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BI-OBJECTIVE MEAN–VARIANCE METHOD BASED ON

CHEBYSHEV INEQUALITY BOUNDS FOR MULTI-OBJECTIVE

STOCHASTIC PROBLEMS
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Abstract. Multi-objective programming became more and more popular in real world decision mak-
ing problems in recent decades. There is an underlying and fundamental uncertainty in almost all
of these problems. Among different frameworks of dealing with uncertainty, probability and statistic-
based schemes are well-known. In this paper, a method is developed to find some efficient solutions of
a multi-objective stochastic programming problem. The method composed a process of transforming
the stochastic multi-objective problem to a bi-objective equivalent using the concept of Chebyshev
inequality bounds and then solving the obtained problem with a fuzzy set based approach. Application
of the proposed method is examined on two numerical examples and the results are compared with
different methods. These comparisons illustrated that the results are satisfying.
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1. Introduction

Selecting the best option among alternatives is often a difficult process, especially when the evaluation
criteria are vague or qualitative, besides the objectives vary in importance and scope. The decision-maker (DM)
usually combines the vague criteria with known quantitatively criteria to obtain the best possible alternative.
Without systematic approaches to the process one cannot be sure that the proper decision has been made
[23]. Optimization has always been of great importance and interest particularly in solving complex real-world
problems. Basically, the optimization process is defined as finding a set of values for a vector of design variables
leading to an optimum value of an objective or cost function [26].

Meanwhile, many decision and planning problems involve multiple conflicting objectives which should be
considered simultaneously. Such problems are generally known as multiple criteria decision making (hereafter
MCDM) problems. We can classify MCDM problems in many ways depending on the characteristics of the prob-
lem in question [33]. This class is further divided into multi-objective decision making (henceforth MODM) and
multi-attribute decision making (henceforward MADM) [12]. Real-world decision-making problems often consist
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in considering multiple and antithetic objectives; therefore, MODM is a practical framework in implicational
areas [39]. Cohon [13] believed that considering more than one objective have the following advantages:

– promotes more appropriate roles for the participants in decision-making process;
– a wider range of alternatives is usually identified;
– models or the analyst’s perception of a problem will be more realistic.

Different frameworks are introduced in response to modelling and analyzing the uncertainty of systems. Liu
and Lin [29] classified the uncertainty frameworks into three distinct fields, probability and statistics, fuzzy sets
and grey systems theory. A key note in modeling uncertain systems is that a complicated model is not always
necessary to deal with incomplete information and inaccurate data [38].

Conventional parameter optimization methods seek to find a single optimized solution based upon a weighted
sum of all objectives. If all objectives get better or worse entirely, this conventional approach can effectively find
the optimal solution; however, if the objectives conflict, then there is not a single optimal solution available.
In this case, a multi-objective optimization (hereafter MOO) study should be performed that provides multiple
solutions representing the tradeoffs among the objectives [9]. In MOO problems, we are optimizing several
conflicting objective functions simultaneously. Due to the conflicting nature of the objectives, we can identify
compromise solutions, so-called Pareto optimal solutions, where we cannot improve the value of any objective
function without impairing at least one of the others [16, 18].

A considerable amount of research has been reported in this area over the last 20 years. The concept of MOO
is attributed to the economist, Pareto [37]. After several decades, this concept was recognized in operations
research and has recently become popular [7]. In MOO the set of feasible solutions is not explicitly known in
advance but it is restricted by constraint functions, alongside with its characteristic that no unique solution
exists but a set of mathematical solutions which are equally good can be identified. These solutions are known as
non-dominated, efficient, non-inferior or Pareto optimal solutions. In a priori method, the DM first articulates
preference information and one’s aspirations; afterwards, the resolvent process tries to find a Pareto optimal
solution satisfying them as well as possible. This is a straightforward approach but the difficulty maintains since
the DM does not necessarily know the possibilities and limitations of the problem beforehand, additionally, may
have too optimistic or pessimistic expectations. Alternatively, it is possible to use a posteriori method, where a
representation of the set of Pareto optimal solutions is generated primarily and then the DM is supposed to select
the most preferred one. This approach gives the DM an overview of different solutions available; nonetheless, if
there are more than two objectives in the problem, it may be difficult for the DM to analyze the large amount
of information. On the other hand, generating the set of Pareto optimal solutions may be computationally
expensive [33]. Several decades ago, the works by the economists Francis Edgeworth and Vilfredo Pareto had
laid the formal foundations for the analysis of MOO problems, but it was in the 50s of the 20th century when
researchers started to design computer-based algorithms to provide DM with concrete solutions to such problems
[22]. A generic multi-objective design optimization problem may be formulated as below [15].

Min J(x, p)
S.T.
g(x, p) ≤ 0
h(x, p) = 0
xi,LB ≤ xi ≤ Xi,UB (i = 1, ..., n)
x ∈ S,

(1.1)

where J = [J1 (x) , . . . , Jl (x)]
T

, x = [x1, . . . , xn]
T

, g = [g1 (x) , . . . , gm1
(x)]

T
, and h = [h1 (x) , . . . , hm2

(x)]
T

.
Here, J is a column vector of l objectives, whereby Ji ∈ R. The individual objectives are dependent on

a vector x of n design variables as well as vector of fixed parameters, p. The individual design variables are
assumed continuous and can be changed independently by a designer within upper and lower bounds, XUB

and XLB , respectively. In order to a particular design x be in the feasible domain S, both a vector of m1
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inequality constraints, g, and m2 equality constraints, h, have to be satisfied. The problem is to minimize –
simultaneously – all elements of the objective vector. A number of names have been given to this type of problem:
vector minimization, multi-criteria optimization, multi-attribute maximization and so forth [15].

