
RAIRO-Oper. Res. 52 (2018) 1277–1293 RAIRO Operations Research
https://doi.org/10.1051/ro/2018014 www.rairo-ro.org

VENDOR-BUYER INTEGRATED PRODUCTION-INVENTORY

SYSTEM FOR IMPERFECT QUALITY ITEM UNDER TRADE

CREDIT FINANCE AND VARIABLE SETUP COST

Dipana Jyoti Mohanty1, Ravi Shankar Kumar2

and Adrijit Goswami1,*

Abstract. This paper model a vendor-buyer integrated production-inventory system by considering
issues of imperfect quality of the item, trade credit finance, setup cost reduction and shortages including
partial backlogging and lost sale. The vendor produces a lot in one production setup and sends to the
buyer in multiple shipments to fulfill customers’ demand. Due to imperfect production and/or unsafe
transportation, the received lot of the buyer contains the imperfect quality of the item, which is detected
through the screening process, and is sold at a discounted price in a single batch at the end of the
process. To accelerate bulk purchasing, the vendor offers a trade credit period to the buyer to settle the
amount. In this regard, we develop a methodology to account the opportunity cost and opportunity
gain. Depending upon the screening period µ, trade credit period M , shortage beginning time t and
the buyer’s scheduling period T , we consider four cases: (1) M < µ < t < T , (2) µ < M < t < T , (3)
µ < t < M < T and (4) µ < t < T < M . The proposed integrated model is testified with numerical
experiment and sensitivity analysis by changing the value of key parameters.
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1. Introduction

In a supply chain (SC), adequate supply of material at the adequate time and inventory management are
the most important issues, because its help in satisfaction of customers’ expectation, increase the service level
and avoid shortage at minimum cost. SC partners are indented to increase their business sharing, consequently,
they adopt tactics which help in it. Trade credit policy is one of such a tactic. According to an estimate, more
than 80% of business-to-business (B2B) transactions in the United Kingdom (UK), and about 80% of United
States (US) firms offer their product on trade credit (Seifert et al. [23]). Such a worldwide practice encourages
researchers to model the trade credit or permissible delay in payment while developing the mathematical models.
This study is intended to develop a two-echelon production-inventory system under trade credit finance, and to
account, the opportunity cost and opportunity gain for item undergo through the screening process to detect
imperfect quality.
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Trade credit period in form of permissible delay in payment is a time span between purchasing and settling the
amount. Generally, it is offered to a lower-stair partner by an upper-stair partner in an SC hierarchy. The lower-
stair partner can earn interest on the sale revenue gained during the trade credit period and may pay interest
for delayed settlement after the end of the credit period. Goyal [8] first derived an economic order quantity
(EOQ) formula by considering a permissible delay in payment. Dave [4] and Teng [25] amended Goyal [8] by
distinguishing opportunity cost (interest paid) and opportunity gain (interest earn) which are calculated on
purchasing cost and selling price, respectively. After that, trade credit and its variants such as partial trade
credit and two-level trade credits have been modeled in different environment such as deterioration, price or
stock dependent demand, trade credit period dependent demand, etc. We now focus on recent researches on
trade credit, which tends to our proposed model. Teng et al. [26] and Sheen and Tsao [24] modeled trade credit
policy in inventory control problems wherein demand rate were considered as price dependent. Ouyang et al. [16]
developed an integrated production-inventory model by considering lot size dependent trade credit policy. Teng
et al. [27] addressed an SC model by considering the linear trend in demand, the wherein upstream party offered
permissible delay to downstream party. Sarkar et al. [21] modeled a vendor-buyer integrated inventory system
by considering stochastic lead-time and permissible delay in payment. Chen et al. [3] trade credit modeling
includes the order quantity dependent permissible delay in payment. Jaggi et al. [11] derived an EOQ model
by considering trade credit finance and shortage, and discussed the different condition on interest terms. Zhou
et al. [32] developed an EOQ model for imperfect quality items by considering inspection error, trade credit
finance, and shortage. Giri and Sharma [7] considered time-dependent linear demand into an inventory problem,
wherein two level of trade credit policy and shortage are also included.

