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A HYBRID MARKOV PROCESS-MATHEMATICAL

PROGRAMMING APPROACH FOR JOINT

LOCATION-INVENTORY PROBLEM UNDER SUPPLY

DISRUPTIONS

Ehsan Dehghani, Mir Saman Pishvaee* and
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Abstract. This paper introduces a joint location-inventory problem, in which facilities become tem-
porarily unavailable. A hybrid approach based on the Markov process and mathematical programming
techniques is presented to design the distribution network of a supply chain in an integrated manner.
In the first phase, the Markov process derives some performance features of inventory policy. In the
second phase, using outputs of the Markov process, the location-inventory problem is formulated as a
mixed-integer nonlinear programming model. Moreover, a robust possibilistic programming approach is
utilized, which is able to provide a more stable supply chain structure under almost all possible values
of imprecise parameters. Since the proposed problem is complicated to solve by means of exact meth-
ods, we develop a simulated annealing algorithm in order to find near-optimal solutions in reasonable
computational times. The obtained computational results reveal the efficiency and effectiveness of the
proposed solution approach. Finally, some insights are provided and the performance of the proposed
robust optimization approach is compared to traditional possibilistic chance constrained method.

Mathematics Subject Classification. 90B80, 90B05, 90C40, 90C70

Received 31 May 2017. Accepted 31 January 2018.

1. Introduction

Logistics is the process of planning, executing, and controlling procedures for the efficient and effective
transportation and storage of goods between origin and consumption points in order to meet the demands of
customers [1]. Historically, companies have administered the distribution and storage of products in a disparate
way within different functional departments. However, decisions of supply chain are interrelated to each other
and managers are well informed nowadays that optimizing the logistics system as a whole is an urgent need [2].
For instance, inventory management needs the efficient location of distribution centers (DCs) and the optimal
amount of storage at these centers. An efficient transportation plan also depends on the location of DCs. Gen-
erally speaking, integrating decisions across the supply chain makes a significant cost savings and considerably
affects the customer’s consent that can provide a great benefit to the company in today’s increasingly com-
petitive markets [2]. One of the important integration issues in supply chain is the location-inventory problem
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that incorporates decisions about stocks into facility location and determines location, allocation, and inventory
decisions simultaneously. This problem can be implemented in many businesses, where inventory management
plays a significant role in the distribution and production systems [3, 4].

The dynamic and complex nature of supply chain imposes a wide range of uncertainties, which considerably
influences the overall performance of supply chain network [5]. In this regard, a common event that exists in the
real environment is the disruption possibility of a facility. Traditional studies in the location-inventory prob-
lem generally consider that the constructed facilities are everlasting and do not fail under any circumstances.
However, in practice, facilities are subject to potential operational disruptions due to reasons such as main-
tenance, equipment breakdown, repair, and inclement weather. The failure of a facility will cause customers
either leave service and entail a penalty or travel longer distances to obtain service from another facility. Thus,
system’s operational cost increases and customer satisfaction deteriorates [6]. In some real situations, espe-
cially for strategic level decisions, uncertainty is also associated with lack of knowledge about the exact value
of some ill-defined and imprecise data [7]. In such situations, using stochastic programming methods to deal
with the uncertainty may be impossible since they need reliable historical data. Moreover, applying stochastic
programming models significantly increase the computational complexity of the problem. In this sense, fuzzy
mathematical programming methods that can use both objective and subjective data are the most suitable tools
to handle the ambiguity of parameters [8, 9]. Furthermore, in order to immunize the optimal solution for almost
all possible realizations of uncertain parameters and make a more stable supply chain structure, considering
possible variations existing in parameters over a long-term horizon is critical [10, 11]. This leads to the need to
find a robust solution, which considers feasibility robustness and optimality robustness, simultaneously. Indeed,
robust optimization approach aims to provide the preferred risk aversion of the decision makers and find a
solution which is less sensitive versus changing uncertain parameters [5, 12].

