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A NOVEL ROBUST MULTIVARIATE REGRESSION APPROACH TO

OPTIMIZE MULTIPLE SURFACES

Amir Moslemi1 and Mirmehdi Seyyed-Esfahani2,*

Abstract. Response surface methodology involves relationships between different variables, specif-
ically experimental inputs as controllable factors, and a response or responses by incorporating
uncontrollable factors named nuisance. In order to optimize these response surfaces, we should have
accurate response models. A common approach to estimate a response surface is the ordinary least
squares (OLS) method. Since OLS is very sensitive to outliers, some robust approaches have been dis-
cussed in the literature. Most problems face with more than one response which are mostly correlated,
that are called multi-response problem. This paper presents a new approach which takes the benefits
of robust multivariate regression to cope with the mentioned difficulties. After estimating accurate
response surfaces, optimization phase should be applied in order to have proper combination of vari-
ables and optimum solutions. Global criterion method of multi-objective optimization has also been
used to reach a compromise solution which improves all response variables simultaneously. Finally, the
proposed approach is described analytically by a numerical example.
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1. Introduction

In quality engineering techniques, finding out the relations between input parameters and output quality
characteristics is very important. Based on this relation, the optimization of the outputs can be done. One
common problem in product or process design is to determine optimal level of control variables where there are
different outputs. This problem is called multi-response optimization (MRO) problem.

Several studies have presented approaches surveying multiple quality characteristics, but few papers have
focused on the existence of correlation. Correlation can also meaningfully affect the analysis of MRO problem.
Nuisances in experiments may be classified into the following three categories [18]. First of all, controllable factors
which are known and controllable, but their effect is not of interest as a factor. Unknown and uncontrollable
variables, that is, the existence of the factor is unknown and it may even be changing levels while the experiments
are conducted. Final categories are “known and uncontrollable variables”.

Keywords and phrases: Multi-response, simultaneous equation systems, multivariate robust regression, global criterion (GC)
method.
1 Department of Industrial Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.

* Corresponding author: msesfahani@aut.ac.ir

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2018016
https://www.rairo-ro.org/
mailto:msesfahani@aut.ac.ir
http://www.edpsciences.org


1234 A. MOSLEMI AND M. SEYYED-ESFAHANI

Modeling and optimization of correlated response surfaces have been dedicated by many researchers. Chiao
and Hamada [7] considered experiments with correlated multiple responses. Analysis of these experiments con-
sists of modeling distributional parameters in terms of the experimental factors and finding factor settings which
maximize the probability of being in a specification region, i.e., all responses are simultaneously meeting their
respective specifications. It is assumed that the multi-response set has a multivariate normal distribution and
also that each response variables is desired to be within a predefined specification region. Kazemzadeh et al. [14]
applied multi-objective goal programming model to provide a general framework for multi-response optimization
problems. Shah et al. [23] used the seemingly unrelated regressions (SUR) method for estimating the regression
parameters where there are correlated dependent variables. The method can be useful in MRS problem with
correlated responses and leads to a more precise estimate of the optimum variable setting. A useful approach in
solving multi-response optimization problem is multivariate regression method that is very useful when response
variables are correlated.

A common method of explaining and analyzing the results of experiments is response surface modeling. After
gathering experimental data, a relationship between the factors (input data) and the response or responses
(output results) should be well-defined to complete the analysis procedure. If a suitable model could be concluded
to define the precise relation between the input variables and the response or the responses’ consequents, then
the interpretations will not be reliable. After determining an experimental design and performing experiments,
the next steps include the statistical analysis and the selection of the optimal input variables. One of the most
common approaches of regression coefficient estimation is the OLS method. A solution given by OLS determines
the coefficient values that minimize the sum of the squares of the residuals.

Huber [12] introduced the concept of robustness in the regression. One common robust estimation approach is
the M-estimator that is based on the maximum likelihood estimation (MLE) method. The main idea behind the
M-estimators that works iteratively is to replace the sum of squared residuals of the OLS by another function.
As a consequence, several authors (e.g., [8]) called this estimator an iteratively reweighted least squares (IRLS)
method. This method can be applied to robustly estimate the coefficients of the multivariate regression of this
research.

