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This paper touches upon two big themes, equivariant cohomology and current algebras.
Our first main result is as follows: we define a pair of current algebra functor which
assigns Lie algebras (current algebras) CA(M,A) and SA(M,A) to a manifold M and a
differential graded Lie algebra (DGLA) A. The functors CA and SA are contravariant
with respect to M and covariant with respect to A. If A = Cg, the cone of a Lie alge-
bra g spanned by Lie derivatives L(x) and contractions I(x) (x ∈ g) and satisfying the
Cartan’s magic formula [d, I(x)] = L(x), the corresponding current algebras coincide,
and they are equal to CA(M,Cg) = SA(M,Cg) ∼= C∞(M, g), the space of smooth g-
valued functions on M with the pointwise Lie bracket. Other examples include affine Lie
algebras on the circle and Faddeev–Mickelsson–Shatashvili (FMS) extensions of higher-
dimensional current algebras. The second set of results is related to the construction of
a new DGLA Dg assigned to a Lie algebra g. It is generated by L(x) and I(x) (similar
to Cg) and by higher contractions I(x2), I(x3) etc. Similar to Cg, Dg can be used in
building differential models of equivariant cohomology. In particular, twisted equivari-
ant cohomology (including twists by 3-cocycles and higher odd cocycles) finds a natural
place in this new framework. The DGLA Dg admits a family of central extensions Dpg

parametrized by homogeneous invariant polynomials p ∈ (Sg∗)g . There is a Lie homo-
morphism from CA(M,Dpg) to the FMS current algebra defined by p. Let G be a Lie
group integrating the Lie algebra g. The current algebras SA(M,Dg) and SA(M,Dpg)

integrate to groups DG(M) and DpG(M). As a topological application, we consider
principal G-bundles, and for every homogeneous polynomial p ∈ (Sg∗)g we pose a lift-
ing problem (defined in terms of DG(M) and DpG(M)) with the only obstruction the
Chern–Weil class cw(p). When M is a sphere, we study integration of the current alge-
bra CA(M,Dpg). It turns out that the corresponding group is a central extension of
DG(M). Under certain conditions on the polynomial p, this is a central extension by a
circle.
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1. Introduction

This paper has two main themes: differential models of equivariant cohomology and

current algebras.

Our first main result is the construction of the current algebra functor CA which

associates a Lie algebra (a current algebra) CA(M,A) to a pair of a manifold M

and a differential graded Lie algebra (DGLA) A. The functor CA is contravariant

with respect to M and covariant with respect to A. As a vector space,

CA(M,A) = (Ω(M)⊗A)−1/(Ω(M)⊗A)−1
exact.

Here Ω(M) stands for differential forms on M . The Lie bracket of CA(M,A) is

defined by the derived bracket construction of [11].

Another natural current algebra functor is given by

SA(M,A) = (Ω(M)⊗A)0closed.

If A is acyclic as a complex, CA(M,A) and SA(M,A) are naturally isomorphic to

each other. In contrast to CA(M,A), the construction of SA(M,A) is local, hence

it defines a sheaf of Lie algebras on M .

Let g be a finite dimensional Lie algebra, and Cg be a DGLA spanned in degree

0 by Lie derivatives L(x) and in degree −1 be contractions I(x) for x ∈ g. The dif-

ferential on Cg is defined by the Cartan’s magic formula [d, I(x)] = L(x). The corre-

sponding current algebra CA(M,Cg) is isomorphic to the space of maps C∞(M, g)

with the pointwise Lie bracket. Other examples of current algebras include affine

Lie algebras over the circle and Faddeev–Mickelsson–Shatashvili (FMS) extensions

of C∞(M, g) for dim(M) ≥ 3 (for the definition of FMS current algebras, see

[6, 7, 13]).

The DGLA Cg is the basis of Cartan’s construction of differential models of

equivariant cohomology. In more detail, let G be a compact connected Lie group

with Lie algebra g and M be a manifold acted by G. Then, the cochain complex

Ω(M) carries a compatible Cg-action (defined by Lie derivatives and contractions).

By Cartan’s theorem, the equivariant cohomology HG(M,R) coincides with the

cohomology of (Wg ⊗ Ω(M))Cg, where Wg = Sg∗ ⊗ ∧g∗ is the Weil algebra. The

Cg-action and the differential on Wg⊗ Ω(M) can be chosen in two different ways

which are called Weil and Cartan differential models of equivariant cohomology

(see [2, 3], and [9] for a modern review). The equivalence between the two models is

established by the Kalkman map induced by a group-like element φ ∈ Wg⊗U(Cg).

Our second observation is that for Wg⊗Ω(M) to carry a differential and a com-

patible Cg-action it is not necessary for Ω(M) to be a Cg-module. Instead, it may

be a module under the action of a bigger DGLA Dg (see Theorem 2). The latter has

generators L(x) and I(x) (similar to Cg), and also contains “higher contractions”

I(x2), I(x3) etc. In general, for every Dg-module V we obtain a differential and

a compatible Cg-action on Wg ⊗ V . One can define the equivariant cohomology

of V as the cohomology of (Wg ⊗ V )Cg. Again, there are two different models of
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equivariant cohomology, and the equivalence is established by the Kalkman-type

twist induced by a group-like element Φ ∈ Wg ⊗ U(Dg) (see Theorem 3). Among

other things, the element Φ contains the information about chains of transgression

for all invariant polynomials p ∈ (Sg∗)g (a chain of transgression is an element

e ∈ Wg such that dW e = p⊗ 1, where dW is the Weil differential on Wg).

One set of examples is provided by the theory of twisted equivariant cohomol-

ogy. In more detail, in the Cartan model of equivariant cohomology an equivariant

cocycle on M is an element ω(t) ∈ (Sg∗⊗Ω(M))g which is closed under the Cartan

differential dg = d− I(t). Generators of Sg∗ have degree 2, and we view equivariant

differential forms as polynomial functions on g and put t ∈ g. If ω(t) is an equivari-

ant 3-cocycle, it can be written in the form ω(t) = ω3 + ω1(t), where ω3 ∈ Ω3(M)g

and ω1 ∈ (g∗ ⊗Ω1(M))g. This allows to twist the differential and the Cg action on

Ω(M) in the following way:

d̃ = d+ ω3, Ĩ(x) = I(x) + ω1(x), L̃(x) = L(x).

This twisted action finds its use in the theory of group-valued moment maps (see,

e.g. [1]). It is intimately related to twisting of the Cartan’s differential

d̃g = dg + ω(t), (1)

and to the theory of twisted equivariant cohomology [10]. The Cartan differential

can be twisted by odd equivariant cocycles of higher degree. But the twist of the

Cg action on Ω(M) does not generalize to this case. Instead, one should consider a

twist of a certain Dg-action on Ω(M).

In contrast to Cg, Dg admits many central extensions. Under certain assump-

tions, these central extensions are classified by homogeneous invariant polynomials

p ∈ (Sg∗)g (see Theorem 4), and we use notation Dpg for the central extension

defined by the polynomial p. If p is of degree 2, the extension descends to Cg, and

the new Lie bracket of contractions is given by [I(x), I(y)] = p(x, y)c (here c is the

central generator). For p of degree 3 and higher, one has to use Dg to describe the

corresponding central extension. One result relating the 2 parts of the paper is as

follows: there is a Lie homomorphism from the current algebra CA(M,Dpg) to the

FMS current algebra on M defined by the invariant polynomial p. For p of degree

2 and M = S1, CA(S1, Dpg) coincides with the standard central extension of the

loop algebra Lg = C∞(S1, g).

The DGLA Dg is acyclic (see Theorem 1). Hence, the current algebra functors

CA and SA coincide, and they define a sheaf of Lie algebras SA(M,Dg). If G is a

connected Lie group with Lie algebras g, one can integrate SA(M,Dg) to a sheaf

of groups DG(M). We define the gauge groupoid Ĝ(M) as the set of g-connections

A ∈ G(M) = Ω1(M)⊗g together with gauge transformations A �→ Adg−1A+g−1dg.

It turns out that the generalized Kalkman element Φ defines a morphism of

groupoids µ : Ĝ(M) → DG(M) (see Theorem 6). Both Ĝ(M) and DG(M) admit

a family of central extensions by Ω(M)2n−2
closed defined by an invariant homogeneous

polynomial p ∈ (Sng∗)g. The morphism µ admits lifts to µp : Ĝp(M) → DpG(M).
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As a topological application, we consider the theory of DG(M)-torsors. Their iso-

morphism classes are classified by the isomorphism classes of underlying principal

G-bundles. It turns out that a DG(M)-torsor lifts to a DpG(M)-torsor if and only

if the Chern–Weil class cw(p) vanishes (see Theorem 8).

The DGLA Dpg is not acyclic. Let p be an invariant polynomial of degree n

and ηp ∈ H2n−1(G,R) be its image under the transgression map. We integrate

the current algebra CA(M,Dpg) in the case of M = S2n−3 a sphere of dimension

2n− 3. The resulting group is a central extension of DG(S2n−3) by R/im(Π) (see

Theorem 9), where Π :π2n−1(G,Z) → R is the map defined by integration of the

class ηp. If G is a compact connected and simply connected simple Lie group and

p is a homogeneous generator of (S+g)g (with the exception of some special cases

for G = SO(2k)), then im(Π) ∼= S1 and one obtains a central extension by a circle.

The structure of the paper is as follows. In Sec. 2, we recall Cartan and Weil

differential models of equivariant cohomology. In Sec. 3, we define the DGLA Dg,

establish the fact that it is acyclic, and show that a structure of a Dg-module on

V gives rise to a structure of a Cg-module on Wg⊗V . In Sec. 4, we discuss central

extensions of Dg and construct homomorphisms from Dg to other DGLAs. In

Sec. 5, we define and discuss properties of the current algebra functors CA and SA.

In Sec. 6, we discuss sheaves of groups DG(M) and DpG(M) and study torsors

over these sheaves of groups. In Sec. 7, we integrate to a group the Lie algebra

CA(M,Dpg) in the case of M being a sphere.

2. Differential Models of Equivariant Cohomology

In this section, we recall Cartan andWeil differential models of equivariant cohomol-

ogy (for details, see [9]). For completeness, we include some proofs which resemble

more difficult proofs in other sections.

Let g be a Lie algebra. The cone of g is the differential graded Lie algebra

(DGLA) Cg = g[ε] = g ⊕ gε, where ε is an auxiliary variable of degree −1. The

Lie bracket of Cg is induced by the Lie bracket of g, and the differential given by

d/dε. For x ∈ g, we denote by L(x) the element x ∈ Cg and by I(x) the element

xε ∈ Cg. They satisfy the standard relations dI(x) = L(x), [L(x), I(y)] = I([x, y]),

[I(x), I(y)] = 0, [L(x), L(y)] = L([x, y]).

In general, a module over a DGLA A is a cochain complex V equipped with a

DGLA homomorphism A → End(V ). To define a Cg-module, one needs LV (x) ∈
End(V )0 and IV (x) ∈ End(V )−1 verifying the defining relations of Cg. A Cg-

module is also called a g-differential space. If V is a graded commutative differential

algebra, and the action of Cg is by derivations, one says that V is a g-differential

algebra.

Let G be a connected Lie group with Lie algebra g and M be a manifold acted

by G. Then, Cg acts by derivations on differential forms Ω(M), L(x) acting by

Lie derivatives and I(x) acting by contractions. This action turns Ω(M) into a

g-differential algebra. Another basic example of a g-differential algebra is the Weil
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algebra Wg = Sg∗ ⊗ ∧g∗ which serves as a model for differential forms on the

total space of the classifying G-bundle EG. The action of L(x) is by the diagonal

coadjoint action (extended to Sg∗ and ∧g∗), and the action of I(x) is by contractions

on ∧g∗. Let us choose a basis ea of g with structure constants [ea, eb] = f c
abec. We

shall denote the generators of ∧g∗ by θa (this is a dual basis in g∗) and the generators

of Sg∗ by ta. The Weil differential is the unique degree 1 derivation of Wg such

that

dθa = ta − 1

2
fa
bcθ

bθc.

One can also choose θa and dθa as generators of Wg. Then, it is identified with

the Koszul algebra of the graded vector space g∗[−1]. Thus, H0(Wg) = R and

Hi(Wg) = 0 for i ≥ 1.

Sometimes it is convenient to consider a bigger DGLAWg⊗Cg with Lie bracket

induced by the one of Cg and the differential d = dWg + dCg. Consider elements

L(θ) = θaL(ea), I(t) = taI(ea) ∈ Wg⊗ Cg.

Proposition 1. I(t)− L(θ) ∈ Wg⊗ Cg is a Maurer–Cartan element.

Proof. On the one hand,

dCg(I(t) − L(θ)) = dCg(t
aI(ea)− θaL(ea))

= taL(ea),

dWg(I(t) − L(θ)) = dWg(t
aI(ea)− θaL(ea))

= −fa
bcθ

btcI(ea)− taL(ea) +
1

2
fa
bcθ

bθcL(ea).

