn where εn tends to zero in Pθ0 probability.

Using that Γn is On measurable we deduce,

Zn
θ0,θ0+unh − eΓn = Eθ0

[
eΓn

(
eεn − 1

)∣∣On
]
.

We now use the inequality |eu − 1| � (|u| ∧ 1)(eu + 1) to obtain that |Zn
θ0,θ0+unh − eΓn | � αn + βn with:

αn = Eθ0

[(|εn| ∧ 1
)
eΓn

∣∣On
] = Eθ0

[|εn| ∧ 1|On
]
eΓn,

βn = Eθ0

[(|εn| ∧ 1
)
eΓneεn

∣∣On
] = Eθ0

[(|εn| ∧ 1
)
Z

n,aug
θ0,θ0+unh

∣∣On
]
.

It now remains to show the convergence to zero of αn and βn.
For αn, let us notice that (eΓn)n is a tight sequence and that Eθ0[|εn| ∧ 1|On] converges in L1(Pθ0) norm to zero

since,

Eθ0

[
Eθ0

[|εn| ∧ 1|On
]] = Eθ0

[|εn| ∧ 1
] n→∞−→ 0.

For βn, we have Eθ0[βn] = Eθ0+unh[|εn| ∧ 1]. But the sequence of probabilities P
θ0 and P

θ0+unh restricted to the
sigma fields On,aug are contiguous (this is a consequence of the LAMN property for the augmented model, see e.g.
Proposition 1 in [16]); hence the sequence (εn)n which is measurable with respect to On,aug and converges to zero in
P

θ0 -probability converges also in P
θ0+unh-probability. This implies Eθ0[βn] = Eθ0+unh[|εn| ∧ 1] → 0. �

Appendix

A.1. Proof of results of Section 2.1

Since the results of Section 2.1 concern only the study of a density for fixed values of θ , we omit the dependence
upon θ in our notations. We will prove the results in the following order. First in Appendix A.1.1, we show that the
law of the Wiener functional (Un,V n) = (

∫ 1
0 X n

s dμ(s), X n
1 ) admits a density. Then we prove the lower and upper

bounds given in Theorem 4 (Appendix A.1.2) and eventually we deduce the Proposition 1 (Appendix A.1.3).
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A.1.1. Existence of the density pn
x0

We know [22] that under (R) the random variable X n
t is an element of D

3,∞ and its first derivative is equal to

Dt X n
s = 1{t�s}Y n

s

(
Y n

t

)−1
an

(
X n

t

)
, (39)

where Y n is the solution of

dY n
t = a′

n

(
X n

t

)
Y n

t dWt + b′
n

(
X n

t

)
Y n

t dt, Y n
0 = 1. (40)

In the sequel, we will repeatedly use the positivity of Y n and the control

E
(

sup
t∈[0,1]

(
Y n

t

)p) + E
(

sup
t∈[0,1]

(
Y n

t

)−p
)

� c(p). (41)

From this we can see that the random variables Un and V n are elements of D
3,∞ and using (39) with the linearity of

the operator D, we have

DtU
n =

∫ 1

0
1{t�s}Y n

s

(
Y n

t

)−1
an

(
X n

t

)
dμ(s) = an

(
X n

t

)(
Y n

t

)−11{t�1}
∫

[t,1]
Y n

s dμ(s),

DtV
n = an

(
X n

t

)
Y n

1

(
Y n

t

)−11{t�1}.

Using Theorem 2.1.2, p. 86 in [22], a sufficient condition for the existence of a density for (Un,V n) is that its
Malliavin covariance matrix γUn,V n satisfies a nondegeneracy condition given, for instance, by the following lemma.

Lemma 3. γUn,V n is an a.s. invertible matrix and for all p � 1, we have

E
(∣∣det(γUn,V n)

∣∣−p) � c(p).