The literature of the M-estimators and response surface problems is rich. Morgenthaler and Schumacher [19]
discussed robust response surfaces in chemistry based on design of experiments. Hund et al. [13] presented various
methods of outlier detection and evaluated their robustness using different experimental designs. Wiens and
Wu [25] proposed a comparative study of M-estimators and presented a design that is more optimal compared
with possible regression models. Maronna et al. [17] explained the most recent robust regression algorithms.

Recently, Bashiri and Moslemi [3] proposed a moving average iterative weighting method (MAIW) to estimate
the coefficients of regression models based on M-estimators. The aim of their research was to decrease the effect
of faulty points by considering the previous data to detect the outliers or the probable trends in residuals.
Furthermore, Bashiri and Moslemi [4, 5] proposed an iterative weighting method to modify both the outliers
that follow abnormal trends and the residuals that have non-equal variation, so that they have less effects on
the coefficient estimation.

Many robust estimators of multivariate regression models were investigated by several researchers such as
Maronna and Morgenthaler [16] who proposed a robust covariance estimator. Koenker and Portnoy [15] proposed
multivariate regression method of M-type. Another efficient and useful robust multivariate regression estimator
is based on the minimum covariance determinant (MCD) that was developed by Rousseeuw et al. [21]. Based
on this procedure, a robust multivariate regression approach was developed by Rousseeuw et al. [21]. These
estimators are categorized as a high breakdown point robust algorithms, whereas M-type of estimator is not
categorized as a high breakdown point algorithm. Though the breakdown points of these methods are in high
level, the efficiency of M-type is significant against other method. Bashiri and Moslemi [4, 5] proposed iteratively
robust regression procedure based in M-estimators.

This paper proposes a novel procedure for robust estimation of the coefficients in regression equations that
relate control factors to the response variables in multi-response optimization. More specifically, as OLS and
relate method based on maximum likelihood approaches are very sensitive to outliers, to the non-normality of
the error terms in the regression equations, as well as to correlated responses, a robust coefficient estimation
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Table 1. A summary of the relevant works.

Authors Methods

Correlation analysis Optimization approach OLS Robust
approach

Su & Tong (1997) PCA Factor effects of new components X
Antony [2] Coefficient as responses Signal to noise maximization X
Chiao & Hamada [7] Consider correlation Joint probability maximization X
Shah et al. [23] SUR method Desirability function X
Tong et al. (2005) PCA Variation mode chart of PCA X
Wang [24] PCA Variation mode chart of PCA X
Kazemzadeh et al. [14] Considers correlation Goal programming/desirability

function
X

Ribeiro et al. [20] PCA Response surface fitting on first
component

X

Hejazi et al. [11] Considered Goal programming X
Salmasnia et al. [22] PCA Desirability function X
Rousseeuw et al. [21] Not considered – X
Bashiri & Moslemi [4, 5] Not considered – X
Bashiri & Moslemi [4, 5] Not considered – X
Proposed paper Considers correlation GC method X

method is proposed for multi-response surfaces in multi-response optimization problem based on M-estimators.
As it is clear by now, accurate estimates of the response surfaces are needed in order to achieve optimum design
parameters in multi-response problems. Global criterion (GC) method of vector optimization is also applied
since there are several output characteristics to be optimized. This paper proposes a methodology that can
analyze correlated multiple response surfaces fitted on control factors.

As the comparative study among the major works mentioned above (shown in Tab. 1) reveals, little attention
has been paid to the use of a robust approach and in the analysis of MRSO problems. Consequently, one can
conclude that an attention to the robust optimization in response surface methodology and applying the method
in multi-response system can be a good contribution that had not been investigated yet.

The rest of this paper is organized as follows. In Section 2, a robust approach for the model construction
procedure and also GC optimization method is presented. A numerical example is given in Section 3 to illustrate
the application of the proposed methodology. Finally, Section 4 contains the concluding remarks.