In real life business situation, due to many undesirable reasons such as defective production, equipment failure,
natural disaster, and damage or breakage in transit, the lot size produced/received may contain some defective
items. Thus, before meeting up the customers’ demand, screening of the item to detect the imperfect quality, is
essential. Salameh and Jaber [20] derived an EOQ formula for items with imperfect quality, wherein screening
process has been proposed. After that screening process in single-echelon inventory control problems has been
widely considered. Goyel and Cárdenas-Barrón [9] amended Salameh and Jaber [20] and presented simpler
model by using renewal-reward theorem. Papachristos and Konstantaras [17] amended Salameh and Jaber [20]
by providing a suitable inequality to restrict the shortage during the screening period. Wee et al. [29] and
Eroglu and Ozdemir [6] extended Salameh and Jaber [20] by considering shortages which were fully backlogged.
Chang and Ho [2] amended Wee et al. [29], and used renewal-reward theorem to find the expected cost function.
Maddah and Jaber [13] rigorously analyzed Salameh and Jaber [20] model to ensure 100% screening process
before meeting up the customer demand. Maddah et al. [14] suggested order overlapping in order to ensure 100%
screening. Khan et al. [12] presented an elaborative review on Salameh and Jaber [20] model, and rigorously
discussed different situations. Vörös [28] skipped a common assumption of the above researchers, a random
fraction of imperfect quality < 1− demand rate/screening rate, and rigorously analyzed the mathematical
model by considering two cases of a random cycle: (1) independent cycle and (2) connecting cycle. Recently,
Moussawi et al. [15] developed a production-inventory model for imperfect quality of an item by incorporating
twice screening process in a production cycle, and imperfect quality items are sent back for rework.

In two-echelon SC inventory management (SCIM), some researchers have been carried out by considering
screening process under different business scenarios. Huang [10] addressed an integrated production-inventory
system by considering a random fraction of an imperfect quality item, wherein buyer sends back the imperfect
quality to the vendor for rework. Wu and Zhao [30] considered stock and time-dependent demand rate into an
imperfect quality item of SC which undergoes both cooperative and non-cooperative environments. Dey and
Giri [5] considered a stochastic vendor-buyer integrated production-inventory system for an imperfect quality
item, wherein all items are screened before meeting up customers demand. The model also considered that the
vendor invests money to improve the production quality.

According to Porteus [18], through an initial investment, setup cost for the setting of machines can be reduced
which finally reduces the total cost. Porteus [18] proposed logarithm investment function to reduce the setup
cost. In recent trend of two-echelon SC modeling problem, setup cost reduction is used by many researchers
such as [1, 19, 22, 31].
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In this paper we consider a two-echelon integrated production-inventory model for a single-vendor and a
single-buyer, who deal with a single item contains a random fraction of the imperfect quality. Shortages are
permissible in the buyer’s inventory system and are the mixture of partially backlogging and lost sale. In one
setup, the vendor produces a lot and delivers to the buyer in multiple shipments to fulfill the customer demand.
The buyer 100% screens the received lot before meeting up the customer demand. Furthermore, the vendor offers
a trade credit period to the buyer to settle the purchasing amount. In this regard, we develop a methodology
to calculate the opportunity cost and opportunity gain. Moreover, we consider that the vendor setup cost is
dynamic in nature which can be reduced through initial investment, and use logarithmic investment function
as of Porteus [18]. Thus, the proposed model captures the more suitable real-life business situations. As an
evidence of literature survey and best of our knowledge, no such an SC model has been developed till now.

The rest of the paper is arranged as follows: In Section 2, all notations and assumptions have been mentioned
which are used throughout the paper. Mathematical formulation of the proposed integrated SC is presented
in Section 3. In Section 4, we show that Chang and Ho [2] and Maddah and Jaber [13] models are special
cases of our model. Section 5 provides solution procedure and proposes an algorithm towards the global optimal
policy. Section 6 is the illustrative example section, wherein we present a numerical example to validate the
mathematical formulation and solution procedure. The section also provides managerial insights through the
sensitivity analysis for changing the value of the key parameters. Finally, the discussion is ended in Section 7
by delineating the concluding remarks, finding and future direction of the research.

2. Notations and assumptions

The following notations are used throughout the paper.

2.1. Notations

2.1.1. Parameters

r Demand rate for the buyer
F Fixed transportation cost per trip for the buyer
A Ordering cost per order for the buyer
p Production rate for vendor, p > r
d Loss on per unit imperfect item
s Screening cost per item
x Percentage of defective items, a random variable
y Screening rate
hv Vendor’s inventory carrying cost per item per unit time
hb Buyer’s inventory holding cost per item per unit time
η Fractional charges per unit setup cost
ie Interest rate earned by the buyer
ic Interest rate charged on the buyer by the vendor
cb Unit purchasing cost per item for the buyer
sb Unit selling price per item for the buyer
α Percentage of the shortage to be partially backlogged
B Back-ordering cost per item per unit time
L Loss of sale cost per item
M Trade credit period offered to the buyer

2.1.2. Decision variables

n Shipment frequency to the buyer in one production cycle, a positive integer
t Time when the buyer’s inventory reaches at zero level and shortage starts (0 < t < T )
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q Order quantity of the buyer
K Variable setup cost of the vendor

2.1.3. Dependant variables

µ Screening period to ensure the 100% screening of received lot of the buyer
T Scheduling period of the buyer
fv(K) Investment function for setup cost reduction
EJTRCExpected joint total relevant cost.

