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We give a new proof of quantifier elimination in the theory of all ordered abelian groups
in a suitable language. More precisely, this is only “quantifier elimination relative to
ordered sets” in the following sense. Each definable set in the group is a union of a
family of quantifier free definable sets, where the parameter of the family runs over a set
definable (with quantifiers) in a sort which carries the structure of an ordered set with
some additional unary predicates.

As a corollary, we find that all definable functions in ordered abelian groups are
piecewise linear on finitely many definable pieces.
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0. Introduction

Quantifier elimination is well known in some particular ordered abelian groups like

Q and Z. Somewhat less well known is that there also exists a quantifier elimination

result for the theory of all ordered abelian groups. For formulas without free vari-

ables, this has already been proven by Gurevich [3] in 1964. Later, Gurevich and

Schmitt enhanced this to treat arbitrary formulas ([4, 9]). The main goal of this
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paper is to introduce a new language Lqe with similar kind of quantifier elimination,

which is more intuitive and hopefully more useful for applications.

As a corollary, we obtain that every definable function f :Gn → G in ordered

abelian groups is piecewise linear, i.e. there exists a partition of Gn into finitely

many definable sets such that the restriction of f to any of these sets is of the

form f(x1, . . . , xn) = 1
s (
∑

i rixi + b) with ri, s ∈ Z and b ∈ G. This result has

been proven in the special case of groups of finite regular rank by Belegradek–

Verbovskiy–Wagner [1] (using a version of quantifier elimination in this context

from Weispfenning, [11]), but to our knowledge, it has yet not been written down

in full generality before. Our interest in this result came from valued fields. In the p-

adics, definable maps can be approximated piecewise by fractional polynomials; see

[2]. To get a similar result in valued fields with arbitrary value group, one necessary

ingredient is piecewise linearity of definable maps in the value group.

Our quantifier elimination result could be deduced rather easily from the results

of Gurevich and Schmitt. However, we discovered their results only after we had

already written our own complete proof. We decided to include our proof in this

paper anyway to keep it self-contained and because both [4] and [9] are difficult

to obtain. Moreover, we are using a more modern formalism; in particular, we are

working in a many-sorted language and systematically use imaginary sorts and

elements.

From now on, we write “oag” for “ordered abelian group”.

There is no really simple language in which oags have quantifier elimination;

the main reason is that oags may have many convex definable subgroups, which

come in several definable families. Parametrizing one such family with a suitable

imaginary sort yields a uniform way to interpret an arbitrary ordered set in an

appropriate oag. Since ordered sets have no good quantifier elimination language,

the best one can hope for in oags is “quantifier elimination relative to ordered sets”;

this is indeed what we get.

Let us examine more closely what is needed in a quantifier elimination language.

Recall that in the oag Z, we have quantifier elimination in the Presburger language

LPres := {0, 1,+, <,≡m} (where a ≡m b iff a − b ∈ mZ). The same language also

yields quantifier elimination in any fixed oag without (nontrivial) convex definable

subgroup; in that case, 1 is defined to be the minimal positive element if this exists

and 1 = 0 otherwise. If G is a fixed group with finitely many convex definable

subgroups H , then the quotients G/H are interpretable in G, and to get quantifier

elimination, it is necessary (and sufficient) to have LPres not only on G, but also

on all those quotients.

Now let us sketch the complete quantifier elimination language Lqe; it should

allow for oags with infinite families of convex definable subgroups and moreover

we want to work in the theory of all oags and not just in a fixed one. To treat

infinite families of convex definable subgroups, we will add new sorts to Lqe (called

“auxiliary sorts”) with canonical parameters for some of them; let us write Gα

for the group corresponding to the canonical parameter α. We will still need the
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Presburger language on all quotients G/Gα; roughly this will be formalized as

follows: each quantifier free binary LPres-relation x � y (for x, y ∈ G/Gα) becomes

a ternary relation x̃ �α ỹ (for x̃, ỹ ∈ G and α in an auxiliary sort) which holds iff

the images of x̃ and ỹ in G/Gα satisfy �. (For example, for each m ∈ N, we have a

relation x̃ ≡m,α ỹ which holds iff x̃− ỹ ∈ mG+Gα.)

Apart from that, three more things are needed in the language Lqe. On the

auxiliary sorts, we have the order relation induced by inclusion of the correspond-

ing subgroups and some unary predicates corresponding to certain properties of

the groups G/Gα (which otherwise could not be expressed without quantifiers);

moreover, we will need a variant of the congruence relation ≡m,α introduced above.

Our main result (Theorem 1.8) is that in Lqe, we have “quantifier elimination

relative to the auxiliary sorts” in the following strong sense. Every definable sub-

set in G is a union of a family of quantifier free definable sets, parametrized by

an auxiliary set. This auxiliary set is defined by a formula which may use quanti-

fiers, but it uses only the auxiliary part of Lqe (i.e. some ordered sets with unary

predicates).

This kind of relative quantifier elimination might sound weak, despite the fact

that ordered sets have no good quantifier elimination, their model theory is well

understood; see e.g. [8] or [7, Chap. 12.f]. (This is also true for ordered sets

with unary predicates, also called “colored chains”.) Relative quantifier elimina-

tion allows to lift good model theoretic properties from ordered sets to oags; for

example, Gurevich and Schmitt did this for NIP in [5]. Other results about oags

may be deduced directly from relative quantifier elimination, without any knowl-

edge of the auxiliary sorts at all; an example for this is our corollary about piecewise

linearity of definable maps.

To prove relative quantifier elimination in Lqe, it is useful to simultaneously

prove it in a second language Lsyn which has certain good syntactic properties.

These allow us to reduce relative quantifier elimination to eliminating a single

existential quantifier of a formula which contains no other quantifiers, as one does

it in the usual quantifier elimination. This language Lsyn is very close to the one

used by Gurevich and Schmitt in their quantifier elimination results.

The paper is organized as follows. In Sec. 1, we present the main results: quan-

tifier elimination in the languages Lqe and Lsyn (Theorems 1.8 and 1.13) and piece-

wise linearity of definable functions (Corollary 1.10). We also state the general

result on relative quantifier elimination in languages with good syntactic properties

(Proposition 1.11). In this section, the languages are defined as quickly as possible,

postponing explanations to the next section. At the end of the section, we explain

the relation between Lsyn and the language used by Schmitt.

In Sec. 2, we prove some first basic properties of the languages, which also yields

some motivation. Then we show how to translate between Lsyn and Lqe, allowing

us to switch freely between those languages while doing quantifier elimination.

Section 3 contains the main proofs. First, we prove Proposition 1.11. Then we

do the actual elimination of one existential quantifier; this is done in the language
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Lqe. The whole proof is constructive, so it can be turned into an algorithm for

quantifier elimination.

Section 4 contains some examples illustrating the language Lqe; in particular,

they show how arbitrary ordered sets can be interpreted in oags.

1. The Results

1.1. Generalities and basic notation

We use the convention that 0 /∈ N, and we write N0 for N ∪ {0} and P for the set

of primes.

In this paper, (G,+, <) will always denote an ordered abelian group (“oag”),

that is, a group with a total order which is compatible with the group operation:

a < b iff a + c < b + c for all a, b, c ∈ G. It is easy to see that such a group is

always torsion-free. Such groups appear naturally, for example, as valuation group

of (Krull) valued fields. An oag is called discrete, if it has a minimal positive element

and dense otherwise.

We write Loag = {0,+, <} for the language of oags and unless otherwise stated,

we always work in the theory of all oags.

For a ∈ G, we write 〈a〉conv for the smallest convex subgroup of G containing

a; for a, b ∈ G and m ∈ N, a ≡m b means that a and b are congruent modulo m in

the sense that a− b ∈ mG.

We introduce the notation H � G to say that H is a convex subgroup of G.

1.2. A language for quantifier elimination

We now give a precise definition of the quantifier elimination language Lqe; moti-

vation and additional explanations will be given in Sec. 2. An introduction to Lqe

with much more motivation and examples can be found in [6]. Note that all of Lqe

will be Loag-definable (where new sorts in Lqe are considered as imaginary sorts of

Loag).

We start by introducing the new sorts of Lqe: sorts with canonical parameters for

some definable families of convex subgroups. These new sorts will be called auxiliary

sorts ; in contrast, the sort of the ordered abelian group itself will be called the main

sort.

For each positive integer n, we consider three families of convex definable sub-

groups, parametrized by sorts which we denote by Sn, Tn, and T +
n . Although in

Lqe we will have these sorts only for n prime, it is useful to define them for all n.

Examples illustrating the following definition are given in Sec. 4.

Definition 1.1. (1) For n ∈ N and a ∈ G\nG, let Ha � G be the largest convex

subgroup such that a /∈ Ha + nG; set Ha = {0} if a ∈ nG. Define Sn := G/∼, with

a ∼ a′ iff Ha = Ha′ , and let sn :G� Sn be the canonical map. For α = sn(a) ∈ Sn,

define Gα := Ha.
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(2) For n ∈ N and b ∈ G, set H ′
b :=

⋃
α∈Sn,b/∈Gα

Gα, where the union over the

empty set is {0}. Define Tn := G/∼, with b ∼ b′ iff H ′
b = H ′

b′ , and let tn :G � Tn
be the canonical map. For α = tn(b) ∈ Tn, define Gα := H ′

b.

(3) For n ∈ N and β ∈ Tn, define Gβ+ :=
⋂

α∈Sn,Gα�Gβ
Gα, where the intersection

over the empty set is G. Here, we view the index β+ as being an element of a copy

of Tn which we denote by T +
n . (By Remark 1.2 below, β 	= β′ implies Gβ+ 	= Gβ′+.)