Stochastic modeling is an interesting and challenging area of probability and statistics.
Although both stochastic optimization and MOO are well studied subjects in Operational Research and

Machine Learning, much less is developed for stochastic multiple objective optimization. This is amazing,
since in economic and managerial applications, the features of multiple decision criteria and uncertainty are
very frequently co-occurring. Stochastic optimization and MOO saw a rapid impressive and extremely fruitful
development in recent decades; nevertheless, these two areas evolved to a good part separately, and even today,
their intersection is addressed by only a comparably small fraction of publications; even though, real-life decision
making frequently encompasses both uncertainty and multiple objectives [22].

In this paper, an interactive approach is designed to analyze and solve the stochastic MOO problem (hereafter
SMOO). This approach transforms the stochastic objectives and constraints into equivalent deterministic forms.
Subsequently, the transformed configuration of the problem is solved using available optimization methods by
an interaction with DM to determine his/her satisfaction level(s).

The rest of paper is organized as follows: a detailed description of SMOO problems is given in Section 2
alongside with a comprehensive review on related studies in this area. Next, the proposed approach to solve
SMOO is developed in Section 3 with proving some of its supporting lemmas and theorem. Some numerical
examples besides comparing the results of proposed method with previous techniques are discussed in Section 4.
Ultimately, the research is concluded in Section 5.

2. Stochastic multi-objective linear programming

SMOO problems are a special type of MOO problems where their objective and/or constraint functions are
stated stochastically. Mathematically, an SMOO problem can be stated as

Max f (w, x) = (f1 (w, x) , . . . , fm (w, x))
S.T.
x ∈ X (w) = {gj (w, x) ≤ bj (w) , j = 1, . . . , k}
x ∈ D,w ∈ Ω,

(2.1)

where D is a deterministic convex set, the feasible set X(w) is random, e.g. the constraints gj and the parameters
bj are random, the m objectives (f1 (w, x) , . . . , fm (w, x)) are random, (Ω, E, p) is a probability space, and
x = (x1, . . . , xn) is an n-dimensional vector.

If the objectives and constraints are linear, problem (1.1) can be written as follows:

Max C (w) · x
S.T.
A (w) · x ≤ b (w)
x ∈ D,w ∈ Ω,

(2.2)

where C is a random m× n matrix, A is a random K × n matrix and b is a random K -column vector defined
on (Ω, E, p) [5].

SMOO problems are not mathematically well defined. Current approaches of solving SMOO are usually upon
application of some transformations on objective functions and constraints. Goicoechea et al. [21] introduced
PROTRADE method that inspired from deterministic STEM method. Leclercq [28] procedure transformed the
SMOO problem into an equivalent deterministic multi-objective problem on chance constrained method and
two-stage programming. Teghem and Kunsch [41] and Teghem et al. [42] proposed the STRANGE scheme to
solve SMOO problems where both objective function coefficients and right-hand side parameters are random.
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Urli and Nadeau [44, 45] proposed a sketch for solving SMOO problems when all parameters are determined
randomly. They also built a Decision Support System which enables the DM to identify many current stochastic
contexts: risky situation and situations of partial uncertainty [36]. Other methods dealing with transformation of
stochastic objective functions and/or constraints can be found in [34, 35, 40]. A group of authors inspired from
goal programming approach to solve SMOO problems [3, 14]. Hulsurkar et al. [24] proposed a fuzzy programming
approach for SMOO problems. Also, Ben Abdelaziz et al. [6] proposed a Chance Constrained Compromise
Programming (CCCP) technique. Moreover, Caballero et al. [8] presented stochastic approach versus multi-
objective approach for obtaining efficient solutions in stochastic multi-objective programming problems.

Beyond its theoretical aspects, SMOO is widely used in different implicational area. These applications are
in different fields from financial programming, resource management, supply chain management, etc. In 1987,
Kunsch and Teghem used the stochastic linear programming approach for a best fuel cycle policy including four
criteria: production costs, the supply of raw material, the commercial balance and employment. Gobbi et al.
[20] applied SMOO for designing automotive suspension systems. Ben Abdelaziz et al. [6] applied it in port-
folio selection; furthermore, he presented solution approaches for the multi-objective stochastic programming
in 2012. Azaron et al. [2] developed a SMOO model considering uncertainty of demands, supplies, process-
ing, transportation, shortage, and capacity expansion costs. Chen et al. [10] developed three SMOO models
for designing transportation network under demand uncertainty. Zhang et al. [47] has used the fuzzy-robust
stochastic multi-objective programming approach for managing the petroleum waste. They integrated fuzzy-
robust and stochastic linear programming into a general multi-objective programming framework. Two satisfied
conflict objectives were minimization of system costs and minimization of waste flows directly to landfill. Masri
[32] studied the agent portfolio problems under uncertainty and deal with this problem with a stochastic goal pro-
gramming approach. Alizadeh Afrouzi et al. [1] used the fuzzy SMOO model in order to design a multi-echelon,
multi-objective supply chain model that considers new product development and its effects on SC arrangement.
Recently, Masmoudi and Abdelaziz [31] presented a survey and reviewed deterministic and stochastic multiple
objective programming models for the portfolio selection problems in their research.