The following assumptions are made while developing the proposed integrated SC.

2.2. Assumptions

(1) A single vendor produces a single product and deals with a single buyer. The vendor and the buyer share
all information with each other, i.e., they work in collaborative environment.

(2) Instantaneous shipment to the buyer. i.e., lead time is zero.
(3) The vendor produces the nq quantity of the item in one production cycle, and ships to the buyer for n

shipments, each of size q.
(4) The buyer screens the received lot before meeting up the customers’ demand and sells the imperfect quality

of items at some discounted price (called salvage value) in a single batch at the end of the process. d is
per unit loss due to the imperfect item, i.e., d equals to purchasing cost minus salvage value.

(5) Shortage is allowed at the buyer’s inventory system and is a mixture of partial backlogging and lost sale.
Even though the 100% screening process has not been completed while receiving the products, the back
ordered quantity is delivered without any defects (see, Chang and Ho [2]).

(6) Fraction of the defective items contained in each batch is a random variable x (0 ≤ x < 1) .
(7) The screening rate y is greater than the demand rate r, and in order to avoid shortage during screening

period, a constraint has been imposed as (1 − x)y > r, ∀ x ⇒ E[1 − x]y > r (see, Papachristos and
Konstantaras [17]; Khan et al. [12]).

(8) The vendor’s setup cost is reduced through an initial investment. We consider logarithmic investment
function Porteus [18] as fv = η

δ ln
(
Ko

K

)
, 0 ≤ K ≤ K0, where K0 is the original setup cost, K is the

reduced setup cost, δ is percentage decrease in setup cost per unit price increase in fv and η is the annual
fractional cost of capital investment.

(9) A trade credit period M is offered to the buyer to settle the purchasing amount. During this period, the
buyer’s cumulative sale revenue is deposited in an interest-bearing account. At the end of the period, the
revenue and earned interest are used in payment of purchasing cost. If trade credit period is shorter than
of scheduling period T , then the buyer has to pay interest on his/her investment in inventory for the
period [M,T ].

3. Integrated production-inventory model

In this section, we mathematically formulate the proposed vendor-buyer integrated production-inventory
model, and also calculate the opportunity terms. The vendor is the manufacturer who occupies the top position
in SC hierarchy as shown in Figure 1. The vendor produces a lot of sizes nq in each production run and sends to
the buyer in n shipments each of size q. During production uptime, the inventory level of the vendor is saw type
while during downtime it looks like a ladder. Figure 1 also delineates that the vendor starts production at such
a time that no inventory left after the first shipment, which reduces his/her the holding quantity. Production
and demand satisfaction is a synchronized process. Inventory position of the buyer is shown in lower part of
Figure 1. As shown in the figure, the shortage is permissible in the buyer’s system and is a mixture of partial
backlogging and lost sale. In each time span T , the buyer receives a lot of size q, which may contain a random
fraction x of imperfect quality.
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Figure 1. Inventory position of the vendor and the buyer.

3.1. Buyer’s relevant cost

The buyer’s scheduling period (time between two replenishment) is

T = t+
(1− x)q − rt

αr
=

(1− x)q − (1− α)rt

αr
. (3.1)

The total relevant cost of the buyer includes costs of ordering, holding, transportation, screening and shortage
cost including backlogging and lost sales. The buyer orders nq quantity once, and receives it in n shipments
each of size q. Hence, ordering cost per replenishment cycle for him/her is A/n. As we said all received items are
screened, hence screening cost sq is incurred. Transportation cost F is incurred for each shipment. The buyer’s
cumulative inventory during the period [0, t] is rt2/2 + xq2/y (see, Wee et al. [29]). Hence, holding cost per
replenishment cycle of the buyer is hb(rt

2/2 + xq2/y). In each lot, a random quantity xq is imperfect quality.
Hence, lost cost due to imperfect quality in per cycle is dxq. Shortage starts at time t and continue up to T . The
time-weighted backlogged quantity during stock-out period [t, T ] is (T − t)(T − t)αr/2 = [(1− x)q − rt]2/2αr
and lost sales quantity is (T − t)(1 − α)r = [(1− x)q − rt](1 − α)/α. The total relevant cost of the buyer is a
function of random variable x, and is

ATCb =
A

n
+ F + sq + dxq + hb

(
rt2

2
+
x

y
q2
)

+B
1

2αr
(q − rt− xq)2 + L

1− α
α

(q − rt− xq). (3.2)

We now use the renewal-reward theorem to find the expected per unit relevant cost of the buyer.