(4) Define a total preorder on
⋃̇

n∈N(Sn ∪̇ Tn ∪̇ T +
n ) by α ≤ α′ iff Gα ⊆ Gα′ . Write

α � α′ if Gα = Gα′ . Note that on each sort separately, the order is total.

Definability (in Loag) of the groups Gα, α ∈ Sn is proven in Lemma 2.1; once

this is done, it is clear that the new sorts are imaginary sorts of Loag and that all

of the above is definable.

Remark 1.2. If b 	= 0, then we have Gtn(b)+ =
⋂

α∈Sn,b∈Gα
Gα; in particular,

Gtn(b)+ is strictly larger than Gtn(b), since b /∈ Gtn(b). (However, we might have

Gtn(0)+ = {0}.)

Fix α in any of the auxiliary sorts. Recall that for each quantifier free LPres-

definable relation on G/Gα, we want the corresponding relation on G to be quanti-

fier free definable in Lqe. If G/Gα is dense, then it suffices to put preimages of the

relations =, <, ≡m into Lqe (interpreted as ternary relations, where α is the third

operand). However, if G/Gα has a minimal positive element, then we need Lqe-

predicates for preimages of LPres-relations defined using this element. We introduce

the following notation for these predicates.

Definition 1.3. Suppose that α ∈ Sn ∪̇ Tn ∪̇ T +
n for some n ∈ N and that π :G�

G/Gα is the canonical projection. For � ∈ {=, <,>,≤,≥,≡m}, write x �α y if

π(x) � π(y) holds in G/Gα.

For k ∈ Z, write kα for k times the minimal positive element of G/Gα if G/Gα is

discrete and set kα := 0 ∈ G/Gα otherwise. Write x �α y+ kα for π(x) � π(y)+ kα.

Note that x ≡m,α y holds iff x − y ∈ Gα + mG. We will need one additional

kind of predicates which is similar, but where Gα is replaced by a group which

looks rather technical. For definability of that group and for more explanations, see

Sec. 2.2.

Definition 1.4. For n,m,m′ ∈ N and α ∈ Sn ∪̇ Tn ∪̇ T +
n , set

G[m′]
α :=

⋂

H�G,H�Gα

(H +m′G);

write x ≡[m′]
m,α y iff x− y ∈ G

[m′]
α +mG.

A separate notation for x− y ∈ G
[m′]
α is not needed, since G

[m′]
α = G

[m′]
α +m′G.

Finally, in Lqe we will need a few unary predicates on the auxiliary sorts: one

saying whether the group G/Gα is discrete, and some predicates specifying the
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cardinalities of certain quotients of two groups of the form Gα + pG or G
[ps]
α + pG.

Since pG is contained in the denominator of those quotients, they are Fp vector

spaces, and specifying the cardinality is equivalent to specifying the dimension

over Fp.

Here is the complete definition of Lqe:

Definition 1.5. The language Lqe consists of the following:

• The main sort G with the constant 0, the binary function +, and the unary

function −.

• For each p ∈ P, the auxiliary sorts Sp, Tp and T +
p from Definition 1.1.

• For each p, p′ ∈ P: binary relations “α ≤ α′” on (Sp ∪̇Tp ∪̇ T +
p )× (Sp′ ∪̇Tp′ ∪̇T +

p′ ),

defined by Gα ⊆ Gα′ . (For each p, p′, these are nine relations.)

• Predicates for the relations x1 �α x2 + kα from Definition 1.3, where � ∈ {=, <,
≡m}, k ∈ Z, m ∈ N, and where α may be from any of the sorts Sp, Tp and T +

p .

(These are ternary relations on G×G× Sp, G×G× Tp, and G×G× T +
p .)

• For each p ∈ P and each m,m′ ∈ N, the ternary relation x ≡[m′]
m,α y on G×G×Sp.

• For each p ∈ P, a predicate discr(α) on Sp which holds iff G/Gα is discrete.

• For each p ∈ P, each s ∈ N, and each � ∈ N0, two predicates on Sp defining

the sets

{α ∈ Sp | dimFp(G
[ps]
α + pG)/(G[ps+1]

α + pG) = �} and

{α ∈ Sp | dimFp(G
[ps]
α + pG)/(Gα + pG) = �}.

Notation 1.6. We writeM := {G} for the main sort andA := {Sp, Tp, T +
p | p ∈ P}

for the collection of auxiliary sorts. By abuse of notation, we will also write A for

the union of the auxiliary sorts. We will write that a formula is “M-qf” if it does

not contain any quantifier running over a main sort variable.

The usual predicates< and≡m onG areM-qf Lqe-definable: they are equivalent

to <α0 and ≡m,α0 , where α0 is the minimal element of, say, S2 (i.e. α0 = s2(0)).

The canonical map Tp → T +
p , α �→ α+ is easily M-qf definable from the pre-

order on Tp ∪̇ T +
p using Remark 1.2. We will later see M-qf definability of the

canonical maps sp, tp (Lemma 2.8) and of the analogues on Tp and T +
p of the dis-

creteness and dimension predicates (Lemmas 2.11 and 2.10). Moreover, Lemmas

2.2 and 2.3 will show how to get along without having Sn, Tn, T +
n , sn and tn for

arbitrary n.

Note that although Tp and T +
p are in definable bijection, identifying them would

make the language pretty messy, in particular because the preorder on
⋃̇

p(Sp ∪̇ Tp)
is not enough to define the preorder on the whole of A in an M-qf way.

As announced, our main result is “quantifier elimination relative to the auxiliary

sorts”, which is more than just elimination of main sort quantifiers. Now let us make

this precise; we first need a definition.
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Definition 1.7. Suppose that L is any language, T is an L-theory, M ∪̇ A is a

partition of the sorts of L, and φ(x̄, η̄) is an L-formula, where x̄ are M-variables

and η̄ are A-variables. We say that φ(x̄, η̄) is in family union form if it is of the

form

φ(x̄, η̄) =
k∨

i=1

∃ θ̄(ξi(η̄, θ̄) ∧ ψi(x̄, θ̄)),

where θ̄ are A-variables, the formulas ξi(η̄, θ̄) live purely in the sortsA, each ψi(x̄, θ̄)

is a conjunction of literals (i.e. of atoms and negated atoms), and for any model

M |= T and any β̄ in the auxiliary sort ofM corresponding to η̄, the L(M)-formulas

{ξi(β̄, ᾱ) ∧ ψi(x̄, ᾱ) | 1 ≤ i ≤ k, ᾱ ∈ A(M)} are pairwise inconsistent.

In other words, the set defined by φ is the union of a collection of disjoint sets

of a simple form, and this collection consists of finitely many definable families.

Theorem 1.8. In the theory of ordered abelian groups, each Lqe-formula is equiv-

alent to an Lqe-formula in family union form.

Remark 1.9. In Lqe, the formulas ψi(x̄, θ̄) appearing in the family union form

are very simple. Without loss of generality, each atom involves the main sort, i.e.

it is of the form t(x̄) �θν t′(x̄) + kθν where t(x̄), t′(x̄) are Z-linear combinations,

� ∈ {=, <,≡m,≡[m′]
m }, θν is one of the entries of θ̄, k ∈ Z, and m,m′ ∈ N (where

k = 0 if � is ≡[m′]
m ). Moreover, “=”-literals can be expressed using “<” and “>”

instead. Now the inequalities of ψi define a convex polyhedron, and the remaining

literals (≡m, 	≡m,≡[m′]
m , 	≡[m′]

m ) are “congruence conditions” in the sense that each

of them defines a set which consists of entire cosets of mG (possibly for several

differentm ∈ N). From this point of view, such sets are very similar to sets definable

in LPres by a conjunction of literals (which are also intersections of polyhedra with

congruence conditions).

1.3. Definable functions are piecewise linear

Using the above quantifier elimination theorem, it is easy to prove that definable

functions from Gn to G are piecewise linear. More precisely:

Corollary 1.10. For any function f :Gn → G which is Loag-definable with param-

eters from a set B, there exists a partition of Gn into finitely many B-definable sets

such that on each such set A, f is linear : there exist r1, . . . , rn, s ∈ Z with s 	= 0

and b ∈ dcl(B) such that for any ā ∈ A, we have f(a1, . . . , an) =
1
s (
∑

i riai + b).

Let us prove this right away, since it illustrates nicely how Theorem 1.8 can be

applied.

Proof. Let φ(x̄, y) be an Lqe(B)-formula in family union form defining the graph

of f , let ā ∈ Gn be a tuple, set c := f(ā), and consider φ(ā, y) ∈ Lqe(B ∪ ā),
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which defines the single element set {c}. (We do not write the parameters from B

explicitly.) Using a case distinction, we may assume that the family union form of

φ(ā, y) consists of a single family:

φ(ā, y) = ∃ θ̄(ξ(θ̄) ∧ ψ(ā, y, θ̄)).

Let β̄ be a tuple of A such that G |= ξ(β̄) ∧ ψ(ā, c, β̄). (In fact, such a β̄ is unique

since by definition of the family union form, for β̄ 	= β̄′, the formulas ψ(ā, y, β̄) and

ψ(ā, y, β̄′) are inconsistent.)

As in Remark 1.9, we may assume that ψ(ā, y, β̄) uses no “=”. Moreover, we

may choose an m0 ∈ N such that all congruence conditions of ψ(ā, y, β̄) together

define a union of cosets of m0G.

Using further case distinctions (which are definable in ā), we can assume: all

literals of ψ(ā, y, β̄) involve y and among these literals, there is at most one lower

and one upper bound on y.

