
RAIRO-Oper. Res. 52 (2018) 1175–1200 RAIRO Operations Research
https://doi.org/10.1051/ro/2018032 www.rairo-ro.org

OPTIMAL REPLENISHMENT AND CREDIT POLICY IN AN

INVENTORY MODEL FOR DETERIORATING ITEMS UNDER

TWO-LEVELS OF TRADE CREDIT POLICY WHEN DEMAND

DEPENDS ON BOTH TIME AND CREDIT PERIOD INVOLVING

DEFAULT RISK

Avik Mukherjee and Gour Chandra Mahata*

Abstract. In this paper, we examine an optimal dynamic decision-making problem for a retailer’s
inventory system of deteriorating items under two-level trade credit financing where the supplier, as
well as the retailer, offers trade credit to the subsequent downstream member, the demand rate of
which varies simultaneously with time and the length of credit period that is offered to the customers.
The deterioration rate is non-decreasing over time. In addition, the risk of default increases with the
credit period length. A generalized model is presented to determine the optimal trade credit and
replenishment strategies that maximize the retailer’s annual total profit. We then demonstrate that
the retailer’s optimal credit period and replenishment cycle time not only exist but also are unique.
Thus, the search of the global optimal solution reduces to finding a local solution. Finally, we run
several numerical examples to illustrate the problem and gain managerial insights.
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1. Introduction

The traditional economic order quantity (EOQ) model assumes that the retailer must pay immediately on
receiving the items. However, in practice, the manufacturer (supplier or vendor) may offer the retailer a delay
in payment (called trade credit) as a strategy to promote sales and increase market share. Usually, no interest
is charged on the outstanding amount if the payment is settled within trade credit period. Therefore, the
retailer can sell the goods and deposit the accumulated revenues in a bank to earn interest, and hence delay
the payments up to the last moment of the permissible delay period. However, the manufacturer can charge a
high interest, if the payment is not made by the retailer within the trade credit period on previously agreed
terms and conditions. This brings some economic advantage to the retailers as they can earn interest from the
revenue realized during the permissible delay period. Moreover, once a trade credit is offered, the amount of
time the retailer’s capital tied up in stock is reduced, and that leads to a reduction in holding cost. In fact, the
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retailers who have budget constraints or have limited number of financing opportunities rely on trade credit
as a source of short-term fund. Wal-Mart, the largest retailer in the world, often uses trade credit as a larger
source of capital than bank borrowing (Zhong and Zhou [60]). In India, the non-state-owned enterprises often
obtain limited support from banks. Therefore, the trade credit policy is adopted as a very important short-term
financing method. On the other hand, the policy of granting trade credit adds not only an additional cost but
also an additional dimension of default risk (i.e., the event in which the buyer will be unable to payoff its debt
obligations) to the retailer (Teng et al. [52]).

Several authors discussing this topic have appeared in the literatures that investigate inventory problems
under varying conditions. Some of the papers are discussed below. Goyal [9] first developed an EOQ model under
the conditions of permissible delay in payments. Thereafter, most recent researchers in the field of inventory
lot-sizing policies with trade credit financing have extended his basic model. Teng [47] derived an EOQ model
under conditions of permissible delay in payments. Abad and Jaggi [1] presented a joint approach for setting
unit price and the length of the credit period for a seller when end demand is price sensitive. Shinn and
Hwang [45] determined the retailer’s optimal price and order size simultaneously under the condition of order-
size-dependent delay in payments. Huang and Chung [13] extended Goyal’s [9] model to cash discount policy
for early payment. Salameh et al. [35] extended this issue to the continuous review inventory model. Khanra
et al. [18] derived an inventory model with time dependent demand and shortages under trade credit policy.
Mahata and Mahata [30] presented an economic production quantity (EPQ) model of time varying quadratic
non-decreasing demand pattern for a retailer where supplier’s trade offer gives the retailer a credit period and
price-discount on the purchase of merchandise. Recently, Shin et al. [44] observed the effects of human errors
and trade-credit financing in a two-echelon supply chain model.

In fact, many products (e.g., bakeries, fruits, meat, milk, vegetables, fashion-merchandises, and high-tech
products) are perishable and deteriorate continuously due to several reasons, such as evaporation, spoilage, and
obsolescence. Most of the above papers discussed trade-credit policy of inventory models with no deterioration.
Aggarwal and Jaggi [2] extended Goyal’s model to consider the deteriorating items. Later on, Jamal et al. [16]
extended Aggarwal and Jaggi’s [2] model to allow for shortages. Liao et al. [21] and Sarker et al. [41] presented
an inventory model with deteriorating items under inflation and permissible delay in payments. Arcelus et al.
[3] observed retailer’s pricing, trade-credit policy, and inventory policies for deteriorating items. Mahata and
Goswami [28] presented a fuzzy EPQ model for deteriorating items when delay in payment is permissible.
Hsieh et al. [10] complemented the shortcomings of Jamal et al. [16] and showed that the optimal solution for
each case not only exists but is unique under specific circumstances. Skouri et al. [46] developed the model for
deteriorating items with ramp-type demand and permissible delay in payments. Sarkar et al. [40] discussed an
inventory model with trade-credit policy and variable deterioration for fixed lifetime products. There are several
papers related to deterioration such as Sana and Chaudhuri [36], Sarkar [37], Sarkar and Sarkar [39] investigated
some inventory models with increasing demand and time varying deterioration.

The above works are based on one-level trade credit policy in which only the supplier or the manufacturer
offers a trade credit to the retailer. However, from practical circumstances, whenever the manufacturer offers
a trade credit to the retailer, the retailer may extend a similar offer to his customers. Keeping this scenario in
mind, Huang [11] extended Goyal’s model to develop an EOQ model in which the supplier offers the retailer
a permissible delay period (supplier trade credit), and the retailer in turn provides a trade credit period to
his customers (retailer trade credit). Huang [12] incorporated Huang’s [11] model to investigate the two-level
trade credit policy in the EPQ frame work. Mahata and Goswami [29] extended Huang’s [11] model to an EOQ
inventory model for deteriorating items in the fuzzy sense. Furthermore, Liao [20] extended Huang’s model to
an EPQ model for deteriorating items. The assumptions of Huang’s model are modified by Teng and Goyal [50].
They stated that the retailer obtain its revenue from N to N + T , not from 0 to T . Subsequently, Teng [48]
provided the optimal ordering policies for a retailer to deal with bad credit customers as well as good credit
customers. Kreng and Tan [19] modified Huang’s [11] model by developing optimal whole seller’s replenishment
decisions in the EOQ model under two levels of trade credit policy depending on the order quantity. Min et al.
[32] developed an inventory model for deteriorating items under stock-dependent demand and two-level trade
credit. Chung [5] addressed a simplified solution procedure for the optimal replenishment decision under two
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levels of trade-credit policy. Chen et al. [4] discussed the EPQ model with up-stream full trade credit and
down-stream partial trade credit with a constant demand. Ouyang et al. [34] discuss the integrated inventory
model with the order-size dependent trade credit and a constant demand. Mahata and De [27], Mahata [26]
provided the optimal ordering policies for a retailer with trade credit and variable deterioration for fixed lifetime
products. Recently, Shah et al. [43] developed an optimal replenishment policy for retailer under partial upstream
prepayment and partial downstream overdue payment for quadratic demand.