EATCb =
E[ATCb]

E[T ]
. (3.3)
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3.2. Vendor’s relevant cost

In each production run, the vendor incurs setup cost K. The time-weighted inventory carried in the vendor’s
system is shown in Figure 1, and is nq2

(
(2−n)αr/p+ (n− 1)(1−x)

)
/2αr−n(n− 1)(1−α)qt/2α. The relevant

cost of the vendor consists of costs of setup and inventory carrying. Hence, the vendor’s relevant cost per
production cycle is as follows:

ATCv = K + hv
nq2

2αr

(
(2− n)

αr

p
+ (n− 1)(1− x)

)
− hv

n(n− 1)(1− α)

2α
qt. (3.4)

Expected per unit relevant cost of the vendor is

EATCv =
E[ATCv]

nE[T ]
. (3.5)

As we discussed earlier, original setup cost can be reduced through an investment which finally reduces the
overall cost of SC. Therefore, it is quite appropriate for the vendor to make an investment to reduce the original
set cost. Assuming logarithmic investment function in the form η ln(K0/K)/δ, the expected total cost of the
vendor is obtained as

EATCv =
E[ATCv]

nE[T ]
+
η

δ
ln

(
Ko

K

)
. (3.6)

3.3. Opportunity cost and opportunity gain

As is discussed in the introduction section, the vendor offers a trade credit period M to the buyer to settle
the purchasing amount, buyer earns/pays interest depending upon M and T . In this section, we mathematically
model the same and calculate the opportunity cost and opportunity gain. The buyer deposits the sale revenue
of the period (0,M ] is an interest-bearing account and earns interest with the rate ie. Moreover, he/she has to
pay interest on the investment in the remaining inventory of the period (M,T ]. Depending upon values of M ,
T , screening completion time µ and shortage starting time t, four cases arise as shown in Figure 2. It is clear
from the figure, he/she earns as well as pays interest in first two cases while in last two cases he/she earns, only.

Case 1. M < µ < t < T : In this case, trade credit period is less than the buyer’s scheduling period. Hence, as
shown in Figure 2A, the buyer earns interest during the period [0,M ] while pays for the period (M,T ]. The
interest earned by the buyer is

IE1 = sbie

[
1

2
rM2 + ((1− x)q − rt)M

]
. (3.7)

The expected interest earned per unit time is

EIE1 =
sbieαr

qE[1− x]− (1− α)rt

[
1

2
rM2 + (E[1− x]q − rt)M

]
. (3.8)

The interest paid by the buyer is calculated as follows:

IC1 = cbic

[
r

2
(t−M)2 +

xq

y
(q − yM)

]
. (3.9)
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Figure 2. Time weighted amount for opportunity cost and opportunity gain.

The expected interest paid per unit time is

EIC1 =
cbicαr

qE[1− x]− (1− α)rt

[
r

2
(t−M)2 +

E[x]q

y
(q − yM)

]
. (3.10)

Case 2. µ < M < t < T : Similar to Case 1, the random interests earned and paid for this case are calculated
as follows:

IE2 = sbie

[
1

2
rM2 + ((1− x)q − rt)M +

xq

y
(yM − q)

]
(3.11)

and

IC2 = cbic
r

2
(t−M)2. (3.12)
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The expected values of interest earned and interest paid per unit time are

EIE2 =
sbieαr

qE[1− x]− (1− α)rt

[
1

2
rM2 + (E[1− x]q − rt)M +

E[x]q

y
(yM − q)

]
(3.13)

and

EIC2 =
cbicαr

2(t−M)2

2(qE[1− x]− (1− α)rt)
. (3.14)

Case 3. µ < t < M < T : In this case the trade credit period is longer than t. Hence, no interest is charged on
the buyer, he/she only earns interest during the period [0,M ]. The interest terms for this case are as follows:

IE3 = sbie

[
xq

y
(yM − q) +

rt

2
(2M − t) + ((1− x)q − rt)M

]
(3.15)

and

IC3 = 0. (3.16)

The expected values of interest earn per unit time is

EIE3 =
sbieαr

qE[1− x]− (1− α)rt

[
xq

y
(yM − q) +

rt

2
(2M − t) + ((1− x)q − rt)M

]
. (3.17)

Case 4. µ < t < T < M : The chargeable and earned interests for this case are shown in Figure 2D, and are as
same as obtained in Case 3.

