
RAIRO-Oper. Res. 52 (2018) 1295–1328 RAIRO Operations Research
https://doi.org/10.1051/ro/2018024 www.rairo-ro.org

A SELECTIVE ADAPTIVE LARGE NEIGHBORHOOD SEARCH

HEURISTIC FOR THE PROFITABLE TOUR PROBLEM WITH

SIMULTANEOUS PICKUP AND DELIVERY SERVICES

Hayet Chentli1,*, Rachid Ouafi1 and
Wahiba Ramdane Cherif-Khettaf2

Abstract. The Vehicle Routing Problem with Simultaneous Pickups and Deliveries (VRPSPD) is
a variant of the Vehicle Routing Problem. In this variant, an unlimited fleet of capacitated vehi-
cles is used to satisfy both pickup and delivery demands of each customer simultaneously. In many
practical situations, such a fleet is costly. The present study extends the VRPSPD by assuming a
fixed number of vehicles when the constraint of visiting all customers is relaxed. More specifically,
profits are assigned to the customers with the goal of maximizing the difference between collected
profits and routing costs. This variant is named Profitable Tour Problem with Simultaneous Pickup
and Delivery services (PTPSPD). We present a mathematical model run with the CPLEX solver. We
also present an extension of the Adaptive Large Neighborhood Search heuristic (ALNS) called selec-
tive ALNS (sALNS). sALNS uses a new operator selection that executes two phases alternately: the
random and the score-dependent phases. An appropriate update of scores is employed. Furthermore,
sALNS explores missed regions of the search space by evaluating solutions after the destruction step.
Finally, we give tuned insertion and removal operators that handle the constraints of the PTPSPD,
as well as a new update of temperature, that helps avoiding local optima, in the Simulated Annealing
embedded in sALNS. sALNS is evaluated on 117 new instances with 50–199 customers. A comparison
is made between the components of sALNS, the classical ALNS and a recent ALNS heuristic from
the literature. sALNS is also evaluated on some VRPSPD instances from the literature. The com-
putational results show that our heuristic provides good quality solutions in reasonable computing
time.

Mathematics Subject Classification. 90B06, 90C11, 90C27, 90-08

Received April 30, 2017. Accepted March 11, 2018.

1. Introduction

Nowadays, there are more and more environmental problems due to the increase of industrial activities. In
order to cope with those problems, several countries around the world commit themselves to provide differ-
ent environmental protection strategies. Among those strategies, new laws, that impose to the companies a

Keywords and phrases: Vehicle routing problem with pickup and delivery, profitable tour problem, reverse logistic, adaptive
large neighborhood search, metaheuristics.

1 Department of Operations Research, USTHB, P.O. Box 32 El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
2 LORIA, UMR 7503, Lorraine University, Mines Nancy, Nancy, France.

* Corresponding author: chentli.hayet@gmail.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2018024
https://www.rairo-ro.org/
mailto:chentli.hayet@gmail.com
http://www.edpsciences.org

1296 H. CHENTLI ET AL.

better management of waste, have been established. Companies are then constrained to analyze, keep track
of and maintain the life cycles of their products. Hence, for instance, instead of being thrown out, pallets
of transportation (that are used for optimizing the distribution, the loading and the storage of commodities)
are recovered and then reused. This results in a single scheme of transportation including both pickup and
delivery.

As it is costly to deal with distribution cycles and waste management separately, companies are constrained
to optimize their scheme of transportation including both pickups and deliveries. In some cases, transporters
are required to visit each customer one and only one time. So, pickup and delivery are performed simultane-
ously. That can happen, for example, when the customers impose to be visited only once for avoiding excessive
mobilization of agents when receiving, stocking and preparing the commodities. In the literature, the prob-
lem of simultaneously collecting and delivering products to customers is called Vehicle Routing Problem with
Simultaneous Pickup and Delivery services (VRPSPD) (see [19]).

The VRPSPD has received a lot of attention from researchers during the last decade. However, in all studied
variants, the authors consider the problem with an unlimited fleet of vehicles. This assumption does not describe
properly the reality. Indeed, such a fleet is costly.

In the present paper, we propose a new realistic variant of the VRPSPD. This variant is named Profitable
Tour Problem with Simultaneous Pickup and Delivery services (PTPSPD). From the technical point of view,
(i) The PTPSPD is a variant of the Vehicle Routing Problem (VRP) that uses a homogeneous capacitated and
limited fleet of vehicles, which are parked at a single depot, in order to simultaneously perform the pickup and
the delivery operations of each customer. (ii) In a PTPSPD, profits are assigned to the customers in such a way
that, the vehicle routes, which begin and end at the depot, ensure that each customer is visited at most once
(some customers may not be visited at all) and by a unique vehicle. (iii) The deliveries are transported from
the depot to the customers and the pickups are transferred from the customers to the depot. (iv) It is forbidden
to exceed the capacity of the vehicles. (v) The objective of the problem is to maximize the difference between
the sum of collected profits and the traveling costs.

The PTPSPD can be encountered in the soft drinks industries where each grocery store (or customer) receives
filled bottles and gives back empty ones. Therefore, the transporters have to distribute (deliver) filled bottles
and collect (pick up) empty ones in order to reuse them thereafter. Another application can be found in the
distribution and the retrieving of certain machines at the end of their life cycles, in order to repair or recycle
them.

The PTPSPD can also be viewed as an extension of the Capacitated Profitable Tour Problem (CPTP), in
which only pickup operations are required (see [1]). We can easily remark that the CPTP is a special case
of our problem. Actually, if deliveries are set to zero, we obtain a CPTP. Since Jepsen et al. [13] proved the
NP-Hardness of the CPTP, we may say that the PTPSPD is NP-Hard too.

In order to get efficient solutions to our problem, we propose an extension of the Adaptive Large Neighborhood
Search heuristic (ALNS) called selective ALNS (sALNS). sALNS deals with the selective aspect of PTPSPD as
well as with the management of simultaneous pickup and delivery. To assess the performance of the proposed
approach, we contrast our results with those obtained by three methods. First, we perform a run using CPLEX
12.2. Then, we implement the classical version of ALNS [22]. Finally, we run another variant of sALNS denoted
Li. The latter variant includes the removal/insertion operators of a recent ALNS algorithm proposed by Li et al.
[17] to solve another Pickup and Delivery Problem (PDP) with profits. The numerical solutions of CPLEX,
ALNS, Li and sALNS are compared on new generated instances. Furthermore, we evaluate sALNS on some
VRPSPD instances from the literature. Our experiments show that sALNS performs well with respect to
solution quality and computing time.

The remainder of the present paper is organized as follows: In Section 2, we introduce the literature related to
the PTPSPD. This is followed by a presentation of the mathematical model considered in our work in Section 3.
Section 4 introduces the proposed algorithm emphasizing the main differences with ALNS heuristics commonly
used in the literature. In Section 5, we give the computational results. Finally, Section 6 is devoted to the
conclusion.

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1297

2. Literature review

The VRPSPD was first introduced by Min [19]. In that paper, the author described a real-life problem of
simultaneously collecting and delivering books to 22 libraries, departing from and ending at a central library.
Min has used a two-phase method to solve the problem. First, the customers were clustered and each cluster
was assigned to a vehicle. After that, for each vehicle, a solution was obtained by solving a Traveling Salesman
Problem (TSP). To ensure the feasibility of the solutions according to capacity constraints, arcs in which the
capacity was exceeded were penalized.

After the introduction of the VRPSPD, many heuristic approaches have been proposed to solve this problem.
One can cite for example, Tabu Search heuristics presented in [20, 32, 33]. In the first paper, the Tabu Search uses
one intra- and four inter-route(s) operators, which are chosen according to two different strategies. The approach
was applied to both the VRPSPD and the VRPSPD with time limit. In the second paper, a Guided Local Search
is combined with the Tabu Search. In the third paper, an Adaptive Memory methodology is employed to save
the best solution sequences. In the three papers the authors tested their approaches on instances with 50–400
customers. One can remark that the Tabu Search presented in [20] often chooses more vehicles than necessary.
From the results provided in [33], one can see that the approach proposed in [32] is generally trapped in local
optima.

Another heuristic that has been successfully applied to the VRPSPD is the Adaptive Large Neighborhood
Search proposed in [25]. The latter heuristic produced many new best solutions with small numbers of vehicles
at publication time for the the VRPSDP, the VRPSPD with time limit and several other variants of Vehicle
Routing Problems with Pickup and Delivery. The heuristic is tested on 338 instances from the literature with
up to 500 customers.

In [3, 14], two different versions of the Ant Colony System are developed. The two approaches are tested on
instances of both VRPSPD and VRPSPD with time limit. In [3], the computational experiments are made on
benchmark instances with 22–400 customer. While in [14], the number of customers varies between 50 and 199.
The Ant Colony System implemented in [3] performs well on instances of VRPSPD with time limit but several
VRPSPD benchmark solutions are not reached. On the other hand, the Ant Colony System proposed in [14]
provides good quality solutions for both VRPSPD and VRPSPD with time limit. However, some best known
solutions from the literature are not reached. No result is provided for instances with 100–400 customers.

In [28], P-ILS-RVND, a parallel algorithm using an Iterative Local Search combined with a Variable Neigh-
borhood Descent, is implemented. That algorithm is tested on benchmark instances of the VRPSPD with 50–400
customers. P-ILS-RVND almost always provides the best solutions among all the literature approaches for the
VRPSDP. However, the algorithm is run on a cluster with a multi-core architecture using up to 256 cores.
Hence, P-ILS-RVND cannot be objectively compared with the other approaches.

A Local Search that uses a special movement encoding as well as a promise concept is given in [31]. The
approach generally performs well on VRPSPD instances with 100–400 customers. However that Local Search
is sometimes tapped in local optima. Tests on benchmark instances with 50–199 customers are not presented.
Finally, a parallel Simulated Annealing algorithm is proposed in [21]. Computational experiments are made using
benchmark instances with 50–400 customers. The parallel Simulated Annealing algorithm provides solutions in
a small amount of computing time. However, many benchmark solutions are not reached.

A summary of the above described paper can be found in Table 1. For each approach, n refers to the number
of customers in the instances solved.

By contrast with the VRPSPD, the CPTP has not been studied very much. Archetti et al. [1] first introduced
the CPTP and implemented three approaches to solve this problem namely, Variable Neighborhood Search
(VNS), Tabu Feasible (TF) and Tabu Admissible (TA). TF accepts only feasible solutions while TA allows the
visit of unfeasible solutions but favors feasible ones. The VNS algorithm uses, on the other hand, the TF method
over a small number of iterations.

Some researchers have also tackled PDPs with profits. In [9], the authors studied the Single Vehicle Routing
Problem with Deliveries and Selective Pickups (SVRPDSP), a problem that requires a single vehicle to visit
all delivery customers and relax this constraint for pickups. The objective of this problem is to minimize the

1298 H. CHENTLI ET AL.

Table 1. Summary of VRPSPD literature approaches.

Authors n Approach

Min [19] 22 customers Clustering first routing second + 3-Opt
Ropke and Pisinger [25] 50–199 customers Adaptive Large Neighborhood Search
Montané and Galvao [20] 50–400 customers Tabu Search
Zachariadis et al. [32] 50–400 customers Tabu Search + Guided Local Search
Zachariadis et al. [33] 50-400 customers Tabu Search + Adaptive Memory methodology
Çatay [3] 22–400 customers Ant Colony System
Subramanian et al. [28] 50–400 customers Parallel algorithm using an Iterative Local Search

combined with a Variable Neighborhood Descent
Zachariadis and Kiranoudis [31] 100–400 customers Local Search using a special movement encoding

as well as a promise concept
Mu et al. [21] 50–400 customers Parallel Simulated Annealing
Kalayci and Kaya [14] 50–199 customers Ant Colony System

difference between routing costs and collected profits. Several construction and improvement heuristics together
with a Tabu Search algorithm are proposed to solve the SVRPDSP. Experimental tests are performed on
instances with 15–100 customers.

In [10], the SVRPDSP is extended by including time window constraints. This variant of the problem is called
Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows (VRPDSPTW). A branch-and-
price algorithm is proposed for the VRPDSPTW. Tests are performed on instances with up to 100 customers.

In [29], a Memetic Algorithm is implemented for the Selective Pickup and Delivery Problem (SPDP). The
problem consists of supplying all delivery customers from pickup customers when minimizing routing costs. In
this variant, constraint of visiting all pickup customers is relaxed. The proposed Memetic Algorithm uses a new
representation of solutions including all pickups and deliveries. It also employs genetic operators as well as a
modified 2 Opt procedure, both designed for the new representation of the SPDP. Computational results are
reported for instances with up to 454 customers.

In [12], a Greedy Randomized Adaptive Search Procedure with Path Relinking is developed for the SPDP.
The proposed approach is tested on the same set of instances as the one used in [29]. The obtained solutions
are generally better than those of the Memetic Algorithm given in [29].

In [23], a randomized search and a greedy heuristic are proposed for the Profit-Maximizing Pickup and
Delivery Selection Problem (PPDSP). The goal of a PPDSP is to maximize the difference between total collected
profits and traveling costs. In the PPDSP, all customers are optional and have both pickup and delivery demands.
In addition, the available fleet of vehicles is heterogeneous. The PPDSP involves bounds on total trip time as
well as time window and capacity constraints. The computational results provided in [23] are performed on
instances with 10–500 customers.

The Pickup and Delivery Problem with Time Windows, Profits, and Reserved Requests (PDPTWPR) is
introduced in [17]. In a PDPTWPR, each vehicle (or carrier) has some reserved and some optional customers.
The visit of the reserved customers is mandatory while optional customers may be visited by other carriers or
not visited at all. Each customer has both pickup and delivery demands associated with an origin, a destination,
two time windows, a service time and a payment. The aim of the PDPTWPR is to build, for each carrier, a
feasible route including all mandatory customers and possibly some optional customers, in order to maximize
the difference between the payment of the visited customers and the transportation cost. The authors in [17]
proposed a multi-start ALNS heuristic to solve the problem. Computational results are conducted on instances
with 10–100 customers.

Finally, in [7], two variants of the General Variable Neighborhood Search heuristic are developed for the
Multi-Vehicle Profitable Pickup and Delivery Problem (MVPPDP). In a MVPPDP, a fleet of vehicles is used to
transport commodities from pickup customers to the corresponding delivery customers. In addition, some travel

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1299

time limits are imposed. The two variants of the General Variable Neighborhood Search are compared with a
Guided Local Search algorithm on instances with up to 1000 customers.

Note that, none of the above mentioned problems considers the case where both pickup and delivery operations
are optional in such a way that, if a customer is selected, the two operations have to be performed simultaneously.
A summary of the above described PDPs with profits and their approaches is given in Table 2. The main
differences between literature problems and the PTPSPD are presented in column difference. For each problem,
n stands for the customer number in the instances solved using the proposed approach.

One can remark that the Large Neighborhood Search heuristic (LNS) (and, in particular, ALNS) has been
implemented several times for PDPs. Indeed, in addition to the previously cited works, one can cite for example
the hybrid two-stage approach combining LNS with a Simulated Annealing algorithm presented in [2]. This
approach is used to solve the Pickup and Delivery Vehicle Routing Problems with Time Windows and Multiple
Vehicles. Another example can be found in the combination of LNS with a Tree Search heuristic presented in [18]
for the Vehicle Routing Problem with Pickup and Delivery and Three-dimensional Loading Constraints. In [24],
an ALNS heuristic is developed for the Vehicle Routing Problem with Pickup and Delivery and Time Windows.
In [25], an ALNS heuristic is proposed for solving a large class of Vehicle Routing Problems with Backhauls.
Finally, in [8], an ALNS heuristic is proposed for the Pickup and Delivery Problem with Time Windows and
Scheduled Lines.

As the PDPs with profits are relatively new problems that have not been studied enough to see which heuristic
performs better on them, and as all the heuristics proposed for the PDPs with profits are different, we decide
to implement an ALNS heuristic for our problem. Our choice is motivated by the fact that ALNS performs well
on the VRPSPD, on some variant of the PDPs with profits and on several variants of PDPs.