The papers above discussed the EOQ or EPQ inventory models under trade credit financing based on the
assumption that the demand rate is constant over time. However, in practice, the market demand is always
changing rapidly and is affected by several factors such as price, time, inventory level, and delayed payment
period, etc. Some researchers realize this phenomenon and extend their studies above to build the inventory
models by assuming that the demand is variable. Chung and Liao [7] discussed the inventory replenishment
problems with trade credit financing by considering a price-sensitive demand. Giri and Maiti [8] discussed the
supply chain model with price and trade credit sensitive demand with trade credit by considering the fact that
a retailer shares a fraction of the profit earned during the credit period. Mahata [24] discussed the inventory
replenishment problems with up-stream full trade credit and down-stream partial trade credit financing by
considering a price-sensitive demand. Sarkar [37], and Teng et al. [53] build the economic quantity model with
trade credit financing for time-dependent demand. Min et al. [33] developed an inventory model under conditions
of permissible delay in payments, assuming that the items are replenished with the demand rate of the items
dependent on the current inventory level. The inventory model with the credit-linked demand are discussed by
Jaggi et al. [14], Jaggi et al. [15]. Thangam and Uthayakumar [56] discussed trade credit financing for perishable
items in a supply chain when demand depends on both selling price and credit period. Lou and Wang [22] studied
optimal trade credit and order quantity by considering trade credit with a positive correlation of market sales,
but are negatively correlated with credit risk. Teng et al. [55] discussed the optimal trade credit and lot size
policies considering the demand and default risk sensitive to the credit period with learning curve production
costs. Wang et al. [57] and Wu et al. [59] captured the relevant fact that the deterioration rate for a deteriorating
product increases with time and reaches 100% by the time it reaches its expiration date, and then derived the
optimal credit period and cycle time in a supply chain in which trade credit increases not only the sales
revenue but also the default risk and the opportunity cost. Mahata [25] proposed an EOQ model for the retailer
to obtain his/her optimal credit period and cycle time under two-level trade credit by considering demand
dependence on delayed payment time with default risk for deteriorating items. Wu and Chan [58] analyzed the
lot sizing policies for deteriorating items with expiration dates and partial trade credit to credit risk customer by
considering demand dependence on trade credit and default risk related to credit period. However, all the above
models make an implicit assumption that the demand rate is constant over an infinite planning horizon. This
assumption is only valid during the maturity phase of a product life cycle. In the introduction and growth phase
of a product life cycle, the firms face increasing demand with little competition. Mahata et al. [31] developed
an EOQ model under two-level trade credit financing involving default risk by considering demand to a credit-
sensitive and linear non-decreasing function of time. A linear trend demand implies a uniform change in the
demand rate of the product per unit time. This is a fairly unrealistic phenomenon and it seldom occurs in
the real market. One can usually observe in the electronic market that the sales of items increase rapidly in
the introduction and growth phase of the life cycle because there are few competitors in market. However, the
rates of demand and default risks in the above-mentioned studies are assumed to be specific functions of the
credit period. Previous work on inventory control under two-levels of trade credit policy has been summarized
in Table 1, which shows a brief comparison of published work and the present study.

When discussing a firm’s operations under trade credit with default risk, it is necessary to consider the effect
of market demand related to time varying non-decreasing function of time and the credit period. From a product
life cycle perspective, it is only in the maturity stage that demand is near constant. During the growth stage of a
product life cycle (especially for high-tech products), the demand function increases with time. While considering
time-varying demands, inventory modellers usually take the demand to be either linearly dependent or exponen-
tially dependent upon time. For the first case, the demand rate function is of the form f (t) = a+ bt, a > 0, b ≥ 0,
which implies steady increase in demand, which may be rarely seen to occur in the real market. For the second
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Table 1. The features of the this paper versus other ones in two-level credit period.

References Assumption Variable

Trade credit Deteriorating
items

Expiration
date

Default
risk

Demand T N P

SR RC

Teng and Goyal [50] * * C *
Liao [20] * * * C *
Thangam and Uthayakumar [56] * * * D(P,N) * * *
Wu et al. [59] * * * * * D(N) * *
Teng and Lou [51] * * * D(N) * *
Mahata [23] * * * C *
Teng [48] * * * C *
Jaggi et al. [15] * * D(N) * *
Jaggi et al. [14] * * D(N) * *
Teng and Chang [49] * * C *
Chung and Huang [6] * * C *
Huang [11] * * C *
Sarkar [37] * * * D(t) *
Mahata [25] * * * * D(N) * *
Mahata [26] * * * * C *
Mahata and De [27] * * * * C * *
Mahata [24] * * * * D(P ) * *
Teng et al. [54] * * D(t) *
Sarkar et al. [40] * * * * C *
Mahata et al. [31] * * * D(t,N) * *
This paper * * * * * D(t,N)4 * *

SR = supplier–retailer trade credit, RC = retailer–customer trade credit, C = constant, N = credit period, P = price, T = cycle
time, D(t) = time dependent demand, D(N) = credit-sensitive demand, D(P,N) = price and credit sensitive demand,
D(t,N) = time and credit-sensitive demand.

case, the demand rate function is of the form f (t) = αeβt, α > 0, β ≥ 0. In the real market situations, demand is
unlikely to increase at a rate which is so high as exponential. Quadratic time-dependence of demand of the form
f (t) = a+ bt+ ct2, a, b, c > 0, seems to be a better representation of time-varying market demands. Here a(> 0)
stands for the initial demand rate, b is the rate with which the demand rate increases. The rate of change in the

demand rate itself changes at a rate c. We have df(t)
dt = b+ 2ct and d2f(t)

dt2 = 2c. Now df(t)
dt = 0 gives t = − b

2c .
The rate of increase of f(t) is an increasing function of time. This type of demand is known as accelerated growth
in demand which is seen to occur in the case of the state-of-the-art aircrafts, computers, machines and their
spare parts, etc. Moreover, the marginal influence of the credit period on sales is associated with the unrealized
potential market demand. To obtain robust and generalized results, we extend the constant demand to a time
varying and credit sensitive demand. Consequently, in this paper, we propose an EOQ model in a supplier–
retailer–customer supply chain in which: (a) the supplier provides an up-stream trade credit and the retailer also
offers a down-stream trade credit, (b) the retailer’s down-stream trade credit to the buyer not only increases
sales and revenue but also opportunity cost and default risk, (c) the demand rate of which varies simultaneously
with time and the length of credit period that is offered to the customers, and (d) the product deteriorates at an
increasing time-varying rate of deterioration, and there is no repair or replacement of deteriorated units during
the inventory cycle. We model the retailer’s inventory system under these conditions as a profit maximization
problem. We then show that the retailer’s optimal credit period and cycle time not only exist but also are unique.
Furthermore, we run some numerical examples to illustrate the problem and provide managerial insights.
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2. Notation and assumptions

In the study, we discuss the optimal inventory policy and the trade credit policy for deteriorating products
under two-level trade credit financing with dynamic demand which varies simultaneously with time and the
length of credit period that is offered to the customers involving the default risk. The items deteriorate at
an increasing varying rate of deterioration. To build the mathematical models, the following notation and
assumptions are adopted in this paper.

2.1. Notation

The following notations are used throughout this paper.

Parameters

A: ordering cost per order in dollars.
h: holding cost per unit per year in dollars excluding interest charge.
c: purchasing cost per unit in dollars.
p: selling price per unit in dollars, where p > c.
r: annual compound interest paid per dollar per year.
M : up-stream credit period in years by the supplier.
Ie: interest earned per dollar per year.
Ic: interest charged per dollar in stock per year by the supplier.

Decision variables

N : down-stream credit period in years by the retailer.
T : replenishment cycle time in years, where T ≥ 0.

Functions

F (N): the rate of default risk giving the credit period N .
λ(t,N): demand rate at time t and credit period N .
θ(t): deterioration rate at time t, which is a non-decreasing function in t.
I(t): inventory level at time t.
Π (N,T ): annual total profit, which is a function of N and T .

Optimal values

N∗: optimal down-stream credit period in years.
T ∗: optimal replenishment cycle time in years.
Π∗: optimal annual total profit in dollars.

2.2. Assumptions

(i) The replenishment occurs instantaneously at an infinite rate.
(ii) In a supplier–retailer–customer supply chain system, the retailer buys deteriorating items from his/her

supplier, and then sells them to his/her customers. We may assume without loss of generality (WLOG)
that the supplier grants an up-stream credit period of M years to the retailer while the retailer in turn
provides a down-stream credit period of N years to his/her customers.