3.4. The expected joint total relevant cost

We above discussed four cases of opportunity cost and opportunity gain for the integrated vendor-buyer
system and found that interest terms of Case 4 were same as of Case 3. Hence, a random total cost for Case 4
is same as of Case 3. We now integrate all cases in order to find the expected joint total relevant cost (EJTRC)
as follows:

EJTRC(K, q, t, n) =



EJTRC1 = EATCv + EATCb + EIC1 − EIE1,
M ≤ µ ≤ t ≤ T ;
EJTRC2 = EATCv + EATCb + EIC2 − EIE2,
µ ≤M ≤ t ≤ T ;
EJTRC3 = EATCv + EATCb + EIC3 − EIE3,
µ ≤ t ≤M ≤ T,

(3.18)

where

E1 = 1− E[x], E2 = E[(1− x)2] (3.19)
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EJTRC1 =
αr

qE1 − (1− α)rt

{
A

n
+ F + sq + dE[x]q + hb

(
rt2

2
+
E[x]

y
q2
)

+L
1− α
α

(E1q − rt) +
B

2αr

(
E2q

2 − 2E1rqt+ r2t2
)

+hv
q2

2αr

(
(2− n)

αr

p
+ (n− 1)E1

)
−hv

(n− 1)(1− α)

2α
qt+

K

n
− sbie

(r
2
M2 + (E1q − rt)M

)
+cbic

(
r

2
(t−M)2 +

E[x]q

y
(q − yM)

)}
+
η

δ
ln

(
Ko

K

)
, (3.20)

EJTRC2 =
αr

qE1 − (1− α)rt

{
A

n
+ F + sq + dE[x]q + hb

(
rt2

2
+
E[x]

y
q2
)

+
B

2αr

(
E2q

2 − 2E1rqt+ r2t2
)

+ hv
q2

2αr

(
(2− n)

αr

p
+ (n− 1)E1

)
+
K

n
− sbie

(
rM2

2
+ (E1q − rt)M +

E[x]q

y
(yM − q)

)
+ cbic

r

2
(t−M)2

+L
1− α
α

(E1q − rt)− hv
(n− 1)(1− α)

2α
qt

}
+
η

δ
ln

(
Ko

K

)
, (3.21)

E(JTRC3) =
αr

qE1 − (1− α)rt

{
A

n
+ F + sq + dE[x]q + hb

(
rt2

2
+
E[x]

y
q2
)

+
B

2αr

(
E2q

2 − 2E1rqt+ r2t2
)

+ hv
q2

2αr

(
(2− n)

αr

p
+ (n− 1)E1

)
+
K

n
− sbie

(
E[x]q

y
(yM − q)− rt2

2
+ E1qM

)
+ L

1− α
α

(E1q − rt)

−hv
(n− 1)(1− α)

2α
qt

}
+
η

δ
ln

(
Ko

K

)
. (3.22)

4. Analysis

If we consider an inventory system of a buyer, only, without trade credit finance and without set up cost
reduction investment, where shortages are allowed and are fully backlogged. For this situation we substitute
K = K0 → 0, hv = 0, iv = 0, ic = 0, n = 1, α = 1 and F = 0 in the above integrated model, then equation (3.18)
becomes as

EJRTC(q, t) =
r

qE1

[
A+ sq + dE[x]q + hb

(
rt2

2
+
E[x]q2

y

)
+
B

2r

(
E2q

2 − 2E1rtq + r2t2
)]

(4.1)
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Furthermore, if we assume that w be the shortage quantity as of Chang and Ho [2], then t can be expressed as
t = (E1q − w)/r. Thus equation (4.1) can be written as

EJRTC(q, t) =
1

qE1

[
Ar +

(
hb +B

2

)
(E1q − w)2

]
+

1

E1

[
rs+ rdE[x]−BE1(E1q − w)

]
+

1

E1

[rbbE[x]

y
+
BE2

2r

]
q. (4.2)

∂EJRTC/∂w = 0 = ∂EJRTC/∂q give the backordered quantity and order quantity as

w∗ =
hbE1q

∗

hb +B
and q∗ =

√√√√ 2rA

hb
(
E2 + 2rE[x]

y − hbE2
1

hb+B

) . (4.3)

The order and backordered quantities obtained in equation (4.3) coincide with Chang and Ho [2]. When shortage
is not allowed, i.e., backordering cost increases infinitive (B →∞), then from equation (4.3),

w∗ = 0 and q∗ =

√
2rA

hb
(
E2 + 2rE[x]

y

) (4.4)

coincide with Maddah and Jaber [13].

5. Solution approach

EJTRC is a function of three continuous variables q, t,K and a positive integer variable n. Our aim is to
find a feasible solution (K∗, q∗, t∗, n∗) that minimizes the EJTRC.

Table 1. Cost factors and other parameters of the manufacturer and the retailer.