There has to be a lower bound; otherwise, for d ∈ G with d > 0, the element

c −m0d would also satisfy ψ(ā, y, β̄). We may assume that the lower bound is of

the form ry �α t(ā) + kα, where � ∈ {>,≥}, α ∈ A ∩ dcl(B ∪ β̄), and where t

is a main sort term, i.e. a Z-linear combination of entries of ā plus an element of

dcl(B). If Gα � {0}, then again c−m0d satisfies ψ(ā, y, β̄) if we take d ∈ Gα, d > 0;

hence Gα = {0}. In particular, kα can be seen as an element of G (and not just

as a notation). From this point of view, we have kα ∈ dcl(∅), so without loss of

generality, the lower bound is of the form ry �α t(ā).

Since c is unique satisfying ψ(ā, y, β̄), it must be the minimal element satisfy-

ing ry �α t(ā) and the congruence conditions. Such a minimum can only exist if

Gα = {0}.
If G is dense, then the only possible candidate for such a minimum is the lower

bound itself, since if c > t(ā) satisfies the congruence condition, then by choosing

d ∈ G, d > 0 small enough, we find an element c −m0d still satisfying the lower

bound and the congruence condition; thus ψ is equivalent to ry = t(ā) and we

are done. If G is discrete, then we do a case distinction on the difference d :=

rc − t(ā). This difference can be at most rm0 + 1 (otherwise c − m0 would also

satisfy ψ(ā, y, β̄)), so there are only finitely many cases. Fixing d is a definable

condition on ā and for fixed d, ψ is equivalent to rc = t(ā) + d, which again is

linear.

1.4. A language with good syntactic properties

For the usual quantifier elimination, it suffices to prove that the quantifier of

∃xψ(x) can be eliminated when ψ(x) is quantifier-free. This does not work for

relative quantifier elimination: neither if we only try to get rid of M-quantifiers

(then ψ can contain A-quantifiers, which can make it pretty complicated), nor if

we want to get a formula in family union form (in that case, the main difficulty

turns out to be that it is not clear whether formulas in family union form are closed
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under negation). The following general result allows us to do such a reasoning any-

way under some syntactic assumptions about the language.

Proposition 1.11. Let L be a language and let M∪̇A be a partition of the sorts

of L. Suppose that the only symbols in L connecting M and A are functions from

(products of ) M-sorts to A-sorts. Let T be an L-theory.

Consider a formula of the form ∃xψ(x, ȳ, η̄) where x, ȳ are M-variables, η̄ are

A-variables and ψ is quantifier-free. Suppose that modulo T, any such formula is

equivalent to a formula without M-quantifiers.

Then modulo T, any L-formula is equivalent to an L-formula in family union

form.

Note that the proposition does not require us to bring ∃xψ(x, ȳ, η̄) into family

union form; it is enough to find an equivalent formula without M-quantifiers.

To be able to apply this result to ordered abelian groups, we introduce a second

language Lsyn which has the required property: all Lqe-predicates connecting M
and A will be replaced by some predicates on M and some functions from M to

A. Let us start by explaining the idea of how this can be done; a complete proof

that Lsyn is as strong as Lqe will be given in Sec. 2.5.

The Lqe-predicates we have to get rid of are x1 �η x2 + kη for the various �.
First consider x1 =η x2. Since for fixed x1 and x2, x1 =η x2 holds if and only if η is

larger than a certain bound depending only on x1−x2, we can replace the predicate

x1 =η x2 by the function from G to A which returns this bound. In the case η ∈ Sp,

we already defined exactly this function: it is the canonical map tp :G � Tp; for
η ∈ Tp ∪̇ T +

p , one verifies that tp still works.

A similar idea allows one to express the predicates x1 ≡pr,η x2 using the canon-

ical maps spr (for p ∈ P and r ∈ N). In principle, these maps go to Spr which are

not sorts of Lsyn, but we will see in Lemma 2.2 that Spr and Sp can be identified.

What is missing now is a way to deal with the predicates x1 �α x2 + kα when

k 	= 0 (for � ∈ {=,≡m}) and with x1 ≡[m′]
m,α x2. (The inequalities <α are no

problem.) These predicates will essentially be replaced by their union over all α.

We will see in Sec. 2.4 how the Lqe-predicates can be reconstructed from this.

Here is the complete definition of the language Lsyn:

Definition 1.12. The language Lsyn consists of the following:

• The main sort G with 0, +, −, <, and ≡m (for m ∈ N).
• As in Lqe, the auxiliary sorts Sp, Tp and T +

p with the binary relations “α ≤ α′”
on (Sp ∪̇ Tp ∪̇ T +

p ) × (Sp′ ∪̇ Tp′ ∪̇ T +
p′ ), and on Sp the unary predicates discr(α),

dimFp(G
[ps]
α + pG)/(G

[ps+1]
α + pG) = �, and dimFp(G

[ps]
α + pG)/(Gα + pG) = �.

• For each p ∈ P and each r ∈ N: the canonical maps spr :G� Sp and tp :G� Tp
from Definition 1.1, where Spr is identified with Sp using Lemma 2.2.

• For each k ∈ Z\{0}: a unary predicate “x =• k•” on G defined by: there

exists H � G such that G/H is discrete and the image of x in G/H is k times
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the smallest positive element of G/H ; see Sec. 2.4 for details, in particular for

definability.

• For each m ∈ N and each k ∈ {1, . . . ,m− 1}: a unary predicate “x ≡m,• k•” on

G defined by: there exists H � G such that G/H is discrete and the image of x

in G/H is congruent modulo m to k times the minimal positive element of G/H ;

again see Sec. 2.4 for details.

• For each p ∈ P and each r, s ∈ N with s ≥ r: a unary predicate D
[ps]
pr (x) on G

for: there exists an α ∈ Sp such that x lies in G
[ps]
α + prG, but not in Gα + prG.

In this language, relative quantifier elimination will simply be the conclusion of

Proposition 1.11:

Theorem 1.13. In the theory of ordered abelian groups, each Lsyn-formula is equiv-

alent to an Lsyn-formula in family union form.

We will deduce Theorem 1.8 from this one by translating the M-qf Lsyn-formula

back into Lqe. This will be done at the end of Sec. 2.5.

1.5. Comparison to Gurevich and Schmitt

Theorem 1.13 is very similar to the quantifier elimination results of Gurevich

and Schmitt; here we give a little translation table between our language Lsyn

and the one used in Schmitt’s habilitation thesis [9]. The quantifier elimination

result of [9] (Lemma 4.3, Theorem 4.4) is also described in the introduction of [10]

(Theorem 1.7).

The groups which we denote by Gα (for α ∈ A) are denoted as follows by

Schmitt: An(g) = Gtn(g), Bn(g) = Gtn(g)+, and Fn(g) = Gsn(g) (with different

conventions for Bn(0)). Note that we introduced Gsn(g) first, since it is the family

which is easiest to define in a first order way, whereas Schmitt starts by introducing

An(g) and Bn(g), which are intuitively more natural: they are some kind of “defin-

able approximations” to the largest H � G not containing g, respectively to the

smallest H � G containing g.

Schmitt does not distinguish between the sorts Sn, Tn, and T +
n ; instead, for

each n ∈ N he works with a single sort Spn(G) := (Sn ∪̇ Tn ∪̇ T +
n )/� (the “n-spine

of G”), with predicates for Sn and Tn. (More precisely, Schmitt does not really use

a multi-sorted structure, but this is what his formulation boils down to.)

When eliminating the M-quantifiers of a given formula φ, instead of using sev-

eral sorts Spp(G) for primes p, he uses only one single sort Spn(G) for n ∈ N.
Instead of our dimension predicates, Schmitt has predicates for the Szmielew-

invariants (see Definition on p. 5 of [9]) of G
[n]
α /(Gα + nG), where α ∈ Sn. When

α = sn(g), his notation for this quotient is F ∗
n(g) = En(g)/E

∗
n(g) in [9] and

Γn(g) = Γ2,n(g)/Γ1,n(g) in [10]. At first sight, it seems that the number of Szmielew-

invariants is larger than the number dimensions for which we introduced predicates

(for each α, the set of Szmielew-invariants is parametrized by two natural numbers,
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whereas we consider only two families of dimensions parametrized by a single nat-

ural number), but a little computation shows that many of the Szmielew-invariants

are always equal (and equal to our dimensions).

Finally, on the main sort, Schmitt has slightly different predicates than our

x =• k•, x ≡m,• k and D
[ps]
pr .

2. Details of the Languages

2.1. The families of convex definable subgroups Gα

In Definition 1.1, we introduced the families of convex groups Gα, but we still had

to verify that they are definable in the case α ∈ Sn.

Lemma 2.1. Fix n ∈ N. For a ∈ G, the group Gsn(a) is definable uniformly in a.

Proof. We may assume a /∈ nG. In that case, Gsn(a) consists of those elements

b ∈ G such that a /∈ 〈b〉conv + nG. The group 〈b〉conv is not definable in general,

but we have 〈b〉conv + nG = [0, n|b|] + nG, which is definable; here, |b| denotes the
absolute value of b.

We defined the sorts Sn, Tn and T +
n for arbitrary n, but in our languages, we

only have them for n prime. The following two lemmas will allow us to reduce any

usage of these sorts to the prime cases. In particular, we show that Spr can be

identified with Sp, as required in the definition of Lsyn.

We use the notation “pr‖n” from number theory which means that p is a prime

divisor of n and that pr is the maximal power of p dividing n.

Lemma 2.2. Let n ∈ N.

(1) We have the following equality of sets of convex subgroups of G:

{Gα |α ∈ Sn} =
⋃

p∈P,p |n
{Gα |α ∈ Sp}.

In particular, there is a (unique, definable) bijection Spr → Sp which is com-

patible with α �→ Gα.

(2) For any a ∈ G, we have

Gsn(a) =
⋃

pr‖n
Gspr (a).

In particular, sn(a) � maxpr‖n spr (a).