(iii) During the replenishment period [0, T ], the customers arrived at a rate of λ (t,N) = f (t)D(N), where
f (t) and D(N) are non-negative, continuous twice differentiable functions, where 0 ≤ t ≤ T . We consider
that the demand would be time increasing, i.e., we take f ′ (t) > 0 for all t > 0, as the demand rate in
today’s high tech products increases significantly during the growth stage. Because credit allows customers
to enjoy the benefit of delayed payments, lengthening the credit period will stimulate sales; hence, we also
assume that D′ (N) > 0 for all N > 0.
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(iv) Although sales can be stimulated by trade credit, longer credit period increase the probability of a customer
default. For example, the default risk of a 30-year mortgage is higher than that of a 15-year mortgage.
Therefore, we assume that F (0) = 0, 0 < F (N) < 1 and F ′ (N) > 0 for all N > 0.

(v) The items deteriorate at a varying rate of deterioration θ(t), where θ′ (t) ≥ 0 and 0 < θ(t) � 1 and
t represents the inventory holding time after receipt of the consignment. Here θ′ (t) denotes the first
derivative of θ(t) with respect to t. Note that θ′ (t) ≥ 0 means that the deterioration rate is non-decreasing
over time. Furthermore, there is no repair or replacement of deteriorated units during the planning horizon,
and the items will be withdrawn from the warehouses immediately as they are deteriorated.

(vi) If T ≥ M , then the retailer settles the account at time M and pays for the interest charges on items in
stock with rate Ic over the interval [M,T ]. If T ≤M , then the retailer settles the account at time M and
there is no interest charge in stock during the whole cycle. On the other hand, if M > N , the retailer can
accumulate revenue and earn interest during the period from N to M with rate Ie under the up-stream
and down-stream trade credit conditions.

Given the above, it is possible to formulate a mathematical inventory EOQ model with trade credit financing.

3. Model formulation

Based on the assumptions above, the inventory system goes as follows: the retailer receives the order quantity
Q at t = 0. Hence, the inventory starts with Q units at t = 0, and gradually reaches zero at t = T due to the
combined influence of the demand and deterioration. Therefore, inventory level I(t) with respect to time is
governed by the following differential equation:

dI(t)

dt
= −λ (t,N)− θ (t) I (t) , 0 ≤ t ≤ T, (3.1)

with the boundary condition I (0) = Q, I (T ) = 0.
Substituting λ (t,N) = f (t)D(N) into equation (3.1) and then solving the differential equation yields

I (t) = D (N) e−
∫ t
0
θ(s)ds

∫ T

t

e
∫ t
0
θ(s)dsf (u) du, 0 ≤ t ≤ T. (3.2)

For notational convenience, let g (t) =
∫ t
0
θ (s) ds.

At time t = 0, the retailer’s orders deteriorating items. Hence, the retailer’s ordering cost per cycle time T is
OC = A.

Utilizing the result of (3.2), the ordering quantity during the replenishment period [0, T ], denoted by Q, is

Q = I (0) = D(N)

∫ T

0

eg(t)f (t) dt. (3.3)

Hence, the purchase cost (PC) during the replenishment period [0, T ] is then given by

PC = cD(N)

∫ T

0

eg(t)f (t) dt. (3.4)

Likewise, the holding cost (HC) is incurred by the retailer based on the instantaneous inventory level; this cost
does not include interest paid to the supplier.

Hence, the holding cost during the replenishment period [0, T ] can be written as

HC = h

∫ T

0

I (t) dt = hD(N)

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt. (3.5)
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Figure 1. The retailer’s interest earned and interest charged when N ≤ T +N ≤M .

As the annual compound interest rate is r, a dollar received at time t is equivalent to e−rt dollars received now.
The retailer offers the buyer a credit period of N . Hence, the discounted sales revenue after the default risk
during the replenishment period [0, T ] is

pe−rND (N) [1− F (N)]

∫ T

0

f (t) dt. (3.6)

Regarding the exogenous variables, we have three potential cases: (i) N ≤ T + N ≤ M , (ii) N ≤ M ≤ T + N
and (iii) M ≤ N ≤ T +N .

Case I. N ≤ T +N ≤M (shown in Fig. 1).
With N ≤ T + N ≤ M , the retailer receives the sales revenue at T + N and is able to pay off the total

purchase cost at time M . Therefore, there is no interest charged. During the period [N,T + N ], the retailer
can obtain the interest earned on the sales revenues received and on the full sales revenue during the period
[T +N,M ] as shown in Figure 1. Therefore, the annual interest earned is

pIe
T

[∫ T+N

0

∫ t+N

N

λ (u−N,N) dudt+ (M − T −N)

∫ T

0

λ (u,N) du

]

=
pIeD(N)

T

[∫ T+N

0

∫ t+N

N

f (u−N) dudt+ (M − T −N)

∫ T

0

f (u) du

]
. (3.7)

Combining the above results, the retailer’s annual total profit can be expressed as follows: Π1 (N,T ) = discounted
sales revenue after default risk− annual ordering cost− annual purchasing cost− annual holding cost + annual
interest earned− annual interest charged.

Π1 (N,T ) =
p

T
e−rND (N) [1− F (N)]

∫ T

0

f (t) dt− hD(N)

T

∫ T

0

e−g(t)
∫ T

t

eg(u)f(u)dudt− A

T

+
pIeD(N)

T

[∫ T

0

∫ t

0

f (z) dzdt+ (M − T −N)

∫ T

0

f (u) du

]
− cD(N)

T

∫ T

0

eg(u)f(u)du. (3.8)
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Figure 2. The retailer’s interest earned and interest charged when N ≤M ≤ T +N .

Case II. N ≤M ≤ T +N (shown in Fig. 2).
When M ≤ T +N , the retailer cannot receive the last payment before the permissible delay time M . As a

result, the retailer must finance all items sold after time (M −N) at time M , and pay off the loan until T +N
at an interest rate Ic per dollar per year as shown in Figure 2. Therefore, we can have the interest charged in
the following:

cIc
T

∫ T

M−N
I (t) dt =

cIc
T
D (N)

∫ T

M−N
e−g(t)

∫ T

t

eg(u)f (u) dudt. (3.9)

On the other hand, the retailer starts selling product at time 0, and receiving the money at time N . Conse-
quently, the retailer accumulates sales revenue in an account that earns Ie per dollar per year starting from N
through M as shown in Figure 2. Therefore, we have the interest earned in the following:

pIe
T

∫ M

N

∫ t+N

N

λ (u−N,N) dudt =
pIe
T
D(N)

∫ M−N

0

∫ t

0

f (u) dudt. (3.10)

Hence, similar to (3.8), we know that the retailer’s annual total profit is

Π2 (N,T ) =
p

T
e−rND (N) [1− F (N)]

∫ T

0

f (t) dt− hD(N)

T

∫ T

0

e−g(t)
∫ T

t

eg(u)f(u)dudt− A

T

+
pIe
T
D (N)

∫ M−N

0

∫ t

0

f (u) dudt− cIc
T
D (N)

∫ T

M−N
e−g(t)

∫ T

t

eg(u)f (u) dudt

−cD(N)

T

∫ T

0

eg(u)f(u)du. (3.11)

Case III. M ≤ N ≤ T +N (shown in Fig. 3).
Since M ≤ N , there is no interest earned for the retailer. In addition, the retailer must finance all the

purchasing cost from [M,N ] and pay off the loan from [N,T +N ] as shown in Figure 3. Therefore, the interest
charged per cycle is

cIc
T

[∫ T

0

I (t) dt+ (N −M)Q

]
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Figure 3. The retailer’s interest earned and interest charged when M ≤ N ≤ T +N .

=
cIc
T
D (N)

[∫ T

0

e−g(t)
∫ T

t

eg(u)f(u)dudt+ (N −M)

∫ T

0

eg(u)f(u)du

]
. (3.12)

Consequently, the retailer’s annual total profit function per cycle can be expressed as

Π3 (N,T ) =
p

T
e−rND (N) [1− F (N)]

∫ T

0

f (t) dt− hD(N)

T

∫ T

0

e−g(t)
∫ T

t

eg(u)f(u)dudt

−cIc
T
D (N)

[∫ T

0

e−g(t)
∫ T

t

eg(u)f(u)dudt+ (N −M)

∫ T

0

eg(u)f(u)du

]

−A
T
− cD(N)

T

∫ T

0

eg(u)f(u)du. (3.13)

Thus, we can combine them by

Π (N,T ) =

 Π1 (N,T ) , N ≤ T +N ≤M
Π2 (N,T ) , N ≤M ≤ T +N
Π3 (N,T ) , M ≤ N ≤ T +N

, (3.14)

which is a function of two variables N and T .
Therefore, the retailer’s objective is to determine the optimal credit period N∗ and cycle time T ∗ such that

the annual total profit Πi(N,T ) for i = 1, 2, and 3 is maximized.

