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FUZZY INTEGER-VALUED DATA ENVELOPMENT ANALYSISI

Sohrab Kordrostami1,*, Alireza Amirteimoori2

and Monireh Jahani Sayyad Noveiri1

Abstract. In conventional data envelopment analysis (DEA) models, the efficiency of decision making
units (DMUs) is evaluated while data are precise and continuous. Nevertheless, there are occasions in
the real world that the performance of DMUs must be calculated in the presence of vague and integer-
valued measures. Therefore, the current paper proposes fuzzy integer-valued data envelopment analysis
(FIDEA) models to determine the efficiency of DMUs when fuzzy and integer-valued inputs and/or
outputs might exist. To illustrate, fuzzy number ranking and graded mean integration representation
methods are used to solve some integer-valued data envelopment analysis models in the presence of
fuzzy inputs and outputs. Two examples are utilized to illustrate and clarify the proposed approaches.
In the provided examples, two cases are discussed. In the first case, all data are as fuzzy and integer-
valued measures while in the second case a subset of data is fuzzy and integer-valued. The results of
the proposed models indicate that the efficiency scores are calculated correctly and the projections of
fuzzy and integer factors are determined as integer values, while this issue has not been discussed in
fuzzy DEA, and projections may be estimated as real-valued data.
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1. Introduction

Data envelopment analysis (DEA), initially proposed by Charnes et al. [4], is a methodology for measuring
the relative efficiency of decision making units (DMUs) that consume multiple inputs and produce multiple
outputs. In traditional DEA models, inputs and outputs are usually considered as precise and continuous
factors. Nevertheless, in real world applications, situations exist in which the performance of DMUs must be
evaluated in the presence of imprecise and integer-valued data. For instance, the number of employees and the
number of the correct operations in banks can be considered as fuzzy and integer numbers. Uncertainty in the
number of bank employees can occur, considering ongoing reforms in banks. Actually, these situations happen in
imprecise-knowledge-based systems. As another example, in evaluating the efficiency of suppliers in sustainable
supply chain management, factors such as the number of shipments to arrive on time and the number of bills
received from the supplier without errors can be taken as fuzzy and integer numbers. Also, factors like the
number of doctors, the number of nurses, and the number of beds can be considered as fuzzy and integer-valued
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measures in evaluating the performance of health care systems. Indeed, as Dotoli et al. [5] argued several reforms
of local health care systems lead to a significant uncertainty about data. To illustrate, Dotoli et al. [5] proposed
a cross-efficiency fuzzy DEA method for evaluating the performance of DMUs without considering the number
of doctors, the number of nurses, and the number of beds as integer-valued data. Thus and as mementioned
before, there are many situations in the real world in which the performance of organizations and sectors must
be evaluated in the presence of uncertain and integer-valued data.

In the DEA literature, there are studies that deal with integer-valued inputs and outputs. Ehrgott and
Tind [6] proposed a column generation technique for solving the free replicability (FR) model. To explain, the
FR model that has been suggested by Tulknes [35] is a mixed integer programming problem (a DEA model) with
integer variables and one continuous variable. Lozano and Villa [27] introduced new DEA concepts and models
for investigating integer-valued inputs and outputs. Afterwards, Kuosmanen and Kazemi Matin [22] suggested
a new axiomatic foundation for integer-valued DEA models and indicated consistency between the production
possibility set (PPS) of Lozano and Villa [27] and the new set of axioms. Moreover, they provided a mixed
integer linear programming problem to determine the efficiency under constant returns to scale assumption.
Then, Kazemi Matin and Kuosmanen [19] extended the axiomatic foundation for the integer-valued DEA model
under different assumptions on returns to scale; i.e., variable returns to scale, non-decreasing returns to scale,
and non-increasing returns to scale. Kazemi Matin and Emrouznejad [18] also introduced an integer-valued data
envelopment analysis model when outputs are bounded. Khezrimotlagh et al. [20] claimed that Kuosmanen and
Kazemi Matin’s models [19, 22] may not be stronger than Lozano and Villa’s model [27]. Nevertheless, Jie
et al. [15] revised and improved Kuosmanen and Kazemi Matin’s model [22] and stated that the model can
perform the calculations correctly. In this study, Jie et al.’s models [15] are extended for incorporating fuzzy
factors.

In the DEA context, models with imprecise and fuzzy measures can be found. Hatami-Marbini et al. [11]
provided a review and taxonomy of such models. They categorized the fuzzy DEA papers published into four
groups, namely as the tolerance approach, the α-level based approach, the fuzzy ranking approach, and the
possibility approach. Afterwards, Emrouznejad et al. [7] extended the mentioned categories and added two
new groups including the fuzzy arithmetic and the fuzzy random/type-2 fuzzy set. The tolerance approach
is one of the initial fuzzy DEA models [16, 32, 33]. Lack of consideration of fuzzy coefficients is the main
disadvantage of this method. Also, several studies have used the α-level based approach for investigating
fuzzy factors in DEA models [1, 2, 17, 28, 29]. Furthermore, the fuzzy ranking approach, originally pro-
posed by Guo and Tanaka [9], is another approach for handling fuzzy measures that is a popular fuzzy
DEA technique among researchers [12, 21, 25, 34, 37]. Guo and Tanaka’s approach [9] computes two lin-
ear programming problems. Alternatively, the possibility approach is also found in some previous studies
[10, 26]. In addition to the aforementioned methods, substitute techniques can be found, see [7, 30, 31, 39, 42].
Nevertheless, the majority of models built based on these methodologies require substantial computational
efforts. For example, as mentioned in [8], α-level-based and fuzzy ranking approaches require users to solve
a sequence of linear programming models due to different optimal solutions for each α-level or the pos-
sibility approach introduced by Lertworasirikul et al. [26] that shows all fuzzy constraints with different
possibility levels. Therefore, we apply two approaches in the current study, a fuzzy number ranking method
and the graded mean integration representation method, due to their reasonable computational efforts and
simplicity.