Motivated by the above discussions, the current paper proposes a joint location-inventory problem to design
the distribution network of a supply chain under random supply disruptions. It is presumed that facilities change
intermittently between available and unavailable states. The time period length of each available and unavailable
state is uncertain. An integrated hybrid approach based on the Markov process and mathematical programming
techniques is presented to determine decisions across the supply chain simultaneously. In the first phase, some
performance features of inventory policy, i.e., the number of reorders, the number of shortages, and the mean
inventory level are derived using the Markov process. Then, based on the outputs of the Markov process, the
location-inventory model is constructed to determine the following decisions: (4.1) the number of facilities to be
located; (4.2) the location of facilities; (4.3) the assignment of retailers to opened facilities; and (4.4) the optimal
inventory policy at each established facility. To benefit from both fuzzy and robust programming approaches,
a robust possibilistic programming approach is applied, which is able to make supply chain configuration and
total costs stable when facing uncertainties caused by imprecise data. The proposed problem belongs to the class
of NP-hard problems, since it is an extension of the capacitated facility location problem (CFLP), which is a
well known NP-hard problem [13]. Thus, in order to find high-quality solutions in reasonable times, a simulated
annealing (SA) based meta-heuristic algorithm is developed.

The remainder of this paper is structured as follows. In Section 2, the related literatures towards the
location-inventory, disruption, and queuing-inventory models are reviewed. Section 3 states the assumptions
and objectives of the concerned problem. In Section 4, the hybrid approach is presented to formulate the prob-
lem. A robust possibilistic programming approach is implemented in Section 5. Section 6 provides an efficient
solution procedure for solving the proposed location-inventory model and the computational results and insights
are reported in Section 7. Finally, the concluding remarks and possible future research directions are given in
Section 9.

2. Literature review

In this section, we first review the literature of location-inventory, facility disruption, and queuing system
with inventory and then introduce the literature gaps, which this study addresses.
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2.1. Location-inventory

Traditionally, the decisions at different levels of supply chain have been taken into account separately that
yield in sub-optimal design [14]. Hence, most of the efforts have tended to incorporate them across the supply
chain [3]. Likewise, given the complex nature of supply-chain integration problems, a number of scholars have
attempted to develop solution methods such as Lagrangian relaxation and meta-heuristic algorithms for solving
them. An early contribution to the joint location-inventory problem was provided by Baumol and Wolfe [15],
who introduced the idea of integrating inventory costs into location models. They developed the uncapacitated
facility location problem and proposed a method that could obtain a local optimum. Barahona and Jensen [16]
proposed a joint location-inventory model and formulated it as an integer programing model. They used a
Dantzig–Wolfe decomposition to solve the model and utilized a sub gradient optimization method to accelerate
its convergence. Daskin et al. [17] presented a facility location problem and incorporated safety stock inven-
tory and working inventory costs in their model. A stochastic three-level supply was presented by Javid and
Azad [18], where a heuristic method based on a hybrid Tabu Search and SA algorithm was applied to tackle
the large instances of the problem. Jin [19] presented a location-inventory problem and developed a solution
procedure based on the Lagrangian relaxation method for solving it in an efficient way. Mousavi et al. [20]
extended a seasonal multiple-product location-inventory problem and proposed two meta-heuristic algorithms
(i.e., particle swarm optimization and SA) to solve the problem. Nekooghadirli et al. [21] devised a novel bi-
objective location-routing-inventory problem and developed four efficient meta-heuristic algorithms for their
model. Diabat and Theodorou [14] investigated a two-echelon inventory management problem and applied a
piecewise linearization to efficiently solve the problem. A mixed integer programming model was devised by
Rabbani et al. [22] to investigate the effect of the lease contract on inventory and pricing decisions. Sadjadi
et al. [23] examined a stochastic location-inventory problem and considered an (S − 1, S) inventory policy for
opened DCs. They applied a queuing approach to obtain some characteristics of inventory policy and then
formulated the problem using the acquired results. Jindal and Solanki [24] developed a vendor-buyer inventory
model considering inflation and time value of money. The objective of their model was determining the order
quantity, number of lots, and safety factor in a way to minimize the total costs. Liao et al. [25] devised a
multi-objective dual-channel supply chain network model and proposed a heuristic solution approach to solve
it. Implementing neural network and evolutionary algorithms, AmalNick and Qorbanian [26] optimized different
pricing policies under demand uncertainty. Dı́az-Mateus et al. [27] presented a non-linear optimization model
for a two-echelon supply chain and developed a meta-heuristic algorithm based on particle swarm optimization
to solve their model.