Proof. We start with (1) “⊇”; more precisely, for m |n, we prove {Gα |α ∈ Sn} ⊇
{Gα |α ∈ Sm}. Consider Gα 	= {0} on the right-hand set and choose a ∈ G\mG
with α = sm(a). Recall that Gα is the largest convex subgroup of G with a /∈
Gα +mG. For any convex subgroup H ∈ G, we have a ∈ H +mG if and only if

a′ := n
ma ∈ H + nG; hence Gα = Gsn(a′).
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Next, we prove (2). The inclusion “⊇” is clear. For “⊆”, we may assume that

a ∈ G\nG. By the Chinese remainder theorem in G/Gsn(a), we have Gsn(a)+nG =⋂
pr‖n(Gsn(a) + prG), so a /∈ Gsn(a) + nG implies a /∈ Gsn(a) + prG for some p |n.

This in turn implies Gsn(a) ⊆ Gspr (a).

Finally, we prove (1) “⊆”. By (2), we have {Gα |α ∈ Sn} ⊆ {Gα |α ∈ ⋃pr‖n
Spr}, so it suffices to do the case where n = pr. Suppose that α = spr(a) for some

a ∈ G\prG and consider the group Gα. Let s ∈ N be maximal with a ∈ Gα + psG;

by assumption s < r. Write a = b+psa′ for b ∈ Gα and a′ ∈ G. Then a′ /∈ Gα+pG,

since otherwise b+psa′ ∈ Gα+p
s+1G. On the other hand, for any convex subgroup

H strictly larger than Gα, we have b + psa′ = a ∈ H + prG ⊆ H + ps+1G, so

psa′ ∈ H + ps+1G, so a′ ∈ H + pG. Hence Gsp(a′) = Gα.

Lemma 2.3. For any n ∈ N and any a ∈ G, we have

Gtn(a) =
⋃

p∈P,p|n
Gtp(a) and Gtn(a)+ =

⋂

p∈P,p|n
Gtp(a)+.

In particular, tn(a) � maxp∈P,p|n tp(a) and tn(a)+ � minp∈P,p|n(tp(a)+).

Proof. This follows directly from Lemma 2.2(1) and the definitions of Gtn(a) and

Gtn(a)+.

2.2. Congruence conditions and expressing sn and tn in Lqe

In Definition 1.4, we introduced the group G
[n]
α =

⋂
H�G,H�Gα

(H + nG) for n ∈ N
and α ∈ A. The point is that G

[n]
α might be strictly larger than (

⋂
H�G,H�Gα

H)+

nG, and in general, it is not of the form H0 + nG for any H0 � G (see the

example in Sec. 4.3). We will need these groups to express the Lsyn-function sn
in Lqe without M quantifiers; this will be done at the end of this section.

The following lemma gives an equivalent definition of G
[n]
α (using not all convex

subgroups of G) which in particular shows that it is definable.

Lemma 2.4. Let n ∈ N.

(1) For any H � G, we have

H + nG =
⋂

α′∈Sn
Gα′⊇H

(Gα′ + nG).

(2) For α ∈ A, we have

G[n]
α =

⋂

α′∈Sn

α′>α

(Gα′ + nG).

Proof. (1) “⊆” is clear, so suppose now a /∈ H + nG. Set α′ = sn(a). Then by

definition a /∈ Gα′ + nG and H ⊆ Gα′ .
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(2) Again, “⊆” is clear. By applying (1) to the groups H + nG appearing in the

definition of G
[n]
α , we obtain that G

[n]
α is the intersection of groups Gα′ + nG for

some α′ ∈ Sn. Since Gα � H ⊆ Gα′ , these α′ are exactly those satisfying α′ > α.

The relations≡m,α and≡[n]
m,α have a lot of similar basic properties. The following

three lemmas list those which we will need; we formulate them in terms of the groups

Gα +mG and G
[n]
α +mG.

Lemma 2.5. For α ∈ A and m,n ∈ N, we have

G[n]
α +mG = G[n]

α + gcd(m,n)G.

In particular, in Lqe we only need those predicates ≡[n]
m,α with m |n.

Proof. Since nG ⊆ G
[n]
α , the left-hand side contains nG+mG = gcd(m,n)G.

Lemma 2.6. For k ∈ Z, m, n ∈ N, and α ∈ A, we have:

k(Gα +mG) = kG ∩ (Gα + kmG),

k(G[n]
α +mG) = kG ∩ (G[kn]

α + kmG).

Proof. Straightforward, using that the convexity of Gα implies kGα = kG ∩ Gα

and using the definition of G
[n]
α to prove kG

[n]
α = kG ∩G[kn]

α .

Lemma 2.7. Suppose that m = m1 ·m2, n = n1 ·n2 ∈ N with m1,m2 coprime and

n1, n2 coprime, and suppose that α ∈ A. Then we have:

Gα +mG = (Gα +m1G) ∩ (Gα +m2G),

G[n]
α +mG = (G[n]

α +m1G) ∩ (G[n]
α +m2G),

G[n]
α +mG = (G[n1]

α +mG) ∩ (G[n2]
α +mG).

Proof. The first two equations are simply the Chinese remainder theorem in the

groups G/Gα and G/G
[n]
α , respectively. The third one also follows directly from the

Chinese remainder theorem, but since this is slightly more subtle, let us write down

the details. “⊆” is clear. For “⊇”, suppose that a is an element of the right-hand

side, i.e. there are elements bi ∈ mG, cα′,i ∈ Gα′ and dα′,i ∈ G such that for i = 1, 2

and for all α′ > α we have

a = bi + cα′,i + nidα′,i.

Find x1, x2 ∈ Z with x1n1 + x2n2 = 1. Then

a = x1n1(b2 + cα′,2 + n2dα′,2) + x2n2(b1 + cα′,1 + n1dα′,1)

= x1n1b2 + x2n2b1︸ ︷︷ ︸
∈mG

+ x1n1cα′,2 + x2n2cα′,1︸ ︷︷ ︸
∈Gα′

+n1n2(x1dα′,2 + x2dα′,1)︸ ︷︷ ︸
∈nG

,

i.e. a ∈ G
[n]
α +mG.
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Let us end this section by relating the Lsyn-maps sn and tn with the Lqe-

predicates ≡n,α and =α.

Lemma 2.8. For n ∈ N, a ∈ G, α ∈ A and β ∈ Sn ∪̇ Tn, we have the follow-

ing equivalences, where for
(1)
=⇒, we additionally need a /∈ nG, and for

(3)
=⇒, we

additionally need a 	= 0.

sn(a) ≥ α
(1)

⇐⇒( ) a 	≡n,α 0, tn(a) ≥ β
(3)

⇐⇒( ) a 	=β 0,

sn(a) ≤ α
(2)⇐⇒ a ≡[n]

n,α 0, tn(a) ≤ β
(4)⇐⇒ a =β+ 0.

Proof. (1) For any H � G, we have the equivalence Gsn(a) ⊇ H ⇔ a /∈ H + nG,

where for “⇒”, we additionally assume a /∈ nG. Set H := Gα.

(2) If a ∈ nG, then both sides are true anyway. Otherwise, (2) follows from (1) using

that the right-hand side of (2) is equivalent to a ≡n,α′ 0 for all α′ > α,α′ ∈ Sn by

Lemma 2.4(2).

(3) If H � G is a union of groups of the form Gα for α ∈ Sn, then we have the

equivalence Gtn(a) ⊇ H ⇔ a /∈ H , where for “⇒”, we additionally assume a 	= 0.

Set H := Gβ .

(4) Again, for a = 0 both sides are true anyway and for a 	= 0, the statement follows

from (3).

2.3. More dimensions of Fp-vector spaces

In the definition of Lqe, we added predicates for the dimension as Fp-vector spaces

of certain quotients of groups of the form Gα + pG or G
[ps]
α + pG; in particular,

we required α ∈ Sp. The following lemma shows that this is enough to get the

dimension of arbitrary quotients of two groups of this type, and for any α ∈ A.

Moreover, we also want to consider the quotient of G by such a group. To simplify

formulating the lemma, we temporarily introduce the following notation.

Notation 2.9. Set G
[p∞]
α := Gα and G∞ := G.

Note that all groups we are interested in form a long chain: for α, α′ ∈ A with

α < α′, we have

· · · ⊆ G[p∞]
α + pG ⊆ · · · ⊆ G[p2]

α + pG ⊆ G[p]
α + pG ⊆ · · ·

⊆ G
[p∞]
α′ + pG ⊆ · · · · · · ⊆ G∞.

Thus taking a quotient (G
[ps2 ]
α2 + pG)/(G

[ps1 ]
α1 + pG) makes sense iff

α1 < α2 ∨ (α1 � α2 ∧ s1 ≥ s2) (*)

holds.



February 23, 2012 17:39 WSPC/S1793-7442 251-CM 00047

Quantifier Elimination in Ordered Abelian Groups 601

Lemma 2.10. Fix p ∈ P, s1, s2 ∈ N∪{∞}, and � ∈ N0, and fix two auxiliary sorts

A1 and A2. We additionally allow A2 = {∞}. Then the set

{(α1, α2) ∈ A1 ×A2 | (*) holds and dimFp(G
[ps2 ]
α2

+ pG)/(G[ps1 ]
α1

+ pG) = �}

is M-qf definable in Lqe.

Proof. Set Hi := G
[psi ]
αi + pG for i = 1, 2. To obtain definability of the dimension

of H2/H1 (in the above sense), it suffices to find some intermediate groups such

that the dimensions of successive quotients are definable in the same sense; we will

use this method to reduce to dimensions which are given by Lqe-predicates.

We will use Lemma 2.4 several times to show that some groups of the form

Gα + pG or G
[p]
α are equal. By that lemma, such groups are intersections of groups

Gβ + pG for some β ∈ Sp (note that we do not require α ∈ Sp), so we get equality

as soon as the corresponding sets of β are equal.