3. Mathematical formulation of the PTPSPD

In the present Section, we propose a mathematical formulation for the PTPSPD. This formulation is inspired
by the model proposed in [6] for the VRPSPD, which is a commodity flow model. In what follows, we give a
description of our model.

Let n, m and Q be the number of customers, the number of vehicles and the capacity bound respectively.
Let us define N = {1, . . . , n} as the set of customers. Let 0 refers to the depot. The PTPSPD can be defined
on a complete undirected and weighted graph G = (V,E, c), where V = N ∪ {0} is the set of nodes, E is the
set of edges (route sections between elements of V), and c : E → R+ is a weight function, that assigns to each
edge (i, j) ∈ E a traveling cost cij ∈ R+ between nodes i and j. Note that, the traveling cost matrix between
all pair of nodes i ∈ V and j ∈ V is symmetric. Hence, for all (i, j) ∈ E, cij = cji. For each customer i ∈ N ,
let pi ≥ 0, di ≥ 0 and pri ≥ 0 be the pickup demand, the delivery demand and the profit of i respectively.
Note that, a customer with no pickup (pi = 0) and no delivery (di = 0) demands (with or without profits)
cannot exist as we are studying a pickup and delivery problem. Thus, the decision variables can be defined as
follows: xij , (i, j) ∈ E, is a binary variable that takes the value 1 if a vehicle visits node j directly after node
i and 0 otherwise, ti, i ∈ N , is another binary variable that takes the value 1 if the node i is included in the
solution and 0 otherwise. Finally, yij and zij , with (i, j) ∈ E, are positive real variables that stand for collected
demands through the predecessors of node i (i included) which are transported on (i, j) and amount of load to
be delivered to the successors of i that is transported on (i, j) respectively. As a result, we obtain the following
mixed integer linear programming model:

max f(x) =
∑
i∈N

pri · ti −
∑
i,j∈V

cij · xij (3.1)

∑
i∈V

yji −
∑
i∈V

yij = pj · tj ∀ j ∈ N (3.2)∑
i∈V

zij −
∑
i∈V

zji = dj · tj ∀ j ∈ N (3.3)

1300 H. CHENTLI ET AL.

Table 2. Summary of PDPs with profits literature approaches.

Problem Authors Difference Approach n

Single Vehicle Routing
Problem with Deliveries
and Selective Pickups
(SVRPDSP)

Gribkovskaia
et al. [9]

Pickup and delivery
operations may be
performed separately
A single vehicle is
required to fulfill all
delivery demands and
some pickup ones

Several construction and
improvement heuristics
+ Tabu Search

Up to 100

Vehicle Routing
Problem with Deliveries,
Selective Pickups
and Time Windows
(VRPDSPTW)

Gutierrez-
Jarpa et al.
[10]

Same as SVRPDSP
+ time window
constraints

Branch-and-Price Up to 100

Selective Pickup and
Delivery Problem
(SPDP)

Ting and
Liao [29]
Ho and Szeto
[12]

All delivery customers
are supplied from pickup
customers

Memetic Algorithm
GRASP with Path
Relinking

Up to 454
Up to 454

Profit-Maximizing
Pickup and
Selection (PPDSP)

Qiu et al. [23] The fulfillment of pickup
and delivery operations
simultaneously is not
required
Bounds on total trip
time + time window and
capacity constraints
Heterogeneous fleet of
vehicles

Randomized search
+ greedy heuristic

Up to 500

Pickup and Delivery
Problem with Time
Windows, Profits, and
Reserved Requests
(PDPTWPR)

Li et al. [17] Time window constraints
Each vehicle has some
reserved (and
mandatory) and some
optional customers
Each customer has both
pickup and delivery
demands associated with
an origin, a destination,
two time windows,
a service time and
a payment

ALNS heuristic Up to 100

Multi-Vehicle Profitable
Pickup and Delivery
Problem (MVPPDP)

Gansterer
et al. [7]

Commodities are
transported from a
selection of pickup
customers to the
corresponding delivery
customers
Time limit

General Variable
Neighborhood Search

Up to 1000

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1301

yij + zij ≤ Q · xij ∀ i ∈ V ; ∀ j ∈ V ; (3.4)

ti =
∑
j∈V

xij ∀ i ∈ N ; (3.5)

∑
j∈V

xij =
∑
j∈V

xji ∀ i ∈ V ; (3.6)

∑
i∈N

x0i ≤ m (3.7)

xij ∈ {0, 1} ∀ i ∈ V ;∀ j ∈ V ; (3.8)

ti ∈ {0, 1} ∀ i ∈ N ; (3.9)

yij ∈ <+ ∀ i ∈ V ; ∀ j ∈ V ; (3.10)

zij ∈ <+ ∀ i ∈ V ; ∀ j ∈ V. (3.11)

The objective function is given by formula (3.1). Constraints (3.2) and (3.3) stand for the pickup and delivery
demand satisfaction. Constraints (3.4) ensure that the capacity of the vehicles is not exceeded. Constraints (3.5)
ensure that if there is an edge leaving a customer i then i is necessarily included in the solution. Constraints
(3.6) are the flow conservation constraints. Constraints (3.7) enforce the number of vehicles leaving the depot to
be less than or equal to the number of available vehicles. Constraints (3.8)–(3.11) define the decision variables.
Moreover, constraints (3.5), (3.8) and (3.9) guarantee that each customer is visited at most once. Finally,
constraints (3.2), (3.3), (3.5), (3.6), (3.8) and (3.9) guarantee sub-tour elimination by assuming that, for each
customer i, pi and di cannot be both equal to 0. A sub-tour elimination proof is provided in Appendix A.

One can remark that there are many similarities between our model and the one proposed in [6]. Indeed, if
all the profits are fixed to a very large number in comparison with the traveling costs (traveling costs can be
equivalent to distances), the optimal solution will contain all the customers. When comparing different solutions
containing all the customers, the sum of customer profits (

∑
i∈N pri · ti) can be considered as a constant value.

Hence, the objective will be the maximization of (−
∑
i,j∈V cij · xij), which is equivalent to the minimization of

the traveling costs.
Note that, if all the profits are fixed to 0, our model cannot be equivalent to the one proposed in [6]. Indeed,

when the profits are set to 0, the optimal solution of the problem will be a solution with no customer, as there
are no constraints enforcing the visit of each customer at least once.

4. The proposed methodology

To attempt the resolution of the PTPSPD, we have implemented an extension of the Adaptive Large Neigh-
borhood Search heuristic called sALNS. The decision to adopt this methodology was guided by the fact that the
ALNS is an efficient method for solving several variants of Vehicle Routing Problems in general and Pickup and
Delivery Problems in particular (see [25] for instance).

The ALNS heuristic is based on the destruction/reconstruction principle. Actually, ALNS uses several oper-
ators called destroy (or removal) operators for deleting some of the customers from a current solution. All the
unrouted customers are stored in a so-called request bank. Then, ALNS tries to reinsert the customers located in
the request bank in better positions with construction (or repair, or also insertion) operators. At each iteration
of ALNS, the heuristic chooses one destroy and one repair operators according to their scores in such a way that,
efficient operators (with high scores or performance) have more chances to be selected. The resulting solution
is after that accepted or not according to some criteria and the process continues until the stopping criterion is
met. For more details on the ALNS methodology, we refer the reader to [22, 25].

Algorithm 4.1 describes the pseudo-code of sALNS. The details of the components are presented in the next
subsections. To facilitate the comprehension, we provide, in Table 3, a description of each parameter and variable
used in Algorithm 4.1.

1302 H. CHENTLI ET AL.

Algorithm 4.1. sALNS

1: Inputs:
A PTPSPD instance
A list Lrem of removal operators
A list Lins of insertion operators
lev = 0; itr = 0; T = 1;

2: Outputs:
The best solution found

3: Initialize:
Generate an initial solution with Hconst (Sect. 4.1)

4: while itr < IS do
5: if lev = ml B beginning of evaluation phase
6: Reset scores;
7: lev = 0;
8: end if
9: Randomly choose r from {a1, . . . , ak};
10: if lev < 5 · nbrh then B evaluation phase
11. if Lrem is empty then
12: Fill Lrem with the removal operators;
13: end if
14: Choose a removal operator R at random from Lrem and delete it from this list;
15: else B application phase
16: Choose a removal operator R according to the actual scores; (see Sect. 4.3)
17: end if
18: Generate a new solution by deleting r customers from the current solution using R;
19: Accept or not the solution according to the acceptance criteria; (see Sect. 4.2)
20: if the new solution is better than the current one then
21: Update the score of R; (see Sect. 4.3.1)
22: end if
23: if lev < 5 · nbih then B evaluation phase
24: if Lins is empty then
25: Fill Lins with the insertion operators;
26: end if
27: Choose an insertion operator I at random from Lins and delete it from this list;
28: else B application phase
29: Choose an insertion operator I according to the actual scores; (see Sect. 4.3)
30: end if
31: Generate a new solution by applying I to the current solution;
32: Accept or not the solution according to the acceptance criteria; (see Sect. 4.2)
33: if the new solution is better than the current one then
34: Update the score of I; (see Sect. 4.3.1)
35: if the score of R has not been updated then
36: Update the score of R; (see Sect. 4.3.1)
37: end if
38: end if
39: T = T · c; lev + +; itr + +;
40: if T < T0 then
41: T = itr · 10
42: end if
43: end while

sALNS begins by calling the construction heuristic Hconst (detailed in Sect. 4.1), which generates a feasible
solution. The main loop is executed during IS iterations. Each ml iterations, the scores of the removal and
insertion operators are reset (lines 5–8). The main algorithm chooses the number r of customers to delete. This
number is randomly chosen from the user-defined set of k elements {a1, a2, . . . , ak} where a1, a2, . . . , ak ∈ N and

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1303

Table 3. Description of parameters and variables used in Algorithm 4.1.

Parameter/variable description

Lrem List of removal operators
Lins List of insertion operators
lev A counter used to determine the current phase of sALNS (evaluation or

application)
itr The current number of iterations
T The current temperature
IS The total number of iterations in the main loop of sALNS
ml The number of iterations performed before the scores are reset, defined

by the user
r The number of removed customers, r ∈ {a1, a2, . . . , ak}, where

a1, a2, . . . , ak ∈ N and k are user-defined parameters
nbrh The number of removal operators
R The chosen removal operator
nbih The number of insertion operators
I The chosen insertion operator
c The cooling rate, defined by the user
T0 The temperature threshold, defined by the user

k is a user-defined parameter (line 9). A removal operator is selected (lines 10–17). A list Lrem that initially
contains all removal operators is used to make this selection. More specifically, during an evaluation phase (that
lasts 5 · nbrh iterations for the removals, where nbrh is the number of removals), sALNS chooses one operator
that has not been chosen yet from Lrem and then deletes this operator from that list. In the case where Lrem
is empty, all removals are included again in Lrem (line 12). On the other hand, in an application phase, the
algorithm chooses a removal operator according to its actual score in such a way that, efficient operators (with
high scores) have more chances to be selected (see Sect. 4.3). The selected removal operator is used to generate
a new solution by deleting r customers from the current solution (line 18). On the next line, this new solution is
accepted or not according to the acceptance criteria (see Sect. 4.2). If the new solution is better than the current
one then, the score of the selected removal is updated (see Sect. 4.3.1) as shown in lines 20–22. The selection
of an insertion operator is quite similar to the selection of a removal operator (lines 23–30). The only difference
is that the evaluation phase lasts 5 · nbih iterations, where nbih is the number of insertions. Lins stands for
the list of insertion operators. On line 31, a new solution is generated by adding some customers (possibly no
customer) to the current solution. Next, the new solution is accepted or not according to the acceptance criteria
(see Sect. 4.2). If the new solution is more profitable than the current one, the score of the insertion operator
is updated (lines 33–38). In addition, if the score of the removal operator has not been updated in the current
iteration, the procedure updates this score too (Sect. 4.3.1). The current temperature T , which is initially set to
1, is decreased according to the expression T = T · c using the cooling rate c ∈]0, 1[(line 39). If the temperature
threshold T0 ≤ 1 is reached (lines 40–42), the value of the current temperature T is increased according to the
Formula T = itr · 10, where itr is the current number of iterations performed (which is incremented at each
iteration).

As said in the literature review, in [17], a new variant of ALNS is developed for the PDPTWPR. In what
follows, we highlight the main characteristics of our heuristic that do not exist in both of the classical ALNS
proposed in [22] and the ALNS proposed in [17]. (i) sALNS evaluates the solutions and updates the scores of
the operators after both removals and insertions (see Sect. 4.2); (ii) sALNS alternates two different phases for
selecting removal/insertion operators (see Sect. 4.3); (iii) sALNS uses distinct combinations of removals and
insertions handling profits and load fluctuations in their selection criteria (see Sect. 4.4); (iv) sALNS repeatedly
restarts using a higher starting temperature to add more diversification to the search (see Sect. 4.5.1). In

1304 H. CHENTLI ET AL.

addition, the diversification mechanism meta-destroy proposed in [17] can be considered as a special case of our
operator evaluation (see Sect. 4.5.2).

In the following sections, we give more details about our components, namely the construction heuristic, the
solution evaluation, the operator selection, the removal/insertion operators and the diversification strategies.

4.1. Construction heuristic

In order to get an initial solution for our problem, we use a multi-start sequential heuristic based on the
I1 heuristic (see [27]), which was initially implemented for the Vehicle Routing Problem with Time Window
(VRPTW). The pseudo-code of I1 is given in Algorithm 4.2.

Algorithm 4.2. I1

1: Inputs:
A PTPSPD instance
A list Lunr of unrouted customers
The number nbRoutes = 0 of routes in the current solution

2: Outputs:
A feasible solution

3: while nbRoutes < number of vehicles
4: Create a new route;
5: nbRoutes+ +;
6: Fill the new route with a seed customer;
7: while ∃u ∈ Lunr that can be inserted without leading to an infeasible solution
8: Evaluate the insertion of all the unrouted customers u ∈ Lunr into the current route;
9: Select, for each u, the best insertion position according to criterion cr1(i, u, j);
10: Select the best position of the best customer u∗ according to criterion cr2(i, u, j);
11: Insert customer u∗ in its best position within the current route;
12: Update Lunr;
13: end while
14: end while

The I1 heuristic starts with an empty route. This route is first filled with a seed customer. Then, the insertions
of the remaining customers into the route are evaluated. I1 selects the best insertion position for each unrouted
customer u between two consecutive customers i and j according a first criterion denoted cr1(i, u, j). Finally, I1
chooses the insertion that optimizes a second criterion cr2(i, u, j) among the best positions so far obtained. This
process is repeated until no unrouted customer can be inserted into the route without leading to infeasibility.
The other routes of the solution are constructed similarly. In the present paper, we adjust the selection criteria
to the studied problem. Besides considering the traveling costs, our criteria also take into account the profits,
when choosing the customers to insert. The criterion based on time windows is neglected.

Let (i0, i1, . . . , ih) be the current route, where iρ refers to the customer in the ρth position of the route if
ρ /∈ {0, h}, and to the depot otherwise (i0 = ih = 0). I1 computes for each unrouted customer u its best feasible
insertion position within the current route according to expressions (4.1)–(4.4), with (w.l.o.g) cij stands for the
traveling cost between i and j, pru is the profit of customer u, and α1, α2, µ ≥ 0 are user-defined parameters,
where α1 + α2 = 1 and µ ∈ [0, 3].

cr1(i(u), u, j(u)) = max {cr1(iρ−1, u, iρ), ρ = 1, . . . , h} ; (4.1)

cr1(i, u, j) = α1 · cr11(i, u, j)− α2 · cr12(i, u, j); (4.2)

cr11(i, u, j) = pru; (4.3)

cr12(i, u, j) = ciu + cuj − µ · cij . (4.4)

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1305

To avoid postponing the insertion of difficult customers to the last iterations, a second criterion cr2(i, u, j) is
used. cr2(i, u, j) forces somehow the insertion of the farthest unrouted customer from the depot. More precisely,
among all the unrouted customers, the optimization of the second criterion leads to the selection of the best
customer u∗ according to expressions (4.5) and (4.6). In (4.6), c0u stands for the traveling cost between depot and
customer u, λ ∈ [0, 1] is a user-defined parameter that sets the importance of c0u when choosing the customer
to insert.

cr2(i(u∗), u∗, j(u∗)) = max {cr2(i(u), u, j(u)), u unrouted} ; (4.5)

cr2(i(u), u, j(u)) = λ · c0u + cr1(i(u), u, j(u)). (4.6)

In addition to the seed’s selection based on the depot’s farthest neighbor with the biggest profit
maxu {pru + c0u, u unrouted}, we have added two types of seed’s selection. In the first type, we choose the
customer with the biggest value of pru − (c0u + cu0) while, in the second type, we choose the customer with the
biggest profit pru. A user-defined parameter denoted type Select is provided to determine which seed’s selection
will be performed. type Select can take the values 1 for the depot’s farthest neighbor with the biggest profit, 2
for the biggest value of pru − (c0u + cu0), and 3 for the biggest profit.