3. An exact approach for solving SMOOP

Liu and Lin [29] pointed that non-existence of an exact solution is an axiom for uncertain problems; thus,
identifying an approximated solution in a certain level of satisfaction is the best possibility. Considering the
above axiom, a method is developed to find a satisfactory solution for the considered SMOOP. This procedure
includes the following steps:

– transforming stochastic objectives to non-stochastic equivalents;
– transforming stochastic constraints to non-stochastic equivalents;
– solving the obtained non-stochastic model at a certain level of satisfaction.

These steps are detailed at the forthcoming subsections.

3.1. Transforming stochastic objectives

In equation (2.2), the considered SMOO problem consists of a set of l stochastic objectives, i.e. Z̃ =
{z̃1, z̃2, . . . , z̃l}, where each objective z̃k, k = 1, 2, . . . , l can be considered as a stochastic linear function of
the form.

z̃k =

n∑
j=1

c̃kjxj , (3.1)

where the objective function parameters of c̃kj , j = 1, 2, . . . , n, statistically distributed with a given distribution
function Fkj , j = 1, 2, . . . , n, with expected values of µkj , j = 1, 2, . . . , n and bounded variances of σ2

kj , j =
1, 2, . . . , n.
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According to linear combination of random variables, the kth objective z̃k has the following expected value:

z̄k =

n∑
j=1

µkjxj . (3.2)

Moreover, since decision variables are independent in linear programming framework [11, 19], the variance of
z̃k can be computed as:

σ2
k =

n∑
j=1

σ2
kjx

2
j . (3.3)

Following the Chebyshev inequality, a random variable z̃k with a mean zk and variance σ2
k will take its mean

with a probability greater than
(
1− 1/k2

)
in ±kσ above and below the average of the random variable, i.e.

P (z̄k − kσk ≤ µk ≤ z̄k + kσk) ≥ 1− 1

k2
. (3.4)

Therefore, in a satisfaction level of
(
1− 1/k2

)
, the kth objective is optimized when the above interval is opti-

mized. According to ordering relations of Ishibuchi and Tanaka [25], an interval like (zk, zk) is minimized when
its lower bound zk and its center (zk + zk/2) are maximized. Similarly, an interval (zk, zk) is minimized when
its upper bound zk and its center (zk + zk/2) are minimized. Therefore, maximization of the stochastic function
z̃k, k = 1, 2, . . . , l is transformed to optimization of the interval z̄k − kσk ≤ µk ≤ z̄k + kσk. Applying Ishibuchi
and Tanaka [25] rules, this interval will be maximized when zk and zk − kσk, simultaneously. Considering the
lower bound zk − kσk, since zk is maximized, the lower bound will be maximized if σk and consequently, σ2

k is
minimized. Hence, the maximization of stochastic function z̃k at any satisfaction level is transformed into maxi-
mization of zk and minimization of σ2

k, which is the well-known mean–variance measure in portfolio optimization
[30].

If the objective is to minimize the function, then zk and zk + kσk should be minimize simultaneously. This
will be occurring if zk and σ2

k are minimized, contradicting with mean–variance approach. Considering a set of
l stochastic functions to be maximized, the equivalent problem will be as follows:

Max {z̄1, z̄2, . . . , z̄l}
Min

{
σ2

1 , σ
2
2 , . . . , σ

2
l

}
.

(3.5)

According to equation (3.5), it is clear that SMOLP problem is transformed into a multi-objective non-linear
problem with 2l objective functions. In the next subsections, a method is proposed to treat the above objective
functions.

3.2. Transforming stochastic constraints

Consider the ith stochastic constraint of the problem as below

n∑
j=1

ãijxj (≤,=,≥) b̃i, i = 1, 2, . . . ,m, (3.6)

where the random variables ãij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n follow different probability distributions with
given means of γij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n and given variances of δij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

and random variables b̃i, i = 1, 2, . . . ,m statistically distributed with means b̄i, i = 1, 2, . . . ,m and variances of
σ2
bi
, i = 1, 2, . . . ,m.
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The proposed approach for dealing with stochastic constraints is developed based on considering the amount
of DM(s) risk attitude. Suppose that the ith constraint in equation (3.6) is of the ≤ type. Now, in a satisfaction
level of α, following Chebyshev inequality, the j th variable’s coefficient in this constraint will occur in the
interval of [γij − kδij , γij + kδij ], where k =

√
1/α. Comparably, the right hand side of the constraint situates

in the interval of
[
bi − kσbi , bi + kσbi

]
.

These confidence intervals are replaced in equation (3.6) and the following interval constraint is obtained:

n∑
j=1

[γij − kδij , γij + kδij ]xj (≤,=,≥)
[
b̄i − kσbi , b̄i − kσbi

]
, i = 1, 2, . . . ,m. (3.7)

The constraint presented in equation (3.7) provides DM(s) a wide range of options to find their decisions, while
considering the stochastic nature of constraints. This constraint is a transformation of stochastic constraint to
an equivalent interval constraint. These interval constraints can be analyzed applying the order ranking relation
of Ishibuchi and Tanaka [25].

