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HYBRID ALGORITHMS FOR THE EARLINESS–TARDINESS

SINGLE-MACHINE MULTIPLE ORDERS PER JOB SCHEDULING

PROBLEM WITH A COMMON DUE DATE

Jens Rocholl and Lars Mönch*

Abstract. In this paper, we study an earliness–tardiness scheduling problem for a single machine
that is motivated by process conditions found in semiconductor wafer fabrication facilities (wafer fabs).
In modern 300-mm wafer fabs, front opening unified pods (FOUPs) transfer wafers. The number of
FOUPs is limited to avoid a congestion of the Automated Material Handling System. Several orders
can be grouped in one FOUP. A nonrestrictive common due date for all the orders is assumed. Only
orders that belong to the same family can be processed together in a single FOUP at the same time. We
present a Mixed Integer Linear Programming (MILP) formulation for this problem. Moreover, we show
that this scheduling problem is NP-hard. We propose several simple heuristics based on dispatching
rules and assignment strategies from bin packing. Moreover, genetic algorithms are designed that assign
the orders to the set of early and tardy orders, respectively. In addition, a random key genetic algorithm
(RKGA) is described that proposes order sequences. The different algorithms are hybridized with job
formation and sequencing heuristics. A more specialized algorithm that is based on the generalized
assignment problem is presented for the special case of a single order family. Results of computational
experiments based on randomly generated problem instances are presented. They demonstrate that
the genetic algorithms perform well with respect to solution quality and computing time under a broad
range of experimental conditions.
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1. Introduction

Semiconductor manufacturing deals with manufacturing integrated circuits (ICs). The manufacturing process
starts from raw wafers, thin discs made of silicon or gallium arsenide. The diameter of such a disc is 200- or
300 mm in today’s semiconductor wafer fabrication facilities (wafer fabs). Up to several thousands of ICs can be
placed onto a single wafer. The ICs are built up layer by layer onto the wafer surface by means of complicated and
often highly automated manufacturing processes. The wafer fabrication part of semiconductor manufacturing is
carried out in wafer fabs. It is characterized by a couple of specific process restrictions such as reentrant process
flows that consist of several hundreds of process steps, sequence-dependent setup times that are often much
longer than the processing times, a mix of single wafer, lot, and batch processing, i.e., wafers of several jobs
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can be processed at the same time on the same machine, and expensive machines that are organized in machine
groups (cf. [27]). Production control activities are mainly supported by often sophisticated dispatching rules.
Until recently, scheduling methods for wafer fabs seemed to be too costly compared to dispatching approaches.
However, with the recent dramatic increase in computer efficiency, scheduling methods have become more
competitive (cf. [27]).

Due to the increasing automation pressure, automated material handling systems (AMHS) are very common
in modern wafer fabs (cf. [1, 3, 29]). A FOUP is a standard unit of AMHS-based job transfer between machines
where a FOUP is a container that is able to hold up to 25-wafer lots of 300-mm wafers in an inert, nitrogen
atmosphere (cf. [6]). FOUPs are the moving entities in a wafer fab that might visit the machines of the different
machine groups several times. The number of FOUPs is a restriction in wafer fabs since FOUPs are expensive
and a large number of them might lead to a congested AMHS. Because of the combination of decreased line
width and increased area per wafer in 300-mm wafer fabs, the number of wafers that is needed to fill the ICs of
a certain customer is smaller compared to the situation found in mature 200-mm wafer fabs. Therefore, there
is quite often a need to group orders of different customers into one FOUP. The resulting entity is called a job
to go conform to the scheduling literature. The jobs have to be scheduled on the machines of a wafer fab after
the grouping decision is made. We refer to the resulting problems as multiple orders per job (MOJ) scheduling
problems (cf. [25]).

In this paper, we consider a single-machine scheduling problem. A lot processing environment is assumed,
i.e., all orders that are assigned to a job have the same processing time. This time is the processing time of
the job. All orders have a common due date that is “unrestrictively late” (or nonrestrictive). The common
due date assumption is motivated by the situation found in memory business where it is likely that a large
number of chips have the same external (loose or tight) due date and hence the same internal due date for the
corresponding wafer fab operations. The occurrence of base wafers in wafer fabs provides a second motivating
example. The notion of base wafers refers to preprocessed wafer, i.e., all layers up to the metal layer are already
processed [28]. Base wafers are held on stock in a wafer bank for fulfilling specific customer requests based on
contractual obligations. In this situation, the due dates of almost all final chips are the same and often loose
since the company has some flexibility to fulfill the contracts, therefore the same holds for the related internal
due dates in the wafer fab.

We are interested in minimizing the sum of the absolute deviations of the completion times of all orders from
the common due date (earliness–tardiness). The earliness is related to inventory holding whereas tardiness refers
to customer dissatisfaction. The earliness–tardiness (E/T ) measure is important in just-in-time environments.
To the best of our knowledge, a MOJ scheduling problem with the E/T measure and a common due date of
the orders is not considered so far in the literature.

The paper is organized as follows. The MOJ scheduling problem is described in Section 2. A MILP formulation
is presented. Moreover, related work is discussed in this section. Structural properties of optimal solutions are
established in Section 3. In addition, the NP-hardness of the scheduling problem is shown. Different heuristic
and exact approaches are designed in Section 4. The results of computational experiments are presented in
Section 5. Finally, conclusions and future research directions are discussed in Section 6.

2. Problem formulation and discussion of related work

We start by describing the problem setting in Section 2.1. A MILP formulation for the MOJ scheduling
problem is presented in Section 2.2. We discuss related work in Section 2.3.

2.1. Problem setting

A single machine is considered. There are N orders that belong to L incompatible families. We assume that
Nl, l = 1, . . . , L orders are in family l. We have

∑L
l=1Nl = N . We denote the set of all orders by O and the set

of orders that belong to family l by Ol. Each order o has a size so that is given as the number of wafers. Only
orders belonging to the same family can be grouped into one job, i.e. a FOUP. A split of orders into suborders
is not allowed. We have F FOUPs. Once the machine is started to process a job it cannot be interrupted. Since
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FOUPs are standardized, it is reasonable to assume that all FOUPs have the same capacity of K wafers, i.e.
items. We denote by f (o) the family of order o. All orders are available at time t = 0. The orders have a common
due date d that is unrestrictively late (or nonrestrictive), i.e., we assume

N∑
o=1

po ≤ d, (2.1)

where po is the processing time of order o. All orders o that belong to the same family f (o) = l have the
same processing time Pl. We consider a lot processing environment where all wafers of a job will be processed
together. Therefore, the processing time of a job is determined by the family of the orders that form the job,
i.e., it is equal to Pl if l is the family of these orders. Let Co be the completion time of order o. Due to the
lot processing environment, the completion time of all orders that form a job is identical. We are interested in
minimizing the E/T performance measure of the N orders. The earliness of order o is given by Eo := (d− Co)

+

and the tardiness by To := (Co − d)
+

. Here, we use x+ := max (x, 0) for abbreviation. The E/T performance
measure is given by

E/T :=

N∑
o=1

(Eo + To) =

N∑
o=1

|Co − d| . (2.2)

Using the three-field notation from scheduling theory [11], the scheduling problem can be represented as

1|moj (lot) , incompatible, do ≡ d|E/T, (2.3)

where moj (lot) refers to a MOJ setting with lot processing, and incompatible indicates the different order
families. Finally, the nonrestrictive common due date d is represented by do ≡ d.