2.2. Facility disruption

Classic facility location researches often suppose that a facility, once built, will remain functioning forever
during its lifetime. However, facilities may be subject to operational disruptions from time to time in many real-
world problems [28]. Meanwhile, most of studies have addressed this issue in the basic facility location problems
and the body of location-inventory literature is very thin in this part. One of the first studies in this problem
was presented by Drezner [29]. He assumed that facilities become unavailable with a known probability in the
P-median and P center problems. Furthermore, he provided a heuristic procedure for the problem. Lee [30]
presented the formal P-median location problems by taking disruption of facilities into account and minimized
the transportation costs between the customers and available facilities. Babazadeh et al. [31] addressed facility
disruptions in the P-median and uncapacitated fixed-charge location problems. They assumed that if the primary
facility interrupts, the customer is assigned to backup facilities. Lee and Chang [32] provided discrete location
problems, where facilities were subject to failure.

A stochastic supply chain design problem in presence of random disruptions was presented by Aryanezhad
et al. [16, 33]. They supposed that safety stocks are held in each opened DC to provide appropriate service levels
for customers. As such, an effective solution procedure based on genetic algorithm was applied to solve the model.
Chen et al. [28] presented a location-inventory problem regarding disruptions and assumed that facilities may fail
independently with an equal probability. Last but not the least, Zhang et al. [34] devised a discrete competitive
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Table 1. Classification of location-inventory papers.

Reference Year Disruption Inventory Type Uncertainty Solution approach
policy of shortage

(R, T ) (S.Q) (S − 1, S) Backlogged Lost Demand Lead- Cost Capacity Lagrangian Commercial Meta-heuristic

sale Time relaxation software algorithm

[17] 2002 * * *
[41] 2003 * *
[42] 2005 * * * *
[43] 2007 * * *
[2] 2008 * * * *
[18] 2010 * * * *
[28] 2011 * * * *
[44] 2012 * * * *
[21] 2014 * * *
[3] 2015 * * *
[45] 2015 * * * * *
[23] 2016 * * * * *

Our work - * * * * * * * *

facility location problem under facility failure patterns and developed a variable neighborhood decomposition
search heuristic to solve their problem.

2.3. Queuing system with inventory

In many systems such as production or inventory systems, satisfying demands requires on-hand inventory
and a service or process that takes some times. The important purpose in these systems is the reaction of
inventory management to queuing of demands. The queuing approach is a powerful tool for describing these
behaviors, which contributes to more realistic models [35]. Several papers can be found in literature, which
address this subject. In this regard, Parlar [36] proposed a continuous-review inventory policy considering sup-
plier disruptions and formulated the problem as a semi-Markov process. Mohebbi [37] developed an analytical
model for a continuous inventory policy, where the demand and lead-time followed Poisson and Erlang dis-
tributions, respectively, and stockouts were lost. Schwarz et al. [38] obtained stationary distributions of joint
queue length and inventory processes in explicit product form for different M/M/1-systems. Teimoury et al. [39]
applied a queuing approach for production-inventory planning and presumed that lead-time is uncertain and
follows an exponential distribution. Using an M/G/1 queuing system, Garg et al. [40] developed a multi-item
single stage production-inventory. They obtained optimal production frequencies and proposed an approximate
convex program for calculating the costs.

Table 1 summarizes the main characteristics of the some location-inventory papers and compares them
with the model developed in this study. According to the literature review and Table 1, modeling efforts that
incorporate both inventory decisions and random supply disruptions in context of facility location problem are
very scarce. In addition, these studies mainly assume that the disruptions occur with a known probability.
Also, nearly all location-inventory studies consider backorder for unsatisfied demands, while lost sales shortages
are also applicable in many industries such as consumable products and spare parts (see, Schwarz et al. [38]
and Teimoury et al. [39]). They typically do not consider the lead-time or assume that it is deterministic and
overlook the imprecise nature of parameters such as costs and capacities. These restricted assumptions are not
efficient to tackle real world problems and can result in inaccurate outputs.

To overcome the literature gaps, this paper contributes to the area of joint location-inventory problem in the
following ways. This study is able to incorporate random supply disruptions in the problem. That is, opened
facilities change intermittently between available and unavailable states that period of each state is uncertain.
Considering lost sale shortages is the other issue that distinguishes this study from the ones existed in the
literature. The demands of retailers and lead-time are also considered to be uncertain to make the problem
more realistic. Meanwhile, to the best of our knowledge, this is the first time in the location-inventory problems
that a robust possibilistic program is implemented to cope with the lack of knowledge about the real value
of input parameters. Moreover, to solve the model in a reasonable time, an efficient SA-based meta-heuristic
algorithm is proposed.
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Figure 1. Structure of the concerned supply chain.