Although some research has been carried out on fuzzy DEA models, no study has been found concerning
fuzzy integer-valued inputs and outputs in DEA models. Hence, in the current research here, the fuzzy number
ranking method and the graded mean integration representation method are utilized to evaluate the efficiency
of DMUs in the presence of fuzzy and integer-valued factors.

Fuzzy integer linear programming problems have been studied by some authors. Herrera and Verdegay [13]
considered integer programming problems in which some lack of precision exist; they focused on Boolean fuzzy
linear programming problems. Then, in another study [14] they pointed to some models for investigating fuzzy
integer linear programming. However, as far we know, there is no research taking into account fuzzy and integer
inputs and/or outputs in the DEA context.
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In these situations, projections of DMUs (virtual DMUs) must be obtained as integer values. For this reason,
the current paper attempts to provide models and methods for estimating the relative efficiency of DMUs where
fuzzy data with integer values exist. Triangular fuzzy numbers are used to estimate uncertain inputs and outputs.
Indeed, fuzzy data are taken in some integer-valued DEA models and different approaches; a fuzzy number
ranking method and the graded mean integration representation method are used for solving fuzzy integer-
valued DEA models. Due to the kind of methods used to investigate fuzzy data, our proposed approaches
have reasonable computational efforts, and it is only needed to solve a mixed integer linear programming
problem for evaluating the efficiency of each DMU. Furthermore, previous studies of fuzzy DEA have not
handled integer-valued measures and their projections whereas integer-valued projected targets are obtained
for fuzzy integer-valued factors in this study. To demonstrate the potential of the approach and the suitability
for application, two examples are investigated. Two cases are deemed: first, all data are considered as fuzzy
integer-valued factors; second, the subset of fuzzy integer-valued measures is taken.

The paper is unfolded as follows. Section 2 reviews the basic ideas of integer-valued DEA and fuzzy integer-
valued numbers. In Section 3, some fuzzy integer-valued DEA models are introduced, and approaches are stated
for solving them. Section 4 provides two examples to clarify and validate approaches. Conclusions are presented
in Section 5.

2. Preliminaries

Firstly, the definition of integer-valued DEA is clarified in this section. Secondly, basic concepts and fuzzy
integer-valued numbers are explained and described.

2.1. Integer-valued DEA

Assume there are n DMUs, DMUj (j = 1, . . . , n), with m inputs xij (i = 1, . . . ,m) and s outputs
yrj (r = 1, . . . , s). In conventional DEA models, all input and output measures are deemed as real-valued
factors. Therefore, the efficiency scores of DMUs are estimated while the projections of DMUs (virtual DMUs)
obtain real values. However, factors like the number of nurses, number of buses, and number of transactions
are integer-valued. Thus, with considering xij (i = 1, . . . ,m) and yrj (r = 1, . . . s) as integer-valued factors of
DMUj (j = 1, . . . , n), some DEA models have been extended and modified for obtaining integer targets for
integer-valued factors by [15, 18, 19, 22]. In the current study, the approach of Jie et al. [15] is generalized
for situations in which fuzzy integer-valued factors are present. In the next subsection, a fuzzy integer-valued
number is defined.

2.2. Fuzzy integer-valued numbers and basic concepts

Let R be the real number set and I be the integer number set.

Definition 2.1. A fuzzy set u : R → [0, 1] is called a fuzzy integer if its support is a closed integer interval
(denoted as 〈u(0), ū(0)〉) and satisfies the following [38]

(1) u is normal; i.e., there exists x′ ∈ 〈u(0), ū(0)〉such that u(x′) = 1,
(2) u(xi) ≤ u(xj)for any xi, xj ∈ 〈u(0), x′〉with xi ≤ xj ,
(3) u(xi) ≥ u(xj)for any xi, xj ∈ 〈x′, ū(0)〉with xi ≤ xj .

Notice that a closed integer interval is denoted by 〈s1, s2〉 = {x ∈ I|s1 ≤ x ≤ s2} for any s1, s2 ∈ I and
s1 ≤ s2. Also, the collection of all fuzzy integers is shown by FI.

Remark 2.2. Consider the closed integer interval [u]
r

= 〈u(r), ū(r)〉. If u, v ∈ FI, k ∈ R , then for any r ∈ [0, 1]
[38],

(1) [u+ v]
r

= [u]
r

+ [v]
r
,

(2) [ku]
r

= k [u]
r
,

(3) [uv]
r

= [u]
r

[v]
r
.
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Remark 2.3. If u, v ∈ FI, k ∈ R; [38] then

u+ v ∈ FI,
ku ∈ FI,
uv ∈ FI

that for any r ∈ [0, 1], it is defined

u+ v = 〈(u+ v)(r), (u+ v)(r)〉 = 〈(u)(r) + (v)(r), (ū)(r) + (v̄)(r)〉
ku = 〈bku(r)e, bkū(r)e〉fork ≥ 0,

ku = 〈bkū(r)e, bku(r)e〉fork < 0,

uv = 〈min{u(r)v(r), u(r)v̄(r), ū(r)v(r), ū(r)v̄(r)},max{u(r)v(r), u(r)v̄(r), ū(r)v(r), ū(r)v̄(r)}〉

in which bxe indicates the integer number that is obtained by arithmetic rounding to x.

Definition 2.4. Assume s0, s1, t1 and t0 ∈ I with s0 ≤ s1 ≤ t1 ≤ t0, and m, m̄ ∈ I [38]. If the fuzzy set
u : R→ [0, 1] is defined as

u(x) =


1 if x ∈ 〈s1, t1〉
x−s0
s1−s0 if x ∈ 〈m, s1〉
t0−x
t0−t1 if x ∈ 〈t1, m̄〉
0 if x ∈ 〈m, m̄〉

where s0 ≤ m ≤ s1 and t1 ≤ m̄ ≤ t0; then u is a trapezoidal fuzzy integer. If s1 = t1 , then we have a triangular
fuzzy integer. Readers can refer to [38] for more information.