Our heuristic is executed 10 times, each time with a different set of parameter values for α1, α2, µ, λ and
type Select. The aim is to have different initial solutions by changing parameters in the construction heuristic.
The best encountered solution is considered as starting point of the main algorithm. Note that, if the parameters
α1, α2, µ, λ and type Select are set to 1

2 , 1
2 , 1, 0 and 2 respectively, I1 inserts, among the unrouted customers,

those that lead to the biggest value of the PTPSPD objective function. Note that, this cannot be true if the
terms used in I1 were normalized.

4.2. Solution evaluation

Because of the selective aspect of the PTPSPD, a “destroyed” solution (obtained by a removal operator)
remains feasible and can be more profitable than a “constructed” solution (obtained by an insertion operator).
Indeed, if we remove some customers from a given feasible solution, no constraint of the problem will be violated.
For this reason, and contrary to other ALNS heuristics from the literature, sALNS evaluates the solutions and
updates the scores of the operators even after removal operators. Note that, in both the classical ALNS and the
ALNS proposed in [17], solutions from this search space area would be missed. The evaluation of a solution is
done using the Simulated Annealing (see [4, 15]) principle. Hence, a solution is accepted if it is better than the
best or the current solutions or, if the metropolis rule is satisfied. In other words, bad solutions are accepted
with the probability given by formula (4.7).

exp(f(x′)−f(x))/T (4.7)

where f() stands for the objective function, x′ and x are the new and the current solutions respectively and
T > 0 denotes the current temperature. Note that, the metropolis rule is only applied after insertion operators
because this leads to better results. If a bad solution is not accepted, sALNS continues with the previously
accepted solution (not necessarily the best). At each iteration, the current temperature T is decreased using the
cooling rate c ∈]0, 1[according to the expression T = T · c.

4.3. Operator selection

Throughout the search process, sALNS uses alternately two phases to allow a good selection of the operators
namely, the evaluation and the application phases. In each evaluation phase, the operators are selected randomly
regardless of their performance (or score). At the beginning of this phase, the scores of all operators are reset and
then recalculated. In each application phase, the selection of the operators relies on their previously computed
scores. The scores are also computed during the application phases. Contrary to other ALNS heuristics from

1306 H. CHENTLI ET AL.

the literature, sALNS does not divide the search into segments (given number of iterations in which the new
scores are computed) and wait for a current segment to end before using the new scores to select operators.
Instead, and more specifically in an application phase of sALNS, the scores obtained in previous iterations
(including both the previous evaluation phase and the current application phase) are considered for the operator
selection.

4.3.1. Update of scores

In both evaluation and application phases, the scores are computed similarly. This computation differs from
other score updates commonly used in the literature. More specifically, a vector vec is used to save the scores.
At the beginning of the search, this vector is empty and each time an operator performs well (provides a better
solution than the actual one), the name of this operator is considered as a new element of vec. This is equivalent
to update the score of the studied operator by incrementing it. Hence, when sALNS has to select an operator
depending on its previous scores, a number rdm is randomly chosen from the set {0, . . . , svec − 1} where svec
refers to the number of non-empty elements in vec. The name of the selected operator is the rdmth element of
vec. As a result, operators with big scores have more chances to be selected. Remark that the scores of removal
and insertion operators are updated separately. More specifically, each time a removal performs well, its score is
updated. When examining a solution after an insertion operator, we distinguish two cases. In the first case, the
solution has already been improved using the removal operator. Here, we only update the score of the insertion
operator. However, if the removal operator does not improve the current solution but the insertion operator
does, the scores of both operators are updated. This different score updating between removals and insertions
is due to the fact that we do not know which operator performed better and was successful in the achievement
of the improved solution.

4.3.2. Phase duration

The evaluation phases are executed for a given number of iterations denoted eval, such that eval = nbH · l,
where l is a constant value fixed by the user, and nbH is the number of used operators. In the calculations, nbH
is set to nbrh = 6 for the removals (nbrh is the number of removal operators used in sALNS) and to nbih = 4 for
the insertions (nbih is the number of insertion operators used in sALNS). After each evaluation phase, sALNS
moves to an application phase. Each ml iterations the heuristic goes back again to an evaluation phase. The
parameter ml is set by the user.

4.4. Removal/insertion operators

In order to create an adapted approach for our problem, we tune some operators of the classical ALNS. In
the following, we give a description of the operators used in our heuristic.

4.4.1. Removal operators

The removal operators remove a given number of customers (denoted r) from a current solution. sALNS
uses six removal operators. The latter are inspired from the removals presented in [22]. They consist in the
random removal, the worst removal, the related removal, the historical node-pair removal, the historical request-
pair removal and the cluster removal. The selection criteria of the related removal and the cluster removal
are modified in the present paper. For the other removal operators, the objective function of the PTPSPD
is considered instead of the minimization of traveling cost. In [22], two randomization control parameters are
introduced. The first (denoted pw) controls the worst removal, while the second (denoted pr) controls the related
removal. For small values of a randomization control parameter, the involved removal deletes the best customer
in term of removal criterion. While, for larger values of a randomization control parameter, the involved removal
deletes low quality customers in term of removal criterion. Hence, big values of a randomization parameter involve

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1307

more diversification. In our work, the randomization control parameter is considered for all the removals. Details
of our removal operators are given in what follows.

Random removal: This operator randomly removes r customers from the solution.

Worst removal: This operator removes the customers whose deletion produces the smallest decrease in the
objective function. The idea behind that is either to reinsert the deleted customers in more advantageous
positions or to exclude them completely from the solution. The randomization control parameter of the worst
removal is denoted pw.

Related removal: This operator aims at removing customers that are somehow similar in order to interchange
them easily by an insertion operator, generating thereby a new solution. In the present paper, the similarity
(that can be called relatedness) is computed according to formula (4.8)

rij = |pr′i − pr′j |+ c′ij (4.8)

where rij denotes the relatedness between customers i and j. For a given customer i, pr′i = pri/prbiggest, where
pri is the profit of i and prbiggest stands for the biggest profit in the studied instance. c′ij = cij/cmax, where
cij is the traveling cost between customers i and j and cmax stands for the longest arc in the studied instance.
Note that pr′i, pr

′
j , and c′ij belong to [0, 1] for each customer i and j. This normalization allows the use of

comparable values for profits and traveling costs. Therefore, customer j is related to customer i if rij is relatively
small. This relatedness favors the deletions of customers that are located not too far from each other and that
have almost the same profits. The randomization control parameter of the related removal is denoted pr.

Historical node-pair removal: This operator makes use of historical information when removing a customer.
Actually, a value is associated to each pair of customers. This value represents the objective function value of
the best solution found so far including those two customers in consecutive positions. For a given customer i, the
operator calculates the sum of the values associated to i and each one of the other customer. The r customers
with the lowest sums are removed. The randomization control parameter of the historical node-pair removal is
denoted phn.

Historical request-pair removal: This operator keeps track of the historical success of inserting a pair of
customers in the same route. Actually, the top-100 best solutions (according to the objective function value)
observed so far are saved. For each pair of customers i and j, the operator computes the number of times
nbT imesij in which the two customers have been visited by a same vehicle in the top-100 best solutions.
nbT imesij is considered as the relatedness between i and j, such that the bigger is nbT imesij and the more
related are i and j. The deletion is performed in the same manner as in the related removal but with the new
relatedness. The randomization control parameter of the historical request-pair removal is denoted phr.

Cluster removal: This operator removes r customers from the solution. The first studied route is randomly
selected. Then, Kruskal’s algorithm for the minimum spanning tree (MST) problem [16] is used to define the
customers to remove from that route. In the cluster removal, Kruskal’s algorithm determines the MST on the
sub-graph defined by the nodes and the arcs of the current route. The weight of any arc (weights are used
to compute the MST) is set to the relatedness between the two involved customers (which are connected by
this arc). Kruskal’s algorithm is stopped when two disjoint components (clusters) are found while building the
MST. After that, one of the two clusters is randomly removed. Then, a customer i is randomly selected from
the removed cluster. j, the most related customer to i, is selected from a different route. The route of j is then
considered as the next route to be studied. The operator continues this way until deleting at least r customers.
Note that the relatedness between customer i and j is defined in the same manner as in the related removal.
The randomization control parameter of the cluster removal is denoted pc.

1308 H. CHENTLI ET AL.

4.4.2. Insertion operators

We have implemented four insertion operators namely basic greedy 1, basic greedy 2, regret and H insert.
Pisinger and Ropke [22] used only one kind of basic greedy and a set of regret operators which differ from each
other in the level of regret (number of best positions examined for each customer). In [17], basic greedy and regret
operators are implemented too, using the objective function of the PDPTWPR as a selection criterion. In the
present paper, we propose two different kinds of basic greedy together with a regret operator. These operators
consider, at each iteration, several routes (the number of routes equals the number of vehicles) when inserting
a customer. To handle the constraints of the PTPSPD, the two basic greedy and the regret operators include
selection criteria based on profits, traveling costs and loads. To avoid excessive computational efforts, only
regret-2, which considers in its criteria the second best insertion position, is used. On the other hand, H insert
was proposed in [11] within a hybrid metaheuristic to solve the Vehicle Routing Problem with Time Window
(VRPTW). In the present work, H insert is adapted to the PTPSPD. To the best of our knowledge, it is the
first time that H insert is used in an ALNS algorithm. In our insertion operators, the constraint of inserting all
the customers is relaxed. In addition, if there are less routes in the current solution than the available number
of vehicles, the insertion of customers into empty routes is also examined. A description of basic greedy 1, basic
greedy 2, regret and H insert is given below.

Basic greedy 1 operator: This operator inserts each customer in its best position, on its best route. As said
above, the basic greedy 1 operator includes in its selection criteria profits, traveling costs and loads. More specifi-
cally, the insertion criteria of the basic greedy 1 are defined in a quite similar manner as presented in Section 4.1.
The difference is that the first criterion crglobal1 (i, u, j) is defined according to expressions (4.9)–(4.13), where ρ
can belong to any route from the available set of routes, α3 ≥ 0 is a user-defined parameter, Max LB(i) and
Max LA(i) are the maximum load collected before (backward) and after (forward) customer i respectively, the
remaining terms/parameters are the same as those defined in Section 4.1.

crglobal1 (i(u), u, j(u)) = max
{
crglobal1 (iρ−1, u, iρ, ρ = 1, . . . , h

}
; (4.9)

crglobal1 (i, u, j) = α1 · cr11(i, u, j)− α2 · cr12(i, u, j)− α3 · cr13(i, u, j); (4.10)

cr11(i, u, j) = pru; (4.11)

cr12(i, u, j) = ciu + cuj − µ · cij ; (4.12)

cr13(i, u, j) = max {Max LB(i) + du; Max LA(i) + pu} . (4.13)

The second criterion among all routes crglobal2 (i, u, j) is then defined according to expressions (4.14) and
(4.15), where λ and c0u are defined in same way as in Section 4.1.

crglobal2 (i(u∗), u∗, j(u∗)) = max
{
crglobal2 (i(u), u, j(u)), u unrouted

}
; (4.14)

crglobal2 (i, u, j) = λ · c0u + crglobal1 (i(u), u, j(u)). (4.15)

Remark that, when the value of α3 is set to 1 and the other parameters are set to 0, we select the customer
which produces the minimum maximum load in the vehicle.

After some experimental tests, we remark that the configuration α1 = α2 = α3 = 1 leads to better results in
comparison with configurations where α1 + α2 + α3 = 1. Hence, the parameter values of basic greedy 1 are set
as follows α1 = α2 = α3 = 1, µ and λ are randomly selected from the intervals [0, 3] and [0, 1] respectively.

Basic greedy 2 operator: This is almost the same operator as basic greedy 1. The difference between the two
operators lies in the tuning of parameters. Indeed, in basic greedy 2, α1 = α2 = α3 = 1, µ = 1 and λ is randomly

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1309

selected from the interval [0, 1]. One can remark that the basic greedy 1 generates more diversification than
basic greedy 2.

Regret operator: The regret operator aims at selecting the customer which will be regretted the most if not
inserted at the current iteration. More specifically, let crglobal1 (i, u, j) be the first insertion criterion of a customer
u between i and j among all routes, as defined in expressions (4.9)–(4.13). The second criterion among all routes

crglobal2 (i, u, j) is then defined according to expressions (4.14) and (4.15). Let ζ be the best route of the best

insertion, obtained by evaluating expressions (4.14) and (4.15) among all routes. Let us define crglobal−ζ1 (i, u, j)

as the first insertion criterion of customer u between i and j among all routes except ζ. Let crglobal−ζ2 (i, u, j)

be the corresponding second criterion. The best customer to insert according to crglobal−ζ2 (i, u, j) is obtained
among all routes except ζ according to expressions (4.16) and (4.17).

crglobal−ζ2 (i(u∗), u∗, j(u∗)) = max
{
crglobal−ζ2 (i, u, j), u unrouted

}
; (4.16)

crglobal−ζ2 (i, u, j) = λ · c0u + crglobal−ζ1 (i(u), u, j(u)). (4.17)

The regret operator inserts the customer that will be regretted the most i.e. the one with the biggest value of
crglobal2 (i(u∗), u∗, j(u∗))− crglobal−ζ2 (i(u∗), u∗, j(u∗)).

The regret operator uses the same parameter values as the basic greedy 2.

H insert: This operator examines all the unrouted customers. The customers are scanned according to their
removal order. Each time a customer is considered, H insert inserts it in the best position over all the routes
if the insertion improves the current solution. In H insert, a best position is a position that maximizes the
insertion cost, which is defined by the objective function value. Note that each customer is examined only once.

4.5. Diversification strategies

Several diversification mechanisms are used in our approach. They are detailed in the following.

4.5.1. Diversification via temperature update

Each time the temperature threshold T0 is reached, the Simulated Annealing is recalled with a bigger “initial”
temperature T = itr · 10, where itr is the current number of iterations. Hence, sALNS can be viewed as a kind
of multi-start heuristic where the previous current solution stands for the new initial solution. When executing
sALNS with a big starting temperature, the heuristic accepts more bad quality solutions due to the metropolis
rule. Some of these bad solutions help the algorithm to escape local optima and lead to more profitable solutions.
Note that, when the temperature is reset, the selection probabilities of the removal/insertion operators are not
changed.

4.5.2. Diversification via removal operators

In cases where a solution is accepted after a removal but not accepted after an insertion, a new iteration
begins and a removal operator is executed once again. The new solution is then accepted if it is better than the
previous one and the insertion operator is called. This results in a combination of two removals and one insertion,
which is equivalent to the meta-destroy diversification mechanism proposed in [17]. Moreover, in sALNS, the
solutions of several removals can be accepted before moving to a solution generated by an insertion operator.
This constitutes a significant advantage for our approach, as we are no longer required to test the deletions of
large numbers of customers, which may involve more computational efforts. Hence, the approach remains fast
as it starts by deleting small numbers of customers and if it seems more suitable to delete more customers, this
will be done by accepting solutions from several successive removals. This strategy leads to a more diversified
search.