Suppose a lower than or equal type constraint. This constraint is replaced by a pair of constraints as below:

n∑
j=1

(γij + kδij)xj ≤ b̄i + kσbi

n∑
j=1

γijxj ≤ b̄i.
(3.8)

For greater than or equal type constraints, this equivalency is hold as follows:

n∑
j=1

(γij − kδij)xj ≥ b̄i − kσbi
n∑
j=1

γijxj ≥ b̄i.
(3.9)

3.3. Solving the transformed problem

Integrating the above transformations on objective functions and constraints, the SMOLP problem, equation
(2.2), is transformed into the following multi-objective non-linear programming (SMONLP) problem:

Max {z̄1, z̄2, . . . , z̄l}
Min

{
σ2

1 , σ
2
2 , . . . , σ

2
l

}
S.T.
n∑
j=1

(γij + kδij)xj ≤ b̄i + kσbi , i = 1, 2, . . . ,m1

n∑
j=1

γijxj ≤ b̄i, i = 1, 2, . . . ,m1

n∑
j=1

(γij − kδij)xj ≥ b̄i − kσbi , i = m1 + 1, 2, . . . ,m

n∑
j=1

γijxj ≥ b̄i, i = m1 + 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n,

(3.10)
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where the first m1 constraints are less than or equal type and the next m − (m1 − 1) constraints are greater
than or equal type.

In this subsection, a fuzzy set based approach is developed to solve the above problem. Consider the kth
objective’s mean z̄k and variance σ2

k. First of all, the ideal value of means and anti-ideal value of variances are
computed by solving the below linear programming problem:

Max z̄k, k = 1, 2, . . . , l
S.T.
n∑
j=1

(γij + kδij)xj ≤ b̄i + kσbi , i = 1, 2, . . . ,m1

n∑
j=1

γijxj ≤ b̄i, i = 1, 2, . . . ,m1

n∑
j=1

(γij − kδij)xj ≥ b̄i − kσbi , i = m1 + 1, 2, . . . ,m

n∑
j=1

γijxj ≥ b̄i, i = m1 + 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n.

(3.11)

With the optimal solution of z̄∗k, k = 1, 2, . . . , l and the non-linear programming of:

Maxσ2
k, k = 1, 2, . . . , l

S.T.
n∑
j=1

(γij + kδij)xj ≤ b̄i + kσbi , i = 1, 2, . . . ,m1

n∑
j=1

γijxj ≤ b̄i, i = 1, 2, . . . ,m1

n∑
j=1

(γij − kδij)xj ≥ b̄i − kσbi , i = m1 + 1, 2, . . . ,m

n∑
j=1

γijxj ≥ b̄i, i = m1 + 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n.

(3.12)

With the optimal value of σ2
k∗, k = 1, 2, . . . , l. The above problems can be solved easily by the current solvers,

and as shown in the following sections, both problems have global optima. The anti-ideal value of means are
supposed to be z̄k∗ = 0, k = 1, 2, . . . , l, while the ideal value of variances are assumed to be σ2∗

k = 0. Accordingly,
the below membership function is constructed for means:

µ (z̄k) =


0, z̄k ≤ 0
z̄k
z̄∗k
, 0 ≤ z̄k ≤ z̄∗k

1, z̄k ≥ z̄∗k.
(3.13)
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The membership functions of variances are constructed as:

µ
(
σ2
k

)
=


1, σ2

k ≤ 0
σ2
k∗−σ

2
k

σ2
k∗

, 0 ≤ σ2
k ≤ σ2

k∗

0, σ2
k ≥ σ2

k∗.

(3.14)

Aggregating the equations (3.14) and (3.15), an objective function is obtained as:

l∑
k=1

µ (z̄k) + µ
(
σ2
k

)
. (3.15)

If a weight vector (w1, w2, . . . , wl), wk ≥ 0, k = 1, 2, . . . , l and
∑l
k=1 wk = 1 is assigned to objective functions,

the weighted objective function is constructed as:

l∑
k=1

wk
(
µ (z̄k) + µ

(
σ2
k

))
. (3.16)

Eventually, the following problem is solved to find a solution for the primal problem of equation (2.2):

Max

l∑
k=1

wk
(
µ (z̄k) + µ

(
σ2
k

))
S.T.
n∑
j=1

(γij + kδij)xj ≤ b̄i + kσbi , i = 1, 2, . . . ,m1

n∑
j=1

γijxj ≤ b̄i, i = 1, 2, . . . ,m1

n∑
j=1

(γij − kδij)xj ≥ b̄i − kσbi , i = m1 + 1, 2, . . . ,m

n∑
j=1

γijxj ≥ b̄i, i = m1 + 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n.

(3.17)

In addition, the risk attitude of DM can be implied by considering different weights for mean and variance of
objective function. Let λm and λv be the weights of mean and variance of different objectives, respectively,
where λm, λv ≥ 0 and λm+λv= 1. These weights can be classified into three conditions:

– for a risk averse DM, λm ≤ λv;
– for a risk neutral DM, λm=λv;
– for a risk seeking DM, λm ≥ λv.

Then, the objective function of equation (3.17) becomes as follows:

Max

l∑
k=1

wk
(
λmµ (z̄k) + λvµ

(
σ2
k

))
. (3.18)
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3.4. Algorithmic scheme

In this section, the above presented stages are summarized in a procedure including six steps:

Step 1. Formulate the primal problem according to SMOLP structure of equation (2.2);
Step 2. Construct the mean and variance functions of different objectives according to equations (3.2) and

(3.3), respectively.
Step 3. Solve the problem in equation (3.11) detecting the ideal values of means, z̄∗k, k = 1, 2, . . . , l.
Step 4. Solve the problem in equation (3.12) finding the anti-ideal values of variances, σ2

k∗, k = 1, 2, . . . , l.
Step 5. Construct the membership functions of means and variances, applying equations (3.13) and (3.14),

respectively.
Step 6. Construct and solve the problem in equation (3.17) or equation (3.18) to acquire the optimal solution

of the primal problem.