3. Fuzzy integer-valued DEA models

In this section, models are proposed for evaluating the efficiency of DMUs where fuzzy integer-valued factors
are present. Suppose n DMUs, DMUj (j = 1, . . . , n), exist that use m inputs xij (i = 1, . . . ,m)and produce s
outputs yrj (r = 1, . . . , s). Charnes et al. [4] proposed the following model, referred to as the CCR model, for
evaluating the efficiency of DMUs with continuous and precise data.

Min θ

s.t. yro ≤
n∑

j=1

yrjλj , r = 1, . . . , s,

θxio ≥
n∑

j=1

xijλj , i = 1, . . . ,m, λj ≥ 0, j = 1, . . . , n. (3.1)

in which λj(j = 1, . . . , n)are intensity variables. xio and yro are inputs and outputs of unit under evaluation,
DMUo. θ is a measure of efficiency. In the presence of imprecise inputs and outputs as triangular fuzzy numbers,
i.e. x̃ij = (xij1, xij2, xij3), ỹrj = (yrj1, yrj2, yrj3) in the model (3.1) that xij1 ≥ 0 and yrj1 ≥ 0, a fuzzy method
should be used to evaluate the efficiency of entities. Note that in this case inputs and outputs of DMUo are
indicated by x̃io and ỹro, respectively.

For handling fuzzy measures and for computing the DEA models with fuzzy inputs and outputs, we use the
graded mean integration representation method and the fuzzy number ranking method that are described as
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follows:

Definition 3.1. Consider a triangular fuzzy number Ã = (a, b, c), the graded mean integration representation
Ã can be defined as (a+ 4b+ c)/6.

Definition 3.2. Given a triangular fuzzy number Ã = (a, b, c), according to a ranking function that is the first
index of Yager [40, 41], the fuzzy number can be estimated by the following crisp number:

b+ (d3 − d1)/3

in which d3 = c− b, d1 = b− a.

Indeed, the aforementioned methods are used due to rational computational efforts and simplicity. Thus,
according to the Definition 3.1, the CCR model with fuzzy measures can be substituted with model (3.2) as
follows:

Min θ

s.t.

(
4yro2 + yro1 + yro3

6

)
≤

n∑
j=1

(
4yrj2 + yrj1 + yrj3

6

)
λj , r = 1, . . . , s,

θ

(
4xio2 + xio1 + xio3

6

)
≥

n∑
j=1

(
4xij2 + xij1 + xij3

6

)
λj , i = 1, . . . ,m, λj ≥ 0, j = 1, . . . , n. (3.2)

Also, due to Definition 3.2, x̃ij and ỹrj in the fuzzy CCR model can be changed to xij2 + (dxij3 − dxij1)/3 and
yrj2 + (dyrj3

− dyrj1
)/3 that dxij3

= xij3 − xij2, dxij1
= xij2 − xij1, dyrj3

= yrj3 − yrj2 and dyrj1
= yrj2 − yrj1.

Therefore, the fuzzy CCR model can be rewritten as follows:

Min θ

s.t.

(
yro2 +

dyro3
− dyro1

3

)
≤

n∑
j=1

(
yrj2 +

dyrj3
− dyrj1

3

)
λj , r = 1, . . . , s,

θ

(
xio2 +

dxio3
− dxio1

3

)
≥

n∑
j=1

(
xij2 +

dxij3
− dxij1

3

)
λj , i = 1, . . . ,m, λj ≥ 0, j = 1, . . . , n. (3.3)

Notice that in the presence of integer variables in the fuzzy linear programming, Definitions 3.1 and 3.2 will be
likewise correct. Readers can refer to [14, 23, 36] for more information.

Nevertheless, models (3.2) and (3.3) are not suitable for calculating the efficiency of DMUs where fuzzy and
integer measures are present. Actually, the projection of a DMU with integer inputs/outputs may be obtained
as non-integer values. The purpose of providing models (3.2) and (3.3) is to compare their results with models
with fuzzy and integer factors that will be proposed in this study. Therefore, we focus on approaches and models
to assess the efficiency of DMUs with integer fuzzy data.

For this purpose, we deem all inputs and outputs are as fuzzy (triangular fuzzy numbers) and integer-valued
measures in this stage. To illustrate, we consider n DMUs, DMUj (j = 1, . . . , n), with m triangular fuzzy
inputs x̃ij = (xij1, xij2, xij3)(i = 1, . . . ,m) and s triangular fuzzy outputs ỹrj = (yrj1, yrj2, yrj3) (r = 1, . . . , s).
Furthermore, x̃io and ỹro are used to denote inputs and outputs of the unit under evaluation, DMUo . Thus,
for analyzing the performance of firms in the presence of fuzzy integer-valued data, the following problem is
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suggested:

Min θ − ε

(
s∑

r=1

sI+r +

m∑
i=1

sI−i −
m∑
i=1

s−i −
s∑

r=1

s+r

)
,

s.t. yr + s+r =

n∑
j=1

ỹrjλj , r = 1, . . . , s,

ỹro + sI+r = yr, r = 1, . . . , s,

xi − s−i =

n∑
j=1

x̃ijλj , i = 1, . . . ,m,

θx̃io − sI−i = xi, i = 1, . . . ,m,

xi, yr ∈ Z+, λj ≥ 0,

s+r ≥ 0, s−i ≥ 0, sI−i ≥ 0, sI+r ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n. (3.4)

in which, sI+r , sI−i , s−i and s+r are slack variables. ε is a non-Archimedean infinitesimal. xi and yr are positive
integer-valued variables that show integer-valued reference points for inputs and outputs, respectively. θ is an
efficiency measure. Also, λj indicates intensity weights. Model (3.4) is an extension of Jie et al.’s method [15],
evaluating the efficiency of DMUs when integer-valued imprecise data exist.

For transforming the above fuzzy mixed integer linear programming to a mixed integer linear programming
problem, we utilize Definitions 3.1 and 3.2 due to reasonable computational efforts and simplicity. However, the
approach can be adapted to use different fuzzy numbers ranking methods.