1310 H. CHENTLI ET AL.

4.5.3. Diversification via noise terms

As in the classical ALNS [22], a noise term is included in the selection criteria of insertion operators to
add more diversification. In the present paper, the noise term is also added to the selection criteria of inser-
tion operators and it is computed similarly. Indeed, each time an insertion cost of a customer u is calculated
according to the first criterion crglobal1 (i, u, j) (see expressions (4.9)–(4.13)), a noise term δ is added to generate

a modified version of the first criterion cr1
′global(i,u, j) = crglobal1 (i,u, j) + δ. δ is randomly chosen from the

interval [−Nmax, Nmax], Nmax = η ·max {cij , (i, j) ∈ E}, where cij is the traveling cost between customers i and
j, and η is a user-defined parameter that controls the amount of noise.

When selecting an insertion operator, the algorithm decides whether to use the noise term or not depending
on the performance of the insertion operators with and without the noise term. The decision is made according
to the roulette wheel selection principle. More precisely, we consider ω+ and ω− as the weight of using the noise
term and the weight of not using it respectively. A weight reflects the performance of a version (with or without
noise) during the previous iterations. In a current iteration, the decisions of using the noise term or not are made

according to the probabilities ω+

ω++ω− and ω−

ω++ω− respectively. Both ω+ and ω− are set to 1 at the beginning of

the search. The values of ω+ and ω− are fixed until the couple of evaluation-application phases (denoted e-a) is
performed. At the end of each e-a, the values of ω+ and ω− are adjusted according to the score of using the noise
(denoted scω+) and the score of not using the noise (denoted scω−) obtained in that e-a respectively. At the
beginning of each e-a, the scores are set to 0. The scores are then incremented at each iteration by adding the
value σ1, σ2 or σ3. σ1 is added to scω+ (or to scω−) if a better solution than the global best solution is obtained
with (or without) the noise term. σ2 is added to scω+ (or to scω−) if the objective value of the solution that
has been obtained with (or without) the noise term is better than the objective value of the current solution.
Finally, σ3 is added to scω+ (or to scω−) if a solution obtained with (or without) the noise term, is accepted
despite the fact that the objective value of this solution is worse than the objective value of the current solution.

As said before, the values of ω+ and ω− are updated at the end of each e-a. scω+ and scω− are the scores
of using the noise and not using it at the end of the current e-a respectively. Let timesω+ be the number of
times an operator uses the noise, and let timesω− be the number of times an operator does not use the noise in
the e-a that just ends. Let ρ ∈ [0, 1] be a reaction factor that controls how quickly the algorithm reacts to the
changes in scores. ω+ and ω− are then adjusted using expressions (4.18) and (4.19). Note that, if the value of ρ
is set to 1, the selection only depends on the scores obtained during the e-a that just ends. If the value of ρ is
set to 0, the selection only depends on the weight obtained in the previous e-a couples without considering the
scores obtained during the e-a that just ends.

ω+ = (1− ρ) · ω+ + ρ · scω+

timesω+

, (4.18)

ω− = (1− ρ) · ω− + ρ · scω−

timesω−
. (4.19)

5. Computational results

In the present Section, we contrast the results of sALNS with those of CPLEX 12.2, the classical ALNS [22]
and another ALNS version denoted Li. Li is a variant of sALNS that uses the removal and insertion operators
of the ALNS proposed in [17]. We could not implement the ALNS proposed in [17] for our problem because the
components of this heuristic handle some characteristics of the PDPTWPR that do not exist in the PTPSPD.
For example, in a PDPTWPR, each vehicle has a set of selective customers that may be visited by other
vehicles, and a set of reserved customers that have to be visited only by the vehicle. In addition, the ALNS
proposed in [17] uses a mechanism that dynamically adjusts the behavior of the operators depending on their
status (selective or reserved). This mechanism cannot be used in the PTPSPD. We also could not apply sALNS
to the PDPTWPR because this heuristic may remove some reserved customers, which results in an infeasible

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1311

solution. Nevertheless, we remark that the removal/insertion operators of the ALNS proposed in [17] can be
applied to the PTPSPD, if we enforce the pickup and the delivery operations of each customer to be performed
simultaneously. This would result in a set of removal/insertion operators that differs from our set of operators.
We want to test the removal/insertion operators of the ALNS proposed in [17] on our problem. Therefore, we
create the Li version of sALNS, which uses these operators.

In the following, we begin by describing our instances. Then, we give details about the configuration of
the construction heuristic and the classical ALNS [22]. A parameter tuning, a component evaluation and a
comparison between sALNS, ALNS [22] and Li are considered. After that, we compare sALNS results with
those of CPLEX 12.2 and the classical ALNS. Finally, as there are some similarities between our model and the
one presented in [6], we evaluate the performance of sALNS on instances proposed in [6].

All heuristics are implemented in C and run on a laptop with an intel(R) Core (TM) i7-4600U CPU @
2.10 GHz 2.70 GHz with 8.00 GB RAM and 64-bit operating system. CPLEX is executed on the same laptop.
CPLEX default parameters are used and the solver is stopped when the computing time reaches two hours.

Due to the random aspect of the implemented heuristics, we run all of them 10 times for each instance. Each
heuristic is run during 9 00 000 iterations.

As using 9 00 000 iterations when tuning the parameters of the implemented heuristics would take too much
time, we use only 2000 iterations with 10 runs for the parameter tuning. For the component evaluation of
sALNS, we want to see how good can be each configuration depending on the used components. Hence, we fix
the iteration number to 200000 and the number of runs to 5.

5.1. Generation of instances for the PTPSPD

To generate instances for the PTPSPD, we modify the CPTP instances proposed in [1], which are obtained
by modifying the Capacitated Vehicle Routing Problem instances presented in [5]. The number of customers in
the instances proposed in [5] belongs to the set {50, 75, 100, 120, 150, 199}. The CPTP instances proposed in [1]
are organized into three sets. The first set contains the 10 instances proposed in [5] with the same capacities
and number of vehicles. The profit pri of customer i is generated for the instances proposed in [5] according to
the expression pri = (0.5 + h) · di, where di is the demand of customer i and h is randomly generated from the
interval [0, 1]. In the second set, for each instance presented in [5], the cases Q = 50, Q = 75 and Q = 100 are
considered, where Q refers to the capacity bound. For each case, three instances are generated with a different
number of vehicles. The latter varies in the set {2, 3, 4}. The profits of the second set are generated in the same
way as those of the first set. Hence, a total of 90 instances are considered in the second set. Finally, in the third
set the capacity bounds used in [5] are unchanged. However, the number of vehicles varies in the set {2, 3, 4}.
The profits of the third set are generated in the same way as those of the first set. Hence, the third set contains
30 instances. Therefore, a total of 130 CPTP instances are used in [1].

To adapt those instances to our problem, we generate pickup and delivery demands using the method given
in [26]. This method was initially proposed for the VRPSPD. The mean pickup and delivery demands of the
PTPSPD instances that are based on the first set presented in [1] (with the original vehicle numbers and
capacity bounds) are given in Table 4. Table 4 also reports the number of customers n, the capacity bound Q,
the number of vehicles m, the minimum delivery value min di, the maximum delivery value max di, the minimum
pickup value min pi and the maximum pickup value max pi for each instance. The number of customers and the
information about pickup and delivery demands of the remaining instances are the same as those of the first
set presented in Table 4.

In [1] two problems were studied, namely the CPTP and the Capacitated Team Orienteering Problem (CTOP).
In the CTOP, there are some constraints fixing the time limit for each vehicle route. The instances of the CPTP
and the CTOP are quite similar. The difference between CPTP and CTOP instances lies in the introduction of
a time limit for the CTOP instance. Instances of types “3” and “8” proposed for the CTOP in [1] differ from
each other in the value of the time limit. For the CPTP, as time limit constraints do not exist, the instances of
types “3” and “8” are exactly the same. Therefore, we only take type “8” into account. We obtain a total of
117 instances. Note that, we consider instances with unrounded demands.

1312 H. CHENTLI ET AL.

Table 4. Description of PTPSPD instances derived from the first set presented in [1].

Instance n Q v Mean delivery min di max di Mean pickup min pi max pi

6 50 160 10 9.210 0.86 30.00 6.330 0.00 22.84
7 75 140 20 10.892 0.25 31.31 7.295 0.00 22.60
8 100 200 15 8.379 0.04 29.82 6.201 0.00 27.35
9 150 200 10 8.656 0.04 30.00 6.244 0.00 27.35
10 199 200 20 9.402 0.04 31.31 6.608 0.00 27.35
13 120 200 15 5.092 0.08 18.09 6.367 0.00 24.00
14 100 200 10 9.420 0.00 40.00 8.680 0.00 32.00
15 150 200 15 8.656 0.04 30.00 6.244 0.00 27.35
16 199 200 20 9.402 0.04 31.31 6.608 0.00 27.35

5.2. Configuration of the construction heuristic

The parameters of the construction heuristic are chosen randomly from their respective intervals. See
Section 4.1 for more details about the used intervals. This heuristic is run 10 times. Note that, the parameter
values may change at each run. The best solution is considered as a starting point for the main algorithm.

5.3. Configuration of the original ALNS

We have implemented an adapted version of the classical ALNS heuristic proposed in [22]. As the original
version of the ALNS uses the minimization of routing costs without considering profits, we have replaced its
removals by those presented in Section 4.4.1. This adapted version of ALNS also uses five insertions. The first
insertion is the basic greedy with the parameter values 1 for µ, α1 and α2; and 0 for α3 and λ. The other insertions
are the regret-2, regret-3, regret-4 and regret-m, where m is the number of vehicles. The regret operators consider
the same parameter values as the basic greedy operator. Note that with these parameter values, we obtain the
same insertions as those of the classical ALNS using the PTPSPD objective function. The operator selection,
the score update, the solution evaluation and the temperature update are identical to those used in the original
ALNS. As there are no major modifications in this adapted version of ALNS, it will be denoted classical ALNS
or ALNS in the remainder of the present paper.

5.3.1. Parameter tuning for ALNS

The parameters of the classical ALNS are described in Table 5. pr and pw are the randomization control
parameters as described in Section 4.4.1. Ts is the starting temperature of ALNS and c is the cooling rate which
decreases the current temperature value at each iteration. q is a random number that stands for the number of
removed customers at each iteration. Definitions of parameters σ1, ρ and η can be found in Section 4.5.3, by
considering performance evaluation between several operators instead of performance evaluation between two
versions (with and without noise). Definitions of σ2 and σ3 are quite different. Indeed, σ2 and σ3 are added
to the score of an operator if a solution that has not been accepted before is obtained with this operator,
in such a way that the objective value of the obtained solution is: (i) better than the objective value of the
current solution for σ2, and (ii) worse than the objective value of the current solution, but the solution is still
accepted for σ3. To detect a new solution, the objective function values of the previous solutions are stored.
In order to generate an efficient version of the classical ALNS heuristic, we have studied several configurations
of its parameters as shown in Table 6. In this table, Cx stands for the configuration name, and f is the value
of the initial solution. v1 is a random number between a and b such that, a equals 0.1 · n if 0.1 · n is smaller
than 30, a equals 30 otherwise, and b equals 0.4 · n if 0.4 · n is smaller than 60, b equals 60 otherwise. v2 is
randomly chosen from the set {2, . . . , 7}. v3 is randomly chosen from the set {1, 2}. Parameter Ts varies in the
set {V1, V2, V3}, where V1 = 0.0072 · f , V2 = 0.0010 · f and V3 = 0.0005 · f , with f is the objective value of the
initial solution. Parameter c varies in the set {V 1, V 2, V 3, V 4}, where V 1 = 0.99975, V 2 = 0.9997, V 3 = 0.9998

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1313

Table 5. Description of ALNS parameters.

Parameter Description

pr The randomization control parameter of the related removal operator
pw The randomization control parameter of the worst removal operator
Ts The starting temperature
c The cooling rate
σ1 The scores of removal/insertion operators are incremented with σ1 if

they resulted in a new global best solution
σ2 The scores of removal/insertion operators are incremented with σ2 if

they resulted in a solution that has not been accepted before and the
objective value of this solution is better than the objective value of the
current solution

σ3 The scores of removal/insertion operators are incremented with σ3 if they
resulted in a solution that has not been accepted before, the objective
value of this solution is worse than the objective value of the current
solution, but the solution is accepted

ρ The reaction factor: used to control how quickly the algorithm reacts to
changes in the scores (see [22])

q The number of removed customers
η The noise rate: that controls the amount of noise

Table 6. Parameter configuration for the classical ALNS.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

pr 6 6 6 6 6 6 6 6 6 6
pw 3 3 3 3 3 3 3 3 6 10
Ts V1 V1 V1 V2 V3 V3 V3 V3 V3 V3
c V 1 V 1 V 1 V 1 V 1 V 2 V 3 V 4 V 3 V 3
σ1 33 33 33 33 33 33 33 33 33 33
σ2 9 9 9 9 9 9 9 9 9 9
σ3 13 13 13 13 13 13 13 13 13 13
ρ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
q v1 v2 v3 v2 v2 v2 v2 v2 v2 v2
η v1 v1 v1 v1 v1 v1 v1 v1 v1 v1

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

pr 3 10 6 6 6 6 6 6 6 6
pw 6 6 6 6 6 6 6 6 6 6
Ts V3 V3 V3 V3 V3 V3 V3 V3 V3 V3
c V 3 V 3 V 3 V 3 V 3 V 3 V 3 V 3 V 3 V 3
σ1 33 33 33 33 50 20 33 33 33 33
σ2 9 9 9 0 9 9 0 9 9 9
σ3 13 13 0 13 13 13 0 13 13 13
ρ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1
q v2 v2 v2 v2 v2 v2 v2 v2 v2 v2
η v1 v1 v1 v1 v1 v1 v1 v1 v2 v3

1314 H. CHENTLI ET AL.

Table 7. Comparison between parameter configurations for the classical ALNS.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Avg Best −8.30 −14.51 −8.85 −13.85 −14.36 −13.99 −14.16 −14.55 −14.74 −14.19
gap Avg 1.88 −4.78 4.31 −4.86 −5.16 −4.83 −5.34 −4.97 −5.48 −4.85

Worst 12.08 6.71 21.07 5.61 6.04 6.44 5.67 6.34 6.25 7.64

Avg Best 8.46 1.56 0.78 1.57 1.63 1.58 1.61 1.57 1.56 1.56
CPU Avg 9.44 1.75 0.89 1.76 1.88 1.79 1.82 1.76 1.76 1.74
(s) Worst 10.84 2.01 1.04 2.05 2.23 2.06 2.15 2.05 2.05 1.98

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Avg Best −14.53 −14.56 −14.27 −14.49 −14.10 −14.35 −14.27 −14.04 −14.63 −14.48
gap Avg −4.85 −5.30 −5.24 −5.26 −5.05 −5.14 −4.81 −4.93 −4.89 −5.03

Worst 6.45 6.68 6.47 6.60 7.56 7.69 7.05 6.27 7.93 6.04

Avg Best 1.56 1.57 1.62 1.60 1.60 1.60 1.60 1.60 1.59 1.68
CPU Avg 1.74 1.75 1.85 1.81 1.80 1.78 1.80 1.80 1.79 1.91
(s) Worst 1.98 1.98 2.18 2.11 2.07 2.04 2.07 2.11 2.06 2.24

and V 4 = 0.99985. Parameter η varies in the set {v1, v2, v3}, where v1 = 0.025, v2 = 0.03 and v3 = 0.02. C1 is
the configuration given in [22]. To generate the remaining configurations, we repeatedly modify one parameter
(or a set of parameters that act on a same component) from the best configuration uncounted so far.

The results of the studied ALNS configurations are presented in Table 7. ALNS is run 10 times with each
configuration on all the studied instances and during 2000 iterations. The results are compared with those of
CPLEX 12.2 (only 8 of CPLEX solutions are proven to be optimal).

More precisely, the average percentage deviation (among all the instances and the 10 runs) with respect to
the last solutions obtained by CPLEX are presented. The percentage deviation (gap) of a solution sol1 from a
solution sol2 is computed following the expression gap = 100 · (zsol2 − zsol1)/ |zsol2 |, where zsol1 and zsol2 are the
objective values of sol1 and sol2 respectively. In the remainder of the present paper, the gap of a given solution
with respect to another solution will be computed similarly.