Hence,

d(I(t) − L(θ)) = −fa
bcθ

btcI(ea) +
1

2
fa
bcθ

bθcL(ea).

On the other hand,

[I(t)− L(θ), I(t)− L(θ)] = [tbI(eb)− θbL(eb), t
cI(ec)− θcL(ec)]

= fa
bcθ

bθcL(ea)− 2fa
bcθ

btcI(ea).

In conclusion, we obtain

d(I(t) − L(θ)) =
1

2
[I(t)− L(θ), I(t)− L(θ)],

as required.

Let U(Cg) be the degree completed universal enveloping algebra of Cg equipped

with the standard coproduct. Then, Wg⊗U(Cg) is a Hopf algebra over Wg. Con-

sider a degree 0 group-like element φ = exp(−I(θ)) ∈ (Wg⊗ U(Cg))g.
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Proposition 2. φ−1dφ = −I(t) + L(θ).

Proof. We denote φ = exp(a), where a = −I(θ) = −θaI(ea). We have

φ−1dφ =
1− exp(−ada)

ada
da = da− 1

2
[a, da],

where we have used the standard formula for the derivative of the exponential map

and have taken into account that [a, [a, da]] = 0. We compute

da = −d(θaI(ea))

= −dWg(θ
aI(ea))− dCg(θ

aI(ea))

= −taI(ea) +
1

2
fa
bcθ

bθcI(ea) + θaL(ea),

−1

2
[a, da] =

1

2
[θbI(eb), θ

cL(ec)]

= −1

2
fa
bcθ

bθcI(ea).

Hence,

φ−1dφ = −taI(ea) + θaL(ea) = −I(t) + L(θ).

For a Cg-module V , the basic subcomplex is defined as V Cg. If M → B is

a principal G-bundle, the basic subcomplex is isomorphic to Ω(B). For the Weil

algebra Wg, the basic subcomplex is equal to (Sg∗)g with vanishing differential.

By definition, the equivariant cohomology of a Cg-module V is

Hg(V ) := H((Wg⊗ V )Cg, dWg + dV ).

This construction is usually referred to as the Weil model of equivariant coho-

mology. If V admits the structure of a Wg-module compatible with the Cg-action

then Hg(V ) ∼= H(V Cg, dV ). In particular,Hg(Wg) ∼= (Sg∗)g. If G is a compact con-

nected Lie group and M is a G-manifold, Cartan’s theorem states thatHg(Ω(M)) is

isomorphic to the equivariant cohomologyHG(M,R) = H((EG×M)/G,R) defined
by the Borel construction (here EG is the total space of the classifying G-bundle).

If M → B is a principal G-bundle, then every principal connection gives rise to

a homomorphism of g-differential algebras j :Wg → Ω(M). The image of θaea ∈
Wg⊗g is the connection 1-form and the image of taea is the corresponding curvature

2-form. Since j makes Ω(M) to a Wg-module, we have an isomorphism

Hg(Ω(M)) ∼= H(Ω(M)Cg) ∼= H(B,R).

This is in accordance with Cartan’s theorem, as (EG×M)/G ∼= EG×B is homotopy

equivalent to B.
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The Kalkman map φV = exp(−θaIV (ea)) is a natural automorphism ofWg⊗V .

It transforms the differential and the action of I’s in the following way:

Inew(x) = φ−1
V (IWg(x) + IV (x))φV = IV (x),

dnew = φ−1
V (dWg + dV )φV = dWg + dV − IV (t) + LV (θ).

Here in computing dnew we have used Proposition 2. In this way, one obtains the

Cartan model of equivariant cohomology. In this model, (Wg⊗V )Cg ∼= (Sg∗⊗V )g

and the differential takes the form

dg = dV − IV (t).

Remark. Since the Cg-action on the Weil algebra Wg is free, we have Hg(Wg) ∼=
H((Wg)Cg) = (Sg∗)g. In the Cartan model, we obtainHg(Wg) = H(Sg∗⊗Wg, dg).

Let p ∈ (Sng∗)g. Then, the cocycle p⊗1−1⊗p ∈ (Sg∗⊗Wg)g belongs to the trivial

cohomology class (since p ⊗ 1 − 1 ⊗ p �→ 1 · p− p · 1 = 0 under the product map).

One can therefore find an element e ∈ (Sg∗ ⊗Wg)g such that dge = p⊗ 1− 1⊗ p.

In this example, we denote the generators of Sg∗ by ta, and the generators of

Wg by θa and fa. For n = 2, one can choose an element e in the form

e = −
(
p(t+ f, θ)− 1

6
p(θ, [θ, θ])

)
,

where t = taea, f = faea and θ = θaea. Putting t = 0 yields et=0 = −p(f, θ) +
1
6p(θ, [θ, θ]) which is a primitive of −p(f, f) ∈ Wg.

3. The DGLA Dg

Let g be a Lie algebra. In this section, we define a new DGLA Dg which can be

used instead of the Cg in differential models of equivariant cohomology. Roughly

speaking, we are replacing gε = (Cg)−1 by its canonical free resolution.

3.1. Definition and basic properties of Dg

Let V be a negatively graded vector space V =
⊕

n<0 V
n with finite dimensional

graded components V n. We denote by L(V ) the graded free Lie algebra generated

by V . The graded components of L(V ) are also finite dimensional.

Let g be a finite dimensional Lie algebra and S+g be the graded vector space⊕
n≥1 S

ng with the degree defined by formula deg Sng = 1 − 2n. We define the

graded Lie algebra Dg as a semi-direct sum g� L(S+g), where elements of g have

degree 0, and the action of g on L(S+g) is induced by the adjoint action.

One can also view Dg as a graded Lie algebra defined by generators l(x) for

x ∈ g and I(u) for u ∈ S+g, and relations [l(x), l(y)] = l([x, y]) and [l(x), I(u)] =
I(adx(u)). For x ∈ g, it is convenient to introduce the generating function

i(x) =

∞∑

k=1

I(xk).
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Remark. Low degree graded components of Dg are as follows: Dg0 ∼= g with gen-

erators l(x), Dg−1 ∼= g with generators I(x), Dg−2 ∼= S2g spanned by [I(x), I(y)],
Dg−3 ∼= S2g ⊕ ker(g ⊗ S2g → S3g), where S2g is spanned by I(xy), the map

g ⊗ S2g → S3g is the symmetrization, and ker(g ⊗ S2g → S3g) is spanned by

[I(x), [I(y), I(z)]] (subject to the Jacobi identity).

Proposition 3. The operator d ∈ End1(Dg) defined by equations dl(x) = 0 and

di(x) = [i(x), i(x)]/2 + l(x) (2)

makes Dg into a differential graded Lie algebra.

Proof. The defining relations of Dg express the invariance of the definition under

the adjoint g-action. Since Eq. (2) is invariant under this action, it defines a deriva-

tion of Dg

Next, we need to verify that d2 = 0. Indeed,

d2i(x) = d([i(x), i(x)]/2 + l(x)) = [di(x), i(x)]

= [[i(x), i(x)]/2 + l(x), i(x)] = [[i(x), i(x)], i(x)]/2 = 0,

where the last equality follows from the Jacobi identity.

Remark. In low degrees, the differential is defined by the Cartan’s magic formula

dI(x) = l(x) for x ∈ g, and by its higher analogues such as

dI(xy) = 1

2
[I(x), I(y)], dI(x3) = [I(x), I(x2)].

More generally, for k ≥ 2 we have

dI(xk) =
1

2

k−1∑

s=1

[I(xs), I(xk−s)].

Proposition 4. There is a canonical projection of DGLAs π :Dg → Cg defined

on generators by l(x) �→ L(x), I(x) �→ I(x) and I(xk) �→ 0 for k ≥ 2.

Proof. The defining relations of Dg is a subset of the defining relations of Cg.

Hence, π is a homomorphism of graded Lie algebras. Then, we have π(i(x)) = I(x),

and

π(di(x)) = π

(
1

2
[i(x), i(x)] + l(x)

)
=

1

2
[I(x), I(x)] + L(x) = L(x) = dπ(i(x)),

as required.

Note that i can be also viewed as a formal map g[2] → Dg of degree 1. For

a DGLA A, defining a DGLA homomorphism Dg → A is equivalent to giving a

Lie homomorphism l̃ : g → A and a formal map ĩ : g[2] → A of degree 1 such that
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ĩ(0) = 0 and such that the identity (2) is satisfied. The maps l and i define the

tautological isomorphism Dg → Dg. Another example is given by the canonical

projection π :Dg → Cg with ĩ(x) = I(x) and l̃(x) = L(x).

Theorem 1. As a complex, Dg is acyclic.

We need the following auxiliary statement.

Proposition 5. The cohomology of the DGLA L(S+g) with differential defined by

formula di(x) = [i(x), i(x)]/2 is equal to g = S1g ⊂ S+g.

Indeed, L(S+g) is the canonical free resolution of g[1] (for the standard reference,

see [8]). For convenience of the reader, we include the proof due to Drinfeld [5]. We

assume that g is a finite-dimensional Lie algebra.

Proof of Proposition 5. Let us consider the differential graded associative alge-

bra U(L(S+g)) = T (S+g). We will be using the natural grading on S+g defined by

formula degSlg = l. With respect to this grading, the differential is of degree 0,

and we thus have T (S+g) =
⊕∞

n=0 Tn as a direct sum of complexes.

Let In be the standard n-dimensional cube, and consider the following simplicial

complex representing In modulo the boundary. Degree k simplices are labeled by

surjective maps

σ : {1, . . . , n} → {1, . . . , k}.

The geometric simplex labeled by σ is singled out by conditions (x1, . . . , xn) ∈ In,

xi = xj if σ(i) = σ(j), and xi ≤ xj if σ(i) < σ(j). Informally, one can represent it

by inequalities

0 ≤ xσ−1(1) ≤ xσ−1(2) ≤ · · · ≤ xσ−1(k) ≤ 1,

where xσ−1(i) stands for all xj with σ(j) = i (they are all equal to each other).

We denote by [σ] the simplex associated to σ. The standard boundary operator

(modulo ∂In) has the form ∂[σ] =
∑k−1

i=1 (−1)i−1[σi], where σi(l) = σ(l) if σ(l) ≤ i

and σi(l) = σ(l)− 1 if σ(l) > i (that is, σi is gluing together the preimages of i and

i+ 1).

Denote by Cn the corresponding simplicial cochain complex. We consider the

basis of simplicial cochains dual to the basis of chains formed by [σ], and denote the

basis element dual to [σ] by [σ̂]. The differential of a degree k cochain has the form

d[σ̂] =
∑k

i=1(−1)i−1[σ̂i], where σi stands for the sum of all maps obtained from σ

by splitting the preimage of i into two non-empty subsets (the new preimages of

i and i + 1). The cohomology of Cn is one-dimensional, and it is concentrated in

degree n, H(Cn) ∼= H(In, ∂In) ∼= R[−n]. The permutation group Sn acts on In

preserving its boundary and the simplicial decomposition. The induced action on

the cohomology H(Cn) is given by the signature representation.
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Define a map ζ : (Cn ⊗ g⊗n)[2n] → Tn by formula

ζ([σ̂]⊗ (a1 ⊗ · · · ⊗ an)) =
n1! · · ·nk!

n!

∏

i1∈σ−1(1)

ai1 ⊗ · · · ⊗
∏

ik∈σ−1(k)

aik ,

where ni = |σ−1(i)|. Under the grading where deg Slg = 1− 2l, this map is degree

preserving (both sides have degree k − 2n). Furthermore, it is invariant under the

diagonal action of Sn on Cn and on g⊗n. It is easy to see that on the Sn-invariant

subspace it restricts to an isomorphism (Cn⊗g⊗n)Sn [2n] ∼= Tn. Moreover, this is an

isomorphism of complexes. We illustrate this statement by the following example:

let n = 2, and let σ : {1, 2} → {1} be the map gluing 1 and 2. Then, d[σ̂] = [e]+ [s],

where e is the neutral element of S2 and s is the transposition of 1 and 2. Choosing

a1 = a2 = x, we compute

ζ(d[σ̂]⊗ (x ⊗ x)) = ζ(([e] + [s])⊗ (x ⊗ x)) =
1

2
(x⊗ x+ x⊗ x) = x⊗ x,

and

dζ([σ̂]⊗ (x⊗ x)) = dx2 = x⊗ x.

Thus, for the cohomology of Tn we obtain

H(Tn) ∼= H((Cn ⊗ g⊗n)Sn [2n]) ∼= (H(Cn)⊗ g⊗n)Sn [2n] ∼= ∧ng[n].

Here we used the fact that H(Cn) carries the signature representation in degree n.

Note that the cohomology of T (S+g) is isomorphic to
⊕∞

n=0 ∧ng[n] = S(g[1]). Since

the symmetrization map Sym :S(L(S+g)) → T (S+g) is an isomorphism of com-

plexes, we have S(H(L(S+g))) ∼= H(T (S+g)). By comparing with H(T (S+g)) ∼=
S(g[1]), we infer that H−1(L(S+g)) ∼= g. For dimensional reasons, H−k(L(S+g))

vanishes for k ≥ 2 (here we are using the fact that the dimension of g is

finite).