First, the graded mean integration representation method is applied for converting the above model to a
mixed integer linear programming problem. Therefore, model (3.4) can be substituted with the following mixed
integer linear programming.

Min θ − ε

(
s∑

r=1

sI+r +

m∑
i=1

sI−i −
m∑
i=1

s−i −
s∑

r=1

s+r

)
,

s.t. yr + s+r =

n∑
j=1

(
4yrj2 + yrj1 + yrj3

6

)
λj , r = 1, . . . , s,(

4yro2 + yro1 + yro3
6

)
+ sI+r = yr, r = 1, . . . , s,

xi − s−i =

n∑
j=1

(
4xij2 + xij1 + xij3

6

)
λj , i = 1, . . . ,m,

θ

(
4xio2 + xio1 + xio3

6

)
− sI−i = xi, i = 1, . . . ,m,

xi, yr ∈ Z+, λj ≥ 0,

s+r ≥ 0, s−i ≥ 0, sI−i ≥ 0, sI+r ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n. (3.5)

Indeed, fuzzy sets x̃ij and ỹrj are substituted with (4xij2 + xij1 + xij3)/6 and (4yrj2 + yrj1 + yrj3)/6, respec-
tively. To explain, the weighted average of the most possible value, the pessimistic and optimistic values are
applied to represent the fuzzy consumed inputs and the fuzzy produced outputs according to [24]; that is,
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w1xij2 + w2xij1 + w2xij3 and w1yrj2 + w2yrj1 + w3yrj3 where w1 + w2 + w3 = 1. We use w1 = 1/6, w2 = 4/6,
w3 = 1/6 in which the weights can be changed subjectively. As mentioned in [24], the reason of using the above
weighted average values is xij1 and yrj1 are too pessimistic and xij3 and yrj3 are too optimistic. Of course,
these boundary values provided us boundary solutions. Besides, the most possible values are often the most
important ones. Thus, more weights should be assigned.

As another approach, according to the first index of Yager [40, 41] and Definition 3.2, model (3.4) can be
transformed into the following mixed integer linear programming problem:

Min θ − ε

(
s∑

r=1

sI+r +

m∑
i=1

sI−i −
m∑
i=1

s−i −
s∑

r=1

s+r

)
,

s.t. yr + s+r =

n∑
j=1

(
yrj2 +

dyrj3 − dyrj1

3

)
λj , r = 1, . . . , s,(

yro2 +
dyro3

− dyro1

3

)
+ sI+r = yr, r = 1, . . . , s,

xi − s−i =

n∑
j=1

(
xij2 +

dxij3
− dxij1

3

)
λj , i = 1, . . . ,m,

θ

(
xio2 +

dxio3 − dxio1

3

)
− sI−i = xi, i = 1, . . . ,m,

xi, yr ∈ Z+, λj ≥ 0,

s+r ≥ 0, s−i ≥ 0, sI−i ≥ 0, sI+r ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n. (3.6)

that dxij3
= xij3 − xij2, dxij1

= xij2 − xij1, dyrj3
= yrj3 − yrj2 and dyrj1

= yrj2 − yrj1. Actually, x̃ij and ỹrj are
replaced with xij2 + (dxij3 − dxij1)/3 and yrj2 + (dyrj3 − dyrj1)/3, respectively.

Note that by considering (a, b, c) as a triangular integer fuzzy number, provided that z1 = (a + 4b + c)/6
and z2 = b+ ((c− b)− (b− a))/3 are obtained as non-integer values, we will round them to the closest integer
values. Actually, the influence of rounding to z1 and z2 is almost negligible and we consider bz1e and bz2e.

Proposition 3.3. The solution set is the same for both models (3.4) and (3.5).

Proof. Assume S1 and S2 be the set of all feasible solutions of models (3.4) and (3.5), respectively. P ∈ S1 if
and only if

yr ≤
n∑

j=1

ỹrjλj , r = 1, . . . , s,

ỹro ≤ yr, r = 1, . . . , s,

xi ≥
n∑

j=1

x̃ijλj , i = 1, . . . ,m,

θx̃io ≥ xi, i = 1, . . . ,m,

xi, yr ∈ Z+, λj ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n
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if and only if

(yr, yr, yr) ≤
n∑

j=1

(yrj1, yrj2, yrj3)λj , r = 1, . . . , s,

(yro1, yro2, yro3) ≤ (yr, yr, yr), r = 1, . . . , s,

(xi, xi, xi) ≥
n∑

j=1

(xij1, xij2, xij3)λj , i = 1, . . . ,m,

θ(xio1, xio2, xio3) ≥ (xi, xi, xi), i = 1, . . . ,m,

xi, yr ∈ Z+, λj ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n

in which yr = (yr, yr, yr) and xi = (xi, xi, xi), if and only if

(4yr + yr + yr)/6 ≤
n∑

j=1

((4yrj2 + yrj1 + yrj3)/6)λj , r = 1, . . . , s,

((4yro2 + yro1 + yro3)/6) ≤ (4yr + yr + yr)/6, r = 1, . . . , s,

(4xi + xi + xi)/6 ≥
n∑

j=1

((4xij2 + xij1 + xij3)/6)λj , i = 1, . . . ,m,

θ((4xio2 + xio1 + xio3)/6) ≥ (4xi + xi + xi)/6, i = 1, . . . ,m,

xi, yr ∈ Z+, λj ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n

if and only if P ∈ S2. Thus, S1 = S2.

Correspondingly, it can be shown that the solution set is equivalent for models (3.4) and (3.6).

Definition 3.4. DMUo in models (3.5) and (3.6) is said to be the efficient if no other integer-valued point
dominates it.

Proposition 3.5. DMUo in models proposed, models (3.5) and (3.6), is the efficient if and only if θ∗ = 1,
s∗I+r = 0, s∗+r = 0,∀r, s∗I−i = 0 and s∗−i = 0, ∀i.