The above method requires solving 2l+1 problems, with similar constraints and different objectives. Common
solvers, e.g. Lingo, AIMS, etc., can be used easily to solve the foregoing problems. The following lemmas represent
some important characteristics of the obtained solutions.

Lemma 3.1. The feasible space obtained from intersection of constraints of the form in equation (3.12) is
convex.

Proof. Considering linearity of constraints, the proof is straightforward.

Lemma 3.2. The objective functions in equations (3.11), (3.12) and (3.17) are convex functions.

Proof.

The proof is given in three points:

(1) The objective function of equation (3.11) is linear and therefore its convexity is clear.
(2) The objective function of equation (3.12) is a quadratic function with a diagonal Hessian of Hk =

diag
(
2σ2

k1, 2σ
2
k2, . . . , 2σ

2
kn

)
which is clearly positive, therefore, is convex.

(3) Since equation (3.17) is a positive linear combination of convex functions; thus, it is a convex function
[43]. �

Theorem 3.3. The optimal solution obtained from solving models in equations (3.11), (3.12) and (3.17) are
global solutions.

Proof. Since the considered problems associated with maximizing a convex function over a convex set of
constraints, the proof is straightforward [4].

4. Numerical examples

To shed more light on the advantages of our proposed method, some numerical examples are solved and the
obtained results are compared with previously proposed techniques.

4.1. Case 1

Ekhtiari and Ghoseiri [17] solved a manpower allocation problem, dealing with allocation of 30 people to 5
work stations. Three objectives are defined as (1) stochastic objective of maximizing final outputs, (2) deter-
ministic objective of minimizing daily wage cost objective of workers and (3) stochastic objective of minimizing
total unallowable idle times of workers. The SMOO problem is represented in equation (4.1):
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Max f̃1 (x) =

5∑
j=1

õjxj

Min f2 (x) =

5∑
j=1

wjxj

Min f̃3 (x) =

5∑
j=1

t̃jxj

S.T.
x1 + x2 + x3 + x4 + x5 = 30
3 ≤ x1 ≤ 9
3 ≤ x2 ≤ 9
4 ≤ x3 ≤ 9
2 ≤ x4 ≤ 9
3 ≤ x5 ≤ 9,

(4.1)

where xj is the decision variable of the number of manpower in j th unit, õj the random variable of output
quantity per worker in j th unit, wj the daily wage/worker employed in j th unit and t̃j is the random variable
of unallowable idle time/worker employed in j th unit.

The means and variances of random variables are expressed in Table 1.
Ekhtiari and Ghoseiri [17] solved the above problem by chance-constrained global criterion (CCGC) and

chance-constrained compromise programming (CCCP). This problem is solved by our proposed method. The
step by step solution approach is detailed below.

Step 1. The problem is formulated in equation (4.1).
Step 2. The mean and variance functions are constructed. For the first objective, the mean and variance

functions are, respectively, as follows:

O = 8x1+5x2+12x3+6x4+10x5

σ2
O = 0.000125x1+0.000324x2+0.000469x3+0.000521x4+0.000324x5.

Since the second objective is a deterministic one, it has only a mean function as

W= 20x1+15x2+17x3+12x4+18x5.

Finally, for the third object it follows that:

T= 40x1+60x2+35x3+50x4+45x5

σ2
O= 0.000162x1+0.00021x2+0.000135x3+0.000222x4+0.000198x5.

Steps 3 and 4. In this step, the problem consists of optimizing the mean and variance functions to determine
their ideal and anti-ideal values. The first problem is to maximize O with the certain constraints of equation
(3.18) Table 2.
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Table 1. Random variables mean and variance.

j 1 2 3 4 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

õj 8 0.000125 5 0.000324 12 0.000469 6 0.000521 10 0.000324
wj 20 0 15 0 17 0 12 0 18 0
t̃j 40 0.000162 60 0.00021 35 0.000135 50 0.000222 45 0.000198

Table 2. Ideal and anti-ideal values for different objectives.

O σ2
O W T σ2

T

Ideal 279 0 0 0 0
Anti-ideal 0 0.09589 525 1485 0.04479

Step 5. Determining the ideal and anti-ideal values, the membership functions of mean and variance are
constructed. The results of the first objective are formed as:

µ
(
O
)

=
8x1+5x2+12x3+6x4+10x5

297
,

and

µ
(
σ2
O

)
=

0.09589− 0.000125x1−0.000324x2−0.000469x3−0.000521x4−0.000324x5

0.09589
,

respectively, since the second objective is deterministic, the membership function is just constructed for
its mean. This membership function is as follows:

µ
(
W
)

=
20x1+15x2+17x3+12x4+18x5

525
.

Finally, the membership functions associated with the third objective’s mean and variance are respectively
as below:

µ
(
T
)

=
8x1+5x2+12x3+6x4+10x5

297
,

and

µ
(
σ2
T

)
=

0.04479− 0.000162x1−0.00021x2−0.000135x3−0.000222x4−0.000198x5

0.09589
.

Step 6. Considering equal weights for different objectives, and a risk neutral DM, the problem in equation (3.17)
becomes as follow in this example.
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Table 3. The results of different methods.