Proof. To have shorter notations, during the proof we will denote by c∗ any generic positive random variable which
satisfies E(c

−p∗ ) � c(p). By direct computations we have,

〈
Un,Un

〉
H

=
∫ 1

0
a2
n

(
X n

t

)(
Y n

t

)−2
(∫

[t,1]
Y n

s dμ(s)

)2

dt, (42)

〈
Un,V n

〉
H

=
∫ 1

0
a2
n

(
X n

t

)(
Y n

t

)−2
(∫

[t,1]
Y n

s dμ(s)

)
dt Y n

1 , (43)

〈
V n,V n

〉
H

=
∫ 1

0
a2
n

(
X n

t

)(
Y n

t

)−2
dt

(
Y n

1

)2
. (44)

Now, define the probability density on [0,1]

mn
t = a2

n

(
X n

t

)(
Y n

t

)−2
(∫ 1

0
a2
n

(
X n

s

)(
Y n

s

)−2 ds

)−1

, (45)

and set f n(t) := ∫
[t,1] Y n

s dμ(s). Thus we can write:

det(γUn,V n) = 〈
V n,V n

〉2
H

(
Y n

1

)−2
[∫ 1

0
mn

t f
n(t)2 dt −

(∫ 1

0
mn

s f
n(s)ds

)2]
.

Hence, the above bracket can be interpreted as the variance of the function f n(t) under the probability measure mn
t dt

and hence:

det(γUn,V n) = 〈
V n,V n

〉2
H

(
Y n

1

)−2
∫ 1

0
mn

t

[
f n(t) −

(∫ 1

0
mn

r f
n(r)dr

)]2

dt.
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But clearly under Assumption (R), 〈V n,V n〉2
H � a2 inft∈[0,1](Y n

t )−2 inft∈[0,1](Y n
t )2 and hence by (41) this yields,

〈V n,V n〉2
H � c∗, using our convention about generic positive random variables c∗. Similarly, by (45), we have

mn
t � c∗ and thus,

det(γUn,V n) � c∗
∫ 1

0

[
f n(t) −

(∫ 1

0
mn

r f
n(r)dr

)]2

dt.

Then, writing the integral above as∫ 1/2

0

[
f n(t) −

(∫ 1

0
mn

r f
n(r)dr

)]2

+
[
f n

(
t + 1

2

)
−

(∫ 1

0
mn

r f
n(r)dr

)]2

dt,

and using the simple inequality x2 + y2 � (x − y)2/2, we get: det(γUn,V n) � c∗
∫ 1/2

0 (
∫
[t,t+1/2)

Y n
s dμ(s))2 dt . Using

again infs∈[0,1] Y n
s � c∗, we obtain: det(γUn,V n) � c∗

∫ 1/2
0 μ([t, t + 1/2))2 dt . But this integral is positive as soon as

μ((0,1)) > 0 which is the case by assumption (3). Thus the lemma is proved. �

A.1.2. Bounds for the density
For the proof of (9), we make a crucial use of the fact that the diffusion process X n is one-dimensional by introducing
the classical transformation:

sn(x) :=
∫ x

0
a−1
n (y)dy, W n

t := sn
(

X n
t

)
.

By the assumptions on a, the function sn is one to one on R and the derivatives of sn and s−1
n are bounded indepen-

dently of n. By Itô’s formula, W n solves the equation dW n
t = dWt + b̃n(W n

t )dt where b̃n(w) := bn

an
◦ s−1

n (w)− 1
2a′

n ◦
s−1
n (w) and the initial value is W n

0 = sn(X n
0 ) = 0. We let P̃ be the probability defined on (Ω, A) by

dP̃

dP
= exp

(
−

∫ 1

0
b̃n

(
W n

u

)
dWu − 1

2

∫ 1

0
b̃2
n

(
W n

u

)
du

)
.