The following two decisions have to be made when an instance of problem (2.3) is solved:

1. Job formation: It has to be decided which orders have to be grouped together into a single job.
2. Job sequencing: A sequence of the already formed jobs has to be determined.

We will see that the first decision makes the scheduling harder to solve than its conventional counterpart
1|do ≡ d|E/T which can be efficiently solved due to Kanet [16].

An example instance with L = 3 incompatible families is shown in Figure 1. Here, we assume that the common
due date d is nonrestrictive, while the processing time of the orders of the first, second, and third family is 1,
2, and 4, respectively. The capacity of a job is six items. The different order families are indicated by different
colors and shadings.

We see that five jobs are formed and sequenced around the common due date. Note that a concrete value of
the common due date d is not important as far it is large enough since there is one job that is completed at
d. All the completion times of orders in the early and tardy order set are relative to d in this situation. The
feasible schedule shown in Figure 1 has an objective function value of E/T = 1 · 1 + 1 · 2 + 2 · 3 + 3 · 7 = 30.

2.2. MILP formulation

Next, we present the MILP formulation for problem (2.3). Without loss of generality, we assume that we
have a fixed sequence of the jobs. We start by presenting indices and sets:

1 ≤ j, k ≤ F : jobs
o = 1, . . . , N : orders
l = 1, . . . , L: order families.
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Figure 1. Example of a feasible schedule.

The following decision variables are used in the model:

xoj :=

{
1, if order o belongs to job j
0, otherwise

yjl :=

{
1, if order family l is assigned to job j
0, otherwise

ej : completion time of job j
Co: completion time of order o
Eo: earliness of order o
To: tardiness of order o.

The model is based on the following parameters:

so: size of order o (in wafers)
d: common due date
K: capacity of a FOUP (in wafers)
pl: processing time of each order of order family l
G: very large number.

The model can be described as follows:

min

N∑
o=1

(Eo + To) (2.4)

subject to
F∑

j=1

xoj = 1, o = 1, . . . , N, (2.5)



HYBRID ALGORITHMS FOR THE E/T SINGLE-MACHINE MOJ PROBLEM 1333

N∑
o=1

soxoj ≤ K, j = 1, . . . , F, (2.6)

L∑
l=1

yjl = 1, j = 1, . . . , F, (2.7)

xoj − yjf(o) ≤ 0, o = 1, . . . , N, j = 1, . . . , F, (2.8)

ej + plykl ≤ ek, o = 1, . . . , N, j = 1, . . . , F, k = 1, . . . , F, j < k, l = 1, . . . , L, (2.9)

ej −G (1− xoj) ≤ Co, o = 1, . . . , N, j = 1, . . . , F, (2.10)

Co ≤ ej +G (1− xoj) , o = 1, . . . , N, j = 1, . . . , F, (2.11)

Co − d ≤ To, o = 1, . . . , N, (2.12)

d− Co ≤ Eo, o = 1, . . . , N, (2.13)

xoj , yjl ∈ {0, 1} , 0 ≤ Co, ej , Eo, To, o = 1, . . . , N, j = 1, . . . , F, l = 1, . . . , L. (2.14)

The objective function (2.4) is the sum of the earliness and tardiness values of the different orders. Constraints
(2.5) make sure that each order is assigned to exactly one job. The capacity of the FOUPs is ensured by
constraints (2.6). Constraints (2.7) model that exactly one family is assigned to each job. It is expressed by
constraints (2.8) that all orders of a certain job belong to the same family. Constraints (2.9) relate the completion
time of jobs to the sequence of the jobs and the corresponding processing times. The completion time of the
individual orders of a job is derived based on constraints (2.10) and (2.11). Constraints (2.12) and (2.13) provide
a linearization of the tardiness and earliness values of the individual orders. The domains of the decision variables
are ensured by the constraints (2.14).

2.3. Related work

We discuss related work with respect to MOJ scheduling and to single and parallel machine scheduling
problems with a common due date and the E/T measure. We start by MOJ scheduling problems. The MOJ
scheduling problems 1|moj (lot) |TWC and 1|moj (item) |TWC are analyzed in Mason et al. [21] for the first
time. Here, we denote the item processing case by moj (item), i.e., the processing time of a job depends
on the number of wafers, i.e. items, in the job. Moreover, we abbreviate the total weighted completion time
performance measure by TWC. Fairly simple heuristics motivated by bin packing problems are formulated.
A two-phase MIP-based solution technique for 1|moj (lot) |TC and 1|moj (item) |TC, respectively is proposed
by Mason and Chen [20] where TC refers to the total completion time of the orders to be scheduled. Two
genetic algorithms (GAs) are proposed for the MOJ single-machine scheduling problems 1|ro,moj (lot) |TWC,
1|ro,moj (item) |TWC, 1|ro,moj (lot) |TWT , and 1|ro,moj (item) |TWT by Qu and Mason [32] where unequal
release dates of the orders are indicated by the notation ro. Here, the abbreviation TWT is used for the
total weighted tardiness performance measure. Erramilli and Mason [4] use simulated annealing to solve the
problem 1|moj (lot) , batch|TWT . Here, the notation batch indicates a situation where several jobs can be
processed together, i.e., they form a batch. A MOJ single-machine batch problem with incompatible job families
is addressed by Erramilli and Mason [5]. Only jobs that belong to the same family can be used to form a
batch. Iterative schemes for the problem 1|moj (item) |TC are designed by Tanrisever and Kutanoglu [40]. A
branch-and-bound algorithm for the problem 1|moj (item) |TWC is proposed by Sarin et al. [34].

Column generation is applied by Jampani and Mason [13] to the problem Pm|ro,moj (lot) |TWC, where
Pm is used for identical parallel machines. Jia and Mason [15] propose several heuristics for the MOJ problem
Pm|ro, skl,moj (lot) |TWC. Here, skl refers to sequence-dependent setup times.

The scheduling problems F2|moj (lot) |Cmax and F2|moj (item) |Cmax are discussed by Laub et al. [17],
where F2 is a flow shop with two machines. The makespan objective Cmaxis assumed. Optimal approaches and
a heuristic for F2|moj (item) |Cmax are proposed. The problem studied by Laub et al. [17] is generalized by
Sarin et al. [35]. New structural properties are proven. Moreover, tight upper bounds are computed. Jampani
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et al. [14] hybridize ant colony optimization and constraint programming to solve the MOJ scheduling problem
FJm |moj (lot) , ro, recrc |TWC , where FJm and recrc represent a complex job shop and reentrant flows,
respectively. Mönch et al. [26] design and assess several job formation and release strategies for large-scale wafer
fabrication facilities using discrete-event simulation.

The single-machine scheduling problems 1|ro,moj (lot) |TWC and 1|ro,moj (item) |TWC are studied by
Sobeyko and Mönch [36]. A RKGA and a grouping GA (GGA) are designed for these problems. More-
over, Sobeyko and Mönch [37] propose GGAs to solve the four single-machine problems 1|ro,moj (lot) |TWT ,
1|ro,moj (item) |TWT , 1|ro,moj (lot) |WNTO, 1|ro,moj (item) |WNTO where we denote the weighted number
of tardy orders performance measure by WNTO.