Proposed method CCGC CCCP

x1 9 9 9
x2 4 3 3
x3 7 9 9
x4 4 2 2
x5 6 7 7
Final outputs mean 258 277 277
Final outputs variance 0.05829 0.06899 0.06899
Wage cost 512 528 528
Unallowable idle times mean 1324 1270 1270
Unallowable idle times variance 0.03378 0.03654 0.03654

Maxµ
(
Ō
)

+ µ
(
σ2
O

)
+ µ

(
W̄
)

+ µ
(
T̄
)

+ µ
(
σ2
T

)
S.T.
x1 + x2 + x3 + x4 + x5 = 30
3 ≤ x1 ≤ 9
3 ≤ x2 ≤ 9
4 ≤ x3 ≤ 9
2 ≤ x4 ≤ 9
3 ≤ x5 ≤ 9.

(4.2)

The problem in equation (4.2) is solved with LINGO. The obtained results with the achieved level of means
and variances are summarized in Table 3.

It is clear from Table 3 that the result of the proposed method is a Pareto optimal solution of the stochastic
multi-objective linear programming problem of equation (4.1), comparing with the results of CCGC and CCCP
methods. On the other hand, it is evident that the variances of optimal solutions of CCGC and CCCP methods
in two stochastic objectives of final outputs maximization and unallowable idle times minimization are smaller
at the proposed method solution, regard to two other methods. It is worth noting here that this variance
minimization can be considered as an advantage of the proposed method in solving stochastic problems.

4.2. Case 2

Muñoz and Ruiz [34] solved the following problem using their ISTMO approach:

MaxZ1 (x1, x2) = −3x1 − 16x2 + t̃1 (4x1 + x2)
MaxZ2 (x1, x2) = 9x1 + 3x2 + t̃2 (x1 + 30x2)
S.T.
x1 + x2 ≥ 6, −2x1 + 3x2 ≤ 6,
−x1 + 3x2 ≤ 17, x1 + 4x2 ≤ 39,
2x1 + 3x2 ≤ 43, x1 − x2 ≤ 9,
x1 − 2x2 ≤ 6, x1 + 4x2 ≥ 12,
x1, x2 ≥ 0,

(4.3)

where t̃1 is a random variable that follows uniform distribution t̃1 ∼ U (1, 5) and t̃2 is a random variable whose
distribution is exponential with parameter λ = 3.4. They solved this problem in 3 iterations and the optimal
solution is obtained as (x1, x2) = (13.634, 4.634). If this problem is solved via the proposed method, with
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Table 4. The results of different methods.

Proposed method ISTMO

x1 8.4244 13.634
x2 1.2122 4.634
First objective’s mean 60.061 62.464
First objective’s variance 1515.995 3994.199
Second objective’s mean 139.1765 340.1467
Second objective’s variance 204.539 1475.742

Table 5. The results of the proposed method for DMs with different risk attitude.

Risk seeking Risk averse
λm= 0.6, λv = 0.4 λm= 0.4, λv = 0.6

x1 11.403 8
x2 2.701 1
First objective’s mean 67.508 59
First objective’s variance 2783.803 1366.67
Second objective’s mean 234.0041 125.667
Second objective’s variance 620.4433 167.1111

equal weights of objectives and for a risk neutral DM, the optimal solution will be obtained as (x1, x2) =
(8.4244, 1.2122). The objective functions mean and variance values for this problem are summarized in
Table 4.

It can be seen in Table 4 that the proposed method’s solution has smaller variances in both objectives and
therefore its obtained solution is less risky. The results of Table 4 are found for a risk neutral DM. For a
moderately risk aversion DM with λm= 0.4 and λv = 0.6, and a moderately risk seeking DM with λm= 0.6 and
λv = 0.4, the results are represented in Table 5.

It is obvious that, by increasing DM’s attitude toward risk, the objective function means are increased while
their variances are decreased. Remark that the ISTMO approach result is obtained for a moderately high risk
seeking DM, where λm between 0.7 and 0.8.

To elaborate the proposed model and for more verification, a stochastic binary bi objective transportation
model is employed in Iranian steel industry network. The steel industry main buyers or retailers in Iran with
nearly 80% market share are Z.A (R1) and F.M (R2) since 1980. The only domestic mining system being capable
to meet the buyers demand is G.G (S1); nonetheless, in the vast majority of cases the remained required iron ore
is imported from mines in Russia (S2), China (S3) and Kazakhstan (S4). Figure 1 illustrates the supply network.
Reducing transportation costs and transportation time are retailers and steel supply network controversial issues
alongside with supplying the retailers demand.

Accordingly, the steel industry supply network encompasses 4 suppliers and 2 retailers or buyers. Determin-
istic parameters and the stochastic demand related to aforementioned network are presented in Table 6. Two
main objective functions are minimizing transportation costs and times.

Moreover, uncertain quantities compromising transportation costs and transferring time are delineated in
Tables 7 and 8 upon stochastic information emanated from managerial brain storming sessions and calculations,
on the basis of different scenarios.

On the basis of above information and in conjunction with proposed model, the stochastic bi objective model
for the considered case study is presented as below.
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Figure 1. Iranian steel industry network.

Table 6. Parameters of steel supply network (per year).

Definition Symbol Average quantity Random variable distribution

Demand for jth retailer D1 50 million ton Poison distribution

D2 75 million ton Poison distribution

The production capacity of ith supplier Ca1 30 million ton Parameter

Ca2 90 million ton Parameter

Ca3 80 million ton Parameter
Ca4 40 million ton Parameter

Table 7. Stochastic transportation costs from supplier to retailer (Cij USD per ton).