In the first three rows of Table 7, the best, the average and the worst gaps are reported. The best, the
average and the worst computing time (in seconds) are presented in the last three rows. Note that, the average
computing time of CPLEX is 1.91 hours. In some cases, CPLEX terminates before 2 hours of computation
with an “out of memory” status. To calculate the average computing time of CPLEX among all instances, the
computing time in cases with an “out of memory” status is considered to be equal to 2 hours.

We can see that C9 outperforms the other configurations in terms of solution quality in the best and the
average cases. C9 reaches the 4th position for the worst case. In addition, C9 obtains the second best computing
time after C3, and the third average computing time after C3 and C10. For these reasons, C9 will be retained
for the subsequent comparison and evaluation of ALNS with other methods. We can also see that C1 and C3
are the worst configurations in terms of solution quality. Furthermore, C1 is the worst configuration in terms
of computing time. This shows the importance of choosing an adequate number of customers to remove for the
studied problem.

5.4. Configuration of sALNS

In the present subsection, we run, using the parameter values of configuration P1 (see Tab. 9), several versions
of sALNS in order to show the importance of the new components. After that, we select the best versions and
combine them in a single algorithm. We finally tune the parameters of the final algorithm. Table 8 is provided to
facilitate the understanding of the next sections. This table describes the parameters of the proposed approach.

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1315

Table 8. Description of sALNS parameters.

Parameter Description

pr The randomization control parameter of the related removal
pw The randomization control parameter of the worst removal
phn The randomization control parameter of the historical node-pair removal
phr The randomization control parameter of the historical request-pair removal
pc The randomization control parameter of the cluster removal
c The cooling rate
T0 The temperature threshold
ml The number of iterations performed before the scores are reset
σ1 The scores of insertion operators using the noise (not using the noise) are incremented

with σ1 if the use (non-use) of the noise resulted in a new global best solution
σ2 The scores of insertion operators using the noise (not using the noise) are incremented

with σ2 if the use (non-use) of the noise resulted in a solution with an objective value
better than the objective value of the current solution

σ3 The scores of the insertion operators using the noise (not using the noise) are incremented
with σ3 if the use (non-use) of the noise resulted in a solution with an objective value
worse than the objective value of the current solution, but the solution is accepted

ρ The reaction factor used to control how quickly the algorithm reacts to changes in the
scores (as in the classical ALNS but in sALNS, it only deals with the noise terms)

η The noise rate: that controls the amount of noise
l The constant that controls the duration of an evaluation phase
r The number of removed customers

5.4.1. Evaluation of the new components

In order to evaluate the added components and to create an efficient variant of sALNS, we run eight versions
of the algorithm. The first version represents the case where all the components are used. alg refers to this
version. In the other versions, we remove, each time, a component from alg. We replace our operator selection
and score update by those of the classical ALNS. This version is called alg-OpSel. We remove the solution
evaluation after the removals from alg. This version is called alg-Eval. Each insertion operator is removed from
alg and we obtain alg-BG1, alg-BG2, alg-Reg and alg-H that refer to alg without the basic greedy 1, alg without
the basic greedy 2, alg without the regret operator and alg without H insert respectively. We also evaluate the
algorithm with and without the related removal. The version without the related removal is called alg-Rel. In
addition, we consider the deletion of our diversification via temperature update from alg. This version is denoted
alg-Temp. We also study a version of alg that only uses the removal/insertion operators presented in [17]. For
the Shaw removal, we have just removed the time window terms. This version is denoted Li and it is compared
to the other versions. Furthermore, we add a version called mdfBG2 that represents alg without the basic greedy
2, the cluster removal and the historical request-pair removal. We will explain later the reasons that lead us
to generate the mdfBG2 version. Finally, we run the classical ALNS described in Section 5.3. All the studied
versions are run 5 times during 200000 iterations.

On the left side of Figure 1, we report the average gap of each version from CPLEX among all instances. On
the right side of Figure 1, we give the average computing time in seconds for each version. More specifically,
we show on both sides of this figure, the best, the average and the worst results. We start by comparing the
different versions of our algorithm without considering Li and the classical ALNS. The latter versions will be
studied at the end of the current subsection.

From Figure 1, we can see that alg slightly outperforms alg-Rel, alg-Reg and alg-BG1 in terms of solution
quality in the best, the average and the worst cases. Indeed, the best, the average and the worst gaps of alg
are −25.7%, −24.25% and −22.71% respectively, while the best, the average and the worst gaps take the values

1316 H. CHENTLI ET AL.

Figure 1. Evaluation of sALNS components in terms of percentage deviation (left) and
computing time (right).

−25.39%, −23.99% and −22.27% respectively for alg-Rel, −25.38%, −24.07%, −22.6% respectively for alg-
Reg, and −25.54%, −24.06% and −22.59% respectively for alg-BG1. We also remark that alg outperforms the
remaining versions in terms of solution quality in the best, the average and the worst cases. In addition, from
Figure 1, we remark that alg provides reasonable computing time. Indeed, disregarding alg-BG2 and mdfBG2
which are the fastest versions, the computing time of alg is not too far from the computing time of alg-Rel,
alg-Reg and alg-BG1. We remark that alg is faster than the remaining versions. The fact that the gaps of
alg-Rel, alg-Reg and alg-BG1 are worse than the gaps of alg encourages us to maintain the related removal, the
regret and the basic greedy 1 operators in the main algorithm. We hope that the algorithm escapes local optima
through the random aspect of these operators.

When evaluating the temperature update, we see that both the solution quality and the computing time
of alg-Temp are degraded in comparison with alg. This proves that the restarts of the alg version from higher
starting temperatures incorporate a balanced amount of intensification and diversification to the approach. We
think that when our temperature update is used, the computing time decreases because good quality solutions
are reached quickly. Indeed, after a good quality solution is reached, the probability of having a better quality
solution either after a removal or an insertion decreases. This results in less updates of the current and the best
solutions and their metrics (metrics are vectors used to quickly check a solution feasibility). If a solution S is
not improved neither after a removal nor after an insertion, there would be a single update of the obtained
solution S′ (S′ = S) and its metrics at the end of the current iteration. However, if both S and the global best
solution Sbest are improved after both removal and insertion, there would be an update of S, Sbest and their
metrics after both removal and insertion, which would result in an increase of the computing time.

Regarding alg-BG2, we see that deletion of the basic greedy 2 from alg generates bigger gaps in comparison
with alg. This highlights the importance of this operator within the alg version. On the other hand, the alg-BG2
version together with mdfBG2 constitute the fastest versions. This proves that, when basic greedy 2 is used,
the algorithm favors it over other insertion operators due to its efficiency. More specifically, the parallel aspect
(several routes are evaluated at each iteration) of the basic greedy 2 involves bigger values of computing time
when the algorithm favors it, while a more balanced selection of insertion operators generates a faster approach,
especially when using a rapid operator like H insert.

Concerning alg-H, it is obvious that the deletion of H insert worsens the solution quality. This is highlighted
by the difference between the gaps of alg-H and alg. Also, alg-H requires more computational effort. This is
because H insert is a sequential insertion operator, and the deletion of H insert involves the use of parallel
insertions only (several routes are evaluated at each iteration), which requires more computing time.

By considering the alg-Eval version, we see that the solution evaluation after removal operators leads to the
exploration of some missed areas of the search space. Indeed, this is stressed by the gaps obtained when deleting
this evaluation from the main algorithm. Furthermore, the execution time of this version is larger than the
execution time of alg.

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1317

It is obvious that our operator selection contributes significantly in the performance of the alg version. This
can be observed in the difference between the gaps of alg and alg-OpSel. In addition, the deletion of this
component involves more computational efforts.

Despite the fact that alg-BG2 provides, on average, low quality solutions in comparison with alg, the deletion
of the basic greedy 2 from alg allows the alg-BG2 version to reach better solutions on 18 instances. For six of
these instances, even when alg is run with a bigger number of iterations, it stays trapped in local optima.
We have remarked that the mdfBG2 version is also able to reach good quality solutions for these instances.
Additionally, mdfBG2 provides better gaps and is faster than alg-BG2.

Regarding the Li version, it is clear that the replacement of our removal/insertion operators by those presented
in [17] deteriorates both solution quality and computing time. Indeed, Li provides the worst results among all
the studied versions. This proves that our operators are adequate for the PTPSPD.

When comparing ALNS with Li, we remark that ALNS gives better results in terms of solution quality and
computing time. However, ALNS is worse than all the other versions in term of solution quality.

The study of all these versions encourages us to create an algorithm that contains both alg and mdfBG2, in
such a way that, at the beginning of the search, this algorithm randomly chooses which version to execute. In
what follows, sALNS will refer to this algorithm.

5.4.2. Parameter tuning for the final algorithm

In order to finely tune the parameters for our final algorithm, we start from sALNS using an arbitrary config-
uration denoted P1 then, we repeatedly modify one parameter at once from the best configuration uncounted
so far. Each configuration is run 10 times on all the instances during 2000 iterations.

Table 9 provides the parameter values for each configuration. In this table, v1, v2 and v3 are the same
parameter values as those described in Section 5.3.1. The parameter c varies in the set {V1′, V2′, V3′}, where
V1
′ = 0.99, V2

′ = 0.98 and V3
′ = 0.9998. The parameter η varies in the set {v1, v2, v3}, where v1 = 0.025,

v2 = 0.03 and v3 = 0.02. Px is the name of the xth configuration, where x ∈ {1, 2, . . . , 21}.
In Table 10, we give the results of each configuration. The rows of this table are defined in the same manner

as the rows of Table 7.
From Table 10, we remark that configuration P20 leads to the best results in term of percentage deviation.

However, the computing time of P20 is about 4 times bigger than the computing time of configuration P1. P1
only differs from P20 in the value of parameter r. So, we decided to increase the iteration number of P1 and
compare the obtained results with those of P20. We remark that the increase in P1 iteration number leads to
better results in comparison with P20. Indeed, P1 reaches the values −21.86%, −15.57% and −6.57% for the
best, the average and the worst gaps respectively. While the computing time of P1 reaches the values 3.34,
6.00 and 9.09 seconds for the best, the average and the worst computing time respectively. As we can see, the
computing time of P1 is still smaller.

Disregarding P20, we note that no configuration dominates the others in terms of best, average and worst
gaps simultaneously. Hence, we choose the configuration that outperforms the others in term of average gap.
The P1 configuration has the best average gap. Thus, it is retained for the final algorithm.

We recall that in Section 4.4.2, parameters α1, α2, α3 and λ are used in the selection criteria of the insertion
operators. The parameter values of α1, α2, α3 are all set to 1, and λ is randomly selected from the interval
[0, 1]. The reason is that we started from the parameter values α1 = 1

2 , α2 = 1
2 , α3 = 0 and λ = 0, that lead to

the selection of customers whose insertions result in better objective function values in comparison with other
insertions, and we tried to improve these values.

Table 11 reports the results of the studied parameter configurations that we tried, in terms of best, average and
worst gaps with respect to CPLEX solutions, and in terms of best, average and worst computing time in seconds.

Let Con1 be the configuration with parameter values α1 = 1
2 , α2 = 1

2 , α3 = 0 and λ = 0. We supposed that
the diversification induced by other values for parameter λ could provide better solutions. Hence, we tested a
configuration Con2 that differs from Con1 in the value of parameter λ. In Con2, λ is randomly selected from
the interval [0, 1].

1318 H. CHENTLI ET AL.

Table 9. Parameter setting for sALNS.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

pr 0 0 6 6 6 50 0 0 0 0 0
pw 6 6 3 6 6 50 6 0 0 6 6
phn 50 50 0 0 6 50 50 50 0 50 50
phr 6 6 0 0 6 50 50 50 0 6 6
pc 6 6 0 0 6 50 50 50 0 6 6
c V1

′ V1
′ V1

′ V1
′ V1

′ V1
′ V1

′ V1
′ V1

′ V2
′ V3

′

T0 1 0.5 1 1 1 1 1 1 1 1 1

ml
itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5
σ1 33 33 33 33 33 33 33 33 33 33 33
σ2 9 9 9 9 9 9 9 9 9 9 9
σ3 0 0 0 0 0 0 0 0 0 0 0
ρ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
l 5 5 5 5 5 5 5 5 5 5 5
η v1 v1 v1 v1 v1 v1 v1 v1 v1 v1 v1
r v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2

P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

pr 0 0 0 0 0 0 0 0 0 0
pw 6 6 6 6 6 6 6 6 6 6
phn 50 50 50 50 50 50 50 50 50 50
phr 6 6 6 6 6 6 6 6 6 6
pc 6 6 6 6 6 6 6 6 6 6
c V1

′ V1
′ V1

′ V1
′ V1

′ V1
′ V1

′ V1
′ V1

′ V1
′

T0 1 1 1 1 1 1 1 1 1 1

ml
itr

8

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5

itr

4.5
σ1 33 33 33 33 33 33 33 33 33 33
σ2 9 9 0 9 9 9 9 9 9 9
σ3 0 13 0 0 0 0 0 0 0 0
ρ 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2
l 5 5 5 5 10 1 5 5 5 5
η v1 v1 v1 v1 v1 v1 v2 v3 v1 v1
r v2 v2 v2 v2 v2 v2 v2 v2 v1 v3

As the obtained results confirm our assumption (see Tab. 11), we continued the tests from Con2, we tried
configuration Con3, which has the following parameter values α1 = α2 = α3 = 1

3 and λ is randomly chosen
from the interval [0, 1]. As the results of Con3 are better than those of Con2 (see Tab. 11), we tried another
configuration (denoted Con4), in which the sum of α1, α2 and α3 is greater than 1. The idea behind Con4 is
that we want the amount of diversification induced by λ to be more balanced. Hence, Con4 has the following
parameter values α1 = α2 = α3 = 1 and λ is randomly chosen from the interval [0, 1]. From Table 11 we can
see that Con4 leads to the best results.

In Section 4.2, we say that the metropolis rule is only applied after insertion operators because this leads to
better results. In order to prove that, some experimental tests are carried out. Indeed, a parametermetro ∈ {0, 1}
is added to sALNS, in such a way that, if metro takes the value 0, sALNS is run without the metropolis rule
after the removal operators. Otherwise, sALNS uses the metropolis rule after the removal operators.

The above described tests show that when metro = 0, sALNS obtains the values −18.92%, −10.61% and
0.92% for the best, the average and the worst gaps respectively. When metro = 1, sALNS obtains the values

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1319

Table 10. Comparison between parameter configurations for the final sALNS.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Avg Best −18.92 −18.97 −15.74 −16.66 −18.19 −17.63 −18.90 −18.84 −17.80 −18.22 −18.87
gap Avg −10.61 −10.30 −5.44 −4.11 −7.57 −8.31 −9.42 −9.98 −6.15 −9.49 −8.38

Worst 0.92 2.27 6.06 15.32 6.64 5.11 1.06 3.03 9.14 2.95 6.81
Avg Best 1.05 1.15 0.91 1.06 1.05 1.02 1.12 1.15 1.16 0.94 1.67
CPU Avg 1.65 1.78 1.50 1.69 1.67 1.66 1.74 1.85 1.73 1.69 2.26
(s) Worst 2.43 2.63 2.22 2.45 2.54 2.55 2.53 2.79 2.53 2.70 3.14

P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

Avg Best −18.66 −18.90 −18.74 −18.78 −18.78 −18.49 −18.46 −18.89 −17.68 −14.60
gap Avg −10.24 −10.51 −10.39 −10.07 −9.69 −9.66 −10.17 −9.45 −12.03 1.21

Worst 1.11 1.87 1.35 3.25 2.12 2.04 2.55 2.90 −6.31 25.02
Avg Best 1.29 1.05 1.02 1.03 1.06 1.05 1.06 1.01 4.81 0.65
CPU Avg 1.80 1.64 1.66 1.67 1.60 1.62 1.60 1.53 6.94 1.11
(s) Worst 2.50 2.46 2.43 2.51 2.24 2.37 2.30 2.10 9.78 1.75

Table 11. Comparison between parameter configurations for insertion operators.