Proof. At first we assume DMUo is efficient but θ∗o < 1 or ∃r, s∗I+r > 0, or ∃r, s∗+r > 0, or ∃i, s∗I−i > 0 or
∃i, s∗−i > 0. Thus, the integer-valued target obtained will dominate DMUo. So, DMUo will not be efficient
according to Definition 3.4 that is a contradiction.

Next, we deem θ∗o = 1, sI+r = 0, s+r = 0,∀r, sI−i = 0 and s−i = 0, ∀i, but DMUo is inefficient. Therefore,
there is an integer-valued target point like (x′, y′) 6= (xo, yo) that dominates DMUo, i.e. x′ ≤ xo, y

′ ≥ yo.
Also, (x′, y′) belongs to the possibility production set. Thus, a vector like λj , (j = 1, . . . , n)exists such that
x′i − s

−
i =

∑
j λjx

′′
ij(i = 1, . . . ,m) and y′r + s+r =

∑
j λjy

′′
rj(r = 1, . . . , s)and

y′r = y′′ro + sI+r , r = 1, . . . , s,

x′i = θ′x′′io − sI−i , i = 1, . . . ,m,

Notice that in model (3.5) y′′rj = (4yrj2 + yrj1 + yrj3)/6 and in model (3.6) y′′rj = (yrj2 + (dyrj3
− dyrj1

)/3).
In similar ways x′′ij can be defined in models (3.5) and (3.6). As mentioned (x′, y′) are integer-valued and
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(x′, y′) 6= (xo, yo). Therefore, θ′ < 1 and/or ∃r, s′I+r > 0, ∃r, s′+r > 0, ∃i, s
′I−
i > 0, ∃i, s

′−
i > 0. It is clear that

θ′ − ε

(
s∑

r=1

s
′I+
r +

m∑
i=1

s
′I−
i −

m∑
i=1

s
′−
i −

s∑
r=1

s
′+
r

)
< θ∗o − ε

(
s∑

r=1

s∗I+r +

m∑
i=1

s∗I−i −
m∑
i=1

s∗−i −
s∑

r=1

s∗+r

)
,

It means that a feasible solution exists that has a better objective function in comparison with the optimal
solution that is a contradiction. As a result, reduction ad absurdum is invalid and this completes the proof.

Proposition 3.6. Models (3.5) and (3.6) are always feasible and their objective function values are bounded.

Proof. Consider an arbitrary solution for model (3.5) as follows: θo = 1,sI+r = 0, s+r = 0,∀r, sI−i = 0 and
s−i = 0, ∀i, λo = 1 , λj = 0, j 6= o, xi =b(4xio2 + xio1 + xio3)/6e and yr =b(4yro2 + yro1 + yro3)/6e. It is obvious
that model (3.5) is always feasible. Also, the objective function of model (3.5) is the minimization form. Thus,
the optimal value of model (3.5) that is θ∗o is not greater than the feasible solution θo = 1. In other words,
θ∗o ≤ θo = 1. Moreover, 0 < θ∗o . This is because the input and output vectors have at least a nonzero component.
Assume θo = 0, from the constraints of model (3.5) λj = 0 and yr ≤ 0 is obtained. But we have yr ∈ Z+. Thus,
yr = 0, while it has been assumed input and output vectors are nonzero, at least in one component. As a result,
reduction ad absurdum is invalid and 0 < θ∗o . So 0 < θ∗o ≤ 1 that means model (3.5) is bounded. Similarly, it
can be proved that model (3.6) is feasible and bounded.

Models (3.5) and (3.6) are used only when fuzzy integer-valued data exist. Nevertheless, there are situations
in the real world that both integer-valued factors and real-valued factors are present in a fuzzy environment.
For addressing these cases, the following model is proposed:

Minθ − ε

(∑
r∈OI

sI+r +
∑
i∈II

sI−i +
∑

i∈INI

s−i +
∑

r∈ONI

s+r −
∑
i∈II

s−i −
∑
r∈OI

s+r

)

s.t. ỹro + s+r =

n∑
j=1

ỹrjλj , r ∈ ONI ,

yr + s+r =

n∑
j=1

ỹrjλj , r ∈ OI ,

ỹro + sI+r = yr, r ∈ OI ,

θx̃io − s−i =
n∑

j=1

x̃ijλj , i ∈ INI ,

xi − s−i =

n∑
j=1

x̃ijλj , i ∈ II ,

θx̃io − sI−i = xi, i ∈ II ,
xi, yr ∈ Z+, i ∈ II , r ∈ OI , λj ≥ 0,

s+r ≥ 0, s−i ≥ 0, sI−i ≥ 0, sI+r ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n. (3.7)

Terms applied in model (3.7) are similar to model (3.4). Inputs and outputs are just divided into integer-valued
and real-valued measures. In other words, I = II ∪ INI and O = OI ∪ONI .
The above model is a fuzzy mixed integer linear programming problem. Similar to prior cases (models (3.5)
and (3.6)), two methods, the graded mean integration representation method and the fuzzy number ranking
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method, are used for solving the fuzzy mixed integer linear programming problem. Thus, by using the graded
mean integration representation method model (3.7) can be rewritten as follows:

Min θ − ε

(∑
r∈OI

sI+r +
∑
i∈II

sI−i +
∑

i∈INI

s−i +
∑

r∈ONI

s+r −
∑
i∈II

s−i −
∑
r∈OI

s+r

)

s.t.