Random
variable
name

C11 C12 C21 C22 C31 C32 C41 C42

Random
variable
distribution
type

Triangular distribution

Random
variable
information

(300,390,420) (310,395,500) (1250,1400,1600) (1350,1450,1500) (2040,2200,2400) (2080,2180,2250) (950,990,1020) (990,1020,1200)

Min f̃1 (x) =

4∑
i=1

2∑
j=1

C̃ij .xij

Min f̃2 (x) =

4∑
i=1

2∑
j=1

T̃ij .xij

S.T.
x11 + x12 ≤ 30;
x21 + x22 ≤ 90;
x31 + x32 ≤ 80;
x41 + x42 ≤ 40;

x11 + x21 + x31 + x41 =
≈
50;

x12 + x22 + x32 + x42 =
≈
75;

xij ≥ 0.
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Table 8. Stochastic transfer time of transported goods from supplier to retailer (Tij per week).

Random variable name T11 T12 T21 T22 T31 T32 T41 T42

Random variable distribution type Uniform distribution

Random variable information 2–5 2–4/5 2/5–3/5 2/5–4 2/5–4 2/5–4 2–3 2–3/5

Table 9. The results of the real world case study by proposed model compared with other
approaches.

Variable Proposed

method

Chance-constrained global

criterion (CCGC)

Ekhtiari and Ghoseiri [17]

Chance-constrained compro-

mise

programming (CCCP)
Abdelaziz et al. [6]

x11 2.974258 1.243141 0
x12 0 1.234568 0

x21 26.1519 26.26029 50

x22 19.18571 16.24657 0
x31 1.01E−09 1.12E+01 0

x32 11.31167 16.24657 0
x41 20.87385 11.24829 0

x42 18.35072 16.24657 25

Cost optimal mean 130425.6 150078.1 Infeasible
Cost optimal variance 4847467 5404401

Time optimal mean 290.6312 302.1026

Time optimal variance 256.0869 242.1592

Comparing the results in Table 9, it is clear that the proposed method results are preferred to CCGC and
CCCP because in cost objective, both mean and variance of the proposed method are better than CCGC while
in time objective, mean time is better than CCGC while the obtained variance is greater. On the other hand,
CCCP method in this case results in an infeasible solution. Also, the normality assumption is necessary for both
CCGC and CCCP methods while the proposed method is not based on normality assumption that is another
feature of it.

5. Conclusion

Multi-objective problems are a type of common problems in engineering, management and science. This
commonality arises from the fact that human decisions, in both personal and professional life, are made by con-
sidering several objectives. As Vincke [46] believed, multi-criteria problems are hard since they are “ill-defined
mathematical problems, without any objective solution, i.e. a solution which is better than all others for all the
criteria”. This difficulty of multi-criteria problems are intensified by implying the uncertainty of information.
In this case, stochastic programming is an accepted framework for dealing with the challenge of uncertainty in
programming type problems. Therefore, in this paper a model is proposed for solving stochastic multi-objective
programming problems. The stochastic uncertainty of objective functions and constraints are handled using
the concept of confidence intervals. Since, different parameters of the model, including the objective functions
coefficients and technological coefficients of the constraint, can follow different statistical distributions, deter-
mining an exact statistical distribution for objective functions and constraints become more and more difficult.
Therefore, the Chebyshev inequality bound is applied to transform the stochastic objectives and constraints
to equivalent intervals. Afterwards, it is shown that maximization of a given stochastic objective in a certain
confidence level is equivalent to maximizing its mean and simultaneously minimizing its variance. This mean
maximization and variance minimization scheme is the classic mean–variance concept in portfolio optimization.
Next, a transformation is introduced for stochastic constraints applying the inequality bounds and interval
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numbers ordering relations. The performance of the proposed method is investigated in two different numerical
examples and it is compared with two previously presented models. It is shown that considering the variance
minimization in the proposed method, the obtained results of SMOO problems tend to have smaller variances
regard to other methods. This advantage leads to results that are more robust than previous methods. Further-
more, implying the risk attitude of DM in solving the problem is another advantage of the proposed method
which provides the chance of finding different results for an uncertain problem according to riskiness of DM.
Finally, the ability to solve problems where both objective functions and constraints are stochastic is really a
marked difference of our proposed method, making it an appropriate approach to solve SMOO problems in an
uncertain environment with a semi-interactive method.

References

[1] Z. Alizadeh Afrouzy, S.H. Nasseri, I. Mahdavi and M.M. Paydar, A fuzzy stochastic multi-objective optimization model to
configure a supply chain considering a new product development. Appl. Math. Model. 40 (2016) 7545–7570.

[2] A. Azaron, K.N. Brown, S.A. Tarim and M. Modarres, A multi-objective stochastic programming approach for supply chain
design considering risk. Int. J. Prod. Econ. 116 (2008) 129–138.

[3] E. Ballestero, Stochastic goal programming: a mean–variance approach. Eur. J. Oper. Res. 131 (2001) 476–481.
[4] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, New

Jersey (2006).
[5] F. Ben Abdelaziz, Solution approaches for the multi objective stochastic programming. Eur. J. Oper. Res. 216 (2012) 1–16.

[6] F. Ben Abdelaziz, B. Aouni and R. El Fayedh, Multi-objective stochastic programming for portfolio selection. Eur. J. Oper.
Res. 177 (2007) 1811–1823.

[7] V. Bhaskar, G.K. Santosh and R.K. Ajay, Applications of Multi objective Optimization in Chemical Engineering. Department
of Chemical Engineering, Indian Institute of Technology, Kanpur, India (2013).