The Girsanov theorem implies that the process W n is under P̃ a standard Brownian motion. Note that the random
variables (Un,V n) have the following expressions with respect to this P̃ -Brownian motion:

Un =
∫ 1

0
s−1
n

(
W n

r

)
dμ(r), (46)

V n = s−1
n

(
W n

1

)
. (47)

Now let h0 and h1 be nonnegative real functions, then:

EP

[
h0

(
Un

)
h1

(
V n

)] = E
P̃

[
h0

(
Un

)
h1

(
V n

)
Ln

]
, (48)

where Ln = exp(
∫ 1

0 b̃n(W n
r )dW n

r − 1
2

∫ 1
0 b̃2

n(W n
r )dr). But using Itô’s formula, Ln = exp(B̃n(W n

1 ) − 1
2

∫ 1
0 (b̃2

n +
b̃′
n)(W n

r )dr) where B̃n is the primitive function of b̃n vanishing at zero. Since b̃n and b̃′
n are clearly bounded by cn−1/2

for some constant c only depending on a and b and |B̃n(x)| � cn−1/2|x| we have: c−1 exp(−cn−1/2|W n
1 |) � Ln �

c exp(cn−1/2|W n
1 |). By (47) and the boundedness of s′

n we deduce c−1 exp(−cn−1/2|V n|) � Ln � c exp(cn−1/2|V n|).
From this and (48), we obtain:

c−1E
P̃

[
h0

(
Un

)
h1

(
V n

)
e−cn−1/2|V n|] � EP

[
h0

(
Un

)
h1

(
V n

)]
� cE

P̃

[
h0

(
Un

)
h1

(
V n

)
ecn−1/2|V n|].

Hence, we have transformed the problem of finding bounds for the density of the law of (Un,V n) under P into an
analogous problem under P̃ . Consequently, the bounds for pn

x0
stated in (9) will follow from the next lemma.
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Lemma 4. Let h0, h1 be two nonnegative functions. There exist some constants c1 > c2 > 0, depending only on the
coefficients a and b such that:

c−1
1

∫ ∫
h0(u)h1(v)e−c1(u

2+v2) dudv � E
P̃

[
h0

(
Un

)
h1

(
V n

)]
� c−1

2

∫ ∫
h0(u)h1(v)e−c2(u

2+v2) dudv.

Proof. We first show the lower bound. Using that the random variable V n is measurable with respect to W n
1 (by (47)),

we can write:

E
P̃

[
h0

(
Un

)
h1

(
V n

)] = E
P̃

[
h1

(
V n

)
E

P̃

[
h0

(
Un

)∣∣W n
1

]]
=

∫
g(w)h1

(
s−1
n (w)

)
E

P̃

[
h0

(
Un

)∣∣W n
1 = w

]
dw, (49)

where g is the density of the standard Gaussian law. Now let us admit temporarily the following relation on the
conditional law of Un:

E
P̃

[
h0

(
Un

)∣∣W n
1

]
� c−1e−c(W n

1 )2
∫

h0(u)e−cu2
du. (50)

Then E
P̃
[h0(U

n)h1(V
n)] is greater than:

c−1
∫

h0(u)e−cu2
du ×

∫
g(w)h1

(
s−1
n (w)

)
e−cw2

dw.

The change of variable v = s−1
n (w) in the second integral above, the inequalities |w| � c|v| and s′

n(v) � c give the
new lower bound

c−1
∫

h0(u)e−cu2
du ×

∫
g
(
sn(v)

)
h1(v)e−cv2

dv,

with a new constant c. Since g is the Gaussian kernel and thanks to the inequality |sn(v)| � c|v|, we deduce the
required lower bound for E

P̃
[h0(U

n)h1(V
n)].

We obtain the upper bound quite similarly. Let us temporarily admit that for all ε small enough there exists c(ε)

such that:

E
P̃

[
h0

(
Un

)∣∣W n
1

]
� c(ε)−1eε(W n

1 )2
∫

h0(u)e−c(ε)u2
du. (51)

Plugging this in Eq. (49), we deduce that E
P̃
[h0(U

n)|W n
1 ] is smaller than

c(ε)−1
∫

h0(u)e−c(ε)u2
du ×

∫
g(w)eεw2

h1
(
s−1
n (w)

)
dw.