(
4yro2 + yro1 + yro3

6

)
+ s+r =

n∑
j=1

(
4yrj2 + yrj1 + yrj3

6

)
λj , r ∈ ONI ,

yr + s+r =

n∑
j=1

(
4yrj2 + yrj1 + yrj3

6

)
λj , r ∈ OI ,(

4yro2 + yro1 + yro3
6

)
+ sI+r = yr, r ∈ OI ,

θ

(
4xio2 + xio1 + xio3

6

)
− s−i =

n∑
j=1

(
4xij2 + xij1 + xij3

6

)
λj , i ∈ INI ,

xi − s−i =

n∑
j=1

(
4xij2 + xij1 + xij3

6

)
λj , i ∈ II ,

θ

(
4xio2 + xio1 + xio3

6

)
− sI−i = xi, i ∈ II ,

xi, yr ∈ Z+, i ∈ II , r ∈ OI , λj ≥ 0,

s+r ≥ 0, s−i ≥ 0, sI−i ≥ 0, sI+r ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n. (3.8)

Also, by utilizing the ranking function, the first index of Yager [40, 41], model (3.7) is substituted with the
following model:

Min θ − ε

(∑
r∈OI

sI+r +
∑
i∈II

sI−i +
∑

i∈INI

s−i +
∑

r∈ONI

s+r −
∑
i∈II

s−i −
∑
r∈OI

s+r

)

s.t.

(
yro2 +

dyro3
− dyro1

3

)
+ s+r =

n∑
j=1

(
yrj2 +

dyrj3
− dyrj1

3

)
λj , r ∈ ONI ,

yr + s+r =

n∑
j=1

(
yrj2 +

dyrj3
− dyrj1

3

)
λj , r ∈ OI ,(

yro2 +
dyro3

− dyro1

3

)
+ sI+r = yr, r ∈ OI ,

θ

(
xio2 +

dxio3
− dxio1

3

)
− s−i =

n∑
j=1

(
xij2 +

dxij3
− dxij1

3

)
λj , i ∈ INI ,

xi − s−i =

n∑
j=1

(
xij2 +

dxij3
− dxij1

3

)
λj , i ∈ II ,

θ

(
xio2 +

dxio3
− dxio1

3

)
− sI−i = xi, i ∈ II ,

xi, yr ∈ Z+, i ∈ II , r ∈ OI , λj ≥ 0,
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s+r ≥ 0, s−i ≥ 0, sI−i ≥ 0, sI+r ≥ 0,

i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n. (3.9)

Clearly, in models (3.7)–(3.9), subsets of integer-valued inputs and integer-valued outputs are indicated by II

and OI , respectively. Furthermore, INI and ONI denote subsets of real-valued inputs and real-valued outputs.
Note that II ∩ INI = ∅ and OI ∩ONI = ∅ in all aforementioned models.
Similar to the proof of proposition 3.3, it can be conveniently indicated that the solution set of model (3.7) is
equal to that of models (3.8) and (3.9).

Definition 3.7. DMUo in models (3.8) and (3.9) is said to be the efficient if no other integer-valued point for
integer factors and no other real-valued point for real factors dominates it.

Proposition 3.8. DMUo in models proposed, models (3.8) and (3.9), is the efficient if and only if
θ∗ = 1, s∗I+r = 0,∀r ∈ OI , s∗+r = 0,∀r ∈ OI ∪ONI , s∗I−i = 0,∀i ∈ II and s∗−i = 0, ∀i ∈ II ∪ INI .

Proof. Similar to the proof of proposition 3.5.

The following proposition shows models (3.8) and (3.9) are always feasible and bounded.

Proposition 3.9. Models (3.8) and (3.9) are always feasible and bounded.

Proof. Consider the following arbitrary solution for model (3.8): θo = 1,sI+r = 0,s+r = 0,∀r, sI−i = 0 and
s−i = 0, ∀i,λo = 1, λj = 0, j 6= o, xi =b(4xio2 + xio1 + xio3)/6e for ∀i ∈ II and yr =b(4yro2 + yro1 + yro3)/6e
for ∀r ∈ OI . It is clear to see that model (3.8) is always feasible.

Further, the form of objective function in model (3.8) is the minimization. Consequently, the optimal value of
model (3.8), that is θ∗o , is not greater that the feasible solution θo = 1. It means that θ∗o ≤ θo = 1. Also, 0 < θ∗o
due to the fact that the input and output vectors have at least a nonzero component. Thus, model (3.8) is
bounded, i.e. 0 < θ∗o ≤ 1. This complete the proof. In a similar way, it can be shown that model (3.9) is feasible
and bounded.

In this research, we have applied two methods for defuzzification. As Brunelli and Mezei [3] mentioned,
ranking methods are subjective, and as such a low agreement means that methods bring distinct evidence on
the evaluation of a fuzzy number and in the presence of uncertainty a person may want to listen to a second
option.

Furthermore, inputs and outputs in this study have been shown by triangular fuzzy numbers. Obviously, the
proposed models can be extended for trapezoidal fuzzy integer-valued numbers.

4. Examples

Example 4.1. Suppose there are 9 DMUs with two fuzzy integer-valued inputs and one fuzzy integer-valued
output that are denoted by triangular fuzzy numbers. Data can be found in Table 1. Columns 2 and 3 show
inputs while column 4 indicates an output. The aim is to evaluate the efficiency of DMUs in the presence of
aforementioned measures. For the purpose of analysis, models (3.2) and (3.3) are calculated. Table 2 provides
the results obtained from models (3.2) and (3.3). The efficiency scores of models (3.2) and (3.3) are displayed
in columns 2 and 6 from Table 2. Also, targets determined are present in columns 3–5 and 7–9. As can be seen
two DMUs (DMU 3 and DMU 9) are efficient in both models. It is apparent from this table that the targets of
integer-valued inputs and outputs are estimated as non-integer targets. Notice that we have first applied two
methods for defuzzifying the fuzzy numbers and, then we have evaluated the efficiency of DMUs. Thus, the
projected targets are estimated as crisp and continuous values.

Herein, models (3.5) and (3.6) (i.e. the proposed models) are computed. Results are shown in Table 3. The
efficiency of model (3.5) is provided in column 2. Also, the results of model (3.6) can be seen in column 6.

Columns 3–5 show targets obtained by model (3.5) while targets obtained by model (3.6) are indicated
in columns 7–9. It can be found all targets of integer-valued measures are resulted as integer targets in both
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Table 1. Data of an example.