[8] R. Caballero, E. Cerda, M. Del Mar, L. Rey, Stochastic approach versus multiobjective approach for obtaining efficient solutions
in stochastic multiobjective programming problems. Eur. J. Oper. Res. 158 (2002) 633–648.

[9] N. Chase, M. Rademacher and E. Goodman, A Benchmark Study of Multi-Objective Optimization Methods. Michigan State
University, Red Cedar Technology, East Lansing, Michigan (2009).

[10] A. Chen, J. Kim, S. Lee and Y. Kim, Stochastic multi-objective models for network design problem. Expert Syst. Appl. 37
(2010) 1608–1619.

[11] R.M. Chiulli, Quantitative Analysis: An Introduction. Gordon and Breach Science Publishers, Amsterdam (1999).

[12] J. Climaco, Multi Criteria Analysis. Springer, New York (1997).
[13] J.L. Cohon, Multi Objective Programming and Planning. Dover Publication, New York (2004).

[14] B. Contini, A stochastic approach to goal programming. Oper. Res. 16 (1968) 576–586.

[15] O.L. De Weck, Multi Objective Optimization: History and Promise. Massachusetts Institute of Technology, Dept. of Aeronautics
& Astronautics, Engineering Systems Division, Cambridge, Massachusetts (2004).

[16] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. Department of Mechanical Engineer-
ing, Indian Institute of Technology Kanpur, Kanpur, India (2011).

[17] M. Ekhtiari and K. Ghoseiri, Multi-objective stochastic programming to solve manpower allocation problem. Int. J. Adv.
Manuf. Technol. 65 (2013) 183–196.

[18] P. Eskelinen, K. Miettinen, Trade-off analysis approach for interactive nonlinear multiobjective optimization. OR Spectr. 34
(2011) 803–816.

[19] F.R. Giordano, W.P. Fox and S.B. Horton, A First Course in Mathematical Modeling. Cengage Learning, Boston (2013).
[20] M. Gobbi, F. Levi and G. Mastinu, Multi-objective stochastic optimization of the suspension system of road vehicles. J. Sound

Vib. 298 (2006) 1055–1072.
[21] A. Goicoechea, L. Duckstein and M.M. Fagel, Multiple objectives under uncertainty: an illustrative application of PROTRADE.

Water Resour. Res. 15 (1979) 203–210.
[22] W.J. Gutjahr and A. Pichler, Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann. Oper. Res.

236 (2016) 475–499.
[23] T.L. Hardy, Multi-Objective Decision-Making Under Uncertainty: Fuzzy Logic Methods. NASA Technical Memorandum,

Cleveland, Ohio (1995).
[24] S. Hulsurkar, M.P. Biswal and S.B. Sinha, Fuzzy programming approach to multi-objective stochastic linear programming

problems. Fuzzy Sets Syst. 88 (1997) 173–181.
[25] H. Ishibuchi and H. Tanaka, Multi objective programming in optimization of the interval objective function. Eur. J. Oper.

Res. 48 (1990) 219–225.
[26] A. Khalkhali, M. Sadafi, J. Rezapour and H. Safikhani, Pareto based multi-objective optimization of solar thermal energy

storage using genetic algorithms. Trans. Can. Soc. Mech. Eng. 34 (2010) 463–475.
[27] P.L. Kunsch and J. Teghem, Nuclear fuel cycle optimization using multi-objective stochastic linear programming. Eur. J.

Oper. Res. 31 (1987) 240–249.
[28] J.-P. Leclercq, Stochastic programming: an interactive multicriteria approach. Eur. J. Oper. Res. 10 (1982) 33–41.



BI-OBJECTIVE MEAN–VARIANCE METHOD BASED ON CHEBYSHEV INEQUALITY BOUNDS 1217

[29] S. Liu and Y. Lin, Grey Information: Theory and Practical Applications. Springer, London (2006).

[30] H.M. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91.

[31] M. Masmoudi and F. Abdelaziz, Portfolio selection problem: a review of deterministic and stochastic multiple objective
programming models. Ann. Oper. Res. 267 (2018) 335–352.

[32] H. Masri, A multiple stochastic goal programming approach for the agent portfolio selection problem. Ann. Oper. Res. 251
(2017) 179–192.

[33] K. Miettinen, Introduction to Multiobjective Optimization: Noninteractive Approaches. Department of Mathematical
Information Technology, University of Jyväskylä, Springer, Finland (2012).

[34] M.M. Muñoz and F. Ruiz, ISTMO: an interval reference point-based method for stochastic multiobjective programming
problems. Eur. J. Oper. Res. 197 (2009) 25–35.
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[38] S.H. Razavi Hajiagha, H. Amoozad Mahdiraji and S.S. Hashemi, Multi-objective linear programming with interval coefficients.

Kybernetes 42 (2013) 482–496.
[39] S.H. Razavi Hajiagha, H. Amoozad Mahdiraji, E.K. Zavadskas and S.S. Hashemi, Fuzzy multi-objective linear programming

based on compromise vikor method. Int. J. Inf. Tech. Decis. Mak. 13 (2014) 679–698.
[40] M. Sakawa, K. Kato and I. Nishizaki, An interactive fuzzy method for multiobjective stochastic linear programming problems

through an expectation model. Eur. J. Oper. Res. 145 (2003) 665–675.
[41] J. Teghem and P. Kunsch, Multi objective decision making under uncertainty: an example jór power systems, in Decision
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