2. Materials and methods

When the problems involve several equations with common variables, it is recommended to estimate the
parameters through a system of equations simultaneously. Various methods such as ordinary least squares
(OLS), cross-equation weighting method, SUR, two-stage least squares (2SLS), weighted two-stage least squares
(WTSLS), three-stage least squares (3SLS), full information maximum likelihood (FIML), and the generalized
method of moments (GMM) have been proposed to solve such problems.

Besides classical estimations, robust regression methods have been surveyed by authors. Similar to a single
response, robust estimation of the regression coefficients in a multi-response problem is an important issue.
Besides, due to correlations between multiple responses, treating each response separately and applying robust
single response procedures may lead into incorrect interpretations of the results. Thus, considering all responses
simultaneously and estimating their variance–covariance matrix seems necessary. Another difference between
a single response surface and a multi-response surface is the distance measure involved. In a single response
problem, Euclidean distance of residuals is used while in a multi-response problem the Mahalanobis distance



1236 A. MOSLEMI AND M. SEYYED-ESFAHANI

that takes into account the correlation between responses is considered. In the proposed RMRS approach, lower
weights are assigned to residuals with larger distance measure. In each iteration, the proposed weighting function
down-weights the residuals by considering all responses simultaneously (Tab. 2).

Table 2. Characteristics of the major methods of system estimation.

Estimation method Limiting assumptions

Normality 1 2 Outlier modifying

OLS – * * –
Cross equation weighting – * * –
SUR [26] – – – –
2SLS [6] – – * –
WTSLS – – * –
3SLS [27] – – – –
FIML [1] * – – –
GMM [10] – * – –
Robust multivariate regression – * * *

1 Independency between predictors and error.
2 Independent error terms.

2.1. Model representation

A general multi-response problem can be expressed as:

MinR (x) =


R̂1(x)

R̂2(x)
...

R̂p(x)


Subject to : L < x < u, (2.1)

where R̂i(x) represents response surface for ith quality characteristic; x is vector of control factors.
Furthermore, it is assumed that the process is statistically under control.

2.2. Model building

By introducing indices i and j to represent replicates and responses, respectively, we define variable
rij ; i = 1, 2, . . . , l, j = 1, 2, . . . , p to be the residual associated with the ith replicate of the jth. The residu-

als for each response Yj are first obtained using initial estimates of the responses Ŷj as rij = Yij − Ŷij . Then,
the scaled residuals for each response, denoted by srij , are obtained by subtracting their values from their
sample mean (rj) and then dividing the result by their variation measure (sample standard deviation srj ). In
other words,

srij =
rij − rj
srj

. (2.2)

Since the controllable factors are assumed constant (not random), the correlations between the responses
are next estimated using scaled residuals. These estimates are used to obtain the covariance matrix Σ̂. Note
that since the covariance matrix can also be under influence of outliers, it should be robustly estimated using
M-estimator. Assuming p responses and denoting r(i) = [sri1, sri2, . . . , srip]; i = 1, 2, . . . , l the scaled residual
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matrix of the responses in ith replicate, the Mahalanobis distance is computed and consequently the weighting
scheme is obtained based on this distance. The Mahalanobis distance of each estimated response in a replicate
is obtained as:

d(r(i)) =

√
(r(i))T Σ̂−1r(i). (2.3)

The distribution of the squared Mahalanobis distance is approximately a chi-square with p degrees of freedom
[18]. The critical point of this distribution at α confidence level (x2p,α) is used to assign the weights. In other
words, if the squared Mahalanobis distance is less than x2p,α, then the weight assigned takes the value of 1.
Otherwise, the weight is obtained proportional to sum of the distances using equation (2.4).

wi =

{
1; if d (r(i)) < χ2

p,α
χ2
p,α∑l

j=1 d(r(i))
; otherwise

. (2.4)

In the next section, the performance of the proposed RMRS approach in terms of sum of squared error
of estimates (SSE) is investigated using a numerical illustration. The error involved to estimate regression

coefficient θ using θ̂ is defined as

Error = (θ − θ̂). (2.5)

In the numerical example, it is assumed that some outliers are present in the experiments.