Con1 Con2 Con3 Con4

Avg Best −5.94 −14.95 −15.74 −18.92
gap Avg 2.80 −5.38 −5.44 −10.61

Worst 11.52 8.02 6.06 0.92

Avg Best 0.74 0.93 0.91 1.05
CPU Avg 1.11 1.49 1.50 1.65
(s) Worst 1.60 2.16 2.22 2.43

−2.15%, 10.73% and 23.08% for the best, the average and the worst gaps respectively. Regarding the average
computing time, when metro = 0, sALNS obtains the values 1.05, 1.65 and 2.43 seconds for the best, the average
and the worst computing time respectively. When metro = 1, sALNS obtains the values 0.53, 0.83, 1.28 seconds
for the best, the average and the worst computing time respectively.

These results confirm that, even if the computing time is slightly better when metro = 1, much better results
are obtained when the metropolis rule is only applied after insertion operators.

5.5. Study of the performance of sALNS

We evaluate, on the new generated instances, the performance of sALNS, ALNS and CPLEX using our
mathematical formulation of the PTPSPD. In addition, we run our construction heuristic using the criterion
crglobal1 (i, u, j) as defined in expressions (4.9)–(4.13), and with all possible combinations of the parameter values.
The best encountered solutions are returned.

In Table 12 the results of all the approaches are compared. The detailed results are reported in Appendix B. In
Table 12, sALNS refers to our algorithm and ALNS to the classical ALNS. CPLEX refers to CPLEX12.2 results.
H1run

const and Hconst stand for our construction heuristic executed one time using randomly generated parameter
values and our construction heuristic using all possible combinations of parameter values (as described above)
respectively. The instances are divided into 13 sets according to their vehicle number and capacity bound. In
each set, there are nine instances with 50–199 customers. On column Set, the sets of types “Q-m” are presented,
where Q stands for the capacity bound and m is the number of vehicles. When Q takes the value X, this means
that the original capacity bound is used (see [5]). Similarly, when m takes the value Y this means that the

1320 H. CHENTLI ET AL.

Table 12. Heuristic evaluation according to the number of vehicles and the capacity bound.

Set CPLEX H1run
const Hcosnt ALNS sALNS

%UB %cpx CPU %cpx CPU %cpx CPU %cpx %UB %ALNS CPU

X-Y 36.02 −110.9 0.06 −163.11 603.09 −197.56 182.23 −213.33 6.95 −9.39 149.41
50-2 10.42 137.52 0.01 36.91 90.89 5.57 589.74 −3.11 8.01 −9.52 167.93
50-3 14.11 142.53 0.01 44.19 127.73 4.60 927.26 −3.12 11.70 −8.46 367.1
50-4 18.36 149.65 0.01 50.62 158.07 5.00 1033.14 −3.93 15.46 −9.42 710.39
75-2 12.07 93.19 0.01 20.77 118.02 −1.2 630.23 −4.12 8.71 −2.87 274.18
75-3 15.20 102.67 0.01 29.41 179.84 −1.35 831.44 −5.64 10.66 −4.5 723.67
75-4 20.83 99.55 0.02 31.97 216.39 −3.79 1062.02 −10.53 13.18 −7.7 793.11
100-2 13.41 66.58 0.01 14.58 162.98 −5.19 590.49 −7.38 7.72 −2.06 444.9
100-3 15.36 67.76 0.02 19.58 223.92 −.8 886.37 −5.99 10.49 −5.33 702.83
100-4 20.63 82.26 0.02 24.29 268.25 −5.38 931.22 −11.43 11.92 −6.1 1344.18
X-2 11.37 49.43 0.02 9.24 328.87 −4.21 643.49 −5.49 6.78 −1.29 638.52
X-3 18.13 45.71 0.03 7.36 583.93 −11.02 695.28 −14.24 7.44 −2.92 654.13
X-4 28.73 26.04 0.06 −7.53 568.00 −18.22 669.69 −25.75 7.89 −8.26 601.66

Avg 18.05 73.23 0.02 9.1 279.23 −17.97 744.05 −24.16 9.76 −5.99 582.46

original vehicle number is used. For each approach, we give the average gap from CPLEX in column %cpx and
the average computing time CPU in seconds. %UB stands for the average gap from the upper bound provided
by CPLEX12.2 (only 8 of CPLEX solutions are proven to be optimal). %alns refers to the average gap between
sALNS and ALNS. Finally, avg refers to the average results on all sets. From Table 12 and Appendix B, we
remark that H1run

const provides better quality solutions than CPLEX in two cases for instances with big (original)
capacity bounds and number of vehicles. For the remaining sets, H1run

const provides better quality solution than
CPLEX solutions in only one case (last instance in Appendix B). However, the heuristic is very quick.

Regarding Hconst, we note that it gives, on average, better results than the CPLEX for instances with big
capacity bounds and a number of vehicles greater than or equal to 4. The computing time of this heuristic is
smaller than the computing time of both ALNS and sALNS.

The classical ALNS heuristic is slower than other heuristics. This heuristic outperforms CPLEX in all sets
except when the capacity bound equals 50.

sALNS provides the best results among all the studied approaches, especially for the sets with a big number of
vehicles and a large capacity bound. More precisely, our heuristic gives a better gap from the upper bound than
CPLEX. sALNS provides better results than CPLEX in 97 cases and identical results in 17 cases (including
the optimal solutions). sALNS does not reach CPLEX solution for only three instances, namely 9-150-50-3,
9-150-50-4 and 15-150-50-4. The gaps of sALNS from CPLEX on these instances are equal to 0.44%, 3.64% and
0.77% respectively (see Appendix B for detailed results). The gap between sALNS and ALNS shows that the
former heuristic is more efficient. Furthermore, sALNS is generally faster than ALNS except for the set with 4
vehicles and a capacity bound of 100.

In Figure 2, we report the average results of the heuristics according to the number of customers for all
the studied instances. Actually, the instances are divided into five sets according to their number of customers
(50, 75, 100, 120, 150 and 199 customers). On the left side of the figure, the average gap from CPLEX of our
construction heuristic executed one time (H1run

const), our construction heuristic using all possible combinations of
parameter values (Hconst), ALNS and sALNS is reported. On the right side of the figure, the average computing
time in seconds of these heuristics is presented.

From Figure 2, we remark that the gap value of sALNS is always negative. In addition, sALNS always reaches
the minimum values in comparison with the other heuristics. We also remark that the deviation of sALNS from
CPLEX increases with the number of customers. This is because CPLEX fails to find good quality solutions
within the available time limit for these instances.

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1321

Figure 2. Heuristic evaluation according to the number of customers.

Regarding the classical ALNS, its gap with respect to CPLEX reaches negative values only when the customer
number is greater than or equal to 150. We think that this is because the heuristic cannot visit some regions of
the search space due to the following reasons. (1) ALNS does not evaluate solutions after the removals. Hence,
the diversification mechanism via removal operators cannot be used. As a result, ALNS cannot accept solutions
with less customers, which may be a characteristic of an optimal solution. (2) As the insertion operators of
ALNS do not manage the load fluctuation within the solutions, ALNS cannot create more space in the solutions
and insert additional customers. ALNS may miss some good quality solutions, especially if there are customers
with big profits that do not significantly degrade the total traveling cost if inserted in the right positions. (3)
The non-use of the diversification via temperature update, leads ALNS to stay trapped in local optima. (4) The
operator selection of ALNS is not adequate for the PTPSPD.

Regarding the two versions of the construction heuristic, we remark that Hconst reaches a negative value only
when the number of customers is equal to 199. H1run

const does not reach CPLEX solutions on any set.
Concerning the computing time, we remark that H1run

const is the fastest heuristic. sALNS has quite similar results
with Hconst when the number of vehicles equals 50, 75 and 120. However, sALNS is slower than Hconst for the
other sets of instances. When compared with ALNS, we remark that sALNS is faster in all the studied sets.

In Figure 3, we report the average gap from CPLEX (left) and the average computing time in seconds (right)
of the studied heuristics according to the number of vehicles. All the instances are studied. Six sets of instances
are formed depending on the number of vehicles (with 2, 3, 4, 10, 15 and 20 vehicles). We remark that sALNS
outperforms the other heuristics in term of average gap, for every set of instances. Regarding the computing
time, we can see that sALNS is faster than ALNS. sALNS is slower than Hconst for instances with small numbers
of vehicles (2, 3 and 4). However, when the number of vehicles increases, sALNS becomes faster.

We remark that ALNS always provides negative gaps with respect to CPLEX. In addition, ALNS outperforms
the two versions of the construction heuristic, for all sets of instances. Regarding the computing time, as sALNS,
ALNS is slower than Hconst for instances with small numbers of vehicles (2, 3 and 4). ALNS is faster for instances
with 10 vehicles and more.

We think that the computing time of both ALNS and sALNS decreases for instances with a number of
vehicle greater than or equal to 10 because such instances have original values of the number of vehicles and
the capacity bound (see Sect. 5.1). Solutions of such instances generally contain all the customers. Hence, the
problem becomes easier to solve as ALNS and sALNS only have to reorder the customers instead of selecting the
best set of customers and then reordering that set. On the one hand, there would be no update of the current
and the best solutions and their metrics after the removals. On the other hand, as good quality solutions are
reached quickly, there would also be less updates after the insertions. This would result in less computing time.

We remark that the gaps of Hconst from CPLEX reach negative values only when the number of vehicles is
greater than or equal to 10. The gaps of H1run

const with respect to CPLEX reach negative values for instances with
15 and 20 vehicles.

1322 H. CHENTLI ET AL.

Figure 3. Heuristic evaluation according to the number of vehicles.

From Table 12, Figures 2 and 3, we can say that sALNS efficiency in terms of solution quality is not affected by
the changes in the number of customers, the number of vehicles or the capacity bound. However, the computing
time of sALNS depends on the values of the latter data.

5.6. Evaluation of the performance of sALNS on VRPSPD instances

As we said in Section 3, our model can be equivalent to the one proposed in [6] if all the profits are set to a
very large number in comparison with the traveling costs (or distances). So, we want to evaluate the performance
of sALNS on the instances with symmetric traveling cost matrix proposed in [6] by fixing the profits to a large
number.

In the following, we describe the used benchmark instances. Then, we report the results of sALNS on these
instances. sALNS results are compared to those reported in [6] using a branch-and-price algorithm with a time
limit of one hour.

5.6.1. Description of VRPSPD benchmark instances

We use the instances of Class 1 presented in [6] for the VRPSPD, which were based on 3 VRPTW instances
(r101, c101 and rc101) proposed in [27]. To adapt VRPTW instances to the VRPSPD, the authors in [6]
considered the first 20 and the first 40 customers for each instance. The time windows were neglected. The
demands of the original instances were considered as delivery demands. For each customer i, its pickup demand
pi was generated from its delivery demand di according to expressions pi = b(1− γ) · dic if i is even, and
pi = b(1 + γ) · dic if i is odd. The parameter γ takes either the value 0.2 or the value 0.8. This results in 12
different instances. The authors in [6] rounded up the Euclidean distance between customers.

We also use the instances of Class 3S and Class 3C. Class 3S instances are based on the Capacitated Vehicle
Routing Problem (CVRP) instances available on VRPLIB [30], with 20 and 40 customers. For each CVRP
instance, the fraction of delivery customer can take the values 1

2 , 2
3 or 4

5 , and the capacity bound varies in the
set {150, 200, 300}. A total of 18 instances are generated.

Class 3C is generated from Class 3S as follows: Each demand on Class 3S is considered as a delivery demand.
For each customer i, its pickup demand pi is computed according to the expression pi = (0.5 + r) · di, where di
is the delivery demand of i and r is randomly chosen using a uniform distribution in the interval [0, 1]. Class
3C contains 18 different instances. In instances of Class 3S and Class 3C, the number of vehicles was computed
as the minimum number of vehicles for which a feasible solution exists. See [6] for more details.

5.6.2. Behavior of sALNS on the benchmark instances

To test sALNS on VRPSDP instances, we consider the instances proposed in [6] as PTPSPD instances by
adding a profit to each customer. For enforcing sALNS to favor solutions containing all the customers and hence,

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1323

Table 13. Behavior of sALNS on VRPSPD instances of Class 1.

ins m B&P sALNS
Cost Cost Gap CPU

c101 20 02 4 272 272 0.00 35.12
c101 20 08 4 279 279 0.00 34.42
r101 20 02 3 329 329 0.00 27.59
r101 20 08 3 342 342 0.00 30.42
rc101 20 02 5 428 428 0.00 41.55
rc101 20 08 5 458 458 0.00 40.54
c101 40 02 8 551 551 0.00 65.92
c101 40 08 8 569 589 3.40 68.14
r101 40 02 6 601 596 −0.84 64.23
r101 40 08 6 629 627 −0.32 70.55
rc101 40 02 9 886 886 0.00 72.02
rc101 40 08 9 926 926 0.00 79.26

Avg 0.19 52.48

Table 14. Behavior of sALNS on VRPSPD instances of Class 3S and Class 3C.

ins m B&P sALNS ins m B&P sALNS
Cost Cost Gap CPU Cost Cost Gap CPU

3S 20 50 1 6 8769 8769 0.00 32.82 3C 20 50 1 11 12720 12720 0.00 56.56
3S 20 50 2 4 7986 7986 0.00 28.07 3C 20 50 2 7 11559 10461 −10.50 47.85
3S 20 50 3 3 6445 6445 0.00 23.70 3C 20 50 3 6 8387 8387 0.00 36.00
3S 20 66 1 7 9129 9129 0.00 37.16 3C 20 66 1 12 14578 14578 0.00 80.68
3S 20 66 2 5 7470 7470 0.00 33.30 3C 20 66 2 8 11178 11176 −0.02 46.76
3S 20 66 3 3 8346 7036 −18.62 26.87 3C 20 66 3 5 8160 8160 0.00 33.03
3S 20 80 1 8 10707 10707 0.00 52.23 3C 20 80 1 11 12802 12802 0.00 59.31
3S 20 80 2 6 10093 9024 −11.85 37.33 3C 20 80 2 8 10087 10087 0.00 46.10
3S 20 80 3 4 7058 7058 0.00 27.63 3C 20 80 3 5 8317 8317 0.00 33.59
3S 40 50 1 10 18282 18282 0.00 89.41 3C 40 50 1 22 27559 27245 −1.15 134.04
3S 40 50 2 8 14603 14603 0.00 66.40 3C 40 50 2 16 21773 21773 0.00 129.70
3S 40 50 3 5 11610 11343 −2.35 55.04 3C 40 50 3 10 15629 15523 −0.68 80.71
3S 40 66 1 12 18370 18003 −2.04 78.88 3C 40 66 1 22 25981 25981 0.00 126.07
3S 40 66 2 9 15307 15307 0.00 67.95 3C 40 66 2 15 21319 21377 0.27 106.91
3S 40 66 3 6 11725 11725 0.00 61.72 3C 40 66 3 10 15293 15293 0.00 79.43
3S 40 80 1 17 20665 20665 0.00 120.32 3C 40 80 1 21 26273 26617 1.29 121.09
3S 40 80 2 12 17599 17503 −0.55 112.29 3C 40 80 2 16 20652 20652 0.00 108.24
3S 40 80 3 8 13317 13221 −0.73 81.83 3C 40 80 3 10 15365 15365 0.00 82.41

Avg −2.01 57.39 Avg −0.60 78.25

provides feasible solutions for the VRPSPD, we add big profit values to the studied instances. The profits are
set to 10 000. When sALNS stops, we check the feasibility of the obtained solutions.

The obtained results are reported in Tables 13 and 14. Table 13 displays results for Class 1, while results of
Class 3S and Class 3C are displayed in Table 14.