Proof of Theorem 1. Let us consider the DGLADgs (s ∈ R), which is isomorphic

to Dg as a graded Lie algebra, and the differential is modified as follows:

di(x) = [i(x), i(x)]/2 + sl(x), dl(x) = 0.

By Proposition 5, we have H0(Dg0) � H−1(Dg0) � g, Hi(Dg0) = 0 otherwise.

Notice now that Dg � Dgs whenever s �= 0 (the isomorphism is given by

redefining i(t) to be i(st), i.e. by multiplying each Sng by sn). Since the cohomology

cannot increase under a small deformation, we only need to check what happens

in degrees −1 and 0. The differential g = (Dgs)
−1 → g = (Dgs)

0 is given by

multiplication by s, hence the cohomology vanishes for s �= 0.

Remark. Since Dg is acyclic, it can be represented (as a complex) as a cone of

some graded vector space, Dg ∼= CV , where the low degree graded components of

V are of the form V 0 ∼= g, V 1 = 0, V 2 ∼= S2g, V 3 ∼= ker(g⊗ S2g → S3g) etc.
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For the future use, we shall consider a bigger DGLA, Wg⊗Dg with differential

dWg+dDg and the Lie bracket induced by the Lie bracket ofDg. Let i(t) ∈ Wg⊗Dg

denote the element

i(t) = ta ⊗ I(ea) + tatb ⊗ I(eaeb) + tatbtc ⊗ I(eaebec) + · · · .

Proposition 6. i(t)− l(θ) ∈ Wg⊗Dg is a Maurer–Cartan element.

Proof. The proof is similar to the one of Proposition 1. We compute directly in

shorthand notation,

dDg(i(t)− l(θ)) =
1

2
[i(t), i(t)] + l(t),

dWg(i(t)− l(θ)) = −[l(θ), i(t)]− l(t) +
1

2
l([θ, θ]),

where l([θ, θ]) = f c
abθ

aθbl(ec). Adding up these two expressions we obtain:

d(i(t)− l(θ)) =
1

2
[i(t), i(t)]− [l(θ), i(t)] +

1

2
l([θ, θ]) =

1

2
[i(t)− l(θ), i(t)− l(θ)],

as required.

3.2. Modules over the Weil algebra and Dg-modules

A module over the DGLA Dg is a cochain complex V and a DGLA homomorphism

Dg → End(V ). We shall denote the corresponding generating functions by iV (t)

and lV (t) (they stand for ĩ and l̃ of the previous section). The following proposition

is our motivation for introducing Dg.

Theorem 2. (1) Let V be a Dg-module. Then, the free Wg-module U = Wg⊗ V

endowed with the differential

dU = dWg + dV − iV (t) + lV (θ) (3)

carries a compatible Cg-action given by formulas

IU (x) = IWg(x), (4a)

LU (x) = LWg(x) + lV (x) (4b)

for x ∈ g.

(2) Let U be a free (that is, isomorphic to Wg ⊗ V for some graded vector space

V ) Wg-module with a compatible Cg-action. Suppose that one can choose an iso-

morphism Sg∗ ⊗Wg U ∼= Sg∗ ⊗ V in such a way that the action of g splits into the

standard action on Sg∗ and an action lV on V . Then, V is naturally a Dg-module

and U is naturally isomorphic to the Wg-module described in part 1.
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Proof. For the first statement, note that by Proposition 6 the combination iV (t)−
lV (θ) is a Maurer–Cartan element in Wg⊗ End(V ). Hence, dU defined by Eq. (3)

squares to zero, d2U = 0. We shall also check Cartan’s formula:

[dU , IU (x)] = [dWg + dV − iV (t) + lV (θ), IWg(x)]

= [dWg, IWg(x)] + [lV (θ), IWg(x)]

= LWg(x) + lV (x),

as required. It is easy to see that other relation of Cg are also verified.

For the second statement, let us start with the isomorphism Sg∗ ⊗Wg U ∼=
Sg∗ ⊗V for which the g-action splits, and denote the action of g on V by lV . Since

IWg(ea) = ∂θa (ea is a basis of g), there is a unique extension of this isomorphism

to U ∼= Wg⊗ V so that IU (x) = IWg(x) (this is the so-called Kalkman trick). We

thus have

dU = dWg + δ(θ, t), (5a)

IU (x) = IWg(x) = xa ∂

∂θa
, (5b)

LU (x) = [dU , IU (x)] = LWg(x) + xa ∂δ

∂θa
(5c)

for some δ ∈ (Wg⊗ End(V ))1. This implies

[LU (x), IU (y)] = IU ([x, y]) + xayb
∂2δ

∂θa∂θb
.

Hence, δ is at most linear in θ’s. Moreover, from (5c) we see that the θ-linear part

of δ is in fact equal to lV (θ).

Let us now write δ as δ(θ, t) = dV − i(t) + l(θ), where dV = δ(0, 0) and i(t) =

δ(0, 0) − δ(0, t). Then, the condition d2U = 0 reads (using the action of dWg on t

and θ)

0 = d2U = d2V − [dV , iV (t)] +
1

2
[iV (t), iV (t)] + lV (t).

Putting t = 0 yields d2V = 0, and the remaining part of the equation gives [dV , i(t)] =

[iV (t), i(t)]/2 + lV (t). Hence, iV and lV define a DGLA homomorphism Dg →
End(V ), as required.

Remark. Notice that the differential (3) and the action (4) of Cg resemble the

differential and the Cg-action in the Cartan model of equivariant cohomology. Later

in this section, we shall find a natural endomorphism of U which transforms dU
into dWg + dV and thus gives an analogue of the Weil model.

Since U is a Wg-module, we have Hg(U) ∼= H(UCg). Here UCg ∼= (Sg∗ ⊗ V )g

with differential dg = dV − iV (t). Assume that the Dg-action on V is induced by
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a Cg-action via the canonical projection π :Dg → Cg. Then, iV (t) = IV (t) and

(Sg∗ ⊗ V )g with differential dg = dV − IV (t) is the Cartan model of Hg(V ).

We shall now transform the differential (3) on U = Wg⊗V into dWg+dV . Such

a construction follows easily from the fact that Wg is g-equivariantly contractible.

Note that Wg⊗ U(L(S+g)) is a graded Hopf algebra over Wg with the coproduct

induced by the canonical coproduct of the enveloping algebra U(L(S+g)).

Theorem 3. There exists a g-invariant group-like element of degree 0

Φ ∈ Wg⊗ U(L(S+g)) ⊂ Wg⊗ U(Dg)

such that

Φ−1dΦ = −i(t) + l(θ). (6)

Proof. Recall the following fact: let A be a DGLA and α be a Maurer–Cartan

element in A⊗Ω(I), where I = [0, 1] is the unit interval. We have α = a(s)+b(s) ds,

where a(s) is a family of Maurer–Cartan elements in A (parametrized by s) and

b(s) ∈ A0. Let Φ be the holonomy from 0 to 1 of the A0-connection b(s) ds on I.

Then, Φ transforms a(0) to a(1), i.e. a(1) = Φ−1a(0)Φ− Φ−1dΦ.

By Proposition 6, i(t)− l(θ) ∈ Wg⊗Dg is a Maurer–Cartan element. Consider

the morphism of dg algebras Wg → Wg ⊗ Ω(I) given by θa �→ θa ⊗ s, where s is

the coordinate on I. It gives rise to a morphism of DGLAs

Wg⊗Dg → Wg⊗Dg⊗ Ω(I).

Let α = a(s) + b(s) ds be the image of i(t) − l(θ) under this morphism. Then,

we have a(0) = 0 and a(1) = i(t) − l(θ). The element b(s) takes values in the

pronilpotent subalgebra Wg ⊗ L(S+g), so the holonomy Φ is well defined. This

implies, i(t)− l(θ) = −Φ−1dΦ, as required.

Remark. Theorem 3 should be compared to Proposition 2. In contrast to equation

φ = exp(−I(θ)), the explicit formula for the element Φ is more involved. For x, y ∈ g

let 〈∂i(x), y〉 be defined by

〈∂i(x), y〉 = d

dr
i(x+ ry)

∣∣∣∣
r=0

.

Then, Φ is the parallel transport from s = 0 to s = 1 of the connection

−
〈
∂i

(
s t+

s2 − s

2
[θ, θ]

)
, θ

〉
ds.

Computing the contributions up to degree 3 yields

Φ = exp(−I(θ)) − I
(
tθ − 1

6
[θ, θ]θ

)
+ (terms of degree≥ 4).
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Let us define a g-equivariant linear map Y : g → (Wg⊗Dg)−1 by formula

Y (x) = −(IWg(x)Φ)Φ
−1.

For a Dg-module V , one can define ΦV ∈ (Wg ⊗ End(V ))0 and YV (x) ∈ (Wg ⊗
End(V ))−1 as images of Φ and Y (x) under the action map.

Proposition 7. Under the natural transformation defined by Φ−1
V , the Cg-module

U = Wg ⊗ V given by (3) and (4) is naturally isomorphic to U ′ = Wg ⊗ V with

differential and Cg-action given by

dU ′ = dWg + dV ,

IU ′ = IWg + YV ,

LU ′ = LWg + lV .

Proof. Since Φ is g-equivariant, we have

LU ′(x) = ΦV LU (x)Φ
−1
V = LU (x) = LWg(x) + lV (x).

For contractions, we obtain

IU ′ (x) = ΦV IU (x)Φ
−1
V = ΦV IWg(x)Φ

−1
V = IWg(x) + YV (x),

as required. Finally, note that

Φ−1
V (dWg + dV )ΦV = dWg + dV − iV (t) + lV (t) = dU .

Hence,

ΦV dUΦ
−1
V = dWg + dV = dU ′ .

Remark. Again, one can replace Dg by Cg in Proposition 7. Then, the map Y

takes the form Y (x) = −(IWg(x)φ)φ
−1 = I(x), and IU ′ (x) = IWg(x) + IV (x).

That is, we obtain the Weil model of equivariant cohomology of the g-differential

space V .

4. Central Extensions and DGLA Homomorphisms of Dg

In this section we study further properties of Dg including central extensions and

homomorphisms from Dg to other DGLAs.

4.1. Central extensions of Cg

We start with an easier problem of central extensions of Cg. Let C → A → Cg be

a central extension of Cg by a graded vector space C. Assume that the extension A

is split over g, and that there is a g-equivariant injective map Ĩ :Cg−1 = gε → A−1

such that the composition gε → A−1 → gε is the identity map. For instance, for g

reductive these assumptions are always satisfied.
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In general, central extensions are classified by the second cohomology group of

Cg with values in C. A 2-cocycle consists of a degree 0 map ω : ∧2 Cg → C and

a degree 1 map ∂ :Cg → C. For the map ω, note that [L(x), L(y)] = L([x, y]) (the

extension is split over g), and [L(x), Ĩ(y)] = Ĩ([x, y]) (the map Ĩ is g-equivariant).

Hence, the only non-trivial part of ω is the map ω : ∧2 gε → C−2. It is easy to

see that the only condition on ω is g-invariance. For instance, if C−2 = Rc, ω
is defined by a degree 2 invariant polynomial p ∈ (S2g∗)g. Then, [Ĩ(x), Ĩ(y)] =
−2p(x, y)c, where the normalization is chosen to match the natural normalization

of the next section. We shall denote this central extension by Cpg. For the map ∂,

it is completely defined by a character χ : g → C0. We have dĨ(x) = L(x) + χ(x)

and dL(x) = −dχ(x). This extension is trivial since Ĩ(x) and L̃(x) = L(x) + χ(x)

define a DGLA homomorphism Cg → A.

4.2. Central extensions of Dg

Again, let

C → A → Dg (7)

be a central extension of DGLAs split over g ⊂ Dg. Similar to the previous section,

we assume that the map i :S+g → Dg can be lifted to a g-equivariant (grading-

preserving) map ı̃ :S+g → A. For instance, this is always true if g is reductive.

Together with the splitting over g, the lift ı̃ defines a morphism of graded Lie

algebras s :Dg → A which is a splitting of the extension (7). Let J = [Dg, Dg]+g ⊂
Dg. Notice that s|J does not depend on the choice of ı̃ and is a morphism of

DGLAs (unlike s). Since Dg/J = (S+g)g with vanishing bracket and differential,

central extensions of Dg by C are in one-to-one correspondence with extensions of

complexes

C → A′ → (S+g)g.

We have thus proved.

Theorem 4. The category of central extensions of Dg which are split over g ⊂ Dg

and admit a g-equivariant lift of the map i is equivalent to the category of extensions

of the complex (S+g)g. In particular, extensions by a complex C are classified by

maps

(S+g)g → H(C)[1].

Let us also describe these extensions at the level of cochains. Since the lift ı̃

defines a splitting s of the extension (7), we have A ∼= Dg ⊕ C as a graded Lie

algebra. The differential on A satisfies

dı̃(t) = [̃ı(t), ı̃(t)]/2 + l(t) + q(t) (8)

for some g-invariant map q :S+g → C[1] (which can be seen as a power series

q : g[2] → C of total degree 2, such that q(0) = 0). The formula (8) makes Dg⊕ C
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to a DGLA if and only if

dq(t) = 0.