Next, we discuss related work with respect to common due date scheduling. It is shown by Kanet [16] that the
scheduling problem 1|dj ≡ d|E/T can be solved by an efficient exact algorithm. Hall and Posner [12] generalize
the setting from Kanet [16] by allowing weights for the jobs. The resulting scheduling problem with the weighted
earliness and tardiness measure is NP-hard. Structural results are derived, and several constructive heuristics
are proposed. For a survey of common due date-based scheduling research we refer to Gordon et al. [10].

Next, we discuss scheduling research with a common due date where a batch processing machine, i.e. a
p-batching environment, is assumed. The processing time of a batch in a p-batching environment is determined
as the longest processing of the jobs that form the batch. Since the objective function is job-based, the jobs in
a batch lead to problems that are similar to the scheduling problem discussed by Hall and Posner [12], i.e., the
number of jobs in a batch can be interpreted as a weight for the batch. Common due date scheduling problems
for batch processing machines are similar to problem (2.3) since grouping decisions have to be made too.
Mönch et al. [24] discuss the problem 1|p− batch, dj ≡ d,∆|E/T . A maximum allowable tardiness constraint is
considered. Here, ∆ denotes the amount of maximum allowable tardiness. They propose a GA that is based on
structural properties of optimal solutions. The problem Pm|p− batch, dj ≡ d|E/T is discussed by Mönch and
Unbehaun [23]. Genetic algorithms are proposed. Li et al. [18] extend the heuristics from Mönch and Unbehaun
[23] to a single-machine situation where unequal job sizes are possible. The unequal job size assumption is
similar to MOJ scheduling where each order can have an individual size. Parsa et al. [30] propose a dynamic
programming formulation, a branch-and-bound algorithm, and several constructive heuristics for the problem
studied by Li et al. [18].

Overall, it turns out that to the best of our knowledge MOJ scheduling problems with a nonrestrictive
common due date are not discussed so far in the literature. It seems reasonable to extend the related work for
p-batching to the situation of MOJ scheduling problems.

3. Structural properties and computational complexity

We start by deriving structural properties of optimal solutions. Note that most of the properties carry over
from the conventional scheduling setting where jobs with weights are considered and a weighted version of the
E/T measure is used to the MOJ setting. The first property is valid for any optimal schedule for problem (2.3).
In the remainder of this paper, we denote the processing time of job j by p̃j .

Property 3.1. In any optimal schedule, there does not exist any idle time between two consecutive jobs.

Proof. Following Kanet [16], we assume that an optimal schedule S exists that contains idle time ∆ > 0 between
the two consecutive jobs j and k with the property ej = ek − p̃k −∆ < ek − p̃k ≤ d. In this situation, job j
contributes to the objective function value Ej + Tj = |Jj | (d− ej) = |Jj | (d− {ek − p̃k −∆}). Here, we denote
by |Jj | the number of orders that are included in job j. By performing a right shift of job j we construct
a schedule S∗ with no idle time between job j and k. We obtain E/T (S) − E/T (S∗) = |Jj |∆ > 0 which
contradicts to the optimality of S. When idle time exists between jobs that complete after d then a left shift
leads to the contradiction.

The next property shows the existence of optimal schedules that do not contain straddling jobs.

Property 3.2. There is an optimal schedule where a job is completed at the common due date.
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Figure 2. Situation in the proof of Property 3.4.

Proof. This proof is based on the technique used in the proof of Property 3.1 in Hall and Posner [12] where the
number of orders in a job is interpreted as the weight for this job. This means that we assume that there is an
optimal schedule where no job finishes at d. Using the same arguments as in the proof of Property 1 in Hall and
Posner [12] we can show that sliding all jobs earlier or later until a job completes at d leads also to an optimal
schedule.

The next property characterizes the sequence of jobs in a certain class of optimal schedules. Here, we denote
the set of early jobs including the job with completion time d by Ê and the corresponding set of tardy jobs by
T̂ . The related sets of orders are denoted by Ẽ and T̃ , respectively.

Property 3.3. There is an optimal schedule where the jobs in Ê are sorted with respect to |Jj | /p̃j in non-

decreasing order while the jobs in T̂ are sorted with respect to |Jj | /p̃j in non-increasing order.

Proof. We assume that there is an optimal schedule S where two jobs j, k ∈ Ê with ej < ek exist such that
|Jj | /p̃j > |Jk| /p̃k. Swapping the two jobs leads to an E/T change of |Jk| p̃j − |Jj | p̃k < 0. This contradicts with

the optimality of S. The proof for jobs in T̂ goes in an analogous way.

Note that Property 3.3 leads to a V-shaped schedule (cf. [12, 31]), i.e., jobs before d have non-decreasing
|Jj | /p̃j ratios, i.e., they are sequenced according to the weighted longest processing time (WLPT) rule, whereas
jobs after d have non-increasing |Jj | /p̃j ratios, i.e., they are sequenced according to the weighted shortest
processing time rule (WSPT).

The next property according to Hall and Posner [12] shows the distribution of jobs to the sets Ê and T̂ in
optimal schedules.

Property 3.4. The sum of the processing times of the jobs that are in Ê is larger or equal to the sum of the
processing times of the jobs in T̂ in any optimal schedule.

Proof. We assume that there is an optimal schedule S where
∑

j∈Ê p̃j <
∑

k∈T̂ p̃k. Let k be the job that is

scheduled at the last position in T̂ . This situation is shown in Figure 2.
Moving the job k at the first position in Ê leads to a schedule S∗ with the change

|Jk|
(∑

j∈Ê p̃j −
∑

k∈T̂ p̃k

)
< 0 in the objective function value which contradicts with the optimality of S.

Hence, our assumption about S is not correct. This means that we always have
∑

j∈Ê p̃j ≥
∑

k∈T̂ p̃k which is
the property to be established.



1336 J. ROCHOLL AND L. MÖNCH

Figure 3. (a) Schedule that fulfills the four properties and (b) optimal schedule.

Note that the schedule shown in Figure 1 satisfies the Properties 3.1–3.3. This schedule can be turned into
a schedule that fulfills also Property 3.4 by placing job 5 between job 1 and job 2 in Ê. The corresponding
optimal objective function value is E/T = 16. This schedule is shown in Figure 3a. An optimal schedule that is
obtained by a different sequencing of the jobs from the previous schedule is depicted in Figure 3b. The optimal
objective function value verified by the MILP (2.4)–(2.14) is E/T = 14.

Next, we consider the case of a single order family. In this situation, all jobs have an identical processing
time p̃j ≡ p. Using Properties 3.1, 3.2 and the algorithm SCHED proposed by Kanet [16] it is clear that the
completion times of the jobs in an optimal schedule according to Hall and Posner [12] are given by:

ej = d− dF/2e+ jp, j = 1, . . . , F. (3.1)

The earliness–tardiness value associated with a single order of job j can be computed as follows:

Ej + Tj = p
(

(dF/2e − j)+
+ (j − dF/2e)+

)
. (3.2)

Using expression (3.2), we are able to formulate the following IP that is simple compared to the MILP formulation
(2.4)–(2.14):

min

F∑
j=1

N∑
o=1

(Ej + Tj) xoj (3.3)

subject to
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F∑
j=1

xoj = 1, o = 1, . . . , N, (3.4)

N∑
o=1

soxoj ≤ K, j = 1, . . . , F, (3.5)

xoj ∈ {0, 1} , o = 1, . . . , N, j = 1, . . . , F. (3.6)

The IP model (3.3)–(3.6) is a special case of the minimization variant MINGAP of the generalized assignment
problem (GAP). It is shown for GAP and MINGAP that even the feasibility question is NP-complete [19].