Suppose first that α1 � α2. If there is no β ∈ Sp with αi � β, then Gαi + pG =

G
[p]
αi by Lemma 2.4(1) and (2), which implies H1 = H2, since Gαi + pG ⊆ Hi ⊆ G

[p]
αi .

Thus we may assume that αi � β for some β ∈ Sp. Moreover, we may assume

s1 > s2. If s1 = ∞, then “dimFp H2/H1 = �” itself is a predicate of Lqe; otherwise

compute the dimension using the chain of groups

H1 ⊆ G
[ps1−1]
β + pG ⊆ G

[ps1−2]
β + pG ⊆ · · · ⊆ H2.

Now it remains to consider the case α1 < α2. Set I := {β ∈ Sp |α1 < β < α2}.
Suppose first that I has cardinality larger than �+1; we claim that this implies

dimFp H2/H1 > �. Choose β0, . . . , β�+1 ∈ I with βj < βj+1. Note that for any

j ≤ � + 1, we have H1 ⊆ Gβj + pG ⊆ H2. Moreover, for j ≤ �, Gβj+1 + pG is

strictly larger than Gβj + pG since any a ∈ G with sp(a) = βj lies in the difference,

so either dimFp(Gβj + pG)/H1 = ∞, which implies dimFp H2/H1 = ∞ > �, or

dimFp(Gβj+1 + pG)/H1 > dimFp(Gβj + pG)/H1. Now the claim follows from the

chain of inequalities

0 ≤ dimFp(Gβ0 + pG)/H1 < dimFp(Gβ1 + pG)/H1 < · · ·
< dimFp(Gβ�+1

+ pG)/H1 ≤ dimFp H2/H1.

Finally, if I = {β1, . . . , βk} with k ≤ � + 1, we consider the following chain of

groups:

H1 ⊆ G[p]
α1

= Gβ1 + pG ⊆ G
[p]
β1

= Gβ2 + pG ⊆ · · ·

⊆ G
[p]
βk

= Gα2 + pG ⊆ H2.

The equalities in this chain follow from Lemma 2.4: each of the involved groups is

an intersection of groups of the form Gα for some α ∈ Sp and for each “=” sign,

the set of α is the same on the left-hand side and on the right-hand side.
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We have already seen above that for any �′ ∈ N,

dimFp(G
[p]
α1
/H1) = �′ and dimFp(H2/(Gα2 + pG)) = �′ (+)

are definable conditions. Moreover, in Lqe we have predicates defining

dimFp(G
[p]
βj
/(Gβj + pG)) = �′ (++)

for each j ≤ k. Since dimFp(H2/H1) is the sum of the two dimensions appearing

in (+) and the k dimensions appearing in (++), “dimFp(H2/H1) = �” can be

expressed as a boolean combination of (+) and (++) with �′ ≤ �.

2.4. The predicates x =• k•, x ≡m,• k• and D
[ps]
pr (x)

The Lsyn-predicates x =• k• and x ≡m,• k• were defined using quantification over

all convex subgroups H of G such that G/H is discrete. The following lemma shows

that this is definable.

Lemma 2.11. If H � G is any convex subgroup such that G/H is discrete, then

in each of the sorts Sn, Tn, n ≥ 2, there exists an α with H = Gα. In particular :

(1) x =• k• and x ≡m,• k• are definable in Loag.

(2) In any auxiliary sort, the set of α such that G/Gα is discrete is M-qf definable

(both, in Lqe and in Lsyn).

Proof. Assume that G/H is discrete and choose any a ∈ G in the preimage of

the smallest positive element of G/H . Then a /∈ H + nG for any n ≥ 2, but

a ∈ H ′ ⊆ H ′ + nG for any convex H ′ � H ; hence H = Gsn(a). Moreover, since

a ∈ H ′\H , we also have H = Gtn(a).

(1) x =• k• iff ∃ (α ∈ S2)(discr(α) ∧ x =α kα); and similarly for ≡m,•.
(2) G/Gα is discrete iff ∃ (β ∈ S2)(β � α ∧ discr(β)).

The following lemma shows the connection between the Lsyn-predicates x =• k•,

x ≡m,• k• and D
[ps]
pr and the corresponding Lqe-predicates. Each of these Lsyn-

predicates defines a union of some setsXα given by the corresponding Lqe-predicate,

where α runs through a certain auxiliary set Ξ. The point is that if x lies in this

union, then α can be recovered from x by a definable function form the union to

Ξ. This will allow us to define the sets Xα using the corresponding Lsyn-predicate.

Lemma 2.12. For x ∈ G we have the following implications (1a), (2a), (3a), which

in particular imply the equivalences (1b), (2b), (3b).

(1) For k ∈ Z\{0} and α ∈ A:

discr(α) ∧ x =α kα ⇒ α � t2(x), (1a)

x =• k• ⇔ discr(t2(x)) ∧ x =t2(x) kt2(x). (1b)
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(2) For m ∈ N, k ∈ {1, . . . ,m− 1} and α ∈ A:

discr(α) ∧ x ≡m,α kα ⇒ α� sm(x), (2a)

x ≡m,• k• ⇔ discr(sm(x)) ∧ x ≡m,sm(x) ksm(x). (2b)

(3) For p ∈ P, r, s ∈ N with s ≥ r and α ∈ Spr :

x ≡[ps]
pr,α 0 ∧ x 	≡pr,α 0 ⇒ α = spr (x), (3a)

D
[ps]
pr (x) ⇔ x ≡[ps]

pr,spr (x)
0 ∧ x 	≡pr,spr (x) 0. (3b)

Remark 2.13. The map t2 in (1) can of course be replaced by any other map

tp, p ∈ P.

Proof of Lemma 2.12. In (1a) and (2a), discreteness of G/Gα and the choice of

k ensures that the left-hand side implies x /∈ Gα (and even x /∈ Gα+mG in the case

of (2a)). On the other hand, we have x ∈ H for any convex group H � Gα. This

implies the corresponding right-hand side. For (3a), use x ≡[ps]
pr,α 0 ⇒ x ≡[pr]

pr,α 0 and

Lemma 2.8.

In (Xb), x satisfies the left-hand side if and only there is an α (in T2, Sm or

Spr , respectively) such that x satisfies the left-hand side of (Xa). The right-hand

side of (Xa) says how this α can be obtained from x. Substituting this yields the

right-hand side of (Xb).

2.5. Translation between Lsyn and Lqe

When introducing the language Lsyn, we claimed that it is strong enough to express

Lqe without M-quantifiers. On the other hand, we want to deduce quantifier elim-

ination in Lqe from quantifier elimination in Lsyn, hence we also need (a version

of) the other direction. This is what we prove in this section. At the end of the

section, the translation Lsyn � Lqe will be applied to deduce Theorem 1.8 from

Theorem 1.13.

Proposition 2.14. Any Lqe-predicate can be expressed in Lsyn without M-

quantifiers.

Remark 2.15. Since any function symbol in Lqe is also contained in Lsyn, this

implies that any M-qf Lqe-formula is equivalent to an M-qf Lsyn-formula.

Proof of Proposition 2.14. The predicates of Lqe\Lsyn are the following:

• x �η y + kη where � ∈ {=, <,≡m}, k ∈ Z, m ∈ N, and where η may be from any

of the sorts of A;

• x ≡[n]
m,η y for m,n ∈ N and where η is from one of the sorts Sp.

Concerning x �η y+ kη, if k 	= 0, then we may assume that G/Gη is discrete, since

otherwise by definition kη = 0. (Recall that this discreteness is M-qf definable on

any auxiliary sort by Lemma 2.11.)
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We now translate all these predicates into Lsyn, starting with the easier ones so

that we can use them for the more difficult ones.

First consider x ≡m,η y (for η from any A-sort). By Lemma 2.8(1), this is

equivalent to sm(x − y) < η ∨ x ≡m y, which is equivalent to
∧

pr‖m spr (x − y) <

η ∨ x ≡m y by Lemma 2.2.

Next consider x =η y. If η ∈ Sp ∪̇ Tp, then by Lemma 2.8(3) this is equivalent to

tp(x−y) < η∨x = y. If η ∈ T +
p , then it is equivalent to ∀ (θ ∈ Sp)(θ ≥ η → x =θ y).

Now consider x =η y + kη for k 	= 0. (Recall that we assume now that G/Gη is

discrete.) Then Lemma 2.12(1a) implies η � t2(x− y), and under this assumption,

Lemma 2.12(1b) implies that x =η y+kη is equivalent to x− y =• k•. Thus (under
the assumption discr(η)):

x =η y + kη ⇔ η = t2(x− y) ∧ x− y =• k•.

Exactly the same argument yields, for m ∈ N and k ∈ {1, . . . ,m− 1} (which we

may assume):

x ≡m,η y + kη ⇔ η = sm(x− y) ∧ x− y ≡m,• k•.

Concerning x ≡[n]
m,η y, we may assume that m and n are prime powers by

Lemma 2.7, and we may assume m |n by Lemma 2.5; so m = pr and n = ps for

some p ∈ P and s ≥ r. Moreover, it suffices to define x ≡[ps]
pr ,η y ∧ ¬x ≡pr,η y; this

again works in the same way as before with Lemma 2.12, yielding:

x ≡[ps]
pr ,η y ⇔ x ≡pr,η y ∨ (η = spr(x − y) ∧D[ps]

pr (x− y)).

Finally, consider x <η y+kη. If k = 0, then this is equivalent to x < y∧x 	=η y.

If k is positive, then we take the disjunction of this with x =η y + iη for 0 ≤
i < k; if k is negative, then we take the conjunction of this with x 	=η y + iη for

k ≤ i < 0.