2.3. Optimization method (global criterion)

This method allows one to transform a multi-objective optimization problem into a single-objective problem.
The function traditionally used in this method is distance. The multi-objective method can be written as follows:

Optimize F (x) =

(∑
i

∣∣∣Ti−R̂i(x)di

∣∣∣r) 1
r

[minimize/maximize]

Subject to : the same constraints, (2.6)

where Ti is the optimum value of problem objective function when only ith objective was considered, wi the value
representing importance of each objective, and di is the range of ith response within the observed experimental
runs [9]. In this study, GC method was applied to convert problem into single objective form.

Consecutive steps of the proposed approach are as follows:

Step 1: identify input and output variables.
Step 2: select a proper design and run the experiments.

A proper design is selected for conducting the experiments regarding the number of variables and their levels.
Step 3: develop a system of equations.
3a: perform an initial response surfaces to get an insight about the more effective factors on each response
considering the test of significance of regression coefficients.
3b: define an equation for relations between each response and other variables based on OLS method.
Step 4: estimate parameters of the system by proposed robust estimation approach.
Step 5: construct multi-objective optimization model including the following objective functions.
5a: Response surfaces related to quality characteristics.
Step 6: apply global criterion (GC) method to solve the multi-objective optimization model.

In Section 4, these steps are discussed in details.
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3. Results and discussion

This section is organized to demonstrate the computational steps of the proposed approach. For this purpose,
a numerical example from the literature is considered with some modifications [18].

Step 1: a chemical experiment with three controllable variables and two covariates is designed to be analyzed
by the proposed method. The outputs are conversion (Y1) and activity (Y2) levels.

Step 2: a CCD design is selected and the experiments are conducted accordingly. Table 3 shows the results of
experiments gathered by a central composite design (CCD).

In Table 3, some responses seems to be as contaminations. We illustrate these runs in bold. Figure 1 shows
that some data deviate markedly from other observations in the sample.

Three approaches have been applied for coefficients estimation such as pure OLS (in which we have no outliers
and contamination), OLS-based methodology such as FIML approach, and finally robust multivariate approach.

Step 3: understanding the strong effects helps us to fit better surfaces of response variables. The results showed
that the following terms would be considered to construct the system of equations.

So considering the computations, the most effective variables are as follows:

Y1 ∝ x1, x2, x3, x1x3, x2x3, x
2
2, x

2
3,

Y2 ∝ x1, x3, c1, c2, x1c2, x
2
3.

In this case, the problem is analyzed by proposed robust approach and FIML. The response surfaces regressed
by the mentioned methods are given below in Table 4 (Minitab statistical package has been used to estimate
the parameters in system).

Table 3. Results of designed experiments for numerical example.

Time (X1) Heat (X2) Catalyst (X3) Humidity (C1) Temp. (C2) Conversion (R1) Activity (R2)

−1 −1 −1 41% 16.7 74 53.2
1 −1 −1 55% 17.3 51 62.9
−1 1 −1 67% 19.3 88 53.4
1 1 −1 55% 12.3 70 62.6
−1 −1 1 12% 11.5 71 57.3
1 −1 1 95% 18.5 90 67.9
−1 1 1 65% 19.2 66 59.8
1 1 1 96% 16.5 97 67.8
0 0 0 30% 13.2 81 59.2
0 0 0 59% 14 75 60.4
0 0 0 46% 16.4 76 59.1
0 0 0 57% 16.4 83 60.6
−1.682 0 0 59% 13.5 76 59.1
1.682 0 0 33% 13.9 79 65.6
0 −1.682 0 48% 15 85 60
0 1.682 0 38% 13.1 97 60.7
0 0 −1.682 29% 12.7 55 57.4
0 0 1.682 20% 15.8 81 63.2
0 0 0 25% 11.5 80 60.8
0 0 0 75% 19.1 91 58.9
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Estimated Regression Coefficients for Conversion (R1)