DMU Input 1(x1) Input 2(x2) Output 1(y1)

1 (11,15,19) (455,480,510) (77,95,103)
2 (12,12,15) (475,510,525) (71,75,93)
3 (5,10,13) (400,420,435) (85,90,100)
4 (15,18,21) (520,600,645) (67,80,97)
5 (5,7,8) (495,520,565) (45,50,56)
6 (6,10,15) (450,500,560) (63,70,81)
7 (9,12,17) (515,550,605) (69,75,87)
8 (10,14,18) (540,570,585) (52,55,69)
9 (7,8,9) (420,450,470) (85,90,113)

Table 2. Results of models (3.2) and (3.3).

DMU Eff. of Model (3.2) Eff. of Model (3.3)
model (3.2) x∗1 x∗2 y∗1 model (3.3) x∗1 x∗2 y∗1

1 0.90 9.933 430.703 93.333 0.87 9.333 418.333 91.667
2 0.70 8.230 356.869 77.333 0.72 8.112 363.570 79.667
3 1.00 9.667 419.167 90.833 1.00 9.333 418.333 91.667
4 0.63 8.585 372.251 80.667 0.63 8.281 371.176 81.333
5 0.63 4.315 241.843 50.167 0.63 4.194 234.190 50.333
6 0.67 6.764 333.750 70.667 0.65 6.735 328.083 71.333
7 0.64 7.867 352.950 76.000 0.63 7.840 351.400 77.000
8 0.46 6.048 262.268 56.833 0.47 5.973 267.733 58.667
9 1.00 8.000 448.333 93.000 1.00 8.000 446.667 96.000

Table 3. Results of the proposed models.

DMU Eff. of Model (3.5) Eff. of Model (3.6)
model (3.5) x∗1 x∗2 y∗1 model(3.6) x∗1 x∗2 y∗1

1 0.89 11.000 429.000 93.000 0.87 9.000 418.000 92.000
2 0.70 9.000 355.000 77.000 0.72 8.000 364.000 80.000
3 1.00 10.000 419.000 91.000 1.00 9.000 418.000 92.000
4 0.63 9.000 373.000 81.000 0.63 8.000 369.000 81.000
5 0.71 5.000 235.000 50.000 0.71 5.000 228.000 50.000
6 0.70 7.000 335.000 71.000 0.66 6.000 330.000 71.000
7 0.65 7.000 362.000 76.000 0.63 8.000 350.000 77.000
8 0.47 6.000 265.000 57.000 0.48 6.000 269.000 59.000
9 1.00 8.000 448.000 93.000 1.00 8.000 447.000 96.000

models. Also, DMUs 3 and 9 are efficient in each of the models. Moreover, DMU 8 is the most inefficient DMU in
models (3.5) and (3.6). The results established by models (3.5) and (3.6) are approximately similar. Nevertheless,
as can be seen in Table 3, each method has effects on the results. Actually, each method represents a different
viewpoint on fuzzy numbers; thus, the results could be different. There are several possible explanations for
these results.

In this stage we compare the obtained results from models (3.2) and (3.5). While two DMUs, DMU 3 and
DMU 9, are efficient in both models, the scores of inefficient DMUs are not exactly the same. Actually, the
efficiency scores of two models are different in five DMUs (56% of DMUs). Furthermore, if in estimating targets
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Table 4. Data of inputs and fuzzy outputs.

No. supplier x1 x2 ỹ1 ỹ2
(DMU)

1 280 182 (100,121,160) (160,182,195)
2 370 280 (180,210,232) (145,156,160)
3 230 124 (102,120,136) (150,175,190)
4 430 210 (150,170,190) (50,60,70)
5 325 122 (102,130,160) (280,286,293)
6 315 240 (190,213,234) (72,85,94)
7 253 170 (130,151,167) (260,275,286)
8 305 185 (201,225,246) (76,87,93)
9 245 129 (130,146,160) (230,242,251)
10 270 147 (125,147,170) (176,181,189)
11 460 146 (180,205,231) (110,117,124)
12 343 141 (132,152,160) (132,140,149)
13 321 126 (104,112,135) (282,287,298)
14 264 143 (132,145,160) (171,182,189)
15 338 206 (106,130,147) (280,287,296)

Table 5. Efficiency scores and targets of models (3.2) and (3.3).

No. Eff. of Model (3.2) Eff. of Model (3.3)
supplier model (3.2) x∗2 y∗1 y∗2 model (3.3) x∗2 y∗1 y∗2

1 0.71 129.180 124.000 180.500 0.73 131.954 127.000 179.000
2 0.81 187.907 208.667 154.833 0.81 187.288 207.300 153.667
3 0.85 105.055 119.667 173.333 0.85 104.830 119.300 171.667
4 0.64 134.447 170.000 74.606 0.64 134.626 170.000 74.260
5 1.00 122.000 130.333 286.167 1.00 122.000 130.667 286.333
6 0.92 175.827 212.667 84.333 0.92 175.963 212.333 83.667
7 1.00 170.000 150.167 274.333 1.00 170.000 149.333 273.667
8 1.00 185.000 224.500 86.167 1.00 185.000 224.000 85.333
9 1.00 129.000 145.667 241.500 1.00 129.000 145.333 241.000
10 0.86 127.062 147.167 181.500 0.87 127.517 147.333 182.000
11 1.00 146.000 205.167 117.000 1.00 146.000 205.333 117.000
12 0.84 118.405 150.000 140.167 0.83 117.049 148.000 140.333
13 1.00 126.000 114.500 288.000 1.00 126.000 117.000 289.000
14 0.88 125.484 145.333 181.333 0.88 125.984 145.667 180.667
15 0.82 167.984 149.000 287.333 0.82 168.396 149.140 287.667

by model (3.2) we round the obtained targets of integer-valued factors to the nearest numbers, different results
are achieved in comparison with model (3.5). To illustrate, targets are unlike in 7 DMUs (78% of DMUs).