Notation Description Value

p Manufacturing rate of the pot 320 pots
mv Per unit manufacturing cost $6
cb Retailer purchasing cost per pot $10
sb Retailer selling price $15
cd Discounted price of an imperfect pot $9
d = cb − cd Lost due to per imperfect pot $1
K0 Set up cost of the manufacturer $100
F Transportation cost of the retailer $30
A Ordering cost for the retailer $50
r Per month demand rate of the retailer 100 pots
hv Per month per pot holding cost of the manufacturer $0.1
hb Per month per pot holding cost of the retailer $0.2
y Screening rate per month 350 pots
α Percentage of backlogging 70%
B Backlogging cost of the retailer $2
L Lost of sale of the retailer for unsatisfied demand $1
M Trade credit period offered to the retailer 0.75 month
ie Interest rate earned by the retailer 0.05
ic Interest rate charged on the retailer 0.07
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Theorem 5.1. If we consider n as a real valued variable, then for fixed values of q, t and K, EJTRC is a
convex function of n.

See Appendix A for proof. However Theorem 5.1 is proved for the continuous variable, but, it ensures that
there exists a unique integer n where EJTRC attains minimum value for given values of q, t and K. We now
write a solution procedure to find the unique global optimal policy.

Figure 3. Optimal EJTRC.

Table 2. Sensitivity analysis of trade credit period.

M i∗ EJTRC∗ n∗ K∗ q∗ µ∗ t∗ T ∗ f∗v

0 1 143.225 5 58.3771 97.4204 0.414555 0.741898 1.16754 5.38246
0.25 1 128.088 5 57.1805 97.8519 0.416391 0.774287 1.14361 5.58958
0.50 2 112.308 5 55.2636 97.5324 0.415032 0.806364 1.10527 5.93056
0.75 2 95.7374 6 59.5829 91.2145 0.388147 0.794756 0.993048 5.17802
1 4 78.3159 6 57.1937 90.224 0.383932 0.815163 0.953228 5.58727
1.25 4 60.1958 6 53.7762 88.5143 0.376656 0.83861 0.896269 6.2034
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5.1. Solution procedure

Step 1: Set i = 1.
Step 2: i = i+ 1.
Step 3: n = 0 and EJTRCi =∞.
Step 4: n = n+ 1.
Step 5: Minimize EJTRCi by using the command NMinimize in Mathematica software.
Step 6: If EJTRCi(qi, ti,Ki, n) < EJTRCi(qi, ti,Ki, n− 1) then go to step 4. Otherwise

EJTRC∗i = EJTRCi(qi, ti,Ki, n− 1) and if i < 3 then go to step 2.
Step 7: i∗ = arg

(
mini∈{1,2,3}EJTRC

∗
i

)
.

Step 8: Optimal policy is EJTRC∗ = EJTRCi∗ , q = qi∗ , t∗ = ti∗ , K∗ = Ki∗ and n∗ = n.
Step 9: Stop.

6. Illustrative example

A small decorative stuff manufacturer company manufactures flower pots and sends to a decorative retail store
to fulfill the demand of the customer. The associated costs and other input parameters are given in Table 1.
The retailer’s record says that a fraction of the received lot of pots is imperfect quality, and is randomly
varied lot to lot. The fraction of imperfect quality is estimated to follow the probability distribution function
f(x) = 25, 0 ≤ x ≤ 0.04. Furthermore, the manufacturer makes an investment to reduce the setup cost. The
investment function is η ln(K0/K)/δ with η = 0.2, δ = 0.02. The problem is to determine the optimal production
lot size of the manufacturer, shipment frequency, and the optimal backorder quantity in order to minimize the
total relevant cost of the integrated production-inventory system.

The proposed algorithm with MATHEMATICA 9.0 software gives the solution as follows: i∗ = 2, n∗ = 6,
K∗ = 59.5829, EJTRC∗ = 95.7374, q∗ = 91.2145, µ∗ = 0.388147, t∗ = 0.794756, T ∗ = 0.993048, f∗ = 5.17802.
For the given data set, the Hessian matrix of EJTRC is positive definite as shown in Appendix B. Hence, the
solution is optimal and unique. The uniqueness of optimality can be also fixed from Figure 3.

Figure 4. Effect of M on the decision variables.
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Table 3. Sensitivity analysis under variation of various parameter.