3. Problem description

The problem under investigation is to design a three-level supply chain that comprises a supplier, a set
of potential DCs, and multiple retailers. The general structure of the concerned supply chain is shown in
Figure 1. The decisions to be made are: (4.1) the number of DCs to be located; (4.2) the location of DCs; (4.3)
the assignment of retailers to opened DCs; and (4.4) the optimal inventory policy at each established DC.
Additionally, the objective function aims at minimizing the total costs of location, transportation, and inventory.
It should be pointed out that inventory costs include holding, shortage, ordering, and purchase costs.

Specifically, the problem adopts the following assumptions:

• Each retailer is allocated to an opened DC.
• The demands of retailers independently arrive to DC according to a Poisson distribution and each demand

decreases the inventory level for one unit. Hence, by considering the previous assumption, the demands
of each opened DC follow a Poisson distribution with intensity λ that is obtained from the sum of its
allocated retailers demand rates.

• Each opened DC has a version of continuous-review inventory policy, which is called (S, Q). In this
inventory policy, an order with size Q is triggered as soon as the inventory level becomes equal or less
than the reorder level S. It is supposed that S < Q to prevent the degeneration of inventory cycles, in
which no order is triggered [35, 39]. Besides, inventory management policy follows first come, first served
(FCFS) strategy.

• Each opened DC intermittently switches between two states, i.e., available and unavailable states, based
on an alternating stochastic process. That is, the available and unavailable times are considered to be
uncertain, which are respectively exponentially distributed with parameter α and β (following Parlar
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Figure 2. Framework of the proposed hybrid approach.

and Perry [46] and Mohebbi and Hao [47]; with respect to the memoryless property of the exponen-
tial distribution and since constant rates of available and unavailable periods, this assumption may be
acceptable).

• Events of facility failures are independent.
• The opened DCs work as the direct intermediary facilities between the supplier and retailers. In other

words, products are ordered from the opened DCs to the supplier and eventually delivered to the retailers.
• When inventory is depleted or the opened DC becomes unavailable, the arriving demands from its assigned

retailers are lost.
• When each opened DC places a replenishment order to the supplier, it arrives after a random time that

is exponentially distributed with parameter µ > 0.
• The costs and capacities of the established DCs are tainted with epistemic uncertainty.
• The supplier is not subject to any capacity restrictions, but the storage spaces of DCs are finite.

4. Problem formulation

In this section, a hybrid approach based on the Markov process and mathematical programming techniques
is presented to design the distribution network of the concerned supply chain. The framework of the proposed
hybrid approach is visualized in Figure 2.
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Figure 3. Rate diagram of the Markov process.

The Markov process is first applied to derive performance features of inventory policy comprising the number
of reorders, the number of shortages, and the mean inventory level. Notably, queuing-inventory systems are
more practical and general in contrast to traditional inventory models [35]. For more information about the
advantages of queuing-inventory systems, the interested readers can refer to Frizelle [48]. Let us introduce the
following notations:

Mk (t) The level of inventory in opened DCs k at time t,

Yk (t) The state of opened DC k at time t,

where,

Yk (t) =

{
1 If the opened DC k at time t is unavailable,

0 If the opened DC k at time t is available.

Accordingly, {Yk (t) ,Mk (t) ; t ≥ 0} is a continuous-time Markov process with state space Ek =
{(0, n) |n = 0, 1, . . . , Sk +Qk}

⋃
{(1, n) |n = 1, 2, . . . , Sk +Qk} . Moreover, the steady state probabilities of the

system are as follows:

p0k (j) = lim
t→∞

{Yk (t) = 0 ,Mk (t) = j} j = 0, 1, . . . , Sk +Qk, (4.1)

p1k (j) = lim
t→∞

{Yk (t) = 1 , Mk (t) = j} j = 1, 2, . . . , Sk +Qk. (4.2)

The rate diagram of this Markov process is depicted in Figure 3. As it can be seen from Figure 3, when an
opened DC is unavailable (i.e., mode 1), the arriving demands cannot be met. In both available and unavailable
states, when the level of inventory is less than S+ 1 and an order arrives from the supplier, the level of inventory
increases for Q units. In addition, opened DC intermittently switches between available and unavailable states
(i.e., mode 0 and mode 1) with parameters α and β. Noteworthy, when inventory is depleted and the opened
DC does not meet the arriving demands, the failure cannot be occurred.
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The equilibrium equations for this Markov process will be:

µP0k (0) = λkP0k (1) (4.3)

(λk + αk + µ)P0k (J) = βkP1k (J) + λkP0k (J + 1) 1 ≤ J ≤ Sk (4.4)

(λk + αk)P0k (J) = βkP1k (J) + λkP0k (J + 1)Sk + 1 ≤ J ≤ Qk − 1 (4.5)

(λk + αk)P0k (J) = βkP1k (J) + λkP0k (J + 1) + µP0k (J − Qk) Qk ≤ J ≤ Qk + Sk − 1 (4.6)

(λk + αk)P0k (Qk + Sk) = βkP1k (Qk + Sk) + µP0k (Sk) (4.7)

(βk + µ)P1k (J) = αkPok (J) 1 ≤ J ≤ Sk (4.8)

βkP1k (J) = αkP0k (J)Sk + 1 ≤ J ≤ Qk (4.9)

βkP1k (J) = αkP0k (J) + µP1k (J −Qk) Qk + 1 ≤ J ≤ Qk + Sk (4.10)

βkP1k (Qk + Sk) = αkP0k (Qk + Sk) + µP1k (Sk) , (4.11)

where, we have:

Qk+Sk∑
j=0

P0k (j) +

Qk+Sk∑
j=1

P1k (j) = 1. (4.12)

The required system characteristics of inventory policy are acquired as follows:

• The number of reorders (ROk) : each opened DC orders to the supplier when its inventory level is less
than S+1. Thus, the number of reorders is obtained by equation (4.13).

ROk = λk [P0k (Sk + 1) + P1k (Sk + 1)] . (4.13)

• The number of shortages (SOk ) : when inventory is depleted or the DC becomes unavailable, the demands
arrived from retailers are lost. Therefore, the number of shortages is calculated as below.

SOk = λk

P0k (0) +

Qk+Sk∑
j=1

P1k (j)

 . (4.14)

• The mean inventory level (MI k ) : the mean inventory level is determined by equation (4.15).

MIk =

j=Qk+Sk∑
j=1

j [P0k (j) + P1k (j)] . (4.15)

Now, we introduce the notations used in the proposed mathematical programming model. Note that parameters
with tilde on show coefficients tainted with epistemic uncertainty.

Indices:
K Set of potential DCs, indexed by k,
I Set of retailers, indexed by i.
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Parameters:

C̃k Unit purchase cost of DC k from the supplier(∀k ∈ K),
π̃k Unit shortage cost at DC k(∀k ∈ K),

F̃k Fixed (per unit time) cost of locating DC k(∀k ∈ K),

T̃ki Unit transportation cost from DC k to retailer i (∀ k ∈ K)(∀ i ∈
I),

Ãk Unit ordering cost at DC k (∀k ∈ K),

h̃k Unit holding cost at DC k(∀k ∈ K),

Ũk Storage capacity at DC k(∀k ∈ K),

λ̃k Demand rate (Poisson) of retailer i (∀i ∈ I),
ϑ Weight factor associated with transportation costs,
θ Weight factor associated with inventory costs.

Decision variables:
zk 1 if DC k is opened, 0 otherwise (∀k ∈ K),
yk 1 if retailer i is assigned to DC k, 0 otherwise (∀ k ∈ K)(∀ i ∈

I),
Sk Reorder level at DCk(∀k ∈ K),
Qk Reorder quantity at DC k (∀k ∈ K),
λk Demand rate (Poisson) of DC k(∀k ∈ K).

The location-inventory problem can be formulated as follows:

Min w̃ =
∑
k∈K

F̃kzk + ϑ
∑

k ∈ K

∑
i ∈ I

T̃kiykiλ
′

i

1− P0k (0)−
Qk+Sk∑
j=1

P1k (j)


+ θ

∑
k∈K

zk

(
h̃kMIk + π̃kSOk + ÃkROk + C̃kROkQk

)
. (4.16)

Subject to ∑
k∈K

yki = 1, ∀i ∈ I (4.17)

yki ≤ zk, ∀i ∈ I, ∀k ∈ K (4.18)∑
i∈I

λ
′

iyki = λk , ∀k ∈ K (4.19)

Qk + Sk ≤ Ũk zk, ∀k ∈ K (4.20)

Qk ≥ Sk + 1, ∀k ∈ K (4.21)

yki ∈ {0, 1} , ∀i ∈ I, ∀k ∈ K (4.22)

zk ∈ {0, 1} , ∀k ∈ K (4.23)

Sk ≥ 0 Qk ≥ 0 Integer, ∀k ∈ K. (4.24)

Equations (4.3)–(4.15).
The objective function (4.16) minimizes the total annual costs of supply chain. The first term shows the costs

of locating facilities. The second term indicates the transportation costs from opened DCs to retailers. Note
that since the shortages are lost, the transportation costs are only computed for the satisfied demands. The
third term shows the inventory costs that include the holding, shortage, ordering, and purchase costs.