Next, we prefer to prove more directly that problem (2.3) is NP-hard, even when only a single family is
considered. The proof is based on the strongly NP-hard 3-partition problem [7]. For the sake of completeness,
we first recall this problem:

3-partition problem: Let B be a positive integer. Moreover, we assume that we have 3m integers aj , j =

1, . . . , 3m, such thatB/4 < aj < B/2, j = 1, . . . , 3m and
∑3m

j=1 aj = mB. Do there exist m pairwise disjoint
triples Ai ⊆ {1, . . . , 3m} such that

∑
j∈Ai

aj = B for i = 1, . . . ,m?
The 3-partition problem asks whether there exists a solution for a given instance of the 3-partition problem

or not.

Theorem 3.5. Problem (2.3) is NP-hard in the strong sense even in the case that all orders belong to a single
family.

Proof. We start by considering a specific instance of problem (2.3) for the case of a single family
given by N := 3m, F := m, sj := aj , K := B,p := 1. The threshold value of the E/T measure is

defined by Y := 3
∑F

j=1

(
(dF/2e − j)+

+ (j − dF/2e)+
)

. The decision version of the scheduling problem

1|moj (lot) , Co ≡ d|E/T asks whether there is a feasible schedule S such that E/T (S) ≤ Y holds or not.
We shall show that a feasible solution of this instance with objective function value smaller or equal to

3
∑F

j=1

(
(dF/2e − j)+

+ (j − dF/2e)+
)

exists if and only if a solution of 3-partition exists for the given input

data.
We assume first that there is a solution of 3-partion. We then have sets Ai, i = 1, . . . ,m such that

∑
j∈Ai

sj =
K, i = 1, . . . ,m, i.e., the sets Ai, i = 1, . . . ,m determine the content of the jobs. Each order is assigned to exactly
one of the Ai sets since the Ai are disjoint, and we have

∑3m
i=1 si = mK. The objective function value of the

resulting schedule is clearly 3
∑F

j=1

(
(dF/2e − j)+

+ (j − dF/2e)+
)

.

Next, we assume that there is a feasible solution of the instance of the scheduling problem with objective

function value smaller than or equal to 3
∑F

j=1

(
(dF/2e − j)+

+ (j − dF/2e)+
)

. We assume first that more than

three orders belong to a single job. This then contradicts to the conditions K/4 < so, o = 1, . . . , N and the fact
that the capacity of each job is K. If less than three orders are in a job j then we have

∑
o∈j so < K due to

so < K/2, o = 1, . . . , N . This leads to
∑N

o=1 so < F K which contradicts to
∑N

o=1 so = F K. Overall, we have
F jobs, each of them contains exactly three orders where the sum of the order sizes is exactly K for each job.
This is a solution of 3-partition.

Because of the shown NP-hardness of problem (2.3), we have to propose efficient heuristics, especially meta-
heuristics, to solve large-sized problem instances in a reasonable amount of computing time. It is desirable to
apply the derived properties of optimal schedules when metaheuristics are designed. This will lead to hybrid
algorithms.
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4. Heuristic and exact solution approaches

We start by describing simple reference heuristics in Section 4.1. We then present several heuristics based on
GAs in Sections 4.2 and 4.3. An IP-based exact algorithm is proposed for the special case of a single family in
Section 4.4.

4.1. Simple reference heuristics

We discuss strategies to form jobs and sequence them. Therefore, we use bin packing-type algorithms that are
inspired by Mason et al. [21]. First, the orders have to be sorted. Since we have equal weights for all orders, we
can only apply the smallest size (SS) and the largest size (LS) rule. The first rule sorts the orders with respect
to the index I (o) := so in non-decreasing order, while the second one applies this index in non-increasing order.

Next, we describe assignment strategies for a given sorted list of orders. These strategies are called order-
to-job-assignment rules in Mason et al. [21]. Among the different assignment strategies in Mason et al. [21]
especially the FFDn and the FFDAJS strategies including the FFD1 strategy are successful in some preliminary
experimentation. The remaining strategies in Mason et al. [21], namely FFD1b, FFDnb, and FFD-AJS1, use all
the available FOUPs. This is clearly an undesirable feature for MOJ problems with lot processing. Therefore, we
recall only the FFDn, FFD1, and FFDAJS strategies in this subsection. We assume without loss of generality
that we have a fixed sequence of the jobs. The three strategies are as follows:

1. FFD1: This rule assigns orders from a sorted list until no more orders from the list can be placed in the
current job due to the capacity constraints. In this situation, the next job is considered and the procedure
is repeated. Note that this approach might lead to F passes through the order list.

2. FFDn: This strategy considers again orders from the list. It assigns the current order to the first job with
enough capacity to place the order. If not enough capacity is available in the currently considered job, the
next job is used. It is clear that this strategy leads only to a single pass through the order list.

3. FFDAJS: The goal of this assignment strategy consists in assigning orders to the jobs in such a way that
the capacity usage of all jobs is similar. Therefore, the sum of the sizes of all unassigned orders will be
divided by the number of empty jobs. This provides the expected average job size for each remaining job.
The next job is then filled using the FFD1 strategy without exceeding the expected average job size and
violating any of the constraints.

Note that the order-to-job assignment rule based on the FFDAJS strategy requires knowing how many empty
jobs of each incompatible family still exist. Therefore, we use the expression

Fl := bF/Lc , l = 1, . . . , L (4.1)

for determining the number of jobs Fl that belong to family l. If there are still jobs left they will be assigned to
the families if needed. In the case of the remaining order-to-job assignment rules a family is assigned to a job
whenever a job is needed for orders of the corresponding family.

Next, we sketch an algorithm that assigns the already formed jobs to the early and tardy order/job sets. Let
be J the set of all jobs. We introduce job sets for partial schedules of early and tardy jobs by the definitions

Ē :=
{
j ∈ J |j is part of the partial schedule for Ê

}
and T̄ :=

{
j ∈ J |j is part of the partial schedule for T̂

}
.

The early-tardy assignment heuristic works as follows:

Early-Tardy Assignment Heuristic (ETAH)

1. Sort the jobs according to the index Ij := |Jj | /p̃j in non-increasing order. Initialize Ē := ∅ and T̄ := ∅.
2. Compute the sum of the processing times of the already sequenced jobs in Ê and T̂ , namely

∑
j∈Ē p̃jand∑

j∈T̄ p̃j . Select the first job j∗ ∈ J . If
∑

j∈Ē p̃j <
∑

j∈T̄ p̃j + p̃j∗ then go to Step 3, otherwise go to Step 4.

3. Insert job j∗ as first job in Ê. Update Ē := Ē ∪ {j∗}.
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4. Insert job j∗ as last job in T̂ . Update T̄ := T̄ ∪ {j∗}.
5. Update J := J\ {j∗}. If J 6= ∅ then stop, otherwise go to Step 2.