We shall denote this DGLA by Dg⊕q C. In particular, for C = R[2n− 2] and the

map q defined by an invariant degree n polynomial p ∈ (Sng∗)g we shall denote

Dg⊕q R[2n− 2] simply by Dpg.

Remark. For n = 2, p ∈ (S2g∗)g defines an invariant symmetric bilinear form on

g. At the level of generators, the differential of Ĩ(xy) is modified as follows:

dĨ(xy) = 1

2
[Ĩ(x), Ĩ(y)] + p(x, y)c.

Note that this central extension descends to Cg (by putting all higher genera-

tors including Ĩ(xy) equal zero). The corresponding equation reads [I(x), I(y)] =

−2p(x, y)c giving rise to the extension Cpg (see the previous section).

For n = 3, we choose p ∈ (S3g∗)g and modify the differential of Ĩ(x3),

dĨ(x3) = [Ĩ(x), Ĩ(x2)] + p(x3)c.

This (and higher) extensions do not descend to Cg.

One interesting property of Dpg is as follows. Denote by s the injection Dg →
Dpg = Dg⊕qR[2n−2]. Then, one can define a group-like element Φp = (id⊗s)Φ ∈
Wg⊗ U(Dpg) (here Φ ∈ Wg⊗ U(Dg) is defined in Theorem 3).

Proposition 8. Φ−1
p dΦp = ı̃(t) − l(θ) − e ⊗ c, where c ∈ Dpg is the generator of

the central line R[2n− 2], and e ∈ (Wg)g is such that de = p.

Proof. Since Φp is a group-like element, Φ−1
p dΦp is an element of Wg ⊗ Dpg,

and its projection to Wg ⊗ Dg is equal to ı̃(t) − l(θ) (see Theorem 3). Hence,

Φ−1
p dΦp = ı̃(t)− l(θ)− e⊗ c for some e ∈ Wg.

Note that the expression Φ−1
p dΦp is automatically a Maurer–Cartan element.

This implies,

0 = d(Φ−1
p dΦp)−

1

2
[Φ−1

p dΦp,Φ
−1
p dΦp]

= d(ι̃(t)− l(θ)− e⊗ c)− 1

2
[ι̃(t)− l(θ)− e⊗ c, ι̃(t)− l(θ)− e⊗ c]

= p⊗ c− (de)⊗ c.

We conclude that de = p, as required.

4.3. Deformations of a DGLA homomorphism

Let A be a DGLA and e ∈ A1 be an element of degree 1. Recall that the operator

d′ = d − [e, ·] defines a new differential on A (that is, d′ is a derivation of the Lie

1250001-16



September 21, 2012 16:10 WSPC/S1793-7442 251-CM 1250001 17–
40

Equivariant Cohomology and Current Algebras

bracket and d′2 = 0) if and only if the element z = de− [e, e]/2 lies in the center of

A. The Jacobi identity implies that z is closed, dz = 0. Indeed,

dz = d

(
de− 1

2
[e, e]

)
=

1

2
([e, de]− [de, e]) =

[
e, z +

1

2
[e, e]

]
=

1

2
[e, [e, e]] = 0.

We shall denote the graded Lie algebra A equipped with this new differential

by A(e).

A DGLA homomorphism Dg → A consists of a Lie algebra homomorphism

lA : g → A and a g-equivariant formal power series iA : g[2] → A of degree 1, satis-

fying iA(0) = 0 and Eq. (2). Consider simultaneous deformations of the differential

on A and of the map iA. Choose a g-equivariant power series of total degree 1,

e : g[2] → A, and set

d′ = d− [e(0), ·],

i′A(t) = iA(t) + e(t)− e(0).

These formulas define a DGLA homomorphism Dg → A(e(0)) if and only if

dge(t) := de(t)− [iA(t), e(t)] =
1

2
[e(t), e(t)] + z, (9)

where z ∈ A lies in the center of A. Note that z is invariant under the g-action

defined by the Lie homomorphism lA : g → A. Then, the Jacobi identity implies

that z is equivariantly closed, dgz = 0.

More generally, assume that

dge(t) = [e(t), e(t)]/2 + z(t), (10)

where z(t) takes values in the center of A, and q(t) = z(t)−z(0) takes values in the

subspace C ⊂ A. Then, we obtain a DGLA homomorphism Dg⊕q C → A(e(0)).

A natural framework for constructing examples is as follows: let B be a Cg-

module with a chosen Cg-invariant element 1B ∈ B0
closed. For example, B may be

a unital (graded) commutative g-differential algebra. Consider the semi-direct sum

A = Cg � B[n], where B[n] is viewed as an abelian DGLA. Solutions of equation

(10) are provided by the following construction:

Theorem 5. Let c ∈ B2k be a basic cocycle, and p ∈ (Skg∗)g be an invariant

polynomial of degree k. Assume that the cohomology class of the element p⊗ 1B +

1 ⊗ c ∈ (Sg∗ ⊗ B)g vanishes in Hg(B), and let e ∈ (Sg∗ ⊗ B)g be such that

dge = p⊗1B+1⊗ c. Consider A = Cg�B[2k−2]. Then e is a solution of Eq. (10)

with z(t) = p(t)1B + c, z(0) = c, q(t) = p(t)1B and C = R[2k − 2]1B.

Proof. Since B[2k − 2] ⊂ A is an abelian DGLA, equation dge = p ⊗ 1 + 1 ⊗ c

implies Eq. (10) with z(t) = p(t)1B + c. Putting t = 0 yields z(0) = c. This element

is central in A since c ∈ B2k is basic. Finally, q(t) = z(t)− z(0) = p(t)1B.
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Remark. There is a natural DGLA homomorphism Dg → A induced by the

canonical projection Dg → Cg. Elements e described in Theorem 5 define DGLA

homomorphisms Dpg → A, where the central line R[2k − 2] ⊂ Dpg maps to

R[2k − 2]1B ⊂ B[2k − 2] ⊂ A.

In the case of p = 0, we obtain a DGLA homomorphism Dg → A. Then, for

the construction to work one only needs a structure of a g-differential vector space

on B.

4.4. Examples

In this section, we consider two examples of the construction described above.

4.4.1. Extensions of Cg by differential forms

Let g act on a manifold M . We choose B = Ω(M) with the natural structure of a

g-differential algebra. Let A = Cg�Ω(M)[m]. If φ(t) ∈ (Sg∗ ⊗Ω(M))g is a degree

m + 1 equivariant cocycle, then the construction of the previous section defines

a DGLA homomorphism Dg → A(φ(0)). If m = 2n − 2 and φ verifies equation

dgφ = p⊗ 1 for p ∈ (Sng∗)g, we obtain a DGLA homomorphism Dpg → A(φ(0)).

In more detail, write φ(t) =
∑n−1

l=0 φl(t), where φl(t) is a homogeneous polyno-

mial of degree l with values in degree 2n − 2l − 1 forms on M . Then, I(t) maps

to IM (t) + φ1(t), I(tk) map to φk(t) for 2 ≤ k ≤ n− 1, and I(tk) map to zero for

k > n−1. For n = 2, the images of higher contractions (with k ≥ 2) vanish and the

DGLA homomorphismDpg → A(φ(0)) descends to a homomorphism Cpg → A(φ(0)).

If n > 2, higher contractions map to non-vanishing differential forms φk(t), and the

DGLA homomorphism does not descend to Cpg.

The DGLA A(φ(0)) acts on the differential graded algebra Ω(M)[[s]], where s

is a formal variable of degree 2n − 2 satisfying ds = −φ(0): the action of Cg is

the standard action on Ω(M) (that is, the action is trivial on s) and the action of

α ∈ Ω(M)[m] is via α∂s. A homomorphism Dg → A(φ(0)) therefore gives rise to an

action of Dg on Ω(M)[s]. This action can be seen as a twist by φ of the standard

action of Cg on Ω(M). One can get rid of the variable s using the embedding

Ω(M) to Ω(M)[[s]] by α �→ αes. The new differential on Ω(M) is then d − φ(0).

(Ω(M) is only mod-2 graded and the differential and the action of Dg are no longer

derivations).

4.4.2. Extensions of Cg by the Weil algebra

One can choose B equal to the Weil algebra Wg. Recall that for p ∈ (Sng∗)g one

can choose an element e ∈ (Sg∗ ⊗Wg)g such that dge = p⊗ 1− 1⊗ p. Denote the

generators of Sg∗ by ta and the generators of Wg by θa and fa. The element e(t)

(here t ∈ g refers to the first factor in (Sg∗⊗Wg)g) is a solution of (10) (notice that

[e(t), e(t)] = 0) for c = −p ∈ Wg and q(t) = p(t). We thus get a homomorphism

Dpg → A(e(0)). Notice that e(0) ∈ (Wg)g satisfies de(0) = −p.
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For n = 2, one can choose the element e in the form

e(t) = −(p(t+ f, θ)− 1

6
p(θ, [θ, θ])).

Since e(t)− e(0) = −p(t, θ), i(t) maps to I(t)− p(t, θ). Note that

[I(x) − p(x, θ), I(y)− p(y, θ)] = −2p(x, y),

as required by the relations of Dpg. In the case of n = 2, higher contractions vanish

and one actually obtains a DGLA homomorphism Cpg → A(e(0)).

For n ≥ 3, images of some higher contractions are necessarily non-vanishing. For

n = 3, we can work it out in more detail. Recall that (Dpg)
0 ∼= g with generators

l(x), (Dpg)
−1 ∼= g with generators I(x), (Dpg)

−2 ∼= S2g spanned by [I(x), I(y)],
(Dpg)

−3 ∼= S2g ⊕ ker(g ⊗ S2g → S3g) spanned by I(xy) and [I(x), [I(y), I(z)]],
and (Dpg)

−4 = (Dg)−4⊕R, where R is the central line. For the algebra A, we have

A−4 = R spanned by the unit of the Weil algebra, A−3 ∼= g∗ with generators θa,

A−2 ∼= g∗ ⊕ ∧2g∗ spanned by fa and θaθb, A−1 ∼= g ⊕ (Wg)3 with g spanned by

I(x), and A0 ∼= g⊕ (Wg)4, where g is spanned by L(x).

The image of the homomorphism ρ :Dpg → A is a DGLA B with non-trivial

graded components B0 ∼= g with generators L(x), B−1 ∼= g with generators Ĩ(x),

B−2 = g∗ with generators µ(ξ), B−3 = g∗ with generators θ(ξ) (here ξ ∈ g∗), and
B−4 = Rc. The differential acts as dĨ(x) = L(x), dθ(ξ) = µ(ξ). For the Lie bracket,

L(x) act on other components by the adjoint and coadjoint actions, B−2, B−3, B−4

form an abelian Lie subalgebra, [Ĩ(x), θ(ξ)] = θ(ad∗(x)ξ), [Ĩ(x), θ(ξ)] = ξ(x)c, and

[Ĩ(x), Ĩ(y)] = 2µ(p(x, y, ·)).

Here ρ(I(xy)) = θ(p(x, y, ·)), and the last relation follows from [I(x), I(y)] =

2dI(xy).

5. Current Algebras

In this section, we introduce a functor associating to a manifold M and to a DGLA

A a Lie algebra CA(M,A). As an application, we give a new interpretation of the

FMS cocycles of higher-dimensional current algebras.

5.1. Current algebra functor

Let A be a DGLA. Then, the subspace of closed elements of A of degree 0 A0
closed ⊂

A0, is a Lie subalgebra of A. Following [11], notice that A−1 equipped with the

bracket

{α, β} := [α, dβ] (11)

is a Leibniz algebra. That is, the bracket {, } satisfies the Jacobi identity

{α, {β, γ}} = {{α, β}, γ}+ {β, {α, γ}}.
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As the symmetric part of this bracket has exact values, the quotient space

A−1/A−1
exact is a Lie algebra.

Proposition 9. There is an exact sequence of Lie algebras,

0 → H−1(A) → A−1/A−1
exact → A0

closed → H0(A) → 0, (12)

where H−1(A) is abelian, the Lie bracket on H0(A) is induced by the Lie bracket

on A0, and the map A−1/A−1
exact → A0

closed is induced by the differential of A.

Proof. By definition of cohomology groups H−1(A) and H0(A), the sequence (12)

is exact. The map H−1(A) → A−1/A−1
exact is a Lie homomorphism since the derived

bracket (11) vanishes if α and β are closed. The map A−1/A−1
exact → A0

closed is a Lie

homomorphism because d{α, β} = d[α, dβ] = [dα, dβ]. Finally, the map A0
closed →

H0(A) is a Lie homomorphism by definition of the Lie bracket on H0(A).

Remark. The 2-step complex A−1/A−1
exact → A0

closed inherits a DGLA structure

from A. Equivalently, the pair of Lie algebras (A−1/A−1
exact, A

0
closed) is a crossed

module of Lie algebras.

Proposition 10. Let 0 → A → B → C → 0 be an exact sequence of DGLAs.