Para % change i∗ EJTRC∗ n∗ q∗ µ∗ t∗ T ∗ K∗ f∗v
meter

A +50 2 99.7867 6 95.3335 0.405675 0.820376 1.04816 62.8896 4.63789
+25 2 97.7889 6 93.3055 0.397045 0.807762 1.02103 61.2615 4.90018
−25 2 93.429 5 93.7334 0.398866 0.814444 1.02273 51.1366 6.7067
−50 2 90.9627 5 90.9919 0.3872 0.797214 0.986228 49.3114 7.07015

F +50 2 110.647 4 119.422 0.508177 0.974886 1.36578 54.631 6.04568
+25 2 103.622 5 104.994 0.446783 0.878541 1.17934 58.9671 5.28191
−25 3 86.2713 7 77.8795 0.331402 0.702802 0.823636 57.6545 5.50702
−50 4 73.915 9 60.6901 0.258256 0.579163 0.594537 53.5084 6.25332

hb +50 3 98.7413 6 88.7496 0.377658 0.745572 0.993921 59.6352 5.16924
+25 2 97.2842 6 89.8903 0.382512 0.772449 0.989402 59.3641 5.21481
−25 2 94.1056 6 92.6229 0.39414 0.818421 0.996987 59.8192 5.13844
−50 2 92.3605 5 99.6009 0.423834 0.883196 1.06898 53.4491 6.2644

hv +50 2 102.795 4 96.3983 0.410205 0.826346 1.06306 42.5224 8.55139
+25 2 99.5357 5 92.5817 0.393965 0.801929 1.01267 50.6336 6.80555
−25 2 91.0453 7 91.9387 0.391229 0.802537 0.999461 69.9623 3.57214
−50 2 84.9819 9 92.2725 0.392649 0.807892 1.00065 90.0585 1.0471

B +50 2 98.2383 6 88.5266 0.376709 0.796948 0.938174 56.2904 5.74646
+25 2 97.0515 6 89.7486 0.381909 0.797168 0.961904 57.7142 5.49666
−25 2 94.0952 5 98.6893 0.419955 0.823552 1.11076 55.5379 5.88104
−50 2 91.8608 5 102.214 0.434954 0.80492 1.19848 59.9238 5.12096

α +50 2 89.349 5 101.905 0.433637 0.774229 1.07348 53.6739 6.22244
+25 2 92.5847 5 99.2756 0.422449 0.804166 1.07414 53.7071 6.21625
−25 2 98.8889 6 88.0965 0.374879 0.819172 0.936968 56.2181 5.75932
−50 2 102.055 7 80.2237 0.341378 0.814917 0.900018 49.0013 7.13324

Ko +50 2 99.792 6 91.2145 0.388147 0.794756 0.993048 59.5829 9.23267
+25 2 97.9688 6 91.2145 0.388147 0.794756 0.993048 59.5829 7.40946
−25 2 92.8606 6 91.2145 0.388147 0.794756 0.993048 59.5829 2.3012
−50 2 88.8961 5 96.3674 0.410074 0.830998 1.0578 50 0

δ +50 2 93.0097 5 92.795 0.394873 0.808546 1.01024 33.6745 7.25619
+25 2 94.3122 5 94.2065 0.400879 0.817417 1.02903 41.1612 7.10139
−25 2 96.8575 6 94.6558 0.402791 0.816161 1.03909 83.1275 2.46394
−50 2 97.1658 6 101.924 0.43372 0.861369 1.13634 100 0

η +50 2 96.9793 7 91.8304 0.390768 0.794619 1.00526 100 0
+25 2 96.679 6 93.7832 0.399078 0.810734 1.02742 77.0563 3.25792
−25 2 93.8548 5 93.6745 0.398615 0.814074 1.02195 38.323 7.1934
−50 2 90.9625 5 91.0637 0.387505 0.797665 0.987183 24.6796 6.99597

6.1. Sensitivity of trade credit period

As is mentioned earlier, accounting of opportunity cost and opportunity gain for the integrated production-
inventory system is one of the main aims of this research. Opportunities cost and gain, and hence EJRTC
depend upon the trade credit period. So, we now find the effect of M by taking a set different value as M ∈
{0, 0.25, 0.50, 0.75, 1, 1.25}. The optimal policies for this changes are provided in Table 2. When M is increased,
EJTRC∗ rapidly decreases while q∗ and K∗ slightly decrease. It is because, for larger trade credit period, the
buyer earns more interest, and hence the integrated SC. Furthermore, when M = 0, i.e., when no trade credit
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Figure 5. Effects of key parameters on (a) EJTRC, (b) order quantity and (c) setup cost.
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period is offered then EJTRC∗ is maximum. Thus, we can conclude that longer trade credit period earns more
interest and pays less interest, and hence is beneficial for the integrated production-inventory system. How M
effects decision variables? is also delineated in Figure 4.

6.2. Sensitivity of other parameters

Sensitivity of the key parameters A, F , B, α, Ko, hb, hv, δ, η are also examined here by changing its values as
−50%, −25%, +25% and +50%. The optimal policies for these variations are given in Table 3, and are depicted
in Figure 5.