Since g(w) = exp(−w2/2)/
√

2π, any choice of ε smaller than 1/4 implies that the second integral in the equation
above is bounded by c

∫
e−(1/4)w2

h1(s
−1
n (w))dw. As for the lower bound, we conclude by the change of variable

v = s−1
n (w). �

It remains to show (50) and (51). This is done in the following lemma.

Lemma 5. For some constant c > 0 and ε > 0, we have

E
P̃

[
h0

(
Un

)∣∣W n
1

]
� c−1e−c(W n

1 )2
∫

h0(u)e−cu2
du. (52)

For all ε ∈ )0, ε(, there exists c(ε) > 0 such that,

E
P̃

[
h0

(
Un

)∣∣W n
1

]
� c(ε)−1eε(W n

1 )2
∫

h0(u)e−c(ε)u2
du. (53)
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Proof. Let us recall that the process W ∗
t := W n

t − t W n
1 is a Brownian bridge on [0,1], independent of the variable

W n
1 . Thus, we can evaluate the conditional expectation E

P̃
[h0(U

n)|W n
1 = w] as the expectation (recall (46)),

E

[
h0

(∫ 1

0
s−1
n (W ∗

t + tw)dμ(t)

)]
, (54)

for W ∗ some Brownian bridge. This Brownian bridge itself admits a decomposition

W ∗
t = ξηt + W ∗∗

t , (55)

where ξ is a N (0,1) variable, η is the deterministic triangle shaped function:

ηt =
{

t if t ∈ [0,1/2],
(1 − t) if t ∈ [1/2,1],

and W ∗∗ is the process on [0,1] constructed as the concatenation of two independent Brownian bridges, one on
[0,1/2] and another on [1/2,1]. Furthermore in this decomposition the r.v. η and the process W ∗∗ are independent.

For any realization of W ∗∗ we can introduce the real function,

x �→ gW ∗∗(x) =
∫ 1

0

{
s−1
n

(
xηt + W ∗∗

t + tw
)}

dμ(t).

Using (55) and the independence of ξ and W ∗∗, the quantity (54) now writes,

E(W ∗∗)E(ξ)

[
h0

(
gW ∗∗(ξ)

)]
, (56)

where the inner expectation denotes the expectation with respect to the random variable ξ and the outer one with
respect to the process W ∗∗.

First we evaluate the inner expectation. Using that ξ is a standard Gaussian variable we have

E(ξ)

[
h0

(
gW ∗∗(ξ)

)] = (2π)−1/2
∫

h0
(
gW ∗∗(x)

)
e−x2/2 dx. (57)

Note now that for any realization of W ∗∗, the function x �→ gW ∗∗(x) is differentiable and using that 1
c

� (s−1
n )′ � c

we get

1

c

∫ 1

0
ηt dμ(t) � g′

W ∗∗(x) � c

∫ 1

0
ηt dμ(t).

By assumption (3) on the measure μ the integral
∫ 1

0 ηt dμ(t) is positive. Thus, the function x �→ gW ∗∗(x) is invertible
on R, with a derivative bounded from above and from below by some constant independent of W ∗∗ and n. This allows
us to make a change of variable in (57) to obtain the bounds

c−1
∫

h0(u)e−(g−1
W ∗∗ (u))2/2 du � E(ξ)

[
h0

(
gW ∗∗(ξ)

)]
� c

∫
h0(u)e−(g−1

W ∗∗ (u))2/2 du. (58)

Now the proofs of (52) and (53) are treated separately.

• For the lower bound, we have seen that g−1
W ∗∗ is globally Lipschitz with a constant independent of W ∗∗ and thus

|g−1
W ∗∗(u)| � c|u| + |g−1

W ∗∗(0)| � c|u| + c|gW ∗∗(0)|. In addition, a simple computation from the definition of gW ∗∗
and then boundedness of (s−1

n )′ show that∣∣gW ∗∗(0)
∣∣ � c

[
|w| + sup

t∈[0,1]
∣∣W ∗∗

t

∣∣]. (59)
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Using this in (58) we find a new lower bound for the inner expectation:

E(ξ)

[
h0

(
gW ∗∗(ξ)

)]
� c−1e−cw2

e−c supt∈[0,1](W ∗∗
t )2

∫
h0(u)e−cu2

du.