4. Solution methodology

In this section, we characterize the retailer’s optimal credit period and cycle time in each case, and then
obtain the conditions in which the optimal T ∗ is in either T +N ≤M or T +N ≥M .

Case I: N ≤ T + N ≤ M .
Let us take

Π1 (N,T ) =
1

T
D1 (N,T ) , (4.1)
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where

D1 (N,T ) = pe−rND (N) [1− F (N)]

∫ T

0

f (t) dt− hD (N)

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt

−A+ pIeD (N)

[∫ T

0

∫ t

0

f (z) dzdt+ (M − T −N)

∫ T

0

f (u) du

]

−cD (N)

∫ T

0

eg(u)f (u) du. (4.2)

Now,

∂Π1(T |N)

∂T
= − 1

T 2
D1 (T |N) +

1

T
D′1 (T |N) , (4.3)

where,

D′1(T |N) = pe−rND (N) [1− F (N)] f (T ) + pIeD (N)

[∫ T

0

f (z) dz + (M − T −N)f(T )

]

−cD (N) eg(T )f (T )− hD(N)eg(T )f (T )

∫ T

0

e−g(u)du. (4.4)

For fixed N ≥ 0, the first order partial derivative of Π1(N,T ) with respect to T is

∂Π1 (T |N)

∂T
= − 1

T 2
[D1 (T |N)− TD′1(T |N)] = 0.

Let, T̃1 (may or may not exist) be the solution of

[D1 (T |N)− TD′1(T |N)] = 0⇒ 1

T̃
D1(T̃1|N) = D′1

(
T̃1|N

)
= Π1(N, T̃1),

∂2Π1(T |N)

∂T 2
=

2

T 3
D1 (T |N)− 2

T 2
D′1 (T |N) +

1

T
D′′1(T |N). (4.5)

If T = T̃1 then

∂2Π1(T̃1|N)

∂T 2
=

1

T̃
D′′1(T̃1|N),

which implies

∂2π1(T̃1|N)

∂T 2
< 0, if D′′1(T̃1|N) < 0. (4.6)
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Now,

D′′1(T |N) = −cD(N)eg(T )θ(T )f(T )− hD(N)f(T )− hD(N)eg(T )θ(T )f(T )

∫ T

0

e−g(u)du

+

[
pe−rND(N)(1− F (N)) + pIeD (N) (M − T −N)− cD (N) eg(T )

−hD(N)eg(T )

∫ T

0

e−g(u)du

]
f ′(T ). (4.7)

For simplicity let us define the discrimination term

∆ = D1 (T |N)− TD′1(T |N)|T=M−N .

Theorem 4.1. If pe−rN (1− F (N)) + pIe (M − T −N) − ceg(T ) − heg(T )
∫ T
0
e−g(u)du < 0, then Π1 (T |N) is

maximized at T = T̃1, where

(i) If ∆ > 0 we can find T̃ such that 0 ≤ T̃1 < M −N .
(ii) If ∆ ≤ 0 we take T̃1 = M −N .

Proof. As D(N) > 0, we have from the condition that

pe−rND (N) (1− F (N)) + pIeD (N) (M − T −N)− cD (N) eg(T ) − hD (N) eg(T )

∫ T

0

e−g(u)du < 0.

Thus from equation (4.7), we have D′′1(T̃1|N) < 0:

(i) If ∆ > 0 then by intermediate value theorem we must find a solution T̃1 of ∂Π1(T |N)
∂T = 0 within the range

0 ≤ T̃1 < M −N and Π1 (T,N) is maximized at T = T̃1 as f ′(T ) > 0.

(ii) If ∆ ≤ 0 then ∂Π1(T |N)
∂T > 0 for T̃1 ∈ [0,M −N ], i.e., Π1 (T,N) is an increasing function or satisfies the

optimality condition for T̃1 = M −N . Hence, we take T̃1 = M −N as the optimal solution.

Corollary 4.2. pe−rN (1− F (N)) + pIe (M −N) − c < 0 holds for ∀N > N̂ where N̂ be the unique solu-
tion of pe−rN (1− F (N)) + pIe (M −N)− c = 0 if pe−rM (1− F (M))− c < 0 and consequently condition for
Theorem 4.1 holds.

Proof. As φ (N) = pe−rN (1− F (N)) + pIe (M −N) − c is a strictly decreasing function and φ (0) = (p +
pIeM − c) > 0, we must find unique solution N̂ of the equation φ (N) = pe−rN (1− F (N)) + pIe (M −N)
− c = 0 which exists as φ (M) = pe−rM (1− F (M))− c < 0.

Now as

pe−rN (1− F (N)) + pIe (M −N) < c,

for all N ∈ ]N̂ ,M ],

pe−rN (1− F (N)) + pIe (M −N) < c < ceg(T ) + heg(T )

∫ T

0

e−g(u)du+ pIeT,

i.e., condition for Theorem 4.1 holds evidently in the aforesaid interval.
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Note: If D′′1(T |N) ≥ 0 then π1(T |N) is a convex function of T . Thus the optimal solution attains at the boundary
point, i.e., either 0 or +∞. In that case, we have to take T̃ = 0 which implies an immediate replenishment is
mandatory.

Now we have

Π1 (N,T ) =
1

T

[
pe−rND (N) (1− F (N))

∫ T

0

f (t) dt− pIeND (N)

∫ T

0

f (t) dt−D (N)X −A

]
, (4.8)

where

X = c

∫ T

0

eg(u)f (u) du+ h

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt− pIe
∫ T

0

∫ t

0

f (z) dzdt

−p (M − T ) Ie

∫ T

0

f (t) dt. (4.9)

Here, we have to consider X > 0 by suitable adjustments of Ie.
Using equation (4.8), we take the partial first derivative of Π1 (N,T ) with respect to N .

∂Π1 (N |T )

∂N
=

1

T

[
p

d

dN

{
e−rND (N) (1− F (N))

}∫ T

0

f (t) dt

−pIe {ND′ (N) +D (N)}
∫ T

0

f (t) dt−D′ (N)X

]
, (4.10)

∂Π1(N |T )
∂N = 0 may hold if d

dN

{
e−rND(N)(1− F (N))

}
> 0, whereas if d

dN

{
e−rND(N)(1− F (N))

}
< 0,

Π1 (N |T ) is a decreasing function and we must have Ñ1 = 0.

Let us consider that ∂Π1(N |T )
∂N = 0, for N = Ñ1 (may or may not exist).

Now

∂2Π1 (N |T )

∂N2
=

1

T

[
p

d2

dN2

{
e−rND(N)(1− F (N))

}∫ T

0

f (t) dt− pIe{ND′′(N)

+2D′ (N)}
∫ T

0

f (t) dt−D′′ (N)X

]
. (4.11)

Theorem 4.3. If e−rND(N)(1− F (N)) is a strictly concave function with D′′(N) > 0 then

(i) If ∂Π1(N |T )
∂N

∣∣∣
N=0

≤ 0 then Π1 (N,T ) is maximized at (0, T̃1) subject to that ∂2Π1(N |T )
∂T 2

∣∣∣
T=T̃1

< 0.

(ii) If the condition of Theorem 4.1 is valid for N = Ñ1 and ∂Π1(N |T )
∂N

∣∣∣
N=0

> 0 and ∂Π1(N |T )
∂N

∣∣∣
N=M

< 0 then

∃ a unique solution Ñ1 smaller than M such that Π1 (N,T ) is maximized at (Ñ1, T̃1).