Constraints (4.17) impose that each retailer is allocated to exactly one DC. Constraints (4.18) ensure that
a retailer can only be allocated to DCs that are opened. Constraints (4.19) guarantee that the demand rate of
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Figure 4. Trapezoidal possibility distribution of fuzzy parameter ξ.

each opened DC is equal to the sum of demand rates of its assigned retailers. Constraints (4.20) demonstrate
the storage capacities of opened DCs. Constraints (4.21) ensure that if the level of inventory reaches zero,
the inventory system does not remain in shortage incessantly. Constraints (4.22) to (4.24) define the decision
variables.

5. Robust optimization

In some real situations, especially for strategic-level decisions, there is no sufficient objective/historical data
and it is difficult or even impossible/meaningless to approximate probabilistic distributions for them. In such
situations, the parameters are tainted with epistemic uncertainty and fuzzy mathematical programming methods
are used to deal with the uncertainty.

Overall, fuzzy mathematical programming methods can be categorized into the two main classes compris-
ing the flexible programming and possibilistic programming methods. The methods of the first class typically
handle the elasticity in goal values of the objective functions and/or the flexibility of constraints (see, Pishvaee
et al. [49], Inuiguchi and Ramlk [50]). The methods of the second class cope with ambiguous/imprecise parame-
ters in the objective functions and constraints, which are mainly formulated by possibilistic distributions based
on the available objective data and subjective information of the decision maker. Our model can be handled by
methods of the second class due to it only includes imprecise parameters [51].

Considering possible variations existing in parameters over a long-term horizon is necessary in order to make
the configuration of supply chain stable and provide solution that is less sensitive to the variations in the noisy
and uncertain data [11, 52]. This leads to the need to find a robust solution, which under almost all possible
realizations of uncertain parameters, it remains feasible (feasibility robustness) and its objective function is
close to optimal value (optimality robustness).

For the goal of using the advantages of both fuzzy programming and robust programming, Pishvaee et al. [49]
introduced a new possibilistic programming approach named robust possibilistic programming (RPP), which
has been constructed based on the possibilistic chance constrained programming (PCCP). In their approach,
trapezoidal possibility distribution, as a more general form compared to triangular form [9], has been utilized to
show the uncertain parameters (see, Fig. 4). Notably, the proposed formulation optimizes feasibility robustness
and optimality robustness beside the expected value of possibilistic objective function.

In the following, we describe how the robust method is implemented to create the crisp counterpart of our
mathematical programming model. In order to work more convenient, we adopt the proposed model (4.16)–(4.24)
with a compact form as follows:

Min w = f̃ z + c̃x (5.1)

Ax ≤ Ũz (5.2)

Bx ≤ 0 (5.3)

Nz = 1 (5.4)

z ∈ {0, 1} , x ≥ 0 Integer, (5.5)
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where, the vector f̃ relates to the fixed opening and transportation costs. Besides, c̃ attributes to the inventory
costs (i.e., holding, shortage, ordering, and purchase costs) and Ũ denotes storage capacities. Additionally,
the matrices A, B, N are coefficient matrices and the vectors z and x represent binary and integer variables,
respectively. Here, it is presumed that the vectors f̃ , c̃, and Ũ are tainted with epistemic uncertainty. Noteworthy,
the necessity measure (Nec), as the most conservative fuzzy measure and at the same time the closest fuzzy
measure to certainty [49], is utilized to model the possibilistic chance constraints with imprecise parameters.
The fuzzy expected value operator (i.e., E [.]) is also used for adapting the possibilistic objective function into
the crisp counterpart. Regarding to the above-mentioned descriptions, the PCCP formulation can be formulated
as below:

Min E [w] = E [f̃ ]z + E [c̃]x (5.6)