Taking the expectation with respect to W ∗∗ proves that (56) is larger than c−1E(W ∗∗)(e
−c supt∈[0,1](W ∗∗

t )2
) ×

e−cw2 ∫
h0(u)e−cu2

du. This gives (52).
• For the upper bound, we write using that gW ∗∗ is Lipschitz ||u| − |gW ∗∗(0)|| � |gW ∗∗(g−1

W ∗∗(u)) − gW ∗∗(0)| �
c|g−1

W ∗∗(u)|. Together with the relation (x − y)2 � x2 ε
1+ε

− εy2 (for x, y ∈ R, ε ∈ (0,1)), we deduce that

exp(− 1
2 (g−1

W ∗∗(u))2) is upper bounded by

exp

(
− εu2

2c2(1 + ε)
+ ε(gW ∗∗(0))2

2c2

)
� exp

(
− εu2

2c2(1 + ε)
+ εw2 + ε sup

t∈[0,1]
(

W ∗∗
t

)2
)

,

where we have used (59). Combining this with (58) and taking the expectation with respect to W ∗∗, we get that the

quantity (56) is smaller than: c
∫

h0(u)e−εu2/(2c(1+ε))eεw2
EW ∗∗(eε supt∈[0,1](W ∗∗

t )2
). The last expectation is finite as

soon as ε is small enough, and thus (53) holds. �

A.1.3. Proof of Proposition 1
To have shorter notations we set X n

j = ∫ 1
0 X n

j+t dμ(t), for j � 0. First we prove the following lemma.

Lemma 6. Let us define Γ k the Malliavin covariance matrix of the vector ((X n

j , X n
j+1))j=0,...,k−1 of size 2k. Then

this matrix is a.s invertible and E(det(Γ k)−p) � c(p, k).

Proof. In the case k = 1, the lemma reduces to Lemma 3. For k � 2, we proceed by induction by establishing simple
relations between the columns of Γ k (this simplification follows from the flow property of the process X n).

To see this, notice that firstly by (39) if t < k − 1 and s > k − 1, we have Dt X n
s = Dt X n

k−1 Y n
s (Y n

k−1)
−1; and

secondly if t > k − 1 and s < k − 1, Dt X n
s = 0. Using these two properties, a calculation shows that if (Cj )j=1,...,2k

denote the columns of Γ k , we have the relation,

[C2k−1;C2k] =
[(∫ 1

0
Y n

k−1+s

(
Y n

k−1

)−1 dμ(s)

)
C2k−2; Y n

k

(
Y n

k−1

)−1
C2k−2

]
+

⎛⎜⎜⎝
0 0
...

...

0 0
[γk]

⎞⎟⎟⎠ ,

where γk is the matrix of size 2 × 2 given by( ∫ k

k−1(Dt X n

k−1)
2 dt

∫ k

k−1(Dt X n
k )(Dt X n

k−1)dt∫ k

k−1(Dt X n
k )(Dt X n

k−1)dt
∫ k

k−1(Dt X n
k )2 dt

)
.

This proves that detΓ k = detΓ k−1 detγk . But it can be seen that the matrix γk has an expression similar to γUn,V n

(but with integration interval shifted from [0,1] to [k − 1, k]) from which we can prove E((detγk)
−p) � c(p).