Term Coef SE Coef P

Constant 79.6003 3.355 0.000

Time (X1) 1.0288 3.534 0.660

Heat (X2) 3.925 3.636 0.016

Catalyst (X3) 6.2042 3.645 0.022

Humidity (C1) −48.9311 4.589 0.508

Temp (C2) 1.8812 3.316 0.595

Time (X1) *Time (X1) −5.2099 4.695 0.318

Heat (X2) *Heat (X2) 3.0210 4.871 0.016

Catalyst (X3) *Catalyst (X3) −5.0190 5.101 0.041

Humidity (C1)*Humidity (C1) 1.309 0.966 0.511

Temp (C2) *Temp (C2) 0.9257 5.242 0.867

Time (X1) *Heat (X2) 8.7783 8.027 0.324

Time (X1) *Catalyst (X3) 11.4810 7.374 0.010

Time (X1) *Temp (C2) −0.5302 6.538 0.939

Heat (X2) *Catalyst (X3) −4.0070 7.820 0.028

Heat (X2) *Temp (C2) −2.6728 6.950 0.716

Catalyst (X3)*Humidity (C1) -3.952 26.899 0.907

Heat (X2)*Humidity (C1) 19.588 76.793 0.841

Time (X1)*Humidity (C1) −6.698 31.223 0.279

Catalyst (X3) *Temp (C2) −2.6715 5.605 0.654

S = 6.243 R-Sq = 93.0% R-Sq(adj) = 73.3%

The analysis was done using coded units.

Estimated Regression Coefficients for Activity (R2)

Term Coef SE Coef P

Constant 23.3310 0.7242 0.000

Time (X1) 0.8892 0.7630 0.050

Heat (X2) 1.1442 0.7850 0.205

Catalyst (X3) 2.1748 0.7869 0.012

Humidity (C1) 2.5911 4.589 0.008

Temp (C2) 10.8894 3.316 0.034

Time (X1) *Time (X1) −5.2099 4.695 0.318

Heat (X2) *Heat (X2) 3.0210 4.871 0.016

Catalyst (X3) *Catalyst (X3) 1.2874 4.201 0.041

Humidity (C1) *Humidity (C1) 1.3415 0.966 0.511

Temp (C2) *Temp (C2) 0.9257 5.242 0.867

Time (X1) *Heat (X2) 8.7783 8.027 0.324

Time (X1) *Catalyst (X3) 11.4810 7.374 0.410

Time (X1) *Temp (C2) −5.8114 6.538 0.039

Heat (X2) *Catalyst (X3) −4.407 7.820 0.728

Heat (X2) *Temp (C2) −18.7728 6.950 0.716

Catalyst (X3) *Humidity (C1) −7.952 26.899 0.907

Heat (X2) *Humidity (C1) 21.588 76.793 0.841

Time (X1) *Humidity (C1) 78.698 31.223 0.279

Catalyst (X3) *Temp (C2) −2.6715 5.605 0.654

S = 1.348 R-Sq = 96.8% R-Sq(adj) = 87.9%
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Figure 1. The normal probability plot and residual behavior considering contaminated data.

Table 4. Estimated equations in the system using FIML and robust multivariate method.

Method Estimated responses

Robust R1 (X,C) = 78.9 + 1.04x1 + 3.62x2 + 6.04x3 + 11.01x1x3 − 4.13x2x3 + 3.61x22 − 4.81x23
approach R2 (X,C) = 43.23 + 0.909x1 + 2.57x3 + 1.125c1 + 10.059c2 − 5.921x1c2 + 0.89x23

FIML R1 (X,C) = 79.6 + 1.028x1 + 3.925x2 + 6.204x3 + 11.481x1x3 − 4.007x2x3 + 3.021x22 − 5.01x23
R2 (X,C) = 23.33 + 0.889x1 + 2.17x3 + 2.595c1 + 10.859c2 − 5.811x1c2 + 1.287x23

Table 5. Total squared errors of the estimated coefficients for the response surfaces.