(iii) If ∂Π1(N |T )
∂N

∣∣∣
N=M

≥ 0 then Π1 (N,T ) is maximized at (M, T̃1) subject to that ∂2Π1(N |T )
∂T 2

∣∣∣
T=T̃1

< 0.

Proof. Since e−rND(N)(1− F (N)) is strictly concave thus

d

dN

{
e−rND(N)(1− F (N))

}
> 0 and

d2

dN2

{
e−rND(N)(1− F (N))

}
< 0.
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Then from (4.10) we have ∂2Π1(N |T )
∂N2 < 0. Hence, Π1 (N,T ) is a concave function on N .

(i) If ∂Π1(N |T )
∂N

∣∣∣
N=0

≤ 0 then ∂Π1(N |T )
∂N < 0 for N ∈ [0,M ], i.e., Π1 (N |T ) is a strictly decreasing function or

satisfies optimality condition at N = 0. Hence, Π1 (N |T ) is maximized for N = 0. Clearly Π1 (N,T ) is

then maximized at (0, T̃1) if ∂2Π1(T |N)
∂T 2

∣∣∣
T=T̃1

< 0.

(ii) If ∂Π1(N |T )
∂N

∣∣∣
N=0

> 0 and ∂Π1(N |T )
∂N

∣∣∣
N=M

< 0 then by intermediate value theorem we find a solution

Ñ1 ∈ [0,M ] of ∂π1(N |T )
∂N = 0. As Π1 (N |T ) is a concave function thus ∃ a unique solution Ñ1 smaller than

M such that Π1 (N,T ) is maximized at N = Ñ1. Now if the condition of Theorem 4.1 is valid for N = Ñ1

then Π1 (N,T ) is maximized at (Ñ1, T̃1) having the value max (Π1 (N,T )) = D′1(Ñ1, T̃1).

(iii) If ∂Π1(N |T )
∂N

∣∣∣
N=M

≥ 0 then ∂Π1(N |T )
∂N > 0 for N ∈ [0,M ], i.e., Π1 (N |T ) is a strictly increasing function or

satisfies optimality condition at N = M . Hence, Π1 (N |T ) is maximized for N = M . Clearly Π1 (N,T ) is

then maximized at (M, T̃1) if ∂2Π1(T |N)
∂T 2

∣∣∣
T=T̃1

< 0.

Case II: N ≤ M ≤ T + N
Let us take

Π2 (N,T ) =
1

T
D2(N,T ), (4.12)

where

D2 (N,T ) = pe−rND (N) [1− F (N)]

∫ T

0

f (t) dt− hD (N)

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt

+pIeD (N)

∫ M−N

0

∫ t

0

f (u) dudt− cIcD (N)

∫ T

M−N
e−g(t)

∫ T

t

eg(u)f (u) dudt

−cD (N)

∫ T

0

eg(u)f (u) du−A. (4.13)

Now we take the first order partial derivative of Π2 (N,T ) with respect to T to find the optimal cycle time,

∂Π2(T |N)

∂T
= − 1

T 2
D2 (T |N) +

1

T
D′2 (T |N) = − 1

T 2
[D2 (T |N)− TD′2(T |N)] , (4.14)

where

D′2 (T |N) = pe−rND (N) [1− F (N)] f (T )− hD (N) eg(T )f (T )

∫ T

0

e−g(u)du

−cIcD (N) eg(T )f (T )

∫ T

M−N
e−g(u)du− cD (N) eg(T )f (T ) . (4.15)

Let, ∀N ≥ 0, T̃2 (may or may not exist) be the solution of [D2 (T |N)− TD′2(T |N)] = 0, which implies
1
T̃2
D2(T̃2|N) = D′2

(
T̃2|N

)
= Π2(T̃2|N).
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Now, by taking the second order partial derivative of Π2 (N,T ) with respect to T , we have

∂2Π2(T |N)

∂T 2
=

2

T 3
D2 (T |N)− 2

T 2
D′2 (T |N) +

1

T
D′′2(T |N). (4.16)

If T = T̃2 then ∂2Π2(T̃2|N)
∂T 2 = 1

T̃2
D′′2(T̃2|N), which implies ∂2Π2(T̃2|N)

∂T 2 < 0 if D′′2(T̃2|N) < 0, where

D′′2(T |N) = −hD(N)eg(T )θ(T )f(T )

∫ T

0

e−g(u)du− hD(N)f(T )− cD(N)eg(T )θ(T )f(T )

−cIcD(N)eg(T )θ(T )f(T )

∫ T

M−N
e−g(u)du− cIcD(N)f(T )

+

[
pe−rND (N) {1− F (N)} − hD (N) eg(T )

∫ T

0

e−g(u)du− cD (N) eg(T )

−cIcD (N) eg(T )

∫ T

M−N
e−g(u)du

]
f ′(T ). (4.17)

It can be easily verified that if pe−rN {1− F (N)} − c < 0 then lim
T→+∞

∂Π2(T |N)
∂T = −∞.

Theorem 4.4. If

pe−rN {1− F (N)} − heg(T )

∫ T

0

e−g(u)du− ceg(T ) − cIceg(T )

∫ T

M−N
e−g(u)du < 0,

then Π2(T |N) is maximized for T = T̃2 where

(i) M −N < T̃2 < +∞ if ∆ < 0.
(ii) T̃2 = M −N if ∆ ≥ 0.

Proof. As D(N) > 0, we have

pe−rND (N) {1− F (N)} − hD (N) eg(T )

∫ T

0

e−g(u)du− cD (N) eg(T ) − cIcD (N) eg(T )

∫ T

M−N
e−g(u)du < 0.

Thus from equation (4.17), D′′2(T |N) < 0, i.e., Π2(T |N) is a concave function on T .
It is easy to verify that

∆ = D1 (N,T )− TD′1(N,T )|T=M−N = D2 (N,T )− TD′2(N,T )|T=M−N .

(i) Now if ∆ < 0 then ∂Π2(T |N)
∂T

∣∣∣
T=M−N

> 0. Thus, by intermediate value theorem, we have a solution T̃2 of

∂Π2(T |N)
∂T = 0 such that M −N < T̃2 < +∞.

(ii) If ∆ ≥ 0 then ∂Π2(T |N)
∂T

∣∣∣
T=M−N

< 0, i.e., Π2(T |N) is a strictly decreasing function of T ∈ [M −N,+∞]

or satisfies optimality condition at T̃2 = M −N . Then Π2(N,T ) is maximum for T̃2 = M −N .
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Corollary 4.5. pe−rN (1− F (N)) − c < 0 holds for ∀N > N̂ where N̂ is the unique solution of
pe−rN (1− F (N)) − c = 0 if pe−rM (1− F (M)) − c < 0 and consequently condition for Theorem 4.4 holds

for all N ∈
]
N̂ ,M

]
.

Proof. As pe−rN (1− F (N))− c is a strictly decreasing function, by similar arguments as Corollary 4.2, we must
find unique solution N̂ of the equation pe−rN (1− F (N))− c = 0 which exists as pe−rM (1− F (M))− c < 0.

As pe−rN {1− F (N)} < c < ceg(T ) + cIce
g(T )

∫ T
M−N e

−g(u)du + heg(T )
∫ T
0
e−g(u)du, therefore condition of

Theorem 4.4 evidently holds in the said interval.

Π2 (N,T ) =
1

T

[
pe−rND (N) [1− F (N)]

∫ T

0

f (t) dt−D (N)Y −A

−cIcD (N)

∫ T

M−N
e−g(t)

∫ T

t

eg(u)f (u) dudt+ pIeD(N)

∫ M−N

0

∫ t

0

f (u) dudt

]
, (4.18)

where

Y = h

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt+ c

∫ T

0

eg(u)f (u) du. (4.19)

We now take the partial derivative of Π2 (N,T ) with respect to N .