The lemma then follows from induction on k. �

Now we can deduce the Proposition 1. Recalling (11)–(13) we can find an invertible matrix M of size 2k × 2k that
maps ((X n

j , X n
j+1))j=0,...,k−1 into a vector whose k + 1 first components are exactly (Un

0 , . . . ,Un
k ). Denoting Γ̂ k the

Malliavin covariance matrix of the image by M of ((X n

j , X n
j+1))j=0,...,k−1, we have Γ̂ k = MΓ kM�. Thus, Lemma 6

yields E((det(Γ̂ k))−p) � c(p, k) since M is invertible. Observing that the Malliavin covariance matrix K(θ) is the
matrix extracted from the k + 1 first rows and columns of Γ̂ k we deduce Proposition 1.
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A.2. Some estimates on the change of measures

For this section we denote by X the canonical process on C([0,∞)) and we consider the random variable on this space
defined by H = f (U0, . . . ,Uk), where (U0, . . . ,Uk) is given by (10)–(13) with the canonical process X in place of
X θ,n; we denote by En

θ,x0
the expectation with respect to the measure induced on the canonical space by the law of

X θ,n solution of (6).

Lemma 7. There exist r � 1 and a constant c(k) � 0, such that ∀H = f (U0, . . . ,Uk) � 0, ∀θ, θ ′ ∈ Θ , ∀x0 ∈ R, we
have

En
θ ′,x0

[H ] � c(k)En
θ,x0

[
Hr

]1/r
.

Proof. Recalling the notation of Section 2.1.1 we denote pn
x0

(u, v, θ) the density of the vector (8) and for j =
0, . . . , k − 1 we let

Zj,θ,θ ′ =
pn

Xj
(
∫ 1

0 (Xj+s − Xj )dμ(s), (Xj+1 − Xj ), θ
′)

pn
Xj

(
∫ 1

0 (Xj+s − Xj )dμ(s), (Xj+1 − Xj ), θ)
. (60)

Then using the Markov property of the process X under the laws P n
θ and P n

θ ′ , we have

En
θ ′,x0

[H ] = En
θ,x0

[
H

k−1∏
j=0

Zj,θ,θ ′

]
� En

θ,x0

[
Hr

]1/r
En

θ,x0

[
k−1∏
j=0

(Zj,θ,θ ′)r
′
]1/r ′

,

where r and r ′ are conjugate exponents. But we know by Theorem 4 that there exist two constants 0 < c2 � c1
(uniform w.r.t. θ, x0, n) such that

c−1
1 e−c1(u

2+v2) � p
n
x0

(u, v, θ) � c−1
2 e−c2(u

2+v2).

Then one can bound the conditional expectation En
θ,x0

[(Zk−1,θ,θ ′)r
′ |Xs , s � (k − 1)] by

c
(r ′−1)
1

cr ′
2

∫
R2

e(u2+v2)(−r ′c2+(r ′−1)c1) dudv.

But if r is chosen large enough such that r ′ is sufficiently close to 1 the latter integral converges and is equal to some
constant κ . Proceeding by induction we get:

En
θ,x0

[
k−1∏
j=0

(Zj,θ,θ ′)r
′
]1/r ′

� En
θ,x0

[
k−2∏
j=0

(Zj,θ,θ ′)r
′
]1/r ′

κ1/r ′ � · · · � κk/r ′

which gives the result. �

Lemma 8. There exist c(k) � 0 and α � 1 such that ∀H = f (U0, . . . ,Uk) (with En
θ,x0

|H |α < +∞), ∀θ, θ ′ ∈ Θ ,
∀x0 ∈ R, we have∣∣En

θ ′,x0
[H ] − En

θ,x0
[H ]∣∣ � c(k)

∣∣θ − θ ′∣∣[En
θ,x0

|H |α]1/α
. (61)

Proof. Using the notations of Lemma 7, we write

En
θ ′,x0

[H ] − En
θ,x0

[H ] = En
θ,x0

[(
k−1∏
j=0

Zj,θ,θ ′ − 1

)
H

]
=

k−1∑
i=0

En
θ,x0

[
(Zi,θ,θ ′ − 1)

k−1∏
j=i+1

Zj,θ,θ ′H

]
.
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Thus for conjugate exponents α and β , the left-hand side of (61) is bounded by

k−1∑
i=0

[
En

θ,x0
|H |α]1/α

En
θ,x0

[
|Zi,θ,θ ′ − 1|β

k−1∏
j=i+1

(Zj,θ,θ ′)β
]1/β

=
k−1∑
i=0

[
En

θ,x0
|H |α]1/α

En
θ,x0

[
|Zi,θ,θ ′ − 1|βEn

θ,x0

[
k−1∏

j=i+1

(Zj,θ,θ ′)β
∣∣∣Xs , s � i + 1

]]1/β

.