Step 1 and Steps 3 and 4 ensure that Property 3.3 is respected by the resulting schedule. Straddling jobs are
avoided by Steps 3 and 4. Property 3.4 is taken into account by Steps 2, 3, and 4. Note that the quality of a
schedule resulting from the ETAH procedure cannot be improved by exchanging the positions of jobs in the
schedule. If we use FFDn and SS for job formation and ETAH for sequencing, we call the resulting heuris-
tic ETAH(FFDn-SS). The abbreviations ETAH(FFDn-LS), ETAH(FFDAJS-SS), and ETAH(FFDAJS-LS)
are used with a similar meaning. We suppress the term ETAH in the names of the simple heuristics at some
places.

4.2. Genetic algorithms based on early-tardy set decomposition

GAs are widely used approaches to solve large-scale combinatorial optimization problems (cf. [8, 22]). GAs
represent an important class of population-based metaheuristics. The individuals of the population are called
chromosomes. A fitness value derived from the objective function value of the scheduling problem is assigned
to each chromosome. GAs work iteratively, i.e., a generation corresponds to a single iteration. The individuals
of the new generation are obtained from the individuals of the previous one by applying reproduction, i.e.
crossover and selection, and mutation. It is more likely that individuals with a good fitness value are selected
for the next generation.

The first GA to solve problem (2.3) is used to determine the sets Ẽ and T̃ . A similar technique is applied in
Mönch et al. [24]. An order-based representation is used. Therefore, the chromosomes are arrays of length N ,
i.e., we obtain

c := (a1, . . . , aN ) , (4.2)

where we set for o = 1, . . . , N

ao :=

{
1, if o ∈ Ẽ
0, otherwise.

(4.3)

We consider the following chromosome for N = 6 orders as an example:

c := (1, 0, 0, 1, 1, 0) . (4.4)

The chromosome (4.4) leads to the following set Ẽ := {1, 4, 5} of early and on-time orders, whereas the set of
tardy orders is T̃ := {2, 3, 6}.

In order to calculate the fitness of a chromosome it is first decoded into a schedule by applying any of the
order sorting and job formation strategies described in Section 4.1. Here, we use the SS and LS strategies to sort
the orders and the FFDn procedure for order-to-job assignments. Once the jobs in both Ê and T̂ are formed
they are sequenced using Property 3.3. When a chromosome leads to an infeasible solution than the objective
function value will be penalized.

The initial population is randomly generated. A standard one-point crossover [22] is used. Therefore, two
parent chromosomes c1 := (a1, . . . , aN ) and c2 := (b1, . . . , bN ) are chosen from the population by applying the
roulette wheel procedure (see [22]). A cutting position 1 ≤ l ≤ N is randomly chosen. The two child chromosomes
c3 := (a1, . . . , al−1, bl, . . . , bN ) and c4 := (b1, . . . , bl−1, al, . . . , aN ) are obtained by exchanging the two substrings
starting at position l.

Moreover, flip mutation is used, i.e., we choose randomly a gene ak. This gene is then replaced by ak := 1−ak,
i.e., the assignment of order k is changed from the set Ê to T̂ and vice versa. Mutation is applied to a specific
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chromosome with a mutation probability pM . Once a chromosome is chosen for mutation, the probability pM
determines which genes are mutated.

A steady-state GA with overlapping populations is used, i.e., the individuals of the population with the
lowest fitness are replaced. It is known from Syswerda [38] and Rogers and Prügel-Bennett [33] that this class of
GAs is computationally efficient. The amount of chromosomes used for recombination purposes is determined by
the crossover probability pc. The replacement probability is denoted by pr. The proposed GAs are abbreviated
by GA-FFDn-SS and GA-FFDn-LS, respectively.

4.3. Order sequence-based genetic algorithm

While simple order sequencing strategies are applied in ETAH-type heuristics (cf. Sect. 4.1), the second
GA proposes order sequences similar to Sobeyko and Mönch [36] for another MOJ scheduling problem (see
Sect. 2.3) that will be applied to form jobs using the methods described in Section 4.1. Therefore, much more
order sequences are considered compared to the simple order sequencing strategies. However, the decoding
scheme in this research is more difficult than the one used by Sobeyko and Mönch [36].

Since it is well-known that RKGAs are appropriate for sequencing-type problems (cf. [2, 9]) we apply the
random-key representation for encoding order permutations. We use again an order-based representation that
leads to an array of length N as shown in (4.2), i.e., we obtain:

c := (z1, . . . , zN ) , (4.5)

where a realization zo of a random variable Z ∼ U [0, 1] is assigned to position o within the chromosome in the
initial population. Here, we denote by U [a, b] a continuous uniform distribution over the interval [a, b]. The zo
values are called random keys. The orders are sorted in non-decreasing order of the random keys. The following
example for N = 6 is considered. We have the chromosome:

c := (0.80, 0.50, 0.90, 0.11, 0.23, 0.64) . (4.6)

This chromosome is decoded into the following order sequence:

4→ 5→ 2→ 6→ 1→ 3, (4.7)

where job 4 is on the first position and job 3 on the last position.
The genetic operators work on a population of random-key vectors. An elitist strategy to carry out the

reproduction of the population, i.e., the best individuals are copied from one generation to the next one, is
applied. A parameterized uniform crossover is used, i.e., two parents are randomly selected from the population
by the roulette wheel procedure. A biased coin is then tossed for each gene to determine which parent will
contribute to the allele. Immigration as proposed by Bean [2] is used to introduce some diversity into the
population, i.e., at each generation, a certain percentage of new individuals from the population are generated
randomly in a similar manner as for the initial population.

In order to determine the fitness of each chromosome, the ETAH procedure described in Section 4.1 in com-
bination with the FFDn approach serves as a decoder that generates a feasible schedule from the chromosome.
This means that jobs are formed by FFDn based on the order sequence obtained from the chromosome, and the
ETAH procedure assigns the jobs to the Ê and the T̂ sets and sequences them in each of the two sets. When a
chromosome leads to an infeasible solution then a penalty term is used in the objective function. The resulting
GA is called RKGA in the remainder of this paper.

We summarize and compare the different hybridization strategies in the GA-FFDn-type approaches and in
the RKGA scheme in Table 1.

Note that other hybridization strategies are possible. One of them is sketched in Section 6. We can see from
Table 1 that the proposed hybridization strategies rely on the properties derived in Section 3. Although the
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Table 1. Hybridization strategies in the two proposed GAs.

GA RKGA

Encoding scheme Array of orders, each gen co ∈ {0, 1} Array of orders, each co ∈ [0, 1]
Order sequencing SS/LS Taken from a chromosome

Job formation Based on FFDn, separate for Ẽ, T̃ FFDn for Ê ∪ T̂
Job sequencing Based on the LPT rule for Ê Based on the ETAH scheme for Ê ∪ T̂

and based on the SPT rule for T̂

encoding schemes of the two GAs are taken from Mönch et al. [24] and Sobeyko and Mönch [36], the algorithms
in the present paper are different from these GA-type heuristics in the two previous papers because of the
problem-specific hybridization approaches.