Then, there is an exact sequence of Lie algebras,

· · · → H−2(A) → H−2(B) → H−2(C)

→ A−1/A−1
exact → B−1/B−1

exact → C−1/C−1
exact → 0, (13)

where all cohomology groups are viewed as abelian Lie algebras, the map H−2(C) →
A−1/A−1

exact is the composition of the connecting homomorphism H−2(C) →
H−1(A) and the natural map H−1(A) → A−1/A−1

exact.

Proof. Replace complexes A,B and C by their truncations where all components

of non-negative degrees are replaced by zero. Then, (13) is the corresponding long

exact sequence. Maps between cohomology groups are Lie homomorphisms since

the corresponding Lie brackets vanish. Maps between Lie algebras equipped with

derived brackets are Lie homomorphisms since A → B → C are homomorphisms of

DGLAs. Finally, the map H−2(C) → A−1/A−1
exact is a Lie homomorphism because

it factors through the Lie homomorphism H−1(A) → A−1/A−1
exact.

Note that if C is acyclic, the long exact sequence (13) degenerates to a short

exact sequence,

0 → A−1/A−1
exact → B−1/B−1

exact → C−1/C−1
exact → 0.

Proposition 11. Let 0 → A → B → C → 0 be an exact sequence of DGLAs.

Then, there is an exact sequence of vector spaces,

0 → A0
closed → B0

closed → C0
closed → H1(A) → H1(B) → H1(C) → · · · .
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If H0(C) or H1(A) vanishes, it gives rise to a short exact sequence of Lie algebras,

0 → A0
closed → B0

closed → C0
closed → 0.

Proof. Replace the complexes A,B and C by their truncations where all compo-

nents with negative degrees are replaced by zero. The corresponding long exact

sequence is the one displayed in the proposition. The connecting homomorphism

C0
closed is a composition of the natural projection C0

closed → H0(A) and the standard

connecting homomorphism H0(A) → H1(C). If either H0(A) or H1(C) (or both)

vanishes, this map vanishes as well giving rise to a short exact sequence. This is

a short exact sequence of Lie algebras since 0 → A → B → C → 0 is an exact

sequence of DGLAs.

For a manifold M and a DGLA A, we consider the DGLA (Ω(M)⊗ A), where

the Lie bracket is induced by the Lie bracket of A, and the differential comes from

the differential of A and the de Rham differential on M . We define the current

algebra functor as

CA(M,A) = (Ω(M)⊗A)−1/(Ω(M)⊗A)−1
exact.

It associates a Lie algebra (a current algebra) to a pair of a manifold and a DGLA.

It is convenient to introduce a special notation

SA(M,A) = (Ω(M)⊗A)0closed.

As before, we have a natural exact sequence of Lie algebras

0 → H−1(Ω(M)⊗A) → CA(M,A) → SA(M,A) → H0(M,A) → 0

and CA(M,A) → SA(M,A) is a crossed module of Lie algebras. Note that if A is

acyclic, the exact sequence degenerates to an isomorphism CA(M,A) ∼= SA(M,A).

Remark. Notice that SA(M,A) = SA(M,Atrunc), where

Ai
trunc =





Ai i < 0,

A0
closed i = 0,

0 i > 0.

The functor SA(·, A) is well defined for supermanifolds. The DGLA Atrunc can be

restored from SA(·, A) as SA(R0|1, A); the grading comes via functoriality from

the vector field ε∂ε and the differential from ∂ε, where ε is the coordinate on R0|1.
In general, if F is a contravariant functor from the category of supermanifolds to

the category of Lie algebras (functorial with respect to internal Hom’s) then AF =

F (R0|1) is a DGLA. We get a natural transformation F → SA(·, AF ), and AF is

universal among DGLAs A equipped with a natural transformation F → SA(·, A).

Proposition 12. Let A be a DGLA, and suppose that, as a complex, it is isomor-

phic to a cone over a graded vector space V . That is, A ∼= CV = V [ε], where ε2 = 0,
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deg ε = −1 and d = d/dε. Then, the current algebra CA(M,A) is isomorphic to

(Ω(M)⊗ V )0 as a vector space.

Proof. Since CA(M,A) ∼= SA(M,A) = (Ω(M)⊗A)0closed, we consider an element

α⊗ x+ β ⊗ yε ∈ (Ω(M)⊗ A)0. The closedness condition reads

d(α ⊗ x+ β ⊗ yε) = dα⊗ x− β ⊗ y + dβ ⊗ yε = 0.

Hence, x = y and β = dα, and the projection (Ω(M) ⊗ A)0closed → (Ω(M) ⊗ V )0

mapping α⊗ x+ dα⊗ xε → α⊗ x is an isomorphism.

Remark. Note that α⊗ x+ dα⊗ xε = d(α⊗ xε), where α⊗ xε ∈ (Ω(M)⊗A)−1

defines an element of CA(M,A).

The current algebra functor is contravariant with respect to M and covariant

with respect to A. If 0 → A → B → C → 0 is a short exact sequence of DGLAs,

we obtain from Proposition 10 an exact sequence of Lie algebras,

0 → im(H−2(Ω(M)⊗ C) → H−1(Ω(M)⊗A))

→ CA(M,A) → CA(M,B) → CA(M,C) → 0. (14)

Again, if C is acyclic, it degenerates to a short exact sequence of current algebras,

0 → CA(M,A) → CA(M,B) → CA(M,C) → 0.

In many examples, C is equal to Cg or Dg. These DGLAs are acyclic, and we

obtain short exact sequences of current algebras.

If C is acyclic, we haveH0(Ω(M⊗C)) = 0, and we obtain a short exact sequence

of Lie algebras

0 → SA(M,A) → SA(M,B) → SA(M,C) → 0.

5.2. Examples

In this section, we apply the functor CA to obtain several examples of current

algebras on manifolds.

5.2.1. A = Cg

Let g be a Lie algebra. The cone Cg is an acyclic DGLA. Hence, CA(M,Cg) ∼=
Ω0(M)⊗g = C∞(M, g). It is easy to see that the Lie bracket of CA(M,Cg) coincides

with the pointwise Lie bracket on C∞(M, g). Indeed, the derived bracket of two

elements f ⊗ I(x), g ⊗ I(y) ∈ (Ω(M)⊗ Cg)−1 is given by

{f ⊗ I(x), g ⊗ I(y)} = [f ⊗ I(x), d(g ⊗ I(y))]

= [f ⊗ I(x), dg ⊗ I(y) + g ⊗ L(y)]

= fg ⊗ [I(x), L(y)] = fg ⊗ I([x, y]),

as required.
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5.2.2. A = Dg

In the case of A = Dg, it is difficult to give a compact description of CA(M,Dg).

By Proposition 1, Dg is acyclic. It is a cone CV over a graded vector space V

with V 0 = g, V −1 = 0, V −2 = S2g, V 3 = ker(s : g⊗ S2g → Sg3) etc. Here the map

s : g⊗S2g → Sg3 is the symmetrization. Let π :Dg → Cg be the natural projection.

Then, the short exact sequence 0 → ker(π) → Dg → Cg → 0 gives rise to a short

exact sequence of current algebras

0 → CA(M, ker(π)) → CA(M,Dg) → C∞(M, g) → 0.

In particular, CA(M, ker(π)) contains a subspace isomorphic to Ω2(M) ⊗ S2g.

Repeating the computation of Sec. 5.2.1, we obtain

{f ⊗ I(x), g ⊗ I(y)} = [f ⊗ I(x), d(g ⊗ I(y))]
= [f ⊗ I(x), dg ⊗ I(y) + g ⊗ l(y)]

= fdg ⊗ [I(x), I(y)] + fg ⊗ [I(x), l(y)]
= fdg ⊗ 2dI(xy) + fg ⊗ I([x, y])
= −2df ∧ dg ⊗ I(xy) + fg ⊗ I([x, y]).

Here the element df∧dg⊗I(xy) ∈ (Ω(M)⊗Dg)−1/exact is the image of df∧dg⊗xy ∈
Ω2(M)⊗ S2g.

5.2.3. A = Dpg

Recall that for p ∈ (Sng∗)g we have a short exact sequence of DGLAs 0 → R[2n−
2] → Dpg → Dg → 0 which induces a short exact sequence of current algebras

0 → CA(M,R[2n− 2]) → CA(M,Dpg) → CA(M,Dg) → 0,

where CA(M,R[2n − 2]) = Ω2n−3(M)/Ω2n−3
exact(M). If M is a compact connected

orientable manifold of dimension 2n − 3, CA(M,R[2n − 2]) ∼= R and we obtain a

central extension of CA(M,Dg) by a line.

For n = 2, one can choose M = S1. In this case, CA(M,Dg) = CA(M,Cg) for

dimensional reasons. Redoing again the calculation of the previous two sections, we

obtain

{f ⊗ I(x), g ⊗ I(y)} = [f ⊗ I(x), d(g ⊗ I(y))]

= [f ⊗ I(x), dg ⊗ I(y) + g ⊗ L(y)]

= −2fdg ⊗ p(x, y)c+ fg ⊗ I([x, y]).

The isomorphism Ω1(S1)/Ω1
exact(S

1) ∼= R is given by the integral of a 1-form over

the circle. Hence, the cocycle term in the Lie bracket reads −2p(x, y)
∫
fdg which

coincides (up to normalization) with the standard Kac–Moody central extension of

the loop algebra.
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For n = 3, we choose M to be a compact orientable 3-manifold. In this case,

CA(M,Dg) = C∞(M, g)⊕ (Ω2(M)⊗ S2g)⊕ (Ω3(M)⊗ ker(g⊗ S2g → S3g)).

Here the map g ⊗ S2g → S3g is the symmetrization. The computation of the Lie

bracket elements of C∞(M, g) is exactly the same as in Sec. 5.2.2. However, there

is a new feature in the following Lie bracket:

{α⊗ Ĩ(xy), f ⊗ Ĩ(z)} = [α⊗ Ĩ(xy), d(f ⊗ Ĩ(z))]

= [α⊗ Ĩ(xy), df ⊗ Ĩ(z) + f ⊗ l(z)]

= −fα⊗ Ĩ(adz(xy)) + α ∧ df ⊗ [Ĩ(xy), Ĩ(z)].

The last Lie bracket is of the form

[Ĩ(xy), Ĩ(z)] = 1

3
(2[I(xy), Ĩ(z)]− [Ĩ(xz), Ĩ(y)]− [Ĩ(yz), Ĩ(x)])

+
1

3
([Ĩ(xy), Ĩ(z)] + [Ĩ(xz), Ĩ(y)] + [Ĩ(yz), Ĩ(x)]),

where the first term is an element of ker(g⊗ S2g → S3g), and the second term can

be represented as

1

3
([Ĩ(xy), Ĩ(z)] + [Ĩ(xz), Ĩ(y)] + [Ĩ(yz), Ĩ(x)]) = Ĩ(xyz)− p(xyz)c.

Again, the isomorphism Ω3(M)/Ω3,exact(M) ∼= R is given by the integral over M ,

and the new cocycle term reads −p(xyz)
∫
M α ∧ df .

5.2.4. FMS current algebra

Recall Sec. 4.4.2: let p ∈ (Sng∗)g, e ∈ (Sg∗⊗Wg)g such that dge = p⊗1−1⊗p, and

let AFMS = (Cg�Wg[2n−2])(e(0)) be the semi-direct product of Cg and Wg[2n−2]

with differential d′ = d− [e(0), ·]. In fact, the only part of the differential which is

changed is d′I(x) = L(x)− IWg(x)e(0).

The differential on Wg[2n − 2] is induced by the Weil differential. Hence, the

embedding R[2n − 2] → Wg[2n − 2] is a chain map (and a homomorphism of

abelian DGLAs). As a consequence, we obtain a short exact sequence of DGLAs

0 → R[2n − 2] → AFMS → A′ → 0, where A′ = (Cg � W+g[2n − 2])(e(0)) is an

acyclic DGLA. Then, we obtain a short exact sequence of current algebras

0 → Ω2n−3(M)/Ω2n−3
exact(M) → CA(M,AFMS) → CA(M,A′) → 0.

If M is a compact connected orientable manifold of dimension 2n − 3, we have

Ω2n−3(M)/Ω2n−3
exact(M) ∼= R with an isomorphism defined by integration.

One can view the abelian current algebra CA(M,W+g[2n − 2]) as a space of

local functional of g-connections on M . Recall that a g-connection on M defines a
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homomorphism of graded commutative algebras Wg → Ω(M). Taking into account

that (W+g[2n − 2] ⊗ Ω(M))−1 ∼= (W+g ⊗ Ω(M))2n−3, we obtain (for each g-

connection) a map

CA(M,W+g[2n− 2]) → Ω(M)2n−3/Ω(M)2n−3
exact

∼= R.

The Lie algebra CA(M,A′) is therefore an abelian extension of CA(M,Cg) =

C∞(M, g) by functionals on the space of g-connections.