∂Π2 (N |T )

∂N
=

1

T

[
p

d

dN

{
e−rND(N)(1− F (N))

}∫ T

0

f (t) dt−D′(N)Y − pIeD(N)

∫ M−N

0

f (u) du

−cIcD′ (N)

∫ T

M−N
e−g(t)

∫ T

t

eg(u)f (u) dudt− cIcD (N) e−g(M−N)

∫ T

M−N
eg(u)f (u) du

+pIeD
′ (N)

∫ M−N

0

∫ t

0

f (u) dudt

]
. (4.20)

Let us consider that ∂Π2(N |T )
∂N = 0, for N = Ñ2 (may or may not exist).

Now, by taking the second order partial derivative with respect to N , we have

∂2Π2 (N |T )

∂N2
=

1

T

[
p

d2

dN2

{
e−rND(N)(1− F (N))

}∫ T

0

f (t) dt−D′′ (N)Y + pIeD (N) f(M −N)

−cIcD′′ (N)

∫ T

M−N
e−g(t)

∫ T

t

eg(u)f (u) dudt− 2cIcD
′ (N) e−g(M−N)

∫ T

M−N
eg(u)f (u) du

+pIeD
′′ (N)

∫ M−N

0

∫ t

0

f (u) dudt− 2pIeD
′(N)

∫ M−N

0

f (u) du− cIcD (N) f(M −N)

−cIcD (N) e−g(M−N)θ(M −N)

∫ T

M−N
eg(u)f (u) du

]
. (4.21)

Theorem 4.6. If e−rND(N)(1 − F (N)) is a strictly concave function with D′′ (N) > 0, cIc > pIe,

cIc
∫ T
M
e−g(t)

∫ T
t
eg(u)f (u) dudt > pIe

∫M
0

∫ t
0
f (u) dudt then
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(i) If ∂Π2(N |T )
∂N

∣∣∣
N=0

≤ 0 then Π2 (N,T ) is maximized at (0, T̃2) subject to that ∂2Π2(N |T )
∂T 2

∣∣∣
T=T̃2

< 0.

(ii) If the condition of Theorem 4.3 is valid for N = Ñ and ∂Π2(N |T )
∂N

∣∣∣
N=0

> 0 and ∂Π2(N |T )
∂N

∣∣∣
N=M

< 0 then

∃ a unique solution Ñ smaller than M such that Π2 (N,T ) is maximized at (Ñ2, T̃2).

(iii) If ∂Π2(N |T )
∂N

∣∣∣
N=M

≥ 0 then Π2 (N,T ) is maximized at (M, T̃2) subject to that ∂2Π2(N |T )
∂T 2

∣∣∣
T=T̃2

< 0.

Proof. Since e−rND(N)(1 − F (N)) is strictly concave thus d
dN

{
e−rND(N)(1− F (N))

}
> 0 and

d2

dN2

{
e−rND(N)(1− F (N))

}
< 0.

Now it is evident that cIc
∫ T
0
e−g(t)

∫ T
t
eg(u)f (u) dudt > 0.

Thus, if cIc
∫ T
M
e−g(t)

∫ T
t
eg(u)f (u) dudt > pIe

∫M
0

∫ t
0
f (u) dudt, then cIc

∫ T
M−N e

−g(t) ∫ T
t
eg(u)f (u) dudt >

pIe
∫M−N
0

∫ t
0
f (u) dudt, for all N ∈ [0,M ]. So, from equation (4.21) we can conclude that ∂2Π2(N |T )

∂N2 < 0, i.e.,
Π2 (N,T ) is a concave function on N .

(i) If ∂Π2(N |T )
∂N

∣∣∣
N=0

≤ 0 then ∂Π2(N |T )
∂N < 0 for N ∈ [0,M ], i.e., Π2 (N |T ) is a strictly decreasing function or

satisfies optimality condition at N = 0. Hence, Π2 (N |T ) is maximized for N = 0. Clearly Π2 (N,T ) is

then maximized at (0, T̃2) if ∂2Π2(T |N)
∂T 2

∣∣∣
T=T̃2

< 0.

(ii) If ∂Π2(N |T )
∂N

∣∣∣
N=0

> 0 and ∂Π2(N |T )
∂N

∣∣∣
N=M

< 0 then by intermediate value theorem we find a solution

Ñ2 ∈ [0,M ] of ∂Π2(N |T )
∂N = 0. As Π2 (N |T ) is a concave function thus ∃ a unique solution Ñ2 smaller than

M such that Π2 (N |T ) is maximized at N = Ñ2. Now if the condition of Theorem 4.4 is valid for N = Ñ2

then Π2 (N,T ) is maximized at (Ñ2, T̃2) having the value max (Π2 (N,T )) = D′2(Ñ2, T̃2).

(iii) If ∂Π2(N |T )
∂N

∣∣∣
N=M

≥ 0 then ∂Π2(N |T )
∂N > 0 for N ∈ [0,M ], i.e., Π2 (N |T ) is a strictly increasing function or

satisfies optimality condition at N = M . Hence, Π2 (N |T ) is maximized for N = M . Clearly Π2 (N,T ) is

then maximized at (M, T̃2) if ∂2Π2(T |N)
∂T 2

∣∣∣
T=T̃

< 0.

Case III: M ≤ N ≤ T + N .
Let us take

Π3 (N,T ) =
1

T
D3(N,T ), (4.22)

where

D3 (N,T ) = pe−rND (N) [1− F (N)]

∫ T

0

f (t) dt− hD (N)

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt

−cIcD(N)

{∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt+ (N −M)

∫ T

0

eg(u)f (u) du

}

−cD (N)

∫ T

0

eg(u)f (u) du−A. (4.23)

By taking the first order partial derivative of Π3 (N,T ) with respect to T , we have

∂Π3(T |N)

∂T
= − 1

T 2
D3 (T |N) +

1

T
D′3 (T |N) = − 1

T 2
[D3 (T |N)− TD′3(T |N)] , (4.24)
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where

D′3 (T |N) = pe−rND (N) [1− F (N)] f (T )− hD (N) eg(T )f (T )

∫ T

0

e−g(u)du− cD(N)eg(T )f (T )

−cIcD (N)

[
eg(T )f (T )

∫ T

0

e−g(u)du+ (N −M) eg(T )f (T )

]
. (4.25)

For extreme solutions ∀N ≥ 0, ∂Π3(T |N)
∂T = − 1

T 2 [D3 (T |N)− TD′3(T |N)] = 0.

Let T̃3 (may or may not exist) be the solution of

[D3 (T |N)− TD′3(T |N)] = 0⇒ 1

T̃
D3(T̃ |N) = D′3

(
T̃3|N

)
= Π3(T̃3|N).

Now, we take the second order partial derivative to determine the concavity of Π3 (N,T ) with respect to T .

∂2Π3(T |N)

∂T 2
=

2

T 3
D3 (T |N)− 2

T 2
D′3 (T |N) +

1

T
D′′3(T |N). (4.26)

If T = T̃3 then ∂2Π3(T̃3|N)
∂T 2 = 1

T̃
D′′3(T̃3|N), which implies ∂2Π3(T̃3|N)

∂T 2 < 0 if D′′3(T̃3|N) < 0.
Now,

D′′3(T |N) = −hD(N)eg(T )θ(T )f(T )

∫ T

0

e−g(u)du− hD(N)f(T ))− cIcD(N)f(T )

−cIcD(N)eg(T )θ(T )f(T )

[∫ T

0

e−g(u)du+ (N −M)

]
− cD(N)eg(T )θ(T )f(T )

+

[
pe−rND (N) {1− F (N)} − hD (N) eg(T )

∫ T

0

e−g(u)du

−cIcD (N) eg(T )

{∫ T

0

e−g(u)du+ (N −M)

}
− cD (N) eg(T )

]
f ′(T ). (4.27)

Let us define the discrimination term

∆ = D3 (T |N)− TD′3(T |N)|T=M−N .

It can be easily verified that if pe−rN {1− F (N)} − cIc(N −M)− c < 0 then

lim
T→+∞

∂Π2(T |N)

∂T
= −∞.