4.4. Solution approaches for the special case of a single family

In the special case of a single family, we solve the IP (3.3)–(3.6) by a commercial solver. This leads to a fast
approach that provides the exact solution in the case of small- or even medium-sized problem instances. If the
instances are large, we solve the IP (3.3)–(3.6) in a heuristic manner, i.e., we do not solve the IP to optimality,
determining a feasible solution within a given amount of computing time is enough.

Moreover, the simple heuristics from Section 4.1 and the two GA-based approaches from Sections 4.2 and 4.3
are applied to solve instances of problem (2.3) in the single family case. It is especially interesting to apply the
exact approach for medium-sized problem instances since we can assess the performance based on the known
optimal solutions that are computed using the IP approach.

5. Computational experiments

In Section 5.1, the design of experiments is described while parameter setting and implementation issues are
discussed in Section 5.2. The results of computational experiments are presented in Section 5.3. The results
obtained are analyzed and discussed in Section 5.4.

5.1. Design of experiments

We expect that the performance of the different heuristics depends on the number of orders, the number of
incompatible families, and the capacity of the FOUPs. Therefore, we randomly generate problem instances for
these factors. The number of FOUPs is given by the expression dNν/12βe+L where the factor ν determines the
size of the orders and the factor β is responsible for sizing the capacity of the FOUPs. The processing time of
the jobs that contain orders of a given family are taken from a given discrete distribution. They are individually
chosen for the families of each problem instance. The obtained design of experiments is summarized in Table 2.

Overall, we consider 640 small-, medium- and large-sized problem instances in the computational experiments.
Although we are unable relying our experiments on real-world problem instances, our instance generation scheme
is motivated by process conditions, for instance order size or processing time distributions, found in real-world
wafer fabs. The maximum amount of 120 and 240 orders for a single machine reflects the load situation in a
heavily congested wafer fab.

Moreover, we perform additional computational experiments with small-sized problem instances according
to the design of experiments described in Table 3. In total, 72 small-sized problem instances are solved.

In a final experiment, we are interested in assessing the performance of the GA-type approaches based on
the IP approach (3.3)–(3.6). Therefore, we generate 160 additional single-family problem instances based on the
design summarized in Table 4.
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Table 2. Design of experiments for small-, medium- and large-sized problem instances.

Factor Level Count

N 30, 60, 120, 240 4

so ∼DU
[
ν − v + 1

2
, ν +

ν + 1

2

]
, ν ∈ {3, 5} 2

K (in wafers) 12β + 1, β ∈ {1, 2} 2
L 1, 3, 6, 10 4
Processing time distribution 5 with p = 0.2 1

4 with p = 0.2
10 with p = 0.3
16 with p = 0.2
20 with p = 0.1

Number of independent replications 10 per factor combination 10
Total number of problem instances 640

Table 3. Design of experiments for small-sized instances with incompatible families.

Factor Level Count

N 12, 24, 36 3

so ∼DU
[
ν − v + 1

2
, ν +

ν + 1

2

]
, ν ∈ {3, 5} 2

K (in wafers) 12β + 1, β ∈ {1, 2} 2
L 3, 6 2
Processing time distribution 5 with p = 0.2 1

4 with p = 0.2
10 with p = 0.3
16 with p = 0.2
20 with p = 0.1

Number of independent replications 3 per factor combination 3
Total number of problem instances 72

Table 4. Design of experiments for single-family instances.

Factor Level Count

N 30, 60, 120, 240 4

so ∼DU
[
ν − v + 1

2
, ν +

ν + 1

2

]
, ν ∈ {3, 5} 2

K (in wafers) 12β + 1, β ∈ {1, 2} 2
Processing time 10 1
Number of independent replications 10 per factor combination 10
Total number of problem instances 160

We are interested in the E/T value obtained by a specific heuristic H relative to the E/T value computed
by the ETAH(FFDn-LS) approach, i.e., we determine the performance ratio:

PR (H) :=
E/T (H)

E/T (ETAH (FFDn− LS))
(5.1)
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Figure 4. Number of instances where a feasible solution is found by the corresponding heuristic.

for each instance. The ETAH(FFDn-LS) scheme is used for comparison since this simple heuristic is able to
provide feasible solutions for a large number of problem instances from Table 2 as shown in Figure 4.

Moreover, we know for small-sized problem instances the optimal (or near-to-optimal) objective function
values from the MIP (2.4)–(2.14) or the IP (3.3)–(3.6) in the single-family case. Therefore, in this situation, we
replace the ratio (5.1) by the ratio

RE (H) :=
E/T (H)

E/T (MIP )
(5.2)

that shows the E/T values of the heuristics relative to the E/T values of exact solutions. All heuristics with
stochastic ingredients are replicated ten times with different seeds to obtain statistically reasonable results. The
average value of the corresponding ratios (5.1) and (5.2) is reported over all replications that result in a feasible
schedule. A computing time of 10 s is used per problem instance for the three GAs to allow a fair comparison.
Moreover, we also conduct a second series of experiments where we allow 20 s of computing time per problem
instance.

5.2. Parameter settings and implementation issues

A population size of 300 is used for the GA-FFDn-SS and the GA-FFDn-LS approach, respectively. The
mutation probability is chosen as pM = 0.1. The corresponding crossover probability is selected as pc = 0.8, while
the replacement probability is set to pR = 0.9. These parameter settings are determined based on preliminary
experiments with 16 randomly selected problem instances out of the 640 instances based on Table 2. For the
population size, the tested values are {300, 500, 700}. Moreover, we test the settings pM ∈ {0.10, 0.15, 0.20},
pc ∈ {0.80, 0.85, 0.90}, and pR ∈ {0.80, 0.90}. We consider parameter combinations according to a Taguchi
Orthogonal Array and apply the corresponding GA variant to all 16 instances to obtain the parameter settings
shown above.

For the RKGA, we apply again a population size of 300. This setting is chosen based on a trial and error
strategy based on the population sizes from the set {300, 500, 700} and the 16 instances described before.

The remaining parameters for the RKGA scheme are directly taken from Bean [2], i.e., an immigration rate
of 1% is used, 20% of the chromosomes with the best fitness values are copied into the next generation, and
the parameterized uniform crossover is applied to the entire population with the probability of tossing a head
that is 0.7. For the instances in Tables 2 and 3, a maximum computing time of 2 h per instance is used for a
commercial solver. The proposed GAs are performed for 300 generations.
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Table 5. Computational results for the ETAH procedure.

FFDn-SS FFDn-LS FFD1-SS FFD1-LS FFDAJS-SS FFDAJS-LS

0.930 1.000 0.929 1.001 1.314 1.650

The proposed algorithms are coded using the C++ programming language. Moreover, the GAs are imple-
mented based on the GaLib framework [41]. The presented chromosome representation for the RKGA is coded
based on the class GARealGenome of the GALib framework, whereas the class GA1DArrayGenome<int> is
applied for the second type of proposed GA. The MIP (2.4)–(2.14) and the IP (3.3)–(3.6) are solved using
the commercial solver CPLEX 12.1. The experiments with the commercial solver are performed on an Intel
Core i7-2600 CPU 3.40 GHz computer with 16 GB RAM whereas the remaining computational experiments
are conducted on an Intel Core i7-3632QM CPU 2.20 GHz computer with 8 GB RAM.