Computing the Lie bracket of the elements f ⊗ x, g ⊗ y ∈ C∞(M, g) yields

{f ⊗ I(x), g ⊗ I(y)} = [f ⊗ I(x), d(g ⊗ I(y))]

= [f ⊗ I(x), dg ⊗ I(y) + g ⊗ L(y)− IWg(y)e(0)]

= fg ⊗ (I([x, y]) − IWg(x)IWg(y)e(0)).

The cocycle term reads −fg ⊗ IWg(x)IWg(y)e(0). For n = 2, it reads −fg ⊗
p([x, y], ·). For higher n, this formula defines the FMS cocycle [6, 7, 13] on the

Lie algebra of maps from M to g with values in local functionals of g-connections.

5.2.5. Truncated FMS current algebra

The construction of Sec. 4.4.2 defines a DGLA homomorphism

ρ :Dpg → (Cg�Wg[2n− 2])(e(0)) = A. (15)

Hence, we obtain an induced homomorphism of current algebras CA(M,Dpg) →
CA(M,AFMS). Note that the map ρ restricts to the identity mapping the central

line R[2n−2] ⊂ Dpg to the line R[2n−2] ⊂ Wg[2n−2]. As a consequence, we obtain

an induced homomorphism ρ′ :Dg → A′ = AFMS/R[2n− 2] and a homomorphism

of the corresponding current algebras CA(M,Dg) → CA(M,A′).
The image of the map ρ is a DGLA BFMS ⊂ AFMS. We refer to CA(M,BFMS)

as to truncated FMS current algebra. We work out in detail the example of n = 3.

In this case, we have an exact sequence of DGLAs 0 → R[4] → BFMS → B′ → 0,

where B′ = BFMS/R[4] is acyclic. Hence, we obtain an exact sequence of current

algebras

0 → Ω3(M)/Ω3
exact(M) → CA(M,BFMS) → CA(M,B′) → 0,

where CA(M,B′) = C∞(M, g)⊕(Ω2(M)⊗g∗). For the Lie bracket between elements

f ⊗ x, g ⊗ y ∈ C∞(M, g), we have

{f ⊗ Ĩ(x), g ⊗ Ĩ(y)} = [f ⊗ Ĩ(x), d(g ⊗ Ĩ(y))]

= [f ⊗ Ĩ(x), dg ⊗ Ĩ(y) + g ⊗ L(y)]

= fdg ⊗ [Ĩ(x), Ĩ(y)] + fg ⊗ [Ĩ(x), L(y)]
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= 2fdg ⊗ µ(p(x, y, ·) + fg ⊗ Ĩ([x, y])

= 2df ∧ dg ⊗ θ(p(x, y, ·)) + fg ⊗ Ĩ([x, y]).

Here the term 2df ∧ dg ⊗ θ(p(x, y, ·)) is another representative of the FMS cocycle.

In a somewhat different language, the Lie algebra CA(M,BFMS) was introduced

in [4].

6. Groups Integrating Current Algebras SA(M,A)

In this section, we construct sheaves of groups integrating sheaves of Lie alge-

bras SA(M,A), and in particular we apply this technique to SA(M,Dg) and

SA(M,Dpg).

6.1. The group SG(M,A,G) integrating the current algebra

SA(M,A)

To simplify the task, we first consider a simpler Lie algebra SA(M,A) = (Ω(M)⊗
A)0. Denote A0

closed = g, let G be a connected Lie group with Lie algebra g, and let

A′ =
⊕

n<0 A
n be the sum of graded components of A of negative degrees. Suppose

that the adjoint action of g on A′ lifts to an action of G. Denote by

G(M) = C∞(M,G)

the group of smooth maps from M to G (with pointwise multiplication). Let U(A′)
be the degree completion of the universal enveloping algebra of A′, and let

H(M) = Ω(M)⊗ U(A′)

be the Hopf algebra with coproduct induced by the one of U(A′). Group-like ele-

ments of degree 0 in H(M) form a group

H(M) = exp((Ω(M)⊗A′)0) ⊂ H(M).

The group G(M) acts on H(M) by Hopf algebra automorphisms. This action

induces an action of G(M) on H(M) by group automorphisms. We define

SG(M,A,G) = G(M)�H(M)

as the semi-direct product of G(M) and H(M). Note that the group SG(M,A,G)

depends of the choice of the connected Lie group G integrating the Lie algebra

g = A0
closed.

It is easy to see that SG(M,A,G) is an integration of SA(M,A). Indeed,

let (ht, gt) be a one-parameter subgroup of SG(M,A), where ht ∈ H(M), gt ∈
G(M), t ∈ R. Then, its derivative at t = 0 is a pair (u, x), where x ∈ C∞(M, g)

and u ∈ (Ω(M)⊗ A′)0. The pair (u, x) defines an element of (Ω(M) ⊗ A)0. In the
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other direction, every such an element can be exponentiated to a one-parameter

subgroup of SG(M,A,G).

Remark. Let A = Cg. Note that Cg0closed = Cg0 = g. Let G be a connected

Lie group integrating g. We have A′ = gε ⊂ Cg, and H(M) = {exp(u); u ∈
Ω1(M)⊗ gε}. Elements of SG(M,Cg, G) are of the form hg, where h ∈ H(M) and

g ∈ G(M).

The Lie subalgebra SA(M,A) ⊂ SA(M,A) is singled out by the closedness

condition. That is, a pair (u, x) ∈ SA(M,A) belongs to SA(M,A) if du + dx = 0.

The analogue of this condition at the group level is as follows:

SG(M,A,G) = {(h, g) ∈ SG(M,A); h−1dh+ dg g−1 = 0 ∈ Ω(M)⊗A}. (16)

Note that

h−1dh+ dg g−1 = h−1d(hg) g−1,

and Eq. (16) expresses the fact that hg ∈ SG(M,A,G) is closed. For the product

hg = (h1g1)(h2g2), we have

h−1d(hg)g−1 = (g1h2g
−1
1 )

(
h−1
1 d(h1g1)g

−1
1

)
(g1h2g

−1
1 )−1+ g1

(
h−1
2 d(h2g2)g

−1
2

)
g−1
1 .

Hence, SG(M,A,G) is indeed a subgroup of SG(M,A,G).

Again, it is easy to see that SG(M,A,G) is an integration of SA(M,A). Indeed,

let (ht, gt) ∈ SG(M,A,G) be a one-parameter subgroup, and let (u, x) ∈ SA(M,A)

be its derivative at t = 0. Then, Eq. (16) implies du+dx = 0. In the other direction,

for exp(t(u + x)) = htgt we have

h−1
t d(htgt)g

−1
t = Adg−1

t

1− exp(−t adu+x)

t adu+x
d(u + x) = 0

if du+ dx = 0. Here we have used the standard expression for the derivative of the

exponential map.

Note that for every manifold M the functor SA(·, A) produces a sheaf of Lie

algebras, where the Lie algebra of sections over U ⊂ M is defined as SA(U,A).

Similarly, SG(·, A,G) defines a sheaf of groups.

Remark. For A = Cg, we consider Eq. (16), where h = exp(u) and u ∈
Ω1(M)⊗ gε. Note that

h−1dh = e−udeu =
1− exp(−adu)

adu
du = du − 1

2
[u, du].

Here we have used that adku = 0 for k ≥ 2. Let ea be a basis of g. Then, u = ua⊗eaε,

du = dua ⊗ eaε− ua ⊗ ea, and

du− 1

2
[u, du] = −ua ⊗ ea +

(
dua ⊗ ea −

1

2
[ua ⊗ ea, u

b ⊗ eb]

)
ε.
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Denote û = ua ⊗ ea ∈ Ω1(M)⊗ g, and compute

h−1dh+ dgg−1 = (dgg−1 − û) +

(
dû− 1

2
[û, û]

)
ε.

Hence, a pair (exp(u), g) defines an element of SG(M,Cg, G) if and only if û =

dgg−1 and û is a Maurer–Cartan element. The second condition follows from the

first one since d(dgg−1) = (dgg−1)2 = [dgg−1, dgg−1]/2.

In conclusion, h is uniquely determined by g, and the forgetful map (h, g) �→ g

defines a group isomorphism SA(M,Cg, G) ∼= G(M). The inverse map G(M) →
SA(M,Cg, G) is given by g �→ (exp(I(dgg−1)), g).

Remark. Let (A,G) be a pair, where A is a DGLA and G is a connected Lie

group integrating g = A0
closed such that the adjoint action of g on A lifts to an

action of G on A. We define a morphism of such pairs (A,G) → (B,H) as pairs

of a DGLA homomorphism A → B and a group homomorphism G → H integrat-

ing the Lie algebra homomorphism A0
closed → B0

closed. Then, a morphism of pairs

(A,G) → (B,H) induces a group homomorphism SG(M,A,G) → SG(M,B,H). In

particular, if A0
closed = B0

closed and G = H , we obtain a canonical group homomor-

phism.

6.2. The group CpG(M) = SG(M,Cpg, G)

Let p ∈ (S2g∗)g. The group CpG(M) := SG(M,Cpg, G) is contained in the preim-

age of SG(M,Cg, G) under the projection map SG(M,Cpg, G) → SG(M,Cg, G).

Therefore, it consist of elements of the form

(h = exp(ω ⊗ c+ Ĩ(dgg−1)), g),

where g :M → G, ω ∈ Ω2(M), and h−1dh+ dgg−1 = 0. A straightforward calcula-

tion (see, e.g. [1, Proposition 5.7]) shows that

h−1dh+ dg g−1 = (dω + g∗ηp)⊗ c,

where ηp ∈ Ω3(G) is the Cartan 3-form (that is, a bi-invariant differential form on

G defined by the map (x, y, z) �→ p(x, [y, z]) at the group unit). The group CpG(M)

can therefore be identified with the set of pairs

(g :M → G, ω ∈ Ω2(M)) such that dω + g∗ηp = 0.

Since exp(Ĩ(u)) exp(Ĩ(v)) = exp(Ĩ(u + v) + p(u, v)c/2), the group law is expressed

in terms of these pairs,

(g1, ω1)(g2, ω2) =

(
g1g2, ω1 + ω2 +

1

2
(g1 × g2)

∗ρp

)
,

where ρp ∈ Ω2(G×G) is defined by ρp = p(π∗
1θ

L, π∗
2θR) with θL and θR left-invariant

and right-invariant Maurer–Cartan forms of G and π1,2 :G×G → G projections on

the first and second factor, respectively.
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6.3. The group DG(M) = SG(M,Dg, G)

In this section, we consider the group SG(M,Dg, G). We will use a shorthand

notation DG(M) := SG(M,Dg, G).

Observe that the exact sequence of DGLAs

0 → ker(Dg → Cg) → Dg → Cg → 0

gives rise (since Cg is acyclic) to an exact sequence of current algebras

0 → SA(M, ker(Dg → Cg)) → SA(M,Dg) → SA(M,Cg) → 0,

which in turn lifts to an exact sequence of groups

1 → SG(M, ker(Dg → Cg), 1) → DG(M) → G(M).

Here 1 stands for the trivial group (ker(Dg → Cg)0 = 0), we have used that

Dg0 ∼= Cg0 = g, and in both cases we have chosen the same connected Lie group

G integrating g.

6.3.1. The group DG(M) and g-connections

We begin by observing an interesting relation between the group DG(M) and the

space G(M) = Ω1(M) ⊗ g of g-connections on M . Let Ĝ(M) denote the action

groupoid of G(M) on G(M), where the action is by gauge transformations,

g :A �→ Ag = Adg−1A+ g−1dg.

Again, constructions of G(M) and of the gauge action are local, and we obtain a

sheaf of groupoids over M .

There is a natural morphism of sheaves of groupoids Ĝ(M) → G(M) by for-

getting a connection (here we view the group G(M) as a groupoid with an object

set consisting of one point). Recall that a g-connection A ∈ G(M) gives rise to

a homomorphism of g-differential algebras Wg → Ω(M), defined by θ �→ A,

t �→ FA = dA + [A,A]/2. Under this map, the image of an element α(θ, t) is

α(A,FA). Let g ∈ G(M), A ∈ G(M), and mg,A :A → Ag be the corresponding

morphism in Ĝ(M). We define a map µ : Ĝ(M) → SG(M,Dg, G) given by the fol-

lowing formula,

µ(mg,A) = Φ(A,FA) gΦ(A
g, FAg )−1,

where Φ is defined in Theorem 3.

Theorem 6. The map µ : Ĝ(M) → SG(M,Dg, G) is a morphism of groupoids.

It takes values in DG(M) = SG(M,Dg, G), and its composition with the natural

projection DG(M) → G(M) coincides with the forgetful map mg,A �→ g.
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Proof. To simplify notation, we denote Φ(A) = Φ(A,FA). For the composition of

morphisms, we have

µ(mg,A)µ(mh,Ag ) = (Φ(A)gΦ(Ag)−1)(Φ(Ag)hΦ((Ag)h))

= Φ(A)(gh)Φ(Agh)

= µ(mgh,A)

= µ(mg,A ◦mh,Ag ).

Hence, µ is a morphism of groupoids.