Theorem 4.7. If pe−rN {1− F (N)} − heg(T )
∫ T
0
e−g(u)du− cIceg(T )

{∫ T
0
e−g(u)du+ (N −M)

}
− ceg(T ) < 0,

then Π3(N,T ) is maximized for T = T̃ where

(i) M −N < T̃3 < +∞ if ∆ < 0.
(ii) T̃3 = M −N if ∆ ≥ 0.
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Proof. We have

pe−rND (N) {1− F (N)} − hD (N) eg(T )

∫ T

0

e−g(u)du− cIcD (N) eg(T )

{∫ T

0

e−g(u)du+ (N −M)

}
−cD (N) eg(T ) < 0.

Thus, from equation (4.27) we have D′′3(T |N) < 0, i.e., Π3 (T |N) is a concave function of T .

(i) Now if ∆ < 0 then ∂Π3(T |N)
∂T

∣∣∣
T=M−N

> 0. Thus, by intermediate value theorem, we have a solution T̃3 of

∂Π3(T |N)
∂T = 0 such that M −N < T̃3 < +∞.

(ii) If ∆ ≥ 0 then ∂Π3(T |N)
∂T

∣∣∣
T=M−N

< 0, i.e., Π3(N,T ) is a strictly decreasing function of T ∈ [M −N,+∞]

and hence satisfies optimality condition at T̃3 = M −N . Then Π3(N,T ) is maximum for T̃3 = M −N .

Now we have,

Π3 (N,T ) =
1

T

[
pe−rND (N) [1− F (N)]

∫ T
0
f (t) dt− cIcD (N) (N −M)

∫ T
0
eg(u)f (u) du

−D (N)Z −A

]
, (4.28)

where

Z = (h+ cIc)

∫ T

0

e−g(t)
∫ T

t

eg(u)f (u) dudt+ c

∫ T

0

eg(u)f (u) du. (4.29)

By taking the first order partial derivative of Π3 (T,N) with respect to N , we have

∂Π3 (N |T )

∂N
=

1

T

[
p

d

dN

{
e−rND(N)(1− F (N))

}∫ T

0

f (t) dt−D′ (N)Z

−cIc {D′ (N) (N −M) +D(N)}
∫ T

0

eg(u)f (u) du

]
, (4.30)

∂Π3(N |T )
∂N = 0 may hold if d

dN

{
e−rND(N)(1− F (N))

}
> 0 whereas if d

dN

{
e−rND(N)(1− F (N))

}
< 0,

Π3 (N |T ) is a decreasing function and we must have Ñ3 = M .

Let us consider that ∂Π3(N |T )
∂N = 0, for N = Ñ3 (may or may not exist).

Now,

∂2Π3 (N |T )

∂N2
=

1

T

[
p

d2

dN2

{
e−rND(N)(1− F (N))

}∫ T

0

f (t) dt−D′′ (N)X

−cIc {D′′ (N) (N −M) + 2D′(N)}
∫ T

0

eg(u)f (u) du

]
. (4.31)

If e−rND(N)(1− F (N)) is a strictly concave function then lim
N→+∞

∂Π3(N |T )
∂N = −∞.

Theorem 4.8. If e−rND(N)(1− F (N)) is a strictly concave function and D′′(N) > 0 then
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(i) If the condition of Theorem 4.7 is valid and ∂Π3(N |T )
∂N

∣∣∣
N=M

> 0, ∃ a unique Ñ3 > M such that Π3 (N,T )

is maximized at (Ñ3, T̃3).

(ii) If ∂Π3(N |T )
∂N

∣∣∣
N=M

≤ 0, Π3 (N,T ) is maximized at (M, T̃3) subject to that ∂2Π1(T |N)
∂T 2

∣∣∣
T=T̃3

< 0.

Proof. Since e−rND(N)(1− F (N)) is strictly concave thus

d

dN

{
e−rND(N)(1− F (N))

}
> 0 and

d2

dN2

{
e−rND(N)(1− F (N))

}
< 0.

So, from equation (4.31) we get ∂2Π3(N |T )
∂N2 < 0, i.e., Π3(N |T ) is a concave function.

(i) If ∂Π3(N |T )
∂N

∣∣∣
N=M

> 0, then by intermediate value theorem we find a solution Ñ3 ∈ [M,+∞] of ∂Π3(N |T )
∂N =

0. As Π3 (N,T ) is a concave function thus there exists a unique solution Ñ3 greater than M such that
Π3 (N,T ) is maximized at N = Ñ3. Now if the condition of Theorem 4.7 is valid for N = Ñ3 then Π3 (N,T )
is maximized at (Ñ3, T̃3) having the value max (Π2 (N,T )) = D′2(Ñ3, T̃3).

(ii) If ∂Π3(N |T )
∂N

∣∣∣
N=M

≤ 0, then Π3 (N,T ) is strictly decreasing on [M,+∞] or having extremum at N = M .

Thus, Π3 (N,T ) is maximized at (M, T̃3) subject to that ∂2Π1(N |T )
∂T 2

∣∣∣
T=T̃3

< 0.

Now, it is time to present some numerical examples in the next section.

5. Numerical example

In this section, in order to show the applicability of the presented model and also the solution procedure, three
numerical examples are presented. In addition, these examples provide the materials for sensitivity analysis as
well as extracting some managerial insights, which will be discussed in the next section.

In our proposed model, we assume that

(i) The deterioration rate θ (t) is non-decreasing and θ (m) = 1.
(ii) The demand rate is λ (t,N) = f (t)D(N), where f(t) and D(N) are both increasing in t (0 ≤ t ≤ T ) and

N (N > 0), respectively.
(iii) The rate of default risk F (N) given the credit period N offered by the retailer is positive, and increasing

in N .
(iv) The up-stream credit period is M and the down-stream credit period is N .

In numerous previous inventory models, θ(t), f(t), D(N), and F (N) are assumed in a specific form.
Consequently, they are indeed special cases of the proposed model here.

Recently, many researchers have adopted the deterioration rate as θ (t) = 1/(1 +m− t) with 0 ≤ t ≤ T ≤ m
to incorporate the fact that the deterioration rate is 100% near to its expiration date such as Sarkar [37],
Mahata [24], Wu et al. [59], Sarkar et al. [40], Sarkar [38], and Sett et al. [42]. Hence, we use the newly adopted
deterioration rate to run the numerical examples. Next, the rate of default risk F (N) = 1− e−bN , b > 0 defined
in the models of Teng and Lou [51], Lou and Wang [22], and Mahata et al. [31] is used to demonstrate the
impacts of default risk on the optimal credit period and cycle time decisions. In addition, we have also adopted
f (t) = a+bt+ct2, a, b, c > 0 used in Khanra et al. [17] and Mahata and Mahata [30] and D (N) = edN , 0 < d < 1
used in Teng and Lou [51], Wu et al. [59], and Mahata [25] to incorporate the fact that the demand rate
λ (t,N) = f (t)D(N) varies simultaneously with time and the length of credit period that is offered to the
customers.
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Figure 4. Optimal profit graph for Example 5.1.

Example 5.1. Let us assume that θ (t) = 1
1+m−t , λ (t,N) = f (t)D(N), where f(t) = 1000 + 100t + 20t2

and D (N) = e0.075N , F (N) = 1 − e−bN , b = 0.03, r = 0.04, M = 0.8 year, p = $20/unit, c = $5/unit, A =
$200/order, h = $3/ unit/year, Ic = 0.18, Ie = 0.1, m = 1 year. By using software LINGO 16.0 x64, we have the
maximum solution to Πi(N,T ) for i = 1, 2, and 3 as follow:

N∗1 = 0.3748366 years, T ∗1 = 0.4251634 years, Π∗1 = $823.03.

N∗2 = 0.8 years, T ∗2 = 1.121782 years, Π∗2 = $1253.07.

N∗3 = 1.658679 years, T ∗3 = 0.9433776 years, Π∗3 = $1413.59.

Consequently the retailer’s optimum solution is

N∗ = 1.658679 years, T ∗ = 0.9433776 years, Π∗ = $1413.59.

For this type of demand pattern, the average profit function is highly non-linear. So, it is impossible to find
closed type formula for N and T . But Figure 4 shows the concavity of the annual profit function in both N and
T . Hence, the better optimal solution is a global maximum.