Proposition 2.16. Every quantifier free Lsyn-formula is equivalent to an Lqe-

formula in family union form.

Proof. Let φ(x̄, η̄) be a given quantifier free Lsyn-formula; we have to get rid of

the following kind of atoms:

(1) t1 � t2 where � ∈ {<,>,≡m} and t1, t2 are main sort terms (and m ∈ N);
(2) t =• k•, t ≡m,• k• and D

[ps]
pr (t), where t is a main sort term (and p ∈ P,

m, r, s ∈ N);
(3) atoms involving spr(t) or tp(t), where t is a main sort term (and p ∈ P, r ∈ N).

An atom t1 � t2 of type (1) can be replaced by t1 �s2(0) t2. To get rid of the atoms

of type (2), apply Lemma 2.12(1b), (2b), (3b). It remains to get rid of the functions

sm and tp (for m ∈ N, p ∈ P) (including the ones introduced in the previous

replacements) and bring the formula into family union form.
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Let τi(x̄) be the terms of φ which are of the form sm(t(x̄)) or tp(t(x̄)), where

m ∈ N, p ∈ P, and where t(x̄) is a main sort term. We replace φ by the equivalent

formula

∃ θ̄
((∧

i

τi(x̄) = θi

)
∧ φ

[
θi

τi(x̄)

]

i

)
.

(Here, the notation φ[ rs ] for terms r and s means: the formula obtained from φ by

replacing all occurrences of s by r.) The atoms τi(x̄) = θi can be expressed in Lqe

using Lemma 2.8: sm(t(x̄)) = θ is equivalent to

(t(x̄) 	≡m,θ 0 ∧ t(x̄) ≡[m]
m,θ 0)∨

(θ is the minimal element of Sm ∧ t(x̄) ≡m,θ 0)

(the second line treats the case t(x̄) ≡m 0), and tp(t(x̄)) = θ is equivalent to

(t(x̄) 	=θ 0 ∧ t(x̄) =θ+ 0)∨
(θ is the minimal element of Tp ∧ t(x̄) = 0),

where t(x̄) =θ+ 0 can be written in family union form as

∃ (θ′ ∈ T +
p )(θ′ = θ+ ∧ t(x̄) =θ′ 0).

(Here, we use M-qf definability of θ �→ θ+.)

Now our formula φ(x̄, η̄) is purely in the language Lqe and it is of the form

∃ θ̄ ψ(x̄, η̄, θ̄), where θ̄ is auxiliary and ψ is a boolean combination of quantifier free

parts and of parts living purely in A. Moreover, by the way in which the quantifier

∃ θ̄ has been introduced, θ̄ 	= θ̄′ implies ¬∃ (x̄, η̄)(ψ(x̄, η̄, ᾱ) ∧ ψ(x̄, η̄, ᾱ′)). Thus to

turn φ(x̄, η̄) into family union form, it remains to bring ψ into a disjunctive nor-

mal form where the conjunctive clauses are pairwise inconsistent, and then pull

the disjunction to the outside (here, we treat the A-parts of ψ with quantifiers as

atoms). This kind of disjunctive normal form can be obtained by using conjunc-

tive clauses each of which contains all atoms occurring in ψ, either positively or

negatively.

Now it is easy to deduce Lqe quantifier elimination from Lsyn quantifier

elimination:

Proof of Theorem 1.8 from Theorem 1.13. Any Lqe-formula is equivalent to

an Lsyn-formula. Using Theorem 1.13, we can turn this into an Lsyn-formula in

family union form

φ(x̄, η̄) =

k∨

i=1

∃ θ̄(ξi(η̄, θ̄) ∧ ψi(x̄, θ̄)).

Since Lsyn and Lqe agree on the auxiliary sorts, the formulas ξi are also Lqe-

formulas. By Proposition 2.16, we may replace each ψi by an Lqe-formula in family

union form. By pulling the quantifiers and disjunctions of these ψi to the outside,

we obtain a formula which is in family union form as a whole.



February 23, 2012 17:39 WSPC/S1793-7442 251-CM 00047

606 R. Cluckers & I. Halupczok

3. The Main Proofs

3.1. Partial quantifier elimination in general

In this section, we prove Proposition 1.11 which gives a general method to eliminate

main sort quantifiers when the only connection between the main sorts and the

auxiliary sorts are functions from M and A. The proof goes in two steps; we

formulate the first one as a separate lemma.

Lemma 3.1. Let L be a language, let M∪̇A be a partition of the sorts of L, and

suppose that the only symbols in L connecting M and A are functions from (products

of ) M sorts to A sorts. Then any formula without M-quantifiers is equivalent to

a formula in family union form (in any theory).

Proof. Let φ be an M-qf formula. We do an induction over the number of occur-

rences of main variables in φ. If no main variable appears in φ, there is nothing to

do. Otherwise, choose a specific occurrence of a main variable x in φ. We distinguish

the following two cases:

(1) The atom a containing x is a relation on M (applied to some terms living

completely in M).

(2) x appears inside a term t with range in A.

In case (1), every other variable appearing in the atom a is also a main sort

variable, so a does not depend on any of the quantified variables of φ, and we can

“do a case distinction on a”: φ is equivalent to

(a ∧ φ[�a ]) ∨ (¬a ∧ φ[⊥a ]).
(Here, the notation φ[ ra ] means: the formula obtained from φ by replacing all occur-

rences of the atom a by r, � means true and ⊥ means false.) Apply the induction

hypothesis to φ[�a ] and φ[
⊥
a ]. After pulling the “a∧ ” and “¬a∧ ” inside, the result

is in family union form.

In case (2), consider the smallest subterm t′ of t containing x whose range lies

in A. Then the outermost function of t′ is a function from a product of some M-

sorts to A, so t′ depends only on M-variables and in particular not on quantified

variables. Thus φ is equivalent to

∃ ξ(t′ = ξ ∧ φ[ ξt′ ]).
Applying induction to φ[ ξt′ ] yields a formula in family union form.

Note that this lemma in particular implies that the negation of a formula in

family union form can again be brought into family union form.

Now let us get to the main proof of this section:

Proof of Proposition 1.11. Let φ be a formula whose M-quantifiers we want

to eliminate. We use induction over the structure of φ, i.e. we assume that the



February 23, 2012 17:39 WSPC/S1793-7442 251-CM 00047

Quantifier Elimination in Ordered Abelian Groups 607

subformulas are already in family union form. By Lemma 3.1, it suffices to bring φ

into a form without M-quantifiers.

If φ is an atom, then there is nothing to do, and neither if it is of the form ¬ψ
or ψ1 ∧ ψ2, so assume φ = ∃xψ(x), where x is a main sort variable and ψ(x) is in

family union form, i.e.

φ(ȳ, η̄) = ∃x
k∨

i=1

∃ θ̄(ξi(η̄, θ̄) ∧ ψi(x, ȳ, θ̄)).

Rewrite this as

k∨

i=1

∃ θ̄(ξi(η̄, θ̄) ∧ ∃xψi(x, ȳ, θ̄)).

Since ψi(x, ȳ, θ̄) is quantifier-free, the hypothesis of the proposition applies to

∃xψi(x, ȳ, θ̄), and we get a formula without main sort quantifiers.

3.2. Removing the quantifier in X + G′

At one point in the main proof of quantifier elimination, we will have a subgroup

G′ ⊆ G and a set X ⊆ G defined by a quantifier-free formula of a particular form

and we will need to be able to define the set X +G′ without quantifiers. This will
be possible using the following two lemmas which have nothing to do with model

theory.

Lemma 3.2. Suppose we have an abelian group G, a subgroup G′ ⊆ G and a subset

X ⊆ G of the form

X = (H0 + a0)
∖ ν⋃

i=1

(Hi + ai),

where Hi are subgroups of G, ai ∈ G, and where Hi+ai ⊆ H0+a0 for i ∈ {1, . . . , ν}
and Hi + ai ∩ Hj + aj = ∅ for i, j ∈ {1, . . . , ν}, i 	= j. Then for x ∈ G we have

x ∈ X ′ := X +G′ if and only if

x− a0 ∈ H0 +G′ and (1)
∑

{1≤i≤ν|x−ai∈Hi+G′}
((H0 ∩G′) : (Hi ∩G′))−1 < 1. (2)

(Here, we use the convention ∞−1 = 0.)

Proof. The condition b ∈ X ′ is equivalent to X ∩ (b +G′) 	= ∅. Write

X ∩ (b+G′) = C0

∖ ν⋃

i=1

Ci,

with Ci := (ai+Hi)∩(b+G′). Then Ci is non-empty if and only if b−ai ∈ Hi∩G′,
and if it is non-empty, then it is of the form ci +Hi ∩G′.
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Non-emptiness of C0 is just condition (1) on b in the lemma, so assume now that

C0 indeed is non-empty. The question is now whether the union
⋃ν

i=1 Ci (which is

disjoint) contains all of C0. The sum in condition (2) goes exactly over those i ≥ 1

for which Ci is non-empty, and the summand is the proportion of Ci in C0. Hence⋃ν
i=1 Ci = C0 if and only if the sum is 1. (To make this more formal, count elements

in C0/D, where D is the intersection of all those Hi ∩ G′ which have finite index

in H0 ∩G′.)

The next lemma will be helpful to make condition (2) from the previous lemma

definable.

Lemma 3.3. Suppose that n ∈ N, n ≥ 2 and that q1, . . . , qν are powers of n. Then

there exists an N ∈ N depending only on n and ν such that∑

i=1,...,ν

q−1
i ≥ 1 ⇔

∑

i=1,...,ν

qi<nN

q−1
i ≥ 1.