5.3. Computational results

In a first experiment, we are interested in the performance of the ETAH heuristic with respect to the applied
order sorting and job formation strategies from Section 4.1. We consider the 640 instances generated according
to the design in Table 2. The corresponding average PR values over all instances are presented in Table 5.

Since the FFDn and FFD1order-to-job assignment procedures perform very similar, we will consider
only FFDn in the remaining experiments. Moreover, we show only results for the ETAH(FFDn-SS) and
ETAH(FFDn-LS) schemes since the ETAH(FFDn-LS) heuristic outperforms both the ETAH(FFAJS-SS) and
the ETAH(FFAJS-LS) scheme to a large extent.

We start by presenting the results for computational experiments with small- and medium-sized problem
instances and a computing time of 10 second per problem instance. The computational results are shown in
Table 6. Best results in a row are marked bold.

Instead of comparing the problem instances individually, the instances are grouped according to factor lev-
els such as number of incompatible families, order size (ν), and FOUP capacity (β). Therefore, 10 instances
are considered in each row. The corresponding number of instances with feasible solutions obtained from
ETAH(FFDn-LS) is shown in the last column of Table 4. If a heuristic is unable to find feasible solutions
we indicate this by the n/a symbol. The E/T values of the heuristics are shown relative to the correspond-
ing ETAH(FFDn-LS) value, i.e., we present the average of the ratios PR (H) over all instances with feasible
solutions.

We provide the results for large-sized problem instances in a similar way in Table 7.
Computational results for the 320 large-sized problem instances of Table 2 and a computing time of 20 s

per instance is shown in Figure 5 together with the corresponding results for 10 s of computing time. We do
not present the results for the small- and medium-sized instances of Table 2 since the difference to the results
obtained by applying 10 s per instance are much smaller.

In a second series of experiments, we are interested in assessing the quality of the proposed heuristics based
on the 72 small-sized problem instances found in Table 3. We present only results for the instances with less
than 36 orders since for most of the instances with N = 36 even after 2 h of computing time the solver was
not able to compute a feasible solution. Here, the ratio RE (H) is shown in Table 8. For a single instance with
N = 24 the solver was not able to find a feasible solution. This instance is excluded from Table 8. Overall, 47
instances are considered in this table. Three instances are considered in each row with the exception that a
single row is based on two instances. Again, best results for the heuristics in a given row are marked bold. We
also show the relative MIP gap, defined as the ratio of the difference of the best integer solution and the best
lower bound and the best integer solution, in percent.

Computational experiments with the IP formulation (3.3)–(3.6) are also performed using CPLEX to assess
the solution quality in the special case of a single family. It turns out that for small-sized instances, i.e. for
N ≤ 60, optimal solutions are found by CPLEX on average within less than 20 s per instance. The RKGA is
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Table 6. Computational results for small- and medium-sized problem instances.

L ν β FFDn-SS FFDn-LS GA-FFDn-SS GA-FFDn-LS RKGA # instances

N = 30
1 3 1 0.889 1.000 0.862 0.887 0.856 10

3 2 0.814 1.000 0.809 0.809 0.809 10
5 1 n/a 1.000 n/a 0.948 0.919 10
5 2 0.932 1.000 0.891 0.905 0.883 10

3 3 1 0.885 1.000 0.792 0.800 0.827 10
3 2 0.914 1.000 0.721 0.727 0.867 10
5 1 n/a 1.000 0.827 0.771 0.795 8
5 2 0.925 1.000 0.716 0.741 0.788 10

6 3 1 0.997 1.000 0.812 0.809 0.921 10
3 2 1.000 1.000 0.759 0.752 0.860 10
5 1 1.007 1.000 0.819 0.790 0.846 10
5 2 1.003 1.000 0.838 0.832 0.921 10

10 3 1 1.000 1.000 0.818 0.797 0.881 10
3 2 1.000 1.000 0.751 0.756 0.844 10
5 1 1.000 1.000 0.839 0.827 0.917 10
5 2 1.000 1.000 0.743 0.735 0.844 10

Overall 0.955 1.000 0.800 0.805 0.861

N = 60
1 3 1 0.902 1.000 0.880 0.921 0.872 10

3 2 0.895 1.000 0.885 0.912 0.885 10
5 1 n/a 1.000 n/a 0.968 0.943 9
5 2 0.995 1.000 0.965 0.961 0.968 10

3 3 1 0.856 1.000 0.778 0.785 0.787 10
3 2 0.904 1.000 0.790 0.813 0.841 10
5 1 0.969 1.000 0.885 0.846 0.837 7
5 2 0.931 1.000 0.845 0.829 0.835 10

6 3 1 0.921 1.000 0.798 0.803 0.822 10
3 2 0.985 1.000 0.830 0.830 0.891 10
5 1 n/a 1.000 n/a 0.766 0.796 7
5 2 0.943 1.000 0.802 0.794 0.811 10

10 3 1 0.937 1.000 0.827 0.830 0.888 10
3 2 1.000 1.000 0.782 0.773 0.847 10
5 1 0.986 1.000 0.846 0.811 0.838 10
5 2 0.895 1.000 0.792 0.801 0.854 10

Overall 0.937 1.000 0.836 0.840 0.857

able to determine these optimal solutions for the majority of the problem instances. Starting with N = 120
there are instances that require much more computing time to prove the optimality of a solution, often even
2 h of computing time are not enough. For some of those instances, the RKGA is able to find slightly better
solutions. Due to space limitations, we do not show the detailed results.

5.4. Analysis and discussion of the results

We see from the Tables 6 and 7 that the RKGA perform well under most of the experimental conditions. The
RKGA is slightly outperformed by the GA-FFDn-SS scheme when the FOUP capacity is 25 wafers and when
instances with a single family are considered for N = 240. In the first situation, the grouping decisions are more



1346 J. ROCHOLL AND L. MÖNCH

Table 7. Computational results for large-sized problem instances.

L ν β FFDn-SS FFDn-LS GA- FFDn-SS GA-FFDn-LS RKGA # instances

N = 120
1 3 1 0.918 1.000 0.906 0.954 0.909 10

3 2 0.917 1.000 0.904 0.942 0.933 10
5 1 n/a 1.000 n/a 0.986 0.967 10
5 2 n/a 1.000 n/a 0.990 1.013 10

3 3 1 0.896 1.000 0.849 0.847 0.816 10
3 2 0.906 1.000 0.857 0.875 0.847 10
5 1 n/a 1.000 n/a 0.848 0.836 2
5 2 n/a 1.000 0.896 0.904 0.843 9

6 3 1 0.873 1.000 0.810 0.829 0.787 10
3 2 0.895 1.000 0.844 0.869 0.839 10
5 1 n/a 1.000 0.938 0.914 0.860 4
5 2 0.920 1.000 0.857 0.869 0.817 10

10 3 1 0.860 1.000 0.805 0.825 0.779 10
3 2 0.861 1.000 0.809 0.820 0.773 10
5 1 n/a 1.000 0.917 0.871 0.828 4
5 2 0.858 1.000 0.815 0.850 0.793 10

Overall 0.891 1.000 0.862 0.887 0.853

N = 240
1 3 1 0.922 1.000 0.917 0.986 0.951 10

3 2 0.946 1.000 0.941 0.985 1.005 10
5 1 n/a 1.000 n/a 0.993 1.002 10
5 2 n/a 1.000 n/a 0.991 1.046 10