When ordering cost A is decreased, EJTRC∗, q∗, n∗ and K∗ decrease. The decreasing transportation cost F
sharply decrease q∗ and EJTRC∗, and as expected, increases n∗. When the buyer’s holding cost hb is decreased
then as expected, EJTRC∗ decreases, q∗ increases (because decreasing holding cost encourages to keep more
stock), consequently, shipment frequency decreases. When the vendor’s holding cost is decreased, EJTRC∗ and
q∗ decrease, consequently, n∗ increases. Both holding costs also influence the setup cost K∗, but the vendor’s
holding cost is more. When backlogging cost is decreased, then as expected, EJTRC∗ and n∗ decrease, while
q∗ and T ∗ increase and t∗ are almost constant, which means shortage quantity increases. When the fraction of
backlogging α is decreased, EJTRC∗ increases, because of increment in the lost sale. Figure 5 indicates that F
highly influences EJTRC∗ and q∗, while δ and η make high influence on K∗.

As Table 3 and Figure 5 indicates, parameters of setup cost reduction function significantly influence the
optimal policy. When the value of initial setup cost K0 is decreased, EJTRC∗, q∗, n∗ and K∗ are remains
unchanged for some limit after that slightly changed. When the value of δ is decreased, EJTRC∗, q∗, n∗ and
K∗ increase. When the value of η is decreased, EJTRC∗, q∗, n∗ and K∗ decrease. For both variations of δ and
η, K∗ is tremendously changed. Overall we can say that setup cost reduction parameters highly influences the
optimal policy.

7. Conclusions

In this paper, we presented an integrated SC inventory management model for a single vendor and a single
buyer, who deal with trade credit policy for the imperfect quality of items, wherein shortages are permissible in
the buyer’s inventory and are partially backlogged. The paper also includes setup cost reduction and screening
facility to detect imperfect quality item and examines its effect on optimal decision policy. In this regards,
we have developed a methodology to calculate the opportunity cost and opportunity gain. To the best of
our knowledge and as an evidence of literature survey no such integrated production-inventory model has been
developed till now. In order to validate the mathematical formulation, we showed Chang and Ho [2] and Maddah
and Jaber [13] models were special cases of our model. The mathematical model is analyzed and optimized in
order to find a unique global optimal policy. A numerical experiment is also presented to illustrate the foregoing
discussion. Through sensitivity analysis, managerial insights and authenticity of the mathematical formulation
are established. We found that for large trade credit period the total cost of the integrated production-inventory
is comparatively less. Furthermore, we found that instead of a fixed setup cost, consideration of reducible setup
cost minimizes the total cost.

In this model, we have considered shortages are partially backlogged, and a fraction of backlogging is constant,
but it is not true at all because it is difficult to predict the number of impatience customers. Thus, this model
can further be extended by considering backlogging rate is a random variable instead of a fixed constant.
Consideration of partial trade credit is another potential extension of this research.

Appendix A

∂2EJTRC(K, q, t, n)

∂n2
=
∂2EJTRCi(K, q, t, n)

∂n2
=

2r(A+K)

qE1n3
> 0, i = 1, 2, 3.



1292 D.J. MOHANTY ET AL.

Appendix B

It is not possible to show analytically that the Hessian matrix of EJTRC with respect to q,K and t is
positive definite. Hence, for the given data set, we here show that the Hessian matrix is positive definite. For
this data we get a solution through proposed algorithm using MATHEMATICA software as i∗ = 2, n∗ = 6,
K∗ = 59.5829, q∗ = 91.2145, t∗ = 0.794756. For this solution, all principal minors of the Hessian matrix are

∂2EJTRC
∂q2 = 0.0494376, ∂2EJTRC

∂t2 = 500.276, ∂2EJTRC
∂K2 = 0.0028168,

∣∣∣∣∣∣∣∂
2(EJTRC)

∂q2
∂2(EJTRC)

∂t∂q
∂2(EJTRC)

∂q∂t
∂2(EJTRC)

∂t2

∣∣∣∣∣∣∣ = 6.27596,

∣∣∣∣∣∣∣∣
∂2(EJTRC)

∂q2
∂2(EJTRC)

∂t∂q
∂2(EJTRC)

∂K∂q
∂2(EJTRC)

∂q∂t
∂2(EJTRC)

∂t2
∂2(EJTRC)

∂K∂t
∂2(EJTRC)

∂q∂K
∂2(EJTRC)

∂t∂K
∂2(EJTRC)

∂K2

∣∣∣∣∣∣∣∣ = 0.0155868.

Therefore, Hessian matrix is positive. Hence, EJTRC is convex function with respect to q, t and K. Further-
more, in section 5, we proved the robustness of the model, and deducted Chang and Ho [2] and Maddah and
Jaber[13] models from ours model.
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