Proof. Choose N such that ν < N · (n − 1) + 1. Without loss of generality, q1 ≤
· · · ≤ qν . Set sk :=

∑k
i=1 q

−1
i and let dk be the “digit sum of sk in base n”,

i.e. write sk as a finite sum sk =
∑

µ∈Z aµn
µ with aµ ∈ {0, . . . , n − 1} and set

dk :=
∑

µ∈Z aµ. Inductively, one proves dk ≤ k. Now assume that the claim of the

lemma is false. Let � be minimal with s� ≥ 1; in particular, s�−1 < 1. Since we

assume the right-hand sum of the lemma to be less than 1, we have q� ≥ nN and

thus s�−1+n
−N ≥ 1. This implies that if we write s�−1 in base n as above, we have

a−1 = · · · = a−N = n−1 and hence d�−1 ≥ N ·(n−1), contradicting d�−1 ≤ �−1 ≤
ν − 1 < N · (n− 1).

3.3. Actually eliminating the quantifiers

Proof of Theorem 1.13. As announced, we prove Theorem 1.13 using Proposi-

tion 1.11, i.e. we have to show that if φ(x, ȳ, η̄) is a quantifier free Lsyn-formula,

where x and ȳ are M-variables and η̄ are A-variables, then ∃xφ(x, ȳ, η̄) is equiv-

alent to an M-qf Lsyn-formula. Since the language Lqe is more intuitive, we start

by translating φ into an Lqe-formula using Proposition 2.16. The result is in family

union form, i.e. we have to eliminate “∃x” from a formula of the form

∃x
k∨

i=1

∃ θ̄(ξi(η̄, θ̄) ∧ ψi(x, ȳ, θ̄)).

By pulling this quantifier inside, it suffices to eliminate the quantifier of

∃xψi(x, ȳ, θ̄). Moreover, we can simplify the atoms of ψi, so that we are left to

eliminate the quantifier of ∃xφ(x, ȳ, η̄) when φ(x, ȳ, η̄) of the form

φ(x, ȳ, η̄) =

k∧

i=1

rix (�i)ηi
yi + kηi (*)

with ri ∈ N, �i ∈ {=, 	=, <,>,≤,≥,≡m, 	≡m,≡[n]
m , 	≡[n]

m }, k ∈ Z.
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We will show that ∃xφ(x, ȳ, η̄) is equivalent to an M-qf formula in the lan-

guage Lsyn ∪ Lqe; this is enough, since afterwards, we can apply Proposition 2.14

to translate the Lqe-predicates into Lsyn.

To simplify the exposition, let us choose parameters b̄ ∈ M, ᾱ ∈ A and consider

φ(x, b̄, ᾱ); we will denote this by φ(x) for short. Our strategy is to successively

simplify φ(x); of course, the whole point is that this is done in a way depending

definably on the parameters b̄ and ᾱ.

If x �α b+kα is a literal of φ, we will write b∗ for a representative in G of b+kα,

so that x �α b+ kα is equivalent to x �α b∗; if k = 0 or G/Gα is dense, we set

b∗ := b. We will sometimes use x �α b∗ as a short hand notation for x �α b + kα.

Of course, we are not allowed to use b∗ in the resulting quantifier-free formula.

However, if we have an element α′ ≥ α, then a condition of the form t �′α′ b∗ can

easily be expressed using b and k instead of b∗:

t �′α′ b∗ ⇔ (α′ = α ∧ t �′α b+ kα) ∨ (α′ > α ∧ t �′α′ b);

we will use this without further mentioning.

Now let us get to work. First we get rid of the factors ri in (*). To this end,

note that in each literal, multiplying both sides by any nonzero integer r does not

change the set defined by that literal if additionally we do the following:

• in literals with ≡m, 	≡m, ≡[n]
m , 	≡[n]

m , we also multiply m (and n) by r (this uses

Lemma 2.6);

• we turn inequalities around if r < 0.

In this way, we can make all ri equal to one single r. After that, we replace rx by

a new variable x′ and replace “(∃x) . . .” by “(∃x′)(x′ ≡r 0 ∧ . . .)”.
The remainder of the proof will consist of two big parts: in the first one, we get

rid of the inequalities (	=, <,>,≤,≥); in the second one, we treat the congruence

conditions (≡m, 	≡m,≡[n]
m , 	≡[n]

m ).

Part 1: Treating inequalities

Our goal in this part is to reduce the quantifier elimination problem to formulas

φ(x) of the form

φ′(x) or x =δ b∗ ∧ φ′(x), (**)

where the atoms of φ′(x) use only ≡m and ≡[n]
m .

We start by replacing literals of the form x =α b∗ and x 	=α b∗ by x ≥α b∗ ∧ x ≤α

b∗ and x >α b∗ ∨x <α b∗, respectively. In the second case, we treat each disjunct

separately. (Replacing x =α b∗ by inequalities might seem strange at first sight,

since later, we want to get back to equalities. However, recall that after all, x =α b∗
defines an interval, at least if α 	� s2(0).)

Next, reduce to the case where φ(x) contains at most one lower and one upper

bound: if φ = φ′′ ∧ψ1∧ψ2, where ψ1 and ψ2 are two bounds on the same side, then
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∃xφ is equivalent to (∃x(φ′′ ∧ ψ1)) ∧ (∃x(φ′′ ∧ ψ2)). Thus φ(x) is now of the form

φ(x) = c∗ �α x �′
α′ c′∗ ∧ φ′(x), (***)

where �,�′ ∈ {≤, <, no condition} and where the atoms of φ′(x) use only ≡m or

≡[n]
m . Such an atom defines a union of cosets of mG, hence if we let m0 be the least

common multiple of all occurring m, then φ′(G) is a union of cosets of m0G. We

fix this m0 for the remainder of the proof.

If φ(x) has no bounds, then it is already of the form (**). If φ(x) has only one

bound, say, a lower one, then removing that bound does not change the truth of

∃xφ(x). Indeed, if an element a ∈ G satisfies φ′(x) but does not satisfy c∗ �α x,

all elements of a +m0G satisfy φ′(x) and in that set, we can find one which also

satisfies the bound. Hence for the remainder of part 1, we assume that φ(x) has

two bounds.

If α ≥ α′ in (***), we may assume that c∗ �α c
′
∗, since otherwise φ(x) defines

the empty set. Similarly, if α′ ≥ α, we may assume that c∗ �′
α′ c′∗.

Let γ be an auxiliary element satisfying γ � max{α, α′, tm0(c∗−c′∗)}. Recall that
c∗ is a representative of c+kα (for some c ∈ G and k ∈ Z), but since tm0(c−c∗) ≤ α,

γ does not depend on the choice of c∗ (and similarly for c′∗). By Lemma 2.3, γ is

definable. (Formally, it is an element of one of finitely many auxiliary sorts; we do

a case distinction on the sort.)

Suppose that α < γ. We claim that then, weakening the lower bound from

c∗ �α x to c∗ ≤γ x does not change the truth value of the formula ∃xφ(x). In
other words, we claim that if there exists an a ∈ G with a =γ c∗ ∧ a �′

α′ c′∗ ∧ φ′(a),
then we can find an a′ satisfying φ(x). If c∗ �α a, there is nothing to do. Otherwise,

we can choose an element a0 ∈ m0Gγ such that c∗ �α a+a0 =: a′. By construction,

a′ satisfies φ′(x) and the lower bound. Concerning the upper bound: if γ = α′, then
a′ =γ c∗ �′

α′ c′∗ implies a′ �′
α′ c′∗. If, on the other hand, γ > α′, then by definition

of γ we have γ = tm0(c∗ − c′∗), hence c∗ 	=γ c′∗ (using γ > s2(0)), and hence

a′ =γ c∗ <γ c
′
∗, which again implies a′ �′

α′ c′∗.
We do the same with the upper bound and thus get a formula of the form

c∗ �γ x �′
γ c

′
∗ ∧ φ′(x),

where γ ≥ tm0(c∗ − c′∗).
Now we distinguish two cases, depending on whether c′∗−c∗ >γ (m0+1)γ or not.

(Recall that if G/Gγ is dense, then by definition this is equivalent to c′∗ − c∗ >γ 0.)

Suppose first that the condition is false. If G/Gγ is dense, then this implies

c∗ =γ c
′
∗, so φ(x) can only be consistent if both inequalities are non-strict, and in

that case, it is equivalent to x =γ c∗ ∧ φ′(x), which is of the form (**). If G/Gγ is

discrete, then c′∗ − c∗ =γ �γ for some � ≤ m0 + 1. Thus φ(x) is equivalent to the

disjunction of finitely many formulas of the form

x =γ c∗ + iγ ∧ φ′(x).
More precisely, i runs from 0 or 1 (depending on �) to � − 1 or � (depending

on �′).
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Now suppose that c′∗ − c∗ >γ (m0 + 1)γ . Then there exists an element d ∈ G

satisfying 0 <γ (m0 + 1)d <γ c
′
∗ − c∗. (If G/Gγ is discrete, then choose for d any

representative of 1γ .) Using this, we will show that ∃xφ(x) is equivalent to

∃x(x =δ c∗ ∧ φ′(x)),

where δ := (tm0(c
′
∗ − c∗))+. (Again, δ is definable by Lemma 2.3.)

It is clear that φ(x) implies x =δ c∗, since c′∗ =δ c∗, so it remains to show that

if there exists an u ∈ c∗ + Gδ satisfying φ′(x), then there exists an u′ ∈ G which

additionally lies between the bounds.

The inequality sm0(u − c∗) ≤ tm0(u − c∗) ≤ tm0(c∗ − c′∗) ≤ γ means that for

any H � G strictly containing Gγ , we have u− c∗ ∈ H +m0G. In particular, since

d 	=γ 0,

u− c∗ ∈ 〈d〉conv +m0G = [0,m0d] +m0G = [d, (m0 + 1)d] +m0G.