In these tables, B&P refers to the best solution reported using the branch-and-price algorithm presented in
[6]. sALNS refers to our heuristic. cost stands for the best traveling cost (best distance) obtained, and CPU
is the corresponding computing time in seconds. ins refers to the name of the instances, where an instance
tw n valγ of Class 1 is an instance generated using the VRPTW instance tw with n customers and γ is equal
to valγ . In an instance Class n frac Q of Class 3S or Class 3C, Class refers to the class name (3S or 3C), n is

1324 H. CHENTLI ET AL.

the number of customers, frac ∈ {50, 66, 80} is the fraction of delivery customer, where 50 refers to 1
2 , 66 refers

to 2
3 and 80 refers to 4

5 , and Q stands for the capacity bound. m refers to the number of vehicles. gap refers to
the gap of sALNS from the best solution reported in [6]. The gap of a sALNS solution from a branch-and-price
(B&P) solution is computed following the expression gap = 100 · (zsALNS − zB&P)/ |zsALNS |, where zsALNS
and zB&P are the objective values given by sALNS and B&P respectively.

From Table 13, we remark that, for instances of Class 1, sALNS reaches almost all the solutions provided
by the branch-and-price algorithm in reasonable computing time. sALNS does not reach the B&P solution for
instance c101 40 08 and reports a gap of 3.40%. We remarked that for this instance, sALNS uses one more
vehicle (9 instead of 8) than the B&P. On the other hand, sALNS provides a better solution than the branch-
and-price algorithm for both instances r101 40 02 and r101 40 08. Note that, in instance r101 40 08, sALNS
solution uses more vehicles than the B&P (7 instead of 6).

From Table 14, we can see that sALNS gives better or equal solutions than the B&P algorithm for instances
of Class 3S. On the other hand, for instances in Class 3C, our approach fails to reach B&P solutions for both
instances 3C 40 66 2 and 3C 40 80 1.

6. Conclusion

In the present paper, we describe the Profitable Tour Problem with Simultaneous Pickup and Delivery services
(PTPSPD) and we present a mathematical formulation. We propose a new construction heuristic together with
a selective Adaptive Large Neighborhood Search (sALNS) heuristic. sALNS makes use of several components. The
most important ones are the solution evaluation, the operator selection, the tuned removal/insertion operators
and the diversification via the temperature update.

sALNS is tested on 117 instances based on benchmark ones. Some parameters are added to the benchmark
instances to make them compatible with the PTPSPD. To prove the effectiveness of our heuristic, we first
evaluate its components. Then, we implement a version of sALNS (denoted Li) that uses the removal/insertion
operators presented in [17]. Li solutions are compared with sALNS solutions. We also run both the classical
Adaptive Large Neighborhood Search heuristic (ALNS) and our mathematical formulation using the CPLEX
solver. The computational results show that, sALNS performs well in comparison with Li, ALNS and CPLEX
in both solution quality and computing time. Furthermore, we evaluate the performance of sALNS on VRPSPD
instances from the literature. The experimental tests show that our heuristic gives good quality solutions in
reasonable computing time.

A future work may consider the application of sALNS to other variants of Pickup and Delivery Problems with
Profits, including different realistic constraints as tour-duration, heterogeneous fleet and time windows. This
could be done by incorporating these constraints into the selection criteria of the insertion operators for instance.

On the other hand, the PTPSPD could be studied with some other real-life constraints as time windows
or, with the objective of profit maximization subject to tour-duration constraints. This would result in a Team
Orienteering Problem with Simultaneous Pickup and Delivery services.

Appendix A. Sub-tour elimination proof

Constraints (3.5), (3.6), (3.8) and (3.9) state that the number of arcs entering a node i ∈ N must be equal
to the number of arcs leaving i. In addition, this number has to be equal to 0 or 1. Hence, if customer i ∈ N
is included in the solution, there will be exactly one arc entering and one arc leaving i. Otherwise, no arc
can neither enter nor leave i. As a result, the proposed mathematical model prohibits solutions (and hence,
sub-tours) including different numbers of arcs entering and leaving the solution’s nodes. An example of such
sub-tours is given in Figure A.1.

In that figure, two graphs with five customers (1, 2, 3, 4 and 5) and a depot (0) are given. On the left side of
the figure there are different numbers of arcs entering and leaving node 5, which violate constraint (3.6). On the
right side of the Figure, same numbers of arcs are entering and leaving node 5 but these numbers are greater
than 1. According to constraints (3.5) and (3.8), if such solutions exist, this involves that there exists ti which
is greater than 1. Hence, constraints (3.9) will be violated.

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1325

Figure A.1. Examples of prohibited solution configurations using constraints (3.5), (3.6), (3.8)
and (3.9).

Figure A.2. Example of prohibited solution configurations that satisfy constraints (3.5), (3.6),
(3.8) and (3.9) but still contain sub-tours.

Note that not all sub-tours are handled by constraints (3.5), (3.6), (3.8) and (3.9). An example of a sub-tour
that is not handled by these constraints is given in Figure A.2. constraints (3.2) and (3.3) handle the remaining
sub-tours by assuming that, for each customer i ∈ N , the pickup and the delivery demands of i cannot be both
equal to 0. This sub-tour elimination is demonstrated as follows.

Let us consider constraints (3.2) and (3.3) from our mathematical model. We suppose that, for each customer
i ∈ N in the PTPSPD, the pickup demand pi and the delivery demand di of i cannot be both equal to zero.

We consider a solution containing a sub-tour a1 − a2 − a3 − . . .− ak−1 − ak − a1 with k customers: a1, a2,
a3, . . . , ak−1 and ak. From constraints (3.2) and (3.3) of the mathematical model, we will have the two systems
(S1) and (S2) respectively.

(S1)


ya1a2 − yaka1 = pa1
ya2a3 − ya1a2 = pa2
...

yaka1 − yak−1ak = pak .

(S2)


zaka1 − za1a2 = da1
za1a2 − za2a3 = da2
...

zak−1ak − zaka1 = dak .

The sum of the equations in (S1) and the sum of the equations in (S2) give
∑k
l=1 pal = 0

∑k
l=1 dal = 0

respectively. As, pi ≥ 0 and di ≥ 0 for all i ∈ N , then pi = 0 and di = 0 for all i ∈ N , which contradicts our
assumption. Therefore, the solutions of our mathematical model cannot contain sub-tours.

Appendix B. Detailed results

The results of all the studied algorithms are reported in Table B.1. The first column displays the instance
name, where ins stands for the original instance name (see [1]), n is the number of customers, Q is the capacity
bound and m is the number of vehicles. The remaining notations are defined in a similar manner as in Table 12.
A gap value in boldface refers to the best gap for the studied instance.

1326 H. CHENTLI ET AL.

Table B.1. Detailed results of all the studied algorithms.

ins-n-Q-m CPLEX H1run
const Hconst ALNS sALNS

UB %UB CPU %cpx CPU %cpx CPU %cpx CPU %cpx %UB %ALNS CPU

6-50-160-10 320.31 0.00 911.98 58.69 0.00 16.11 83.62 11.45 88.64 0.00 0.00 −12.93 39.56
7-75-140-20 708.96 12.45 7200.00 52.34 0.01 14.42 136.84 −2.62 181.13 −7.3 6.06 −4.56 54.27
8-100-200-15 777.38 5.50 7200.00 56.99 0.03 21.56 278.91 8.22 148.36 −0.48 5.05 −9.48 137.34
9-150-200-10 1430.16 41.12 7200.00 17.90 0.06 −34.68 713.52 −53.53 175.52 −61.81 4.72 −5.39 192.47
10-199-200-20 2166.39 100.00 7200.00 −100.00 0.13 −100.00 1378.49 −100.00 267.39 −100.00 6.69 −3.69 161.49
13-120-200-15 610.96 37.27 − 97.12 0.05 12.51 463.60 9.61 176.74 −23.5 22.52 −36.64 355.19
14-100-200-10 1133.48 11.18 7200.00 19.58 0.03 7.32 264.18 −2.18 112.86 −5.02 6.72 −2.77 84.58
15-150-200-15 1388.34 21.90 7200.00 19.63 0.06 −0.49 725.98 −15.67 201.53 −21.63 5.01 −5.15 151.57
16-199-200-15 2163.25 94.77 7200.00 −1220.36 0.13 −1404.72 1382.69 −1633.37 287.93 −1700.19 5.8 −3.86 168.23
6-50-50-2 74.29 0.00 65.34 111.32 0.00 28.38 17.38 5.01 154.03 0.00 0.00 −5.27 55.20
7-75-50-2 92.11 0.00 3249.42 86.44 0.00 29.67 31.08 7.93 289.83 0.00 0.00 −8.61 24.71
8-100-50-2 91.51 12.17 7200.00 145.19 0.01 47.21 60.17 14.12 404.24 −3.07 9.47 −20.02 38.26
9-150-50-2 132.89 10.29 7200.00 138.82 0.00 19.62 121.39 15.30 727.73 0.00 10.29 −18.06 73.41
10-199-50-2 143.51 9.39 7200.00 105.46 0.02 48.76 152.32 6.03 964.45 −0.6 8.85 −7.05 551.21
13-120-50-2 137.36 5.23 − 289.03 0.00 40.09 90.97 1.29 500.71 0.00 5.23 −1.31 71.72
14-100-50-2 107.47 8.86 7200.00 196.32 0.02 84.28 42.82 8.48 328.58 0.00 8.86 −9.27 138.60
15-150-50-2 125.20 23.93 7200.00 96.73 0.00 13.81 133.41 1.84 819.85 −10.23 16.15 −12.29 301.23
16-199-50-2 151.95 23.92 7200.00 68.32 0.01 20.40 168.48 −9.87 1118.25 −14.08 13.2 −3.83 257.02
6-50-50-3 101.50 0.00 1370.81 133.79 0.00 28.99 24.52 3.67 191.75 0.00 0.00 −3.80 24.60
7-75-50-3 142.30 9.85 7200.00 141.43 0.00 45.01 113.30 6.22 532.88 −1.65 8.36 −8.39 30.28
8-100-50-3 141.63 15.78 7200.00 114.03 0.01 48.88 81.71 15.26 560.94 −0.01 15.77 −18.02 43.47
9-150-50-3 193.09 12.13 7200.00 118.84 0.00 42.69 153.38 11.93 950.32 0.44 12.52 −13.05 326.25
10-199-50-3 215.51 18.92 7200.00 127.23 0.02 49.37 205.94 2.21 1400.97 −8.74 11.83 −11.20 1554.35
13-120-50-3 180.66 8.23 − 236.55 0.00 20.09 126.41 2.00 735.96 −0.05 8.18 −2.10 68.45
14-100-50-3 163.29 15.73 7200.00 177.86 0.01 106.08 54.12 8.70 514.35 0.00 15.73 −9.53 386.71
15-150-50-3 184.86 20.16 7200.00 143.39 0.02 44.23 159.15 6.95 1163.33 −1.5 18.97 −9.08 619.08
16-199-50-3 222.55 26.16 7200.00 89.68 0.01 12.35 231.08 −15.52 2294.87 −16.59 13.91 −0.93 250.69
6-50-50-4 131.55 13.30 − 70.02 0.00 16.33 30.38 3.15 211.58 −1.91 11.64 −5.22 27.06
7-75-50-4 184.82 14.69 7200.00 160.51 0.02 48.93 54.99 7.58 528.80 −0.75 14.05 −9.02 149.21
8-100-50-4 184.22 16.99 7200.00 127.76 0.00 55.98 109.26 11.86 733.41 −0.09 16.91 −13.55 53.81
9-150-50-4 244.85 12.22 7200.00 113.82 0.02 45.58 196.97 9.45 1231.30 3.64 15.41 −6.42 1391.83
10-199-50-4 286.57 24.57 7200.00 143.41 0.03 42.77 262.27 −2.56 1779.49 −13.98 14.02 −11.13 1890.69
13-120-50-4 205.53 11.82 − 295.44 0.01 58.03 156.62 7.36 813.76 −1.07 10.88 −9.09 86.79
14-100-50-4 197.89 24.21 7200.00 220.24 0.00 124.79 67.97 3.23 627.07 −4.63 20.7 −8.13 444.00
15-150-50-4 240.54 19.64 7200.00 114.83 0.02 43.47 197.23 11.56 1269.55 0.77 20.26 −12.20 117.68
16-199-50-4 288.94 27.77 7200.00 100.78 0.03 19.72 346.98 −6.66 2103.29 −17.31 15.27 −9.98 2232.42
6-50-75-2 131.71 2.22 7200.00 87.95 0.00 6.60 25.21 0.00 153.33 0.00 2.22 0.00 58.41
7-75-75-2 175.91 1.97 7200.00 89.50 0.00 21.03 41.95 2.66 434.68 0.00 1.97 −2.73 63.74
8-100-75-2 188.40 11.63 7200.00 77.33 0.02 21.78 80.34 0.23 425.11 −1.12 10.64 −1.35 72.28
9-150-75-2 234.40 19.81 7200.00 59.50 0.01 6.81 149.55 −4.17 722.07 −7.94 13.44 −3.63 284.70
10-199-75-2 259.15 18.76 7200.00 83.85 0.02 12.94 209.64 −4.04 1062.37 −11.00 9.83 −6.69 597.95
13-120-75-2 200.64 7.95 − 191.76 0.00 20.72 124.46 0.11 536.49 −1.06 6.97 −1.18 137.26
14-100-75-2 207.02 12.24 7200.00 95.23 0.02 56.67 54.97 −1.88 337.41 −1.88 10.59 0.00 312.52
15-150-75-2 224.71 13.21 7200.00 95.30 0.00 34.77 152.80 3.16 743.90 −2.59 10.96 −5.94 727.41
16-199-75-2 261.15 20.85 7200.00 58.25 0.02 5.58 223.27 −6.89 1256.67 −11.46 11.79 −4.27 213.37
6-50-75-3 187.08 2.88 7200.00 64.73 0.00 10.32 85.15 −0.07 165.61 −0.07 2.81 0.00 77.43
7-75-75-3 262.35 7.80 7200.00 97.73 0.00 29.47 147.00 2.80 480.24 −0.4 7.43 −3.30 51.32
8-100-75-3 280.70 17.37 7200.00 84.36 0.01 21.01 107.08 −3.11 550.24 −5.12 13.14 −1.95 531.91
9-150-75-3 337.07 21.50 7200.00 55.29 0.02 20.22 203.10 −6.42 1030.84 −12.57 11.64 −5.78 957.41
10-199-75-3 381.17 18.21 7200.00 75.73 0.02 17.64 290.02 −6.9 1495.39 −9.5 10.44 −2.43 1623.35
13-120-75-3 244.19 11.44 7200.00 274.51 0.01 81.04 177.22 14.72 709.52 −1.56 10.06 −19.09 173.12
14-100-75-3 293.85 17.75 7200.00 98.30 0.02 44.83 81.20 −0.4 463.89 −1.1 16.85 −0.70 547.76
15-150-75-3 331.42 19.55 7200.00 88.40 0.01 29.46 215.90 −4.17 1025.20 −10.1 11.42 −5.69 1059.11
16-199-75-3 381.47 20.34 7200.00 84.95 0.02 10.68 311.89 −8.64 1562.04 −10.31 12.13 −1.54 1491.62
6-50-75-4 223.79 12.06 − 102.02 0.02 2.83 39.32 1.99 196.89 −2.69 9.7 −4.78 28.88
7-75-75-4 326.24 9.93 7200.00 94.86 0.00 32.30 180.40 3.95 452.75 −0.69 9.3 −4.83 51.48
8-100-75-4 350.81 19.73 7200.00 61.73 0.03 34.45 132.04 1.56 987.78 −5.12 15.62 −6.78 591.81
9-150-75-4 436.45 26.50 7200.00 66.05 0.01 13.59 252.43 −14.6 1237.55 −18.62 12.81 −3.51 1093.71
10-199-75-4 494.68 29.19 7200.00 71.57 0.02 17.43 367.43 −22.49 1835.17 −25.53 11.11 −2.48 1954.93
13-120-75-4 265.00 18.42 7200.00 261.64 0.03 103.00 218.34 27.39 880.01 −0.82 17.75 −38.85 239.66
14-100-75-4 359.96 22.46 7200.00 126.27 0.02 48.07 106.43 −6.08 918.87 −6.72 17.24 −0.60 532.04
15-150-75-4 432.34 17.18 7200.00 80.48 0.01 34.25 263.62 −1.65 1177.79 −3.99 13.88 −2.30 621.64
16-199-75-4 494.95 32.05 7200.00 31.34 0.03 1.77 387.54 −24.19 1871.36 −30.62 11.24 −5.18 2023.83
6-50-100-2 189.62 3.78 7200.00 37.60 0.00 6.06 33.09 0.14 145.06 0.00 3.78 −0.14 87.57
7-75-100-2 252.08 0.00 6443.98 55.06 0.01 15.30 134.34 0.86 264.61 0.00 0.00 −0.87 98.81
8-100-100-2 282.20 9.45 7200.00 61.79 0.00 11.85 102.45 0.02 406.08 −3.64 6.15 −3.66 373.40
9-150-100-2 331.86 14.83 7200.00 68.15 0.02 4.80 194.13 −4.2 717.37 −6.5 9.3 −2.21 763.87
10-199-100-2 363.83 21.52 7200.00 62.51 0.01 4.22 271.48 −17.26 1098.47 −18.04 7.36 −0.67 1149.03