Y1 Y2

Robust multivariate FIML Robust multivariate FIML

Total SE 0.89 3.88 30.365 211.8192

In order to find the efficiency of proposed robust approach, we can estimate the response surfaces by pure
OLS approach. Considering SE (sum of square) of estimation errors criteria, the efficiency of the proposed
approach can be presented. The model is presented in equation (3.1).

R1(X,C) = 78.1 + 1.01x1 + 3.58x2 + 6.02x3 + 10.99x1x3 − 4.27x2x3 + 3.981x22 − 4.51x23,

R2(X,C) = 28.73 + 1.129x1 + 2.69x3 + 1.89c1 + 10.99c2 − 6.121x1c2 + 0.77x23. (3.1)

The comparison between classical OLS-based model and also proposed robust multivariate regression methods
based on pure model is presented in Table 5.

The results in Table 5 show that in comparison with the FIML the robust multivariate regression procedure
has the smallest SE to estimate the coefficients of all responses.

Step 4: construct the multi-objective optimization model. Two response surfaces and two probability functions
are to be considered as objective functions with respect to input variables constrained by their specification
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Table 6. Trade off matrix and required parameters of GC method.

Methods of estimation Z1 Z2 R1 R2

Target FIML 0 0 100 78.796
Robust 0 0 100 71.653

Best observed 0.106 0.003 97 67.9
Worst observed 1.541 2.272 51 53.2
Range 1.435 2.269 46 14.7

Table 7. Optimal results of the numerical example.

Method X C R1 R2 GC

FIML

(
1.224
0.464
1.38

) (
0.501
14.996

)
100 78 0.0522

Robust

(
1.209
0.418
1.68

) (
0.501
15.422

)
100 70.037 0.0011

limits. Therefore, the multi-objective mathematical program for this problem is developed in which the decision
variables consist of three factors and two interdependent covariates. Table 6 gives a summary of optimal solutions
obtained by solving the above model for each objective functions separately.

Max F =

(
R1(X,C)
R2(X,C)

)

Subject to :

−1.68
−1.68
−1.68

 ≤
x1
x2
x3

 ≤
 1.68

1.68
1.68

 . (3.2)

Considering Table 6, the final multi-objective mathematical model using global criterion can be constructed
by replacing the objective functions of the above multi-objective program as equation (3.2). In order to finalize
the optimizing approach, considering equation (3.3), GC method’s main objective function would be applied in
this example.

Min GC =

((
R1 (X,C)− 100

46

)2

+

(
R2 (X,C)− 100

14.7

)2
)1/2

. (3.3)

In this example, we consider the same important degrees for all objective functions. Table 7 shows the optimal
solution and the related objective values for this example.

As it is clear in Table 7, proposed robust method would perform better in optimizing the responses considering
GC criteria. Multiple response surfaces have been analyzed by the methodology. Several objective functions and
performance indices of a quality engineering problem can be optimized simultaneously by using GC method,
the desired direction for optimization of responses does not change after modeling and optimization.
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4. Conclusion

This study proposes a new multivariate robust approach on multi-response optimization in which multivariate
robust regression method is used to predict the correlated responses. Current study tries to model the multi-
response problem in a simultaneous system of equations and uses the estimated equations to construct an
optimization program.

We showed that outliers affect the parameter estimates of the regression coefficients and that the usual
assumptions involved in a regression model are violated when the OLS method is used for estimation. However,
when the proposed methodology is used, the coefficients are estimated robustly, i.e., they are not affected
by the outliers and that the usual assumptions are not violated. Based on the M-estimator, the proposed
approach iteratively weighs the residuals by considering the correlations between the responses measured using
Mahalanobis distances. In order to optimize robust response surfaces GC as a simple multi-objective approach
had been applied.

This work can be extended to be applied for tolerance design. Furthermore, the use of other robust approaches
such as MM-estimates in order to estimate regression coefficients can be considered in future studies. Also for
further studies, the mixed set of categorical and numerical responses is suggested. In this work, only the variances
of observed values were considered. Therefore, the variances of predicted responses can be another future research
on this subject.
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