Choose u0 ∈ (u− c∗ +m0G)∩ [d, (m0 +1)d] and set u′ := u0 + c∗. Then u′ satisfies
φ′(x) since it differs from u by an element ofm0G, and 0 <γ d ≤ u0 ≤ (m0+1)d <γ

c′∗ − c∗ implies that u′ also satisfies the bounds.

Part 2: Treating congruences

Our formula φ(x) is now of the form

φ′(x) or x =γ c∗ ∧ φ′(x),

where the atoms of φ′(x) are of the form x ≡m,α b∗ or x ≡[n]
m,α b∗. Using Lemma 2.7,

we can assume that each m and each n is a power of a prime, and using Lemma 2.5,

we get rid of all those atoms x ≡[n]
m,α b wherem and n are powers of different primes.

By the Chinese remainder theorem, we can eliminate the quantifier separately for

each of the subformulas of φ′ corresponding to the different primes. In other words,

we may assume that all atoms of φ′ are of the form x ≡pr,α b∗ or x ≡[ps]
pr,α b∗ for one

single prime p which we fix for the remainder of the proof. Moreover, in ≡[ps]
pr ,α we

may assume s ≥ r (again by Lemma 2.5).

From now on, we also fix r to be the maximal exponent of p appearing in the

atoms in the above way (both, in ≡pr,α and in ≡[ps]
pr,α); in particular, φ′(G) consists

of entire cosets of prG.

In general, if φ(x) = φ0(x)∧φ1(x) and H ⊆ G is any subgroup such that φ1(G)

consists of entire cosets ofH , then replacing φ0 by a formula defining φ0(G)+H does

not change the truth of ∃xφ(x); we will apply this enlargement argument several

times. Since φ′(G) is a union of cosets of prG, we can already replace x =γ c∗ by

x ≡pr,γ c∗, i.e. without loss there is no literal x =γ c∗.
Now we prove quantifier elimination by induction on r. If r = 0, then ∃xφ(x)

is equivalent to φ(0). For the induction step, suppose r > 0 and write φ = φ0 ∧ φ1,
where φ0 contains the atoms x ≡m,α b∗, x ≡[n]

m,α b∗ with m = pr and φ1 contains

the atoms with m ≤ pr−1. By the enlargement argument, we are done with the
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induction step if we can show the following:

(a) the set φ0(G) + pr−1G is definable by a formula φ′0 using only atoms of the

form x ≡pr−1,α b∗, x ≡[s]
pr−1,α b∗, with r as given and s ≥ r − 1 arbitrary;

(b) φ′0 depends on the parameters of φ0 in an M-qf definable way.

The atoms x ≡pr,α b∗, x ≡[ps]
pr,α b∗ of φ0 define cosets of groups, and these groups

are totally ordered by inclusion:

· · · ⊆ Gα + prG ⊆ · · · ⊆ G[ps+1]
α + prG ⊆ G[ps]

α + prG ⊆ · · · ⊆ Gα′ + prG ⊆ · · ·

for all α < α′ and all s ≥ r. In particular, any two such cosets H + b∗, H ′ + b′∗ are

either disjoint or contained in one another. Moreover, whether H + b∗ ⊆ H ′ + b′∗ or

not is definable. Using this, we can simplify φ0 such that it has at most one positive

literal, and all negative literals exclude pairwise disjoint sets. Now φ(G) satisfies

the prerequisites of Lemma 3.2: in that lemma, let H0 + a0 be the set defined by

the positive literal of φ0 (or H0 = G, a0 = 0 if there is no positive literal), let

Hi + ai be the sets excluded by the negative literals, and set G′ := pr−1G. (The ai
are the representatives denoted by b∗ before.) To get our desired formula defining

X ′ = φ0(G)+ pr−1G, it remains to verify that conditions (1) and (2) of Lemma 3.2

are M-qf definable, where x only appears in atoms as in (a).

For each i ∈ {0, . . . , ν} we have

Hi = G or Hi = Gα + prG or Hi = G[ps]
α + prG,

so the condition x− ai ∈ Hi + pr−1G is definable by

x = x or x ≡pr−1,α ai or x ≡[ps]
pr−1,α ai.

This settles definability of (1), and it allows us to do a case distinction which fixes

the set the sum (2) runs over. Let I be that set and set qi := ((H0 ∩ pr−1G) :

(Hi ∩ pr−1G)) for i ∈ I. By Lemma 2.6, for i ∈ I ∪ {0} we can write Hi ∩ pr−1G as

pr−1H ′
i with

H ′
i = G or H ′

i = Gα + pG or H ′
i = G[ps−r+1]

α + pG,

so qi = (H ′
0 : H ′

i) is the cardinality of a quotient treated by Lemma 2.10. Thus

each qi is either infinite or a power of p, and the conditions qi = p� (for � ∈ N0)

are M-qf definable. By Lemma 3.3, there exists a bound N such that
∑

i∈I qi < 1

iff
∑

i∈I,qi<pN qi < 1. The latter is equivalent to a finite boolean combination of

conditions of the form qi = p� (for i ∈ I and � < N). Hence, condition (2) is

definable, too, and we are done.

4. Examples

In this section, we give some examples which should help the reader understand the

languages which we define. These examples show that large parts of the languages

is indeed necessary. More detailed examples explicitly concerning Lqe are given in
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[6]; similar motivating examples, but presented from a different point of view are

given in [10].

4.1. Concrete examples illustrating the sort Sn

Set G = Z ⊕ Z with lexicographical order. We determine the sort Sn for n ≥ 2.

For this, we have to go through all elements a ∈ G\nG and find the largest convex

subgroups H = Gsn(a) � G such that H + nG does not contain a. Equivalently, H

is the largest convex subgroup which is disjoint from a+ nG.

Obviously,H only depends on the class of a modulo nG. If a = (0, z) for z /∈ nZ,
then we have H = {(0, 0)} =: G0; if a = (z, z′) for z /∈ nZ and z′ ∈ Z arbitrary,

then H = {0} × Z =: G1. Thus Sn consists of two elements which correspond to

the groups G0 and G1. (For a ∈ nG, by definition we also have Gsn(a) = G0.)

In this example, all sorts Sn are the same. Now consider the group G = Z[15 ]⊕Z
instead. The sorts Sn for n 	= 5r are the same as before; however, the sort S5r now

consists of a single element, since modulo 5rG, any element of G is equivalent to

an element of the form (0, z).

In these examples, the sorts Tn and T +
n do not yield any new nontrivial convex

subgroups of G : Gtn(a) is G0 if a ∈ G1 and G1 otherwise, and Gtn(a)+ is G1 if

a ∈ G1 and G otherwise. To get interesting new convex subgroups, we have to

consider infinite lexicographical products.

4.2. Infinite lexicographical products illustrating Tn and T +
n

Let I be any ordered set, and let G :=
⊕

i∈I Z be the group with lexicographical

order “with significance according to I”. More precisely, for a = (ai)i∈I ∈ G, set

v(a) := max{i ∈ I | ai 	= 0} if a 	= 0 and v(0) := −∞. (This is well-defined, since

only finitely many ai are nonzero.) Now define the order on G by a > 0 iff a 	= 0

and av(a) > 0.

For j ∈ I, let us write gj for the map Z → G sending Z to the jth summand

of G. Now let us determine Sn (for n ≥ 2). For j ∈ I, the largest convex subgroup

not intersecting gj(1) + nG is H<j := {g ∈ G | v(g) < j}, thus we get an injection

I ↪→ Sn. For arbitrary a = (ai)i∈I ∈ G\nG, we do not get more groups: Gsn(a)

is equal to Hj , where j ∈ I is the largest index such that aj /∈ nZ. Thus Sn is

equal to I, possibly enlarged by one element corresponding to the group {0} (since

Gsn(a) = {0} for a ∈ nG). In particular, I can be interpreted in G.

Now consider the sorts Tn and T +
n . The group Gtn(a) is the union of all H<j

not containing a, so it is equal to H<v(a); still nothing new. However, Gtn(a)+ is the

intersection of all H<j containing a, i.e. Gtn(a)+ = H≤v(a) := {g ∈ G | v(g) ≤ v(a)}
which might be a group that we did not have before.

Now modify our example by choosing a subset I ′ ⊆ I and by replacing, for each

j ∈ I ′, the factor Z of G by Q. Then, Sn parametrizes only those groups H<j for

which j ∈ I\I ′. However, elements a ∈ G with v(a) ∈ I ′ can still be used to obtain

elements of Tn and T +
n ; thus now all three sorts can be really different. To give
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an extreme example, take I = R and I ′ = R\Q; then, as ordered sets, we have

Sn
∼= {−∞} ∪̇Q, whereas Tn ∼= T +

n
∼= {−∞} ∪̇ R.

4.3. An example for G[n]
α

In general, the group

H1 := G[n]
α =

⋂

H�G,H�Gα

(H + nG) (*)

is not of the formH0+nG for any H0 � G. Here is an example. We use the notation

from Sec. 4.2. Let I = N, but with reversed order; set G′ :=
⊕

i∈I Z (ordered as

in Sec. 4.2), fix any n ≥ 2, and let G be the subgroup of G′ consisting of those

(ai)i∈I ∈ G′ with
∑

i ai ∈ nZ.
Choose α := sn(0) and define H1 by (*). Then Gα = {0} and the largest convex

subgroup of G contained in H1 is {0}, so the only candidate of the form H0 + nG

which could be equal to H1 is nG itself.

Any element (ai)i∈I ∈ nG satisfies
∑

i ai ∈ n2Z. On the other hand, for any

nontrivial H � G, we have H + nG = H + nG′, since the condition
∑

i ai ∈ nZ
can always be satisfied by adding an element of H . Thus H1 = nG′ ⊆ G, which is

strictly larger than nG.
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