A SELECTIVE ALNS HEURISTIC FOR PTPSPD 1327

Table B.1. continued.

ins-n-Q-m CPLEX H1run
const Hconst ALNS sALNS

UB %UB CPU %cpx CPU %cpx CPU %cpx CPU %cpx %UB %ALNS CPU

13-120-100-2 247.99 8.9 7200.00 130.69 0.00 50.97 168.03 3.39 539.02 0.00 8.9 −3.51 86.22
14-100-100-2 301.58 13.12 7200.00 65.73 0.00 35.23 75.54 −0.42 346.12 −0.42 12.76 0.00 351.65
15-150-100-2 324.59 19.57 7200.00 57.28 0.01 13.75 200.73 −8.32 716.00 −11.93 9.97 −3.33 779.67
16-199-100-2 367.92 29.50 7200.00 60.41 0.02 −10.99 287.00 −20.92 1081.64 −25.89 11.24 −4.11 313.92
6-50-100-3 251.97 4.64 7200.00 57.58 0.00 12.29 41.66 7.98 152.19 0.00 4.64 −8.67 28.00
7-75-100-3 369.46 8.92 7200.00 63.38 0.01 14.12 181.18 0.36 316.90 −1.79 7.29 −2.15 353.71
8-100-100-3 397.92 12.85 7200.00 49.37 0.02 14.80 138.92 2.16 516.27 −2.61 10.57 −4.87 448.71
9-150-100-3 483.41 20.58 7200.00 61.72 0.02 5.60 262.86 −10.86 992.21 −14.69 8.91 −3.46 1064.25
10-199-100-3 534.03 15.89 7200.00 70.75 0.03 12.81 379.44 −5.93 1532.58 −9.08 8.25 −2.97 1609.77
13-120-100-3 314.81 24.73 7200.00 132.89 0.01 68.26 229.85 8.61 634.27 −5.98 20.23 −15.97 199.71
14-100-100-3 422.27 17.78 7200.00 40.95 0.00 30.71 106.00 −0.74 677.68 −1.29 16.72 −0.54 365.88
15-150-100-3 475.73 12.40 7200.00 83.07 0.03 15.87 275.62 0.74 950.99 −4.92 8.09 −5.71 1102.24
16-199-100-3 534.67 20.46 7200.00 50.15 0.03 1.72 399.75 −9.55 2204.22 −13.55 9.69 −3.66 1153.19
6-50-100-4 285.70 12.37 − 82.35 0.00 17.25 59.21 −1.07 117.45 −4.78 8.18 −3.67 32.78
7-75-100-4 452.14 11.89 7200.00 60.86 0.01 11.15 93.94 −0.85 363.35 −4.71 7.74 −3.83 310.26
8-100-100-4 493.59 17.80 7200.00 57.56 0.02 15.10 183.98 −0.46 601.87 −6.19 12.72 −5.70 523.06
9-150-100-4 621.41 22.41 7200.00 63.48 0.03 6.73 346.95 −11.36 1126.15 −14.71 11.00 −3.00 983.30
10-199-100-4 691.78 28.93 7200.00 68.33 0.03 3.00 505.25 −24.33 1856.49 −27.13 9.64 −2.26 3987.88
13-120-100-4 343.80 30.72 7200.00 275.39 0.03 117.18 273.10 9.76 796.74 −13.56 21.32 −25.84 240.75
14-100-100-4 529.81 22.41 7200.00 42.55 0.01 26.67 130.44 −3.96 531.08 −4.83 18.67 −0.84 451.15
15-150-100-4 610.57 15.06 7200.00 58.64 0.03 16.28 330.23 −4.92 1133.26 −7.42 8.76 −2.37 1226.91
16-199-100-4 695.01 24.06 7200.00 31.20 0.03 5.23 491.18 −11.26 1854.61 −19.52 9.24 −7.42 4341.49
6-50-160-2 291.51 0.00 654.86 26.54 0.01 9.52 48.34 5.01 112.28 0.00 0.00 −5.27 71.23
7-75-140-2 375.96 3.17 7200.00 55.96 0.00 9.39 173.85 1.07 390.16 −0.76 2.43 −1.85 199.67
8-100-200-2 568.60 10.30 7200.00 42.22 0.02 6.91 205.47 −5.29 623.76 −4.27 6.47 0.97 434.40
9-150-200-2 700.42 14.59 7200.00 36.04 0.03 −2.64 403.70 −8.71 772.06 −9.08 6.83 −0.34 869.22
10-199-200-2 772.22 18.22 7200.00 40.34 0.03 −3.36 621.16 −13.88 1156.45 −14.72 6.18 −0.74 1257.43
13-120-200-2 475.20 24.46 7200.00 138.41 0.03 37.73 350.81 −9.13 472.45 −9.84 17.03 −0.65 497.88
14-100-200-2 646.13 11.27 7200.00 40.80 0.00 15.11 159.68 −0.19 334.11 −0.19 11.1 0.00 311.42
15-150-200-2 679.83 7.89 7200.00 29.40 0.03 8.88 416.60 −1.09 798.48 −3.35 4.81 −2.23 830.04
16-199-200-2 760.76 12.46 7200.00 35.13 0.05 1.62 580.23 −5.64 1131.63 −7.21 6.15 −1.48 1275.39
6-50-160-3 320.31 0.00 3248.91 26.26 0.00 15.16 53.92 5.35 97.41 0.00 0.00 −5.66 36.84
7-75-140-3 506.04 10.20 7200.00 42.97 0.02 12.33 231.44 −4.25 384.98 −4.45 6.21 −0.19 260.67
8-100-200-3 719.14 11.77 7200.00 54.38 0.02 9.74 252.36 −6.38 406.59 −9.15 3.69 −2.61 110.62
9-150-200-3 975.64 15.05 7200.00 42.73 0.03 4.88 518.02 −8.03 879.10 −11.4 5.37 −3.12 697.61
10-199-200-3 1094.48 25.08 7200.00 24.11 0.05 −4.81 1233.32 −20.5 1480.06 −22.34 8.35 −1.52 1507.86
13-120-200-3 595.72 35.95 7200.00 109.37 0.05 40.35 642.66 −16.67 343.44 −23.69 20.78 −6.01 370.13
14-100-200-3 885.82 14.67 7200.00 49.44 0.02 5.42 324.44 −2.71 443.57 −3.84 11.39 −1.10 355.40
15-150-200-3 943.14 20.44 7200.00 33.98 0.03 0.90 793.81 −16.17 817.76 −20.57 4.07 −3.79 982.33
16-199-200-3 1082.56 30.02 7200.00 28.16 0.05 −17.74 1205.36 −29.82 1404.58 −32.77 7.09 −2.27 1565.73
6-50-160-4 320.31 0.00 2956.28 53.73 0.01 16.11 85.45 11.45 49.16 0.00 0.00 −12.93 37.41
7-75-140-4 605.26 16.77 7200.00 45.15 0.02 6.44 399.91 −10.83 385.05 −11.86 6.89 −0.93 206.12
8-100-200-4 776.30 11.00 7200.00 37.88 0.03 15.56 442.58 1.23 218.38 −8.2 3.71 −9.55 107.98
9-150-200-4 1177.92 20.99 7200.00 20.52 0.06 −0.49 950.05 −16.79 918.31 −18.63 6.27 −1.57 705.87
10-199-200-4 1366.78 38.73 7200.00 6.04 0.06 −27.57 929.45 −47.93 1510.91 −51.15 7.39 −2.18 1530.40
13-120-200-4 610.15 33.63 7200.00 104.82 0.03 17.18 455.74 11.90 340.17 −17.11 22.28 −32.93 234.93
14-100-200-4 1064.50 17.95 7200.00 37.57 0.03 5.56 266.69 1.14 226.01 −8.07 11.33 −9.31 218.15
15-150-200-4 1141.46 19.49 7200.00 28.63 0.11 −0.55 648.02 −14.15 802.87 −16.75 6.00 −2.28 720.01
16-199-200-4 1361.27 100.00 7200.00 −100.00 0.16 −100.00 934.11 −100.00 1576.37 −100.00 7.18 −2.66 1654.06

Avg 18.05 6869.24 73.23 0.02 9.10 279.23 −17.97 744.05 −24.16 9.76 −5.99 582.46

Acknowledgements. The authors are very grateful to Pr. Noureddine Hannoun for the English editing and for Dr. Matteo
Salani for kindly providing us with VRPSDP benchmark instances. The authors would also like to thank the reviewers
for their valuable comments and suggestions.

References

[1] C. Archetti, D. Feillet, A. Hertz and M.G. Speranza, The capacitated team orienteering and profitable tour problems. J. Oper.
Res. Soc. 60 (2009) 831–842.

[2] R. Bent and P. Van Hentenryck, A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time
windows. Comput. Oper. Res. 33 (2006) 875–893.

[3] B. Çatay, A new saving-based ant algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert
Syst. Appl. 37 (2010) 6809–6817.

1328 H. CHENTLI ET AL.

[4] V. Černỳ, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory
Appl. 45 (1985) 41–51.

[5] N. Christofides, A. Mingozzi and P. Toth, The vehicle routing problem, in Combinatorial Optimization, edited by N.
Christofides, A. Mingozzi, P. Toth and C. Sandi. Wiley, Chichester (1979) 315–338.

[6] M. Dell’Amico, G. Righini and M. Salani, A branch-and-price approach to the vehicle routing problem with simultaneous
distribution and collection. Transp. Sci. 40 (2006) 235–247.

[7] M. Gansterer, M. Küçüktepe and R.F. Hartl, The multi-vehicle profitable pickup and delivery problem. OR Spectr. 39 (2017)
303–319.

[8] V. Ghilas, E. Demir and T. Van Woensel, An adaptive large neighborhood search heuristic for the pickup and delivery problem
with time windows and scheduled lines. Comput. Oper. Res. 72 (2016) 12–30.

[9] I. Gribkovskaia, G. Laporte and A. Shyshou, The single vehicle routing problem with deliveries and selective pickups. Comput.
Oper. Res. 35 (2008) 2908–2924.

[10] G. Gutiérrez-Jarpa, G. Desaulniers, G. Laporte and V. Marianov, A branch-and-price algorithm for the vehicle routing problem
with deliveries, selective pickups and time windows. Eur. J. Oper. Res. 206 (2010) 341–349.

[11] M. Hifi and L. Wu, A hybrid metaheuristic for the vehicle routing problem with time windows, in 2014 International Conference
on Control, Decision and Information Technologies (CoDIT). IEEE (2014) 188–194.

[12] S.C. Ho and W. Szeto, Grasp with path relinking for the selective pickup and delivery problem. Expert Syst. Appl. 51 (2016)
14–25.

[13] M.K. Jepsen, B. Petersen, S. Spoorendonk and D. Pisinger, A branch-and-cut algorithm for the capacitated profitable tour
problem. Discret. Optim. 14 (2014) 78–96.

[14] C.B. Kalayci and C. Kaya, An ant colony system empowered variable neighborhood search algorithm for the vehicle routing
problem with simultaneous pickup and delivery. Expert Syst. Appl. 66 (2016) 163–175.

[15] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680.

[16] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7 (1956)
48–50.

[17] Y. Li, H. Chen and C. Prins, Adaptive large neighborhood search for the pickup and delivery problem with time windows,
profits, and reserved requests. Eur. J. Oper. Res. 252 (2016) 27–38.

[18] D. Männel and A. Bortfeldt, A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional
loading constraints. Eur. J. Oper. Res. 254 (2016) 840–858.

[19] H. Min, The multiple vehicle routing problem with simultaneous delivery and pick-up points. Transp. Res. Part A: General
23 (1989) 377–386.

[20] F.A.T. Montané and R.D. Galvao, A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and
delivery service. Comput. Oper. Res. 33 (2006) 595–619.

[21] D. Mu, C. Wang, F. Zhao and J.W. Sutherland, Solving vehicle routing problem with simultaneous pickup and delivery using
parallel simulated annealing algorithm. Int. J. Shipp. Transp. Logist. 8 (2016) 81–106.

[22] D. Pisinger and S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res. 34 (2007) 2403–2435.

[23] X. Qiu, S. Feuerriegel and D. Neumann, Making the most of fleets: a profit-maximizing multi-vehicle pickup and delivery
selection problem. Eur. J. Oper. Res. 259 (2017) 155–168.

[24] S. Ropke and D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and delivery problem with time
windows. Transp. Sci. 40 (2006) 455–472.

[25] S. Ropke and D. Pisinger, A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res.
171 (2006) 750–775.

[26] S. Salhi and G. Nagy, A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling.
J. Oper. Res. Soc. 35 (1999) 1034–1042.

[27] M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35
(1987) 254–265.

[28] A. Subramanian, L.M.D.A. Drummond, C. Bentes, L.S. Ochi and R. Farias, A parallel heuristic for the vehicle routing problem
with simultaneous pickup and delivery. Comput. Oper. Res. 37 (2010) 1899–1911.

[29] C.-K. Ting and X.-L. Liao, The selective pickup and delivery problem: formulation and a memetic algorithm. Int. J. Prod.
Econom. 141 (2013) 199–211.

[30] VRPLIB, Available at: http://or.dei.unibo.it/library/vrplib-vehicle-routing-problem-library
[31] E.E. Zachariadis and C.T. Kiranoudis, A local search metaheuristic algorithm for the vehicle routing problem with simultaneous

pick-ups and deliveries. Expert Syst. Appl. 38 (2011) 2717–2726.
[32] E.E. Zachariadis, C.D. Tarantilis and C.T. Kiranoudis, A hybrid metaheuristic algorithm for the vehicle routing problem with

simultaneous delivery and pick-up service. Expert Syst. Appl. 36 (2009) 1070–1081.
[33] E.E. Zachariadis, C.D. Tarantilis and C.T. Kiranoudis, An adaptive memory methodology for the vehicle routing problem

with simultaneous pick-ups and deliveries. Eur. J. Oper. Res. 202 (2010) 401–411.

http://or.dei.unibo.it/library/vrplib-vehicle-routing-problem-library

	A selective adaptive large neighborhood search heuristic for the profitable tour problem with simultaneous pickup and delivery services
	1 Introduction
	2 Literature review
	3 Mathematical formulation of the PTPSPD
	4 The proposed methodology
	4.1 Construction heuristic
	4.2 Solution evaluation
	4.3 Operator selection
	4.3.1 Update of scores
	4.3.2 Phase duration

	4.4 Removal/insertion operators
	4.4.1 Removal operators
	4.4.2 Insertion operators

	4.5 Diversification strategies
	4.5.1 Diversification via temperature update
	4.5.2 Diversification via removal operators
	4.5.3 Diversification via noise terms

	5 Computational results
	5.1 Generation of instances for the PTPSPD
	5.2 Configuration of the construction heuristic
	5.3 Configuration of the original ALNS
	5.3.1 Parameter tuning for ALNS

	5.4 Configuration of sALNS
	5.4.1 Evaluation of the new components
	5.4.2 Parameter tuning for the final algorithm

	5.5 Study of the performance of sALNS
	5.6 Evaluation of the performance of sALNS on VRPSPD instances
	5.6.1 Description of VRPSPD benchmark instances
	5.6.2 Behavior of sALNS on the benchmark instances

	6 Conclusion
	Appendix A Sub-tour elimination proof
	Appendix B Detailed results

	References