Bx ≤ 0 (5.7)

Nec
{
Ax ≤ Ũz

}
≥ α (5.8)

Nz = 1 (5.9)

z ∈ {0, 1} , x ≥ 0 Integer, (5.10)

where α denotes the minimum confidence level of chance constraint. The crisp counterpart formulation of
the aforementioned model (i.e., PCCP model) can be also presented as follows (see, Dubois and Prade [53],
Heilpern [54], and Inuiguchi and Ramlk [50]):

Min E [w] =
f1 + f2 + f3 + f4

4
z +

c1 + c2 + c3 + c4
4

x (5.11)

Bx ≤ 0 (5.12)

Ax ≤ [αU1 + (1− α)U2] z (5.13)

Nz = 1 (5.14)

z ∈ {0, 1} , x ≥ 0 Integer. (5.15)

Based on the PCCP model, the RPP model can be formulated as follows:

Min obj=E [w] + γ(wmax − wmin) + δ [αU1 + (1− α)U2 − U1] z (5.16)

Bx ≤ 0 (5.17)

Ax ≤ [αU1 + (1− α)U2]z (5.18)

Nz = 1 (5.19)

z ∈ {0, 1} , x ≥ 0 Integer .5 < α ≤ 1 . (5.20)

Similar to the PCCP model, the first term of the objective function shows the expected value of w, which
measures average total performance of the related system. The second term, i.e.,γ(wmax−wmin), represents the
difference between two extreme possible values of w. In other words, wmax and wmin are obtained as follows:

wmax = f4z + c4x, (5.21)

wmin = f1z + c1x. (5.22)

Besides, γ indicates the importance of this term against the two other terms in objective function. Indeed, this
term aims to measure the optimality robustness of the solution. The third term of the objective function, i.e.,
δ[αU1 + (1− α)U2−U1], shows feasibility penalty function, which is applied to penalize violation of the control
constraint. In other words, [αU1 + (1− α)U2 − U1] illustrates the difference between the value used in chance
constraint and the worst case value of imprecise parameter and δ is also the weight of this term in objective
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Figure 5. Flowchart of the proposed algorithm.

Figure 6. Example of location-allocation representation.

function. In contrast to the PCCP model, here, the minimum confidence level of chance constraint (i.e., α) is
a decision variable and its value is specified by optimizing the mentioned model. Therefore, RPP model avoids
subjective judgment about the best value of α and determines the global optimum value for it. With respect to
the aforementioned explanations, the objective function of RPP model aims to identify the trade-off solutions
between three terms: (4.1) average performance, (4.2) optimality robustness, and (4.3) feasibility robustness [49].

6. Solution method

The presented problem obviously is an extension of the CFLP that is a well known NP-hard problem [13].
Therefore, we develop an SA algorithm to solve the problem in a reasonable time. This algorithm is one of the
powerful meta-heuristic techniques, which have been successfully used to tackle complex models in the literature
of joint location-inventory problems (see e.g., Ahmadi Javid and Azad [55] and Nekooghadirli et al. [56], etc.).
The problem is decomposed into two sub-problems during the algorithm run. First, the location-allocation
decisions are determined. Then, using the results of pervious stage, the inventory decisions and the confidence
levels are specified. This process continues until the algorithm terminates. The flowchart of this process is
illustrated in Figure 5. In this section, we first explain these two sub-problems and then describe the proposed
meta-heuristic algorithm in details.

6.1. Location-allocation phase

At this stage, an array 1×n is created, where n is the number of retailers. Each cell of the array shows which
facility supplies the demands of the corresponding retailer. A sample array is depicted in Figure 6, in which the
retailers 1, 2, and 3 are allocated to the DCs 3, 2, and 3, respectively.
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6.2. Inventory and confidence level phase

Using the array introduced in Section 6.1, the opened DCs and their allocations can be determined. In the
second stage, the optimal inventory policy and confidence levels for opened DCs are to be specified. Here, the
following model should be optimized for each opened DC (k is index of opened DCs).

Min objk (αk, Sk, Qk) = E [w
′

k] + γ (w
′

kmax
− w

′

kmin
) + δ [αkUk1 + (1− αk)Uk2 − Uk1 ] (6.1)

QK ≥ Sk + 1 (6.2)

Sk +Qk ≤ αkUk1 + (1− αk)Uk2 (6.3)

Sk, Qk ≥ 0 integer, .5 < αk ≤ 1, (6.4)

where,

w̃
′

k = θ
[
h̃kMIk + π̃kSOk + ÃkROk + C̃kROkQk

]
+ ϑg̃k

1− P0k (0)−
Qk+Sk∑
j=1

P1k (j)

 . (6.5)

And,

g̃k =
∑
i∈I

T̃kiykiλi. (6.6)

For solving the above model, we suggest the following algorithm.