Using the Markov property of X it can be shown exactly as in Lemma 7 that the conditional expectation in the
equation above is finite, as soon as β is small enough and bounded by κk−i−1. Thus by Lemma 9 below, we deduce
|Eθ ′,x0[H ] − Eθ,x0[H ]| � c(β)|θ − θ ′|[En

θ,x0
|H |α]1/α

∑k−1
i=0 κ(k−i−1)/β . �

Lemma 9. There exists β > 1 such that for all 1 < β � β we have:

En
θ,x0

[|Zi,θ,θ ′ − 1|β]1/β � c(β)
∣∣θ − θ ′∣∣.

Proof. Using the expression of Zi,θ,θ ′ , and Eq. (8) with the Markov property, it suffices to bound the quantity

En
x0,θ

[∣∣∣∣pn
x0

(Un,V n, θ ′) − pn
x0

(Un,V n, θ)

pn
x0

(Un,V n, θ)

∣∣∣∣β]1/β

. (62)

By Theorem 5 with k = 1 the function θ → px0(U
n,V n, θ) is absolutely continuous and we can write the quantity

above as: En
x0,θ

[|(∫ θ ′
θ

ṗn
x0

(Un,V n, s)ds)/(pn
x0

(Un,V n, θ))|β ]1/β . Using first the Minkowski inequality, a change of
measure and then the Hölder inequality one finds the following bounds for this quantity:∫ θ ′

θ

En
x0,s

[∣∣∣∣ ṗn
x0

(Un,V n, s)

pn
x0

(Un,V n, θ)

∣∣∣∣β pn
x0

(Un,V n, θ)

pn
x0

(Un,V n, s)

]1/β

ds

�
∫ θ ′

θ

Ex0,s

[∣∣∣∣ ṗn
x0

(Un,V n, s)

pn
x0

(Un,V n, s)

∣∣∣∣βα′]1/(βα′)
Ex0,s

[∣∣∣∣ pn
x0

(Un,V n, s)

pn
x0

(Un,V n, θ)

∣∣∣∣(β−1)β ′]1/(ββ ′)
ds

for two conjugate exponents α′ and β ′. But the first expectation in the right-hand side above is bounded by Corollary 2
(with k = 1) for all choices of α′, β . The second expectation can be bounded if (β − 1)β ′ is close enough to zero by
using (9) as in the proof of Lemma 7. This gives that (62) is smaller than c|θ − θ ′|. �

A.3. A technical lemma

Lemma 10. Let (G0, . . . ,Gk) be a centered Gaussian vector with invertible covariance matrix Ck+1 and let us denote
by Ck−1 the covariance matrix of (G1, . . . ,Gk−1). Then,∑

0�j,j ′�k

Gj [Ck+1]−1
j,j ′Gj ′ −

∑
1�j,j ′�k−1

Gj [Ck−1]−1
j,j ′Gj ′ , (63)

is a χ2(2) random variable.

Proof. Write the Gram–Schmidt orthonormalization procedure for the L2 vectors G1, . . . ,Gk,G0 as:⎡⎣ H0
...

Hk

⎤⎦ = Pk

⎡⎣G0
...

Gk

⎤⎦ ,

where the variables H0, . . . , Hk are i.i.d. with standard Gaussian law and Pk is some triangular matrix. Then a few
linear algebra shows that (63) is equal to

∑k
j=0 H2

j − ∑k−1
j=1 H2

j = H2
0 + H2

k and thus is chi-square distributed. �
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