3 3 1 0.912 1.000 0.872 0.902 0.864 10
3 2 0.918 1.000 0.873 0.936 0.868 10
5 1 n/a 1.000 n/a 0.898 0.874 4
5 2 0.995 1.000 0.958 0.962 0.936 8

6 3 1 0.896 1.000 0.859 0.919 0.849 10
3 2 0.907 1.000 0.879 0.941 0.855 10
5 1 n/a n/a n/a n/a n/a 0
5 2 n/a 1.000 0.932 0.966 0.893 10

10 3 1 0.875 1.000 0.861 0.928 0.824 10
3 2 0.809 1.000 0.797 0.882 0.759 10
5 1 n/a 1.000 n/a 0.944 0.918 1
5 2 0.948 1.000 0.908 0.960 0.851 10

Overall 0.913 1.000 0.891 0.946 0.900

important, but because the RKGA is based on the ETAH(FFDn) procedure some of the early decisions are
often not effective. But these decisions are irrevocable. The scheduling problem becomes harder when more than
one incompatible family is included in the problem instance. In the case of large-sized instances, i.e. N = 240
and only one family the search space of the RKGA scheme is huge since a permutation representation is used.
This effect is less important for the GA-FFDn-SS scheme that uses the GA only to make assignment decisions
for orders.

The difference between the performance of the RKGA scheme and the GA-FFDn-type algorithms is smaller
when instances with N ≤ 60 are considered. In this situation, even GA-FFDn-LS performs fairly well. We see
from Table 6 that on average the GA-FFDn-SS scheme slightly outperforms the other two GAs. However, the
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Figure 5. Overall improvements when 20 s of computing time are used.

Table 8. Computational results for small-sized problem instances.

L ν β FFDn-SS FFDn-LS GA-FFDn-SS GA-FFDn-LS RKGA MIP-Gap (%)

N = 12
1 3 3 1 1.560 1.282 1.000 1.167 1.060 0
2 3 2 1.878 1.593 1.000 1.000 1.000 0
3 5 1 1.264 1.346 1.087 1.117 1.046 0
4 5 2 1.051 1.167 1.083 1.045 1.000 0
1 6 3 1 1.334 1.282 1.082 1.073 1.000 0
2 3 2 1.541 1.639 1.108 1.018 1.000 0
3 5 1 1.184 1.240 1.106 1.043 1.000 85
4 5 2 1.585 1.396 1.014 1.037 1.000 57

Overall 1.424 1.368 1.060 1.062 1.013 18

N = 24
1 3 3 1 1.520 1.686 1.076 1.264 1.343 100
2 3 2 1.405 1.524 1.000 1.052 1.000 0
3 5 1 1.247 1.299 1.076 1.034 1.097 100
4 5 2 1.230 1.493 1.031 1.085 1.156 86
1 6 3 1 1.379 1.583 1.067 1.087 1.037 98
2 3 2 1.281 1.700 1.067 1.021 1.000 90
3 5 1 1.331 1.310 1.061 1.037 1.035 100
4 5 2 1.563 1.442 1.028 1.000 1.000 100

Overall 1.370 1.505 1.051 1.073 1.084 84

value of the average values is limited due to the fact that GA-FFDn-SS is often unable to determine feasible
solutions.

Among the simple heuristics ETAH(FFDn-LS) provides a feasible solution for many instances (see Fig. 4).
However, when the ETAH(FFDn-SS) provides a feasible solution it often outperforms the ETAH(FFDn-LS)
scheme as shown in Table 5. ETAH(FFDn-LS) outperforms ETAH(FFAJS-SS) and ETAH(FFAJS-LS) (see
Tab. 5). It is interesting to observe from Figure 4 that the RKGA is able to find feasible solutions for a large
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Table 9. Results of the Wilcoxon signed-rank test with a 1% significance level.

FFDn-LS GA-FFDn-LS FFDn-SS RKGA GA-FFDn-SS

FFDn-LS > > > >
GA-FFDn-LS > > >
FFDn-SS > >
RKGA >

portion of the instances. This is caused by the permutation representation that is able to avoid infeasible
solutions.

A doubling of the computing time per instance from 10 to 20 s leads only to minor performance improvements
as shown in Figure 5. This is true for all hybrid algorithms.

The analysis of the results in Table 8 shows that the results obtained by the three GAs are pretty close to the
MIP results obtained after 2 h of computing time. For most of the 47 considered problem instances the RKGA
scheme provides the best solutions, followed by GA-FFDn-SS. This indicates that the GAs are correctly coded.
We also see that even for N = 24 the MIP gap is large.

The results obtained for the single-family instances described in Table 4 demonstrate that up to 60 orders
there is no need to use metaheuristics. When instances with more than 60 orders are considered it turns out
that the RKGA is a good choice to obtain near-to-optimal solutions.

The Wilcoxon signed-rank test [42] with a significance level of 1% is applied to show the performance differ-
ences of the proposed heuristics based on the 640 problem instances from Table 2. Table 9 shows the obtained
results. A “>” sign indicates that the heuristic of the column performs significantly better than the algorithm
of the row.

The table demonstrates that the GA-FFDn-SS is the best performing algorithm followed by the RKGA
scheme.

6. Conclusions and future research

In this paper, we discussed a single-machine MOJ for a lot processing environment with a nonrestrictive
common due date. The E/T performance measure is considered. Only orders that belong to the same order
family can be grouped together into one job. We derived several structural properties for optimal solutions of
this scheduling problem. A MILP formulation was proposed. Moreover, we proved that this scheduling problem
is NP-hard even in the situation that all orders belong to a single family.

We proposed several simple heuristics. Moreover, GAs that assign orders to the set of early and tardy jobs,
respectively are designed. We presented also a RKGA that is based on the idea to sequence orders and then assign
these orders to jobs. In the case of a single family, we propose an IP-based exact procedure. Computational
experiments based on randomly generated problem instances are carried out. It was demonstrated that the
RKGA performs well under most of the experimental conditions. It was slightly outperformed by the GA-
FFDn-SS approach in some situations. The proposed GAs reveal smaller E/T values than the simple heuristics.
We also demonstrated that the IP-based algorithm works well for small- and medium-sized problem instances.

There are several directions for future search. First of all, we believe that it is possible to propose a RKGA-
based heuristic that assigns orders to the early or on-time and the tardy order set and sequence them in each
of the two sets. This can be carried out by considering random keys from the interval [0, 2]. Here, bzoc ∈ {0, 1}
determines whether the order o belongs to the early or on-time set (bzoc = 0) or to the tardy set (bzoc = 1).
The sequence of the orders in each of the two sets is determined by considering the fractional part zo − bzoc.

Moreover, it seems possible to study a similar scheduling problem for the item-processing environment as
a second direction. As a third research direction, we are interested in considering MOJ scheduling problems
with a nonrestrictive common due date and the E/T measure for parallel machines or even hybrid flow shops
(cf. [39]).
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As a fourth direction, we believe that it is worth to study MOJ scheduling problems for single and parallel
machine environments where a restrictive common due date is considered.

Acknowledgements. We would like to thank Winfried Hochstättler for his hint to try 3-partition in the proof of
Theorem 3.5.
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