Next, we compare the results got from models (3.3) and (3.6). The obtained targets are rounded to the
nearest values for handling targets of integer-valued measures in model (3.3). In both models, there are two
efficient DMUs while the efficiency scores are dissimilar in three DMUs (33% of DMUs). Also, integer-valued
targets are different in 5 DMUs (56% of DMUs). Nevertheless, as Lozano and Villa [27] mentioned heuristically
rounding the continuous DEA projection may not be reasonable. Therefore, it seems the models introduced
(models (3.5) and (3.6)) are suitable and rational for situations in which all data are fuzzy and integer-valued.

In the next investigation, we study occasions in which integer-valued and real-valued fuzzy data exist.
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Table 6. Efficiency scores and targets of the proposed models.

No. Eff. of Model (3.8) Eff. of Model (3.9)
supplier model (3.8) x∗2 y∗1 y∗2 model (3.9) x∗2 y∗1 y∗2

1 0.71 129 124 181 0.73 132 127 179
2 0.81 189 209 155 0.81 188 207 154
3 0.85 105 120 173 0.85 105 119 173
4 0.64 135 170 79 0.64 135 170 78
5 1.00 122 130 286 1.00 122 131 286
6 0.92 177 213 84 0.92 176 212 84
7 1.00 170 150 274 1.00 170 149 274
8 1.00 185 224 86 1.00 185 224 85
9 1.00 129 146 242 1.00 129 145 241
10 0.86 127 147 184 0.87 128 147 190
11 1.00 146 205 117 1.00 146 205 117
12 0.84 119 150 150 0.84 117 148 140
13 1.00 126 115 288 1.00 126 117 289
14 0.88 125 145 181 0.89 127 146 188
15 0.82 168 163 287 0.82 168 148 288

Example 4.2. It is clear; selecting a supplier is an important issue in supply chain management. Here the
efficiency of 15 suppliers is evaluated by using methods suggested. In this illustrative example, the total cost
of shipments (x1) and the number of shipments per month (x2) are considered as inputs, and the number of
shipments to arrive on time (ỹ1) and the number of bills received from the supplier without errors (ỹ2) are taken
as outputs. Outputs are deemed as triangular fuzzy numbers. Input x1 is a real-valued measure while input x2
consists of an integer-valued measure. Outputs are given as fuzzy integer-valued factors.

Data can be found in Table 4. Columns 2 and 3 of Table 4 show inputs (x1 and x2). Outputs (ỹ1 and ỹ2)
can be found in columns 4 and 5. Table 5 presents the results obtained from models (3.2) and (3.3). Columns 2
and 6 reveal six DMUs are efficient in both models. Furthermore, the projection points of integer-valued factors
(estimated by models (3.2) and (3.3)) can be found in Table 5. The findings show the targets of integer measures
are not obtained as integer numbers.

In the next stage, for measuring the efficiency of suppliers, models (3.8) and (3.9) are calculated. The results
are given in Table 6. As can be seen, the second column of Table 6 shows the efficiency of model (3.8). Targets
of second input (x∗2) and outputs (y∗1 and y∗2) are indicated in columns 3–5 of Table 6. Moreover, the results of
evaluating the efficiency of model (3.9) can be found in the column 6 while the obtained targets are given in
columns 7–9.

Results show both models (3.8) and (3.9) have 6 efficient DMUs, DMU5, DMU7, DMU8, DMU9, DMU11 and
DMU13. Also, the fourth supplier has the least efficiency (i.e. 0.64) in comparison with other suppliers in both
models (3.8) and (3.9). Furthermore, the results are approximately similar in both models. Nevertheless, there
are some differences in some efficiency scores and targets. Indeed, different points of view on fuzzy numbers cause
different results are obtained. Therefore, managers must focus on methods and select the method according to
their preference.

Now, we round the calculated targets of integer measures in models (3.2) and (3.3). Analysis of the computed
results shows the following:

(1) The efficiency scores calculated by models (3.2) and (3.8) are the same in this study.
(2) Targets of integer-valued factors are unlike in 7 DMUs (47% of suppliers).
(3) The efficiency scores are not exactly the same in models (3.3) and (3.9). Actually, scores of two DMUs

are dissimilar.
(4) The integer-valued targets of models (3.3) and (3.9) are different in six DMUs (40% of suppliers)
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One of the more significant findings to emerge from this study is to obtain integer targets for integer-valued
measures. In summary, two examples have shown that the models suggested (i.e. models (3.5), (3.6), (3.8) and
(3.9)) obtain integer-valued targets for integer-valued measures and calculate the efficiency scores accurately.

5. conclusions

In real applications, there are systems that their performance must be evaluated while fuzzy and integer-
valued measures are present. However, inputs and outputs of DMUs are usually considered as accurate and
real-valued factors in conventional DEA models. For this reason, the current paper has introduced and extended
DEA models for evaluating the efficiency of entities and determining targets where all input and output data
are fuzzy and integer numbers.

Furthermore, models have been provided for assessing the efficiency of DMUs and for obtaining integer-valued
input and output targets when a subset of data is fuzzy integer-valued, while others are real-valued in a fuzzy
environment. Two methods, the fuzzy number ranking method and the graded mean integration representation
method have been used for defuzzification of fuzzy inputs and outputs. Two examples have been presented to
explain and to demonstrate approaches. It has been seen that different methods have effects on the results. To
illustrate, in conventional fuzzy DEA approaches, targets of fuzzy integer-valued measures may be determined as
non-integer factors. Therefore, the efficiency and targets may be obtained incorrectly. Nevertheless, the results
have shown that the proposed models in this study overcome these drawbacks.

Further work will need to be done to determine imprecise and integer-valued targets for fuzzy integer-valued
measures. Models proposed in this paper are under constant returns to scale assumption. It seems they can
be generalized under variable returns to scale. Furthermore, the applications of models introduced in various
fields such as artificial intelligence, computer science, and control theory are some interesting subjects for future
researches.
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