Next, we verify that µ(mg,A) is indeed an element of DG(M). We compute,

d(µ(mg,A)) = Φ(A)((−ι(FA) + l(A))g + dg − g(−ι(FAg ) + l(Ag)))Φ(Ag)−1

= Φ(A)g(ι(FAg )− ι(Adg−1FA) + l(Adg−1A+ g−1dg −Ag))Φ(Ag)−1

= 0,

where we have used Eq. (6).

Finally, by compositing µ with the projection map π :DG(M) → G(M) we

obtain

(π ◦ µ)(mg,A) = π(Φ(A)gΦ(Ag)−1)

= π(Φ(A)Adg(Φ(A
g)−1)g)

= g,

as required.

6.3.2. Structure of DG(M)

Using the results of the previous section, we can now prove the following proposition.

Proposition 13. There is an exact sequence of groups

1 → SG(M, ker(Dg → Cg), 1) → DG(M) → G(M) → 1,

and the map g �→ µ(mg,0) is a section of the natural projection DG(M) → G(M).

Proof. By Theorem 6, the map G(M) → DG(M) → G(M) defined by composing

the map g �→ µ(mg,0) and the natural projection DG(M) → G(M) is the identity

map. Hence, the projection DG(M) → G(M) is surjective, and the sequence of

groups in the proposition is exact.

Note that the DGLA ker(Dg → Cg) is acyclic and negatively graded. As a com-

plex, it can be represented as a cone CU = U [ε] for some negatively graded vector

space U . The corresponding current algebra SA(M, ker(Dg → Cg)) is isomorphic
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(as a vector space) to

SA(M, ker(Dg → Cg)) ∼=
⊕

i>0

Ωi(M)⊗ U−i.

Using the grading induced by the degree of differential forms, we infer that this Lie

algebra is nilpotent. Hence, by composing with the exponential map we obtain a

bijection

ν :
⊕

i>0

Ωi(M)⊗ U−i → SG(M, ker(Dg → Cg), 1).

Proposition 14. The map (g, u) �→ µ(mg,0) ν(u) defines a bijection

G(M)×
(⊕

i>0

Ωi(M)⊗ U−i

)
→ DG(M). (17)

Proof. This follows from the facts that the map g �→ µ(mg,0) defines a section of

the projection DG(M) → G(M), and that the map ν is bijective.

6.4. The group DpG(M) = SG(M,Dpg, G)

In this section, we study the group SG(M,Dpg, G), the shorthand notation is

DpG(M).

As before, the short exact sequence of DGLAs

0 → ker(Dpg → Cg) → Dpg → Cg → 0

gives rise to a short exact sequence of current algebras

0 → SA(M, ker(Dpg → Cg)) → SA(M,Dpg) → SA(M,Cg) → 0,

which lifts to an exact sequence of groups

1 → SG(M, ker(Dpg → Cg), 1) → DpG(M) → G(M).

In this case, the natural projection DpG(M) → G(M) may no longer be surjective.

Again, an important tool in studying this question is the gauge groupoid.

6.4.1. Central extensions of the groupoid Ĝ(M)

Let p ∈ (Sng∗)g be an invariant polynomial of degree n ≥ 2, and let ep ∈ (Wg)g

be such that d ep = p. The ambiguity in the choice of ep is by a closed g-invariant

element of Wg of degree 2n− 2. Since Wg is acyclic, for any other primitive e′p we

have e′p − ep = df .

Let us describe a central extension Ĝp(M) of the groupoid Ĝ(M) by an abelian

group Ω2n−2
closed(M). The set of objects is again G(M), and the set of morphisms is
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labeled by triples (g,A, α), where g ∈ G(M), A ∈ G(M) and α ∈ Ω2n−2(M) such

that dα = ep(A,F )− ep(A
g, FAg ). The composition of morphisms is given by

mg,A,αmh,Ag,β = mgh,A,α+β ,

where

d(α+ β) = ep(A,FA)− ep(A
g, FAg ) + ep(A

g, FAg )− ep(A
gh, FAgh)

= ep(A,FA)− ep(A
gh, FAgh).

Note that for the groupoid of global sections of Ĝp(M), the natural projection

to G(M) may no longer be surjective. Indeed, the cohomology class of ep(A,FA)−
ep(A

g, FAg ) in H2n−1(M) coincides with [g∗ηp] ∈ H2n−1(M), where ηp = ep(θ, 0) ∈
(∧g∗)g ⊂ Ω(G). If g∗ηp �= 0, Ĝp(M) does not contain elements which project to g.

A different choice of ep gives rise to an isomorphic sheaf of groupoids with an

isomorphism given by α �→ α′ = α+f(A,F )−f(Ag, FAg ). In the physics literature,

α is called the Wess–Zumino action.

Recall that the DGLA Dpg is a central extension of Dg by the line R[2n − 2].

Note that SA(R[2n− 2],M) ∼= Ω(M)2n−2
closed. Since Dg is acyclic, we obtain an exact

sequence of sheaves of Lie algebras

0 → Ω(M)2n−2
closed → SA(M,Dpg) → SA(M,Dg) → 0.

This exact sequence integrates to an exact sequence of sheaves of groups,

1 → Ω(M)2n−2
closed → DpG(M) → DG(M).

Consider a map µp : Ĝp(M) → SG(M,Dpg, G) defined by formula

µp(mg,A,α) = Φp(A,FA)gΦp(A
g, FAg )−1eα⊗c, (18)

where c is the generator of the central line of Dpg, and Φp is defined in Sec. 5.

Proposition 15. The map µp is a morphism of groupoids, it takes values in

DpG(M) ⊂ SG(M,Dpg, G), and it restricts to identity on Ω2n−2
closed.

Proof. The proof is similar to Theorem 6. We have

dµp(mg,A,α) = µp(mg,A,α)(e(A
g , FAg )− e(A,FA) + dα)⊗ c = 0.

Hence, µp takes values in DpG(M). For the morphism of groupoids, one follows the

proof of Proposition 6 and uses the fact that mg,A,α ◦mf,Ag,β = mg,A,α+β. Finally,

for g = 1 we obtain µp(m1,A,α) = exp(α ⊗ c) which coincides with the image of α

under injection Ω2n−2
closed → DpG(M).

1250001-32



September 21, 2012 16:10 WSPC/S1793-7442 251-CM 1250001 33–
40

Equivariant Cohomology and Current Algebras

6.4.2. Structure of the group DpG(M)

The DGLA ker(Dpg → Cg) fits into a short exact sequence

0 → R[2n− 2] → ker(Dpg → Cg) → ker(Dg → Cg) → 0

giving rise to a short exact sequence of current algebras

0 → Ω2n−2
closed(M) → SA(M, ker(Dpg → Cg)) → SA(M, ker(Dg → Cg)) → 0.

All of these Lie algebras being nilpotent, the exact sequence lifts to an exact

sequence of groups

1 → Ω2n−2
closed → SG(M, ker(Dpg → Cg), 1) → SG(M, ker(Dg → Cg), 1) → 1. (19)

Furthermore, by choosing a section of the projection SA(M, ker(Dpg → Cg)) →
SA(M, ker(Dg → Cg)), and by composing with the exponential map we obtain a

section

νp :

(⊕

i>0

Ωi(M)⊗ U−i

)
∼= SA(M, ker(Dg → Cg)) → SG(M, ker(Dpg → Cg), 1).

Recall that ηp = ep(θ, 0) ∈ Ω2n−1(G).

Proposition 16. The image of the natural projection DpG(M) → DG(M) is the

set of elements of DG(M) which project to maps g :M → G with vanishing [g∗ηp] ∈
H2n−1(M).

Proof. Let f be an element of DG(M), and g be the projection of f to G(M).

Then, f0 = µ(mg,0)
−1f projects to the group unit of G(M). That is, f0 ∈

SG(M, ker(Dg → Cg), 1). The exact sequence (19) implies that f0 admits a lift

to SG(M, ker(Dpg → Cg), 1) ⊂ DpG(M). Hence, f admits a lift to DpG if and

only if so does µ(mg,0).

Recall that, as a graded Lie algebra, Dpg is a direct sum Dpg = Dg ⊕ Rc of

Dg and the central line Rc with c the generator of degree 2 − 2n. Hence, we have

SG(M,Dpg, G) = SG(M,Dg, G)×exp(Ω2n−2(M)⊗c). Let us consider the subgroup

Q = DG(M)× exp(Ω2n−2(M)⊗ c) ⊂ SG(M,Dpg, G)

containing DpG(M). Lifts of µ(mg,0) to Q are of the form ĝ = µ(mg,0) exp(α⊗ c),

where α ∈ Ω2n−2(M). Since µ(mg,0)
−1dpµ(mg,0) = g∗ηp ⊗ c, we have

ĝ−1dpĝ = (g∗ηp + dα)⊗ c.

If [g∗ηp] �= 0, then ĝ−1dpĝ �= 0, and µ(mg,0) does not lift to DpG(M). If [g∗ηp] = 0,

we can achieve ĝ ∈ DpG(M) for a suitable choice of α.
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Let us denote by pG(M) the set of pairs (g :M → G,α ∈ Ω2n−2(M)) such that

g∗ηp + dα = 0. In other words, pG(M) is the set of morphisms in the groupoid

Ĝp(M) starting at the object A = 0.

Proposition 17. The map (g, α, u) → µp(mg,0,α)νp(u) defines a bijection

pG(M)×
(⊕

i>0

Ωi(M)⊗ U−i

)
→ DpG(M). (20)

The maps (17) and (20) and the natural projections pG(M) → G(M) and

DpG(M) → DG(M) form a commutative diagram.

Proof. For the first statement, let f ∈ DpG(M), and denote its image in

G(M) by g. Then, there is a form α ∈ Ω2n−2(M) such that g∗ηp + dα = 0,

and ĝ := µp(mg,0,α) ∈ DpG(M) with the same projection g ∈ G(M). Hence,

ĝ−1f ∈ SG(M, ker(Dpg → Cg)), and it is of the form exp(u′) for some u′ ∈
SA(M, ker(Dpg → Cg)). The element u′ projects to u ∈

(⊕
i>0 Ω

i(M)⊗ U−i
) ∼=

SA(M, ker(Dg → Cg)). Then, ĝ−1fνp(u)
−1 projects to the group unit in

SG(M, ker(Dpg → Cg), 1). Hence, it is of the form exp(β ⊗ c) for some β ∈
Ω2n−2

closed(M). For the element f we obtain f = µp(mg,0,α) exp(β ⊗ c)νp(u) =

µp(mg,0,α+β)νp(u), as required.

For the second statement, the natural projections pG(M) → G(M) and

DpG(M) → DG(M) are forgetful maps with respect to differential forms

α ∈ Ω2n−2(M). This implies commutativity of the diagram announced in the

proposition.

6.5. Torsors and obstructions

A torsor over the sheaf of groupoids Ĝ(M) is a principal G-bundle over M with a

choice of a principal g-connection. More explicitly, if Ui is an open cover of M , a

(descent data for a) Ĝ(M)-torsor on M is defined by a choice of local g-connections

Ai ∈ Ω1(Ui)⊗g and of the gluing maps gij :Uij → G such that gij is a cocycle, and

Aj = A
gij
i .

Theorem 7. Let T be a Ĝ(M)-torsor over M with underlying principal G-bundle

P . It lifts to a Ĝp(M)-torsor if and only if the Chern–Weil class cw(p) = [p(F )] of

P vanishes.

Proof. A lift of a Ĝ(M)-torsor to a Ĝp(M)-torsor amounts to a choice of a Cech

cocycle αij ∈ Ω2n−2(Uij) such that dαij = ep(Ai, FAi)− ep(Aj , FAj ). Assume that

such a cocycle exists. Since the Cech cohomology H1(Ω2n−2(M)) vanishes, there

exist (for a sufficiently fine cover) local forms βi ∈ Ω2n−2(Ui) such that αij = βi−βj.

Then, the local forms ep(Ai, FAi)− dβi = ep(Aj , FAj )− dβj define a global section

of Ω2n−1(M). The de Rham differential of this globally defined differential form
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is d(ep(Ai, FAi) − dβi) = dep(Ai, FAi) = p(FAi). Hence, cw(p) = [p(FAi)] = 0 in

H2n(M).

In the other direction: if [p(FAi)] = 0, there is a differential form γ ∈ Ω2n−1(M)

such that dγ = p(FAi) on Ui. Let ωi = ep(Ai, FAi) − γ ∈ Ω2n−1(Ui). We have

dωi = 0, and if the cover is sufficiently fine we find βi ∈ Ω2n−2(Ui) such that

dβi = ωi. Put αij = βi − βj. We have

dαij = ωi − ωj = (ep(Ai, FAi)− γ)− (ep(Aj , FAj )− γ)

= ep(Ai, FAi)− ep(Aj , FAj ),

as required.

The groupoid morphism µ : Ĝ(M) → DG(M) can be used to map Ĝ(M)-torsors

to DG(M)-torsors. Since its lift µp is equal to identity on Ω2n−2
closed (see Proposition

15), the obstruction to lifting the correspondingDG(M)-torsor to aDpG(M)-torsor

is again cw(p).