Example 5.2. Using the same data as those in Example 5.1 except A = $90/order, c = $13/unit, Ic = 0.25,
we obtained the following results:

N∗1 = 0.3545723 years, T ∗1 = 0.3649281 years, Π∗1 = $381.01.

N∗2 = 0.3358878 years, T ∗2 = 0.4641122 years, Π∗2 = $333.79.

N∗3 = 0.8 years, T ∗3 = 0.5059718 years, Π∗3 = $321.62.
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Figure 5. Optimal profit graph for Example 5.2.

So, the optimal solution for the retailer is

N∗ = 0.3545723 years, T ∗ = 0.3649281 years, Π∗ = $381.01.

Figure 5 reveals that Π(N,T ) is a strictly pseudo-concave function in both N and T . Hence, the better optimal
solution is a global maximum.

Example 5.3. Using the same data as those in Example 5.1 except A = $90/order, c = $12/unit, Ic = 0.15,
we obtain the following results:

N∗1 = 0.4054832 years, T ∗1 = 0.3945168 years, Π∗1 = $469.81.

N∗2 = 0.8 years, T ∗2 = 0.5961728 years, Π∗2 = $488.82.

N∗3 = 0.8 years, T ∗3 = 0.5961728 years, Π∗3 = $488.82.

So the optimal solution for the retailer will be

N∗ = 0.8 years, T ∗ = 0.5961728 years, Π∗ = $488.82.

Figure 6 reveals that Π(N,T ) is a strictly pseudo-concave function in both N and T . Hence the better optimal
solution is a global maximum.
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Figure 6. Optimal profit graph for Example 5.3.

5.1. Managerial insights

Sensitivity analysis has been performed in order to determine the robustness of the model presented above.
Using the same data as those in Example 5.1, we study the sensitivity analysis on the optimal solutions with
respect to the parameters in appropriate units. The computational results are shown in Table 2.

The sensitivity analysis reveals that,

(a) As the ordering cost A increases, the replenishment period T ∗ increases whereas the trade credit period
N∗ decreases along with total profit Π∗(N,T ). Thus, the retailer’s objective is to reduce the ordering
cost, anyhow to make a more profit. In case of a higher ordering cost the retailer should order for a longer
replenishment period to reduce the order frequency.

(b) When the selling price p increases both the replenishment period T ∗ and the trade credit period N∗

increases so total profit Π∗(N,T ) as well. Hence, in-line with the selling price the retailer should offer a
longer trade credit period and reduce the order frequency to make more profit.

(c) Whereas the holding cost h and the purchasing cost c show a very different character over here. As both
the holding and purchasing cost increase the retailer has to shorten the credit period and increase the
order frequency to meet the optimal profit. The retailer should take measure to reduce the purchasing
and holding cost by transportation cost reduction, online purchasing, reduced chain purchasing to reduce
these costs, and earn more profit.

(d) The value of m reveals the obvious character of deterioration factor θ(t), i.e., as deterioration factor
decreases profit increases with increasing order cycle and credit period. That is the retailer should take
necessary measure to reduce the deterioration of item to make sufficient profit.

(e) If the trade credit period of the supplier M increases the retailer should lengthen both the credit period
and replenishment period to make more profit.

(f) If the value of b increases, the value of N∗ and the total profit Π∗(N,T ) decreases whereas the order cycle
T ∗ increases. When the default risk of the customer is higher, the retailer should offer a shorter delay
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Table 2. Sensitivity analysis on parameters.

Parameter Values N∗ T ∗ Π∗(N,T )

A 100
150
200

1.720941
1.686789
1.658679

0.6981161
0.8333156
0.9433776

1535.080
1469.845
1413.590

p 15
20
25

1.287579
1.658679
1.918966

0.8950283
0.9433776
1.032760

710.1683
1413.590
2156.027

c 5
7
10

1.658679
1.276843
0.8247592

0.9433776
0.8843640
0.8443106

1413.590
1031.467
564.8598

h 3
5
7

1.658679
1.634498
1.608521

0.9433776
0.7235645
0.6100265

1413.590
1276.525
1168.804

m 1
1.5
2

1.646732
1.658679
1.662810

0.8765509
0.9433776
0.9681793

1384.492
1413.590
1423.550

M 0.6
0.8
1.0

1.639831
1.658679
1.677467

0.9400124
0.9433776
0.9468381

1383.562
1413.590
1443.753

b 0.027
0.030
0.033

1.692726
1.658679
1.626103

0.9407193
0.9433776
0.9459927

1428.262
1413.590
1399.347

payment time to his customer and stretch the order cycle. The retailer can take some measure to reduce
the default risk of the customer by adopting the partial trade credit policies with different delay payment
schemes such as down payment scheme, annual installment scheme, EMI scheme, etc.

6. Conclusions

The results in this paper not only provide a valuable reference for decision-makers in planning and controlling
the inventory but also provide a useful model for many organizations that use the decision rule to improve their
sales profit. Taking care of upstream and downstream trade credits simultaneously for deteriorating items and
considering demands to a time varying and credit sensitive involving default risk has received relatively little
attention from researchers. Most of the existing inventory models under trade credit financing are assumed that
the demand rate remains constant. However, in practice the market demand is always changing rapidly and is
affected by several factors such as price, time, inventory level, and delayed payment period. In today’s high-
tech products, demand rate increases significantly during the growth stage. Moreover, the marginal influence
of the credit period on sales is associated with the unrealized potential market demand. To obtain robust and
generalized results, we extend the constant demand to a time varying and credit sensitive demand. In this
paper, we formulate a supplier–retailer–customer supply chain inventory model for deteriorating items such as
volatile liquids, blood banks, fresh fruits, vegetables, pharmaceutical products, etc. under two levels of trade
credit policy with default risk consideration. The items deteriorate at an increasing varying rate of deterioration.
The supplier frequently offers the retailer a trade credit of M periods, and the retailer in turn provides a trade
credit of N periods to her/his buyer to stimulate sales and reduce inventory. From the seller’s perspective,
granting trade credit increases sales and revenue but also increases default risk (i.e., the percentage that the
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buyer will not be able to pay off her/his debt obligations). Here, the demand is assumed to be dynamic which
varies simultaneously with time and the length of credit period that is offered to the customers. The aim of
this paper is to maximize the retailer’s annual total profit by making decisions regarding the credit period and
lot size. The concavity of all derived objective functions (i.e., annual total profit of the retailer in all cases) are
proved and a closed form optimal solution obtained for determining the global optimal of the model. At the
end, several numerical examples are presented and a sensitivity analysis is performed to show the applicability
of the developed models and also to provide managerial insights.

In practice, the contributions of this paper and the approach we considered to solve the problem are significant
because the retailer has to decide whether it is worthwhile to alter the regular ordering pattern to exploit other
opportunities and assess their monetary impact to find the optimal ordering policy under realistic conditions
linking marketing as well as operations management concerns. Finally, this paper brings attention into the trade
credit that is of major importance in the operations of enterprises in many economics.

All models have their limitations. In practice, deterioration rate depends on product, time, place, weather,
etc. Based on the best of our knowledge, due to the complexity of the problem, none has scientifically measured
and quantified the deterioration rate of a product before. Likewise, none has quantified demand rate as a
function of time and trade credit. Hence, how to quantity deterioration rate as well as demand rate is a major
obstacle to implement the proposed model into a real-world application. Additionally, in traditional marketing
and economic theory, price is a major factor on the demand rate. As a result, one could take pricing strategy
into consideration in the future research. Furthermore, there are four distinct economic equilibrium solutions
between the seller and the buyer: (i) non-cooperative Nash equilibrium solution without a dominating player, (ii)
non-cooperative Stackelberg equilibrium solution with a dominating player, (iii) cooperative Pareto equilibrium
solution through negotiation, and (iv) integrated optimal solution for an integrated organization. Therefore, for
the future research one should derive and compare those four distinct economic equilibrium solutions among
players in a supplier–retailer–customer supply chain. Finally, one might generalize our proposed model in the
directions of recent research papers such as Teng et al. [55], Shin et al. [44], and Shah et al. [43].
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