Finally, let us describe general DG(M)-torsors. It is enough to notice that

DG(M) is an extension of G(M) by a sheaf of nilpotent groups and that this sheaf

is acyclic (this follows from the acyclicity of the kernel of Dg → Cg). Therefore,

the classification of DG(M)-torsors is the same as the classification of principal

G-bundles (G(M)-torsors). We thus have the following result.

Theorem 8. The classification of DG(M)-torsors is the same as the classification

of principal G-bundles; the correspondence is given by the morphism DG(M) →
G(M). The obstruction to lifting a DG(M)-torsor to a DpG(M)-torsor is exactly

the Chern–Weil class cw(p).

7. Groups Integrating Current Algebras CA(M,A)

The purpose of this section is to construct groups integrating current algebras

CA(M,A). The construction is similar to the integration methods in [12, 15].

7.1. Integration of CA(M,A)

We will need the following notation: for an embedding of manifolds f :Y → X , we

denote Ω(X,Y ) := ker(f∗ : Ω(X) → Ω(Y )) (this complex is quasi-isomorphic to the

standard relative de Rham complex). Note that SA(X,Y,A) = (Ω(X,Y )⊗A)0closed
is a Lie subalgebra of SA(X,A), and (Ω(X,Y )⊗A)0exact ⊂ SA(X,A) is a Lie ideal.

Proposition 18. Let I = [0, 1] be the unit interval with coordinate s. The map

τ :α �→ d(sα) induces a Lie algebra isomorphism

CA(M,A) ∼= SA(M × I,M × {0}, A)
(Ω(M × I,M × {0, 1})⊗A)0exact

. (21)
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Proof. The map τ is well defined since τ(dω) = d(sdω) = −d(ds ∧ ω), and ds ∧ ω

vanishes when restricted to M×{0} and M×{1}. To show that τ is an isomorphism

of vector spaces, observe that the fiber integral λ �→
∫
I
λ is an inverse of τ . Finally,

τ is a Lie homomorphism since for α, β ∈ (Ω(M)⊗A)−1 we have

τ([α, dβ]) = d(s[α, dβ]) = [d(sα), d(sβ)] + d[sα, d((1 − s)β)] ≡ [d(sα), d(sβ)].

Here we used that [sα, d((1 − s)β)] vanishes on M × {0} and M × {1}.

We can reformulate the isomorphism (21) as follows. Let a path in SA(M,A)

be an element γ ∈ SA(M × I, A). The endpoints of γ are the elements

γ|M×{0}, γ|M×{1} ∈ SA(M,A). Let γ0, γ1 ∈ SA(M × I, A) be two paths with

the same endpoints ε0 and ε1, i.e. such that

γ0|M×{0} = γ1|M×{0} = ε0 and γ0|M×{1} = γ1|M×{1} = ε1.

A homotopy between γ0 and γ1 is an element χ ∈ SA(M × I × I) such that γ0 =

χ|M×I×{0}, γ1 = χ|M×I×{1}, and χ|M×{0}×I is the pullback of ε0 and χ|M×{1}×I

is the pullback of ε1 under projection M × I → M .

Equation (21) says that CA(M,A) is isomorphic to the Lie algebra of paths

in SA(M,A) starting at 0 ∈ SA(M,A), modulo homotopy of paths. Indeed, for

γ1 = γ0 + dµ the desired homotopy is χ = γ0 + d(tµ) (here t is the parameter on

the unit segment). In the other direction, if χ is a homotopy interpolating between

γ0 and γ1, we have

γ1 − γ0 = d

∫

t

χ ∈ (Ω(M × I,M × {0, 1})⊗A)0exact

as required.

In the same way, we can introduce paths and their homotopies in SG(M,A,G).

The group CG(M,A,G) is then defined as the group of paths in SG(M,A) starting

at the group unit, modulo homotopy of paths. Again, it depends on the choice of a

connected Lie group G integrating the Lie algebra g = A0
closed.

Remark. The groups CG(M,A,G) and SG(M,A,G) form a crossed module (i.e.

a strict 2-group): The homomorphism CG(M,A,G) → SG(M,A,G) associates to a

path in SG(M,A) its endpoint, and the action of SG(M,A) on paths, and hence

on CG(M,A), is by conjugation.

Remark. Let (A,G) → (B,H) be a morphism of pairs consisting of a DGLA

homomorphism A → B and a group homomorphism G → H integrating the

Lie homomorphism g = A0
closed → B0

closed = h. Then, similar to the SG func-

tor, we obtain a group homomorphism CG(M,A,G) → CG(M,B,G). For exam-

ple, consider the DGLA homomorphism Dpg → AFMS. Note that (AFMS)
0
closed

∼=
g � Wg2n−2

closed. If G is a connected Lie group integrating g, the Lie algebra A0
FMS

integrates to the semi-direct product H = G � Wg2n−2
closed. Obviously, we have a

morphism of pairs (Dpg, G) → (AFMS, H). It induces a group homomorphism
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CG(M,Dpg, G) → CG(M,AFMS, H) from CG(M,Dpg, G) to the group CG(M,

AFMS, H) integrating FMS current algebra (for details about the group inte-

grating the FMS current algebra see the book [14]). The image of this map is

the group CG(M,BFMS, G) integrating the truncated FMS current algebra (here

BFMS = im(Dpg → AFMS) and im(G → H) = G).

7.2. The case of A = Dpg and M a sphere

In this section we restrict our attention to examples of A = Cg, Dg, Dpg and M =

Sn a sphere. Let us introduce the shorthand notation G̃(M) = CG(M,Cg, G),

D̃G(M) = CG(M,Dg, G), and D̃pG(M) = CG(M,Dpg, G).

Proposition 19. Let G be a simply connected Lie group. Then, there is an exact

sequence of groups,

1 → πn+1(G) → G̃(Sn) → G(Sn) → πn(G) → 1.

Proof. The group G̃(Sn) consists of paths gt in the group G(Sn) which start at

the group unit (g0 = 1) modulo homotopy. Note that π0(G(Sn)) ∼= πn(G) and, if

G is simply connected, π1(G(Sn)) ∼= πn+1(G). This implies the exact sequence in

the Proposition.

Proposition 20. Let G be a simply connected Lie group. Then, there is an exact

sequence of groups,

1 → πn+1(G) → D̃G(Sn) → DG(Sn) → πn(G) → 1.

Proof. The group D̃G(Sn) can be described using the bijection (17). Let us define

paths and their homotopies in
⊕

i>0 Ω
i(M) ⊗ U−i in the same way as above. In

this sense,
⊕

i>0 Ω
i(M) ⊗ U−i is 1-connected. We infer from (17) that there is a

bijection

D̃G(M) → G̃(M)×
(⊕

i>0

Ωi(M)⊗ U−i

)
.

Together with the exact sequence of the Proposition 19, it implies the required

exact sequence.

For p ∈ (Sng∗)g, let ηp = ep(θ, 0) ∈ Ω2n−1(G) be the bi-invariant differential

form on G defined by transgression, and Π :π2n−1(G) → R be the group homomor-

phism defined by the integration map: C �→
∫
C
ηp. The image of Π is a subgroup

of R. We will be interested in the quotient R/im(Π). If p ∈ ((S+g)g)2, then ηp = 0

and the quotient is equal to R. If g is a Lie algebra of a compact simple Lie group,

and p is a generator of (Sg)g of degree mi + 1 (here mi is one of the exponents

of g), and the multiplicity of mi is equal to one (this is always the case with the

exception of one of the exponents of the group SO(2n)), then R/im(Π) ∼= S1.
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Theorem 9. Let p ∈ (Sng∗)g. Then, there is an exact sequence of groups

1 → R/im(Π) → D̃pG(S2n−3) → D̃G(S2n−3) → 1,

where R/im(Π) is a central subgroup.

Proof. The bijection (20) implies the bijection

D̃pG(M) → p̃G(M)×
(⊕

i>0

Ωi(M)⊗ U−i

)
,

where p̃G(M) stands (as usual) for the set of paths in pG(M) starting at the group

unit modulo homotopy.

For M = S2n−3, Ω2n−2(S2n−3) = 0 and therefore pG(S2n−3) = G(S2n−3). A

path in pG(S2n−3) is a pair (gt, α) where gt :S
2n−3×I → G and α ∈ Ω2n−2(S2n−3×

I). Since α is a top degree form, there are no conditions imposed on it and the group

homomorphism D̃pG(S2n−3) → D̃G(S2n−3) is surjective.

Let us determine the kernel of the group homomorphism D̃pG(S2n−3) →
D̃G(S2n−3), or equivalently, the kernel of the map p̃G(S2n−3) → G̃(S2n−3). It

consists of homotopy classes of paths in pG(S2n−3) of the form (1, α), where

α ∈ Ω2n−2(S2n−3 × I) and 1 denotes the constant map to 1 ∈ G. A homo-

topy between two such paths (1, α0), (1, α1) is a pair (h, β), where h is a map

h :S2n−3 × I × I → G such that h|S2n−3×∂(I×I) = 1 and β ∈ Ω2n−2(S2n−3 × I × I)

is such that dβ + h∗ηp = 0, and β|S2n−3×{0,1}×I = 0, β|S2n−3×I×{0} = α0,

β|S2n−3×I×{1} = α1. The Stokes theorem implies
∫

S2n−3×I

(α1 − α0) = −
∫

S2n−3×I×I

h∗ηp ∈ im(Π).

In the other direction, let (1, α0) and (1, α1) be paths in pG(S2n−3) such that∫
S2n−3×I

(α1−α0) = Π(a) for some a ∈ π2n−1(G). Choose a smooth map h :S2n−3×
I × I → G, h|S2n−3×∂(I×I) = 1 representing the class (−a). Then, there exists a

differential form β ∈ Ω2n−2(S2n−3 × I × I) such that (h, β) is a homotopy between

the paths (1, α0) and (1, α1).

As a result, two paths (1, α0) and (1, α1) are homotopic if and only if
∫

S2n−3×I

(α1 − α0) ∈ im(Π).

The kernel of the map D̃pG(S2n−3) → D̃G(S2n−3) is therefore isomorphic to

R/im(Π).

7.3. Example: central extensions of loop groups

Let g be a Lie algebra of a simple simply connected compact Lie group G, and

let p ∈ (S2g)g be a non-vanishing element (note that (S2g)g ∼= R)). In this case,

R/im(Π) ∼= S1.
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Taking M = S1 in the discussion of the previous section, we observe the follow-

ing. Since π1(G) = π2(G) = 0, we have G̃(S1) ∼= G(S1). In this very special case,

we have CA(S1, Dg) = CA(S1, Cg), and D̃G(S1) ∼= G(S1). Finally, for D̃pG(S1)

we obtain an exact sequence of groups

1 → S1 → D̃pG(S1) → G(S1) → 1.

Proposition 21. The group D̃pG(S1) is the standard central extension of the loop

group LG = G(S1).

Proof. Let us recall the construction of the standard central extension L̃G of the

loop group LG. Normalize p ∈ (S2g∗)g (which is unique up to multiple) by the con-

dition im(Π) = Z, and by requiring p to be positive-definite. Denote by D2 the unit

two-dimensional disc. First, one introduces a central extension Ĝ(D2) of the group

G(D2) by U(1). As a set, Ĝ(D2) is the direct product G(D2)×U(1), and the group

law is given by formula

(g1, u1)(g2, u2) =

(
g1g2, u1u2 exp

(
πi

∫

D2

p(g−1
1 dg1, dg2g

−1
2 )

))
.

Note that the integrand is (up to a factor of 2πi) the pull back of the 2-form ρp
under the map (g1, g2) :D

2 → G×G.

Next, one introduces an equivalence relation on Ĝ(D2) : (g1, u1) ∼ (g2, u2) if

there exists a homotopy h :D2× I → G between g1 and g2 relative to the boundary

S1 of D2, such that u2 = u1 exp
∫
D2×I h

∗ηp. The group L̃G is then defined as the

quotient of the group Ĝ(D2) by the equivalence relation ∼.

Equivalently, L̃G is quotient of the group CpG(D2) = SG(D2, Cpg, G) by the

following equivalence relation: (g1, ω1) and (g2, ω2) are equivalent if there exists

a homotopy (h, χ) ∈ CpG(D2 × I) between (g1, ω1) and (g2, ω2) relative to ∂D2.

Indeed, the map CpG(D2) → Ĝ(D2)G given by (g, α) �→ (g, exp 2πi
∫
D2 α) is a

surjective group homomorphism, and two elements of CpG(D2) are equivalent if

and only if their images are equivalent.

Let us introduce a modification Ĝ′(D2) of Ĝ(D2): in its definition we replace

the group G(D2) by the subgroup of G(S1 × I) of maps g :S1 × I → G such that

g|S1×{0} = 1, i.e. by the group of paths in G(S1) = LG starting at 1 ∈ G(S1). We

also replace the homotopies h by homotopies of paths. Then, it is easy to see that

Ĝ′(D2) modulo the equivalence is again equal to L̃G. Equivalently, it is the group

of paths in CpG(S1) starting at 1 modulo homotopy, i.e. the group CG(S1, Cpg, G).

Hence, L̃G ∼= CG(S1, Cpg, G).
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