Step 1: Choose the distinguish ability constant ε such that 2 × E > 0, and the allowable final length of
uncertainty such that l > 0. Let [αk1 , αk2 ] be the initial interval of uncertainty (we take it [0.5,1]).

Step 2: Obtain Ωk =
αk1+αk2

2 − ε and φk =
αk1+αk2

2 + ε.
Step 3: Let Sk = 0 and Obj∗1k = inf, where inf is a big number.
Step 4: Let Qk = Sk + 1.
Step 5: Solve the equilibrium relations and obtain the steady-state probabilities.
Step 6: Obtain the required performance measures.
Step 7: Compute objk(Ωk, Sk, Qk).
Step 8: If Obj∗1k > objk(Ωk, Sk, Qk), let Obj∗1k = objk(Ωk, Sk, Qk).
Step 9: If Qk > Ωk ∗ Uk1 + (1−Ωk) ∗ Uk2 − Sk go to step 10. Otherwise, let Qk = Qk + 1 and go to step 5.

Step 10: If Sk >
[
Ωk∗Uk1+(1−Ωk)∗Uk2

2

]
go to step 11. Otherwise, let Sk = Sk + 1 and go to step 4.

Step 11: Let Sk = 0 and Obj∗2k = inf, where inf is a big number.
Step 12: Let Qk = Sk + 1.
Step 13: Solve the equilibrium relations and obtain the steady-state probabilities.
Step 14: Obtain the required performance measures.
Step 15: Compute objk(φk, Sk, Qk).
Step 16: If Obj∗2k > objk(φk, Sk, Qk) let Obj∗2k = objk(φk, Sk, Qk).
Step 17: If Qk > φk ∗ Uk1 + (1 − φk) ∗ Uk2 − Sk then go to step 18. Otherwise, let Qk = Qk + 1 and go to

step 13.

Step 18: If Sk >
[
φk∗Uk1+(1−φk)∗Uk2

2

]
, go to step 19. Otherwise, let Sk = Sk + 1 and go to step 12.

Step 19: If Obj∗1k < obj∗2k , then let αk2 = φk. Otherwise let αk1 = Ωk
Step 20: If αk2 − αk1 < l, then stop and let OW ∗k = min(Obj∗1k , Obj

∗2
k ). Otherwise, go to step 2.

The pseudo code of the algorithm is also illustrated in Figure 7.



1160 E. DEHGHANI ET AL.

Figure 7. Pseudo code of the proposed algorithm for determining the inventory decision and
confidence level.

After we obtain the value of OW ∗k for each opened DC, the value of TC (SO) for corresponding array can be
calculated as follows:

TC (SO) =
∑
k∈A

E [F̃k] + γ (Fk4 − Fk1) +OW ∗k , (6.7)
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where A is the set of opened DCs in solution SO.

6.3. The proposed SA algorithm

SA was first introduced by Metropolis et al. [57] and later popularized by Kirkpatrick et al. [58]. The SA is
an appropriate solution method for solving complex problems with large solution spaces and produces results
close to the global optimum value in a short period of time [59]. The basic idea behind SA is to permit moves
resulting in solutions with worse quality than the current solution (uphill moves) in order to escape from local
optimum.

The algorithm typically starts from a randomly created initial solution, and randomly transforms to neighbor
solution. If there is an improvement in the objective function (−∆E), transformation to a new solution is
accepted. In addition, the algorithm escapes from a local optimum through accepting not improved solutions

with probability e
−∆E
T . Temperature plays an important role in acceptance of not improved solutions, where the

probability of acceptance will decrease by decreasing of temperature and vice versa. In addition, by decreasing
temperature with low rate at each state, the solution space is searched better.

Now, we describe the implemented SA algorithm. First, we define the parameters of the algorithm as follows:

T Current temperature;
Tf final temperature;
T0 Initial temperature;
ISA−main Maximum number of not improved solutions in the outside loop;
ISA−inner Maximum number of not improved solutions in the inside loop;
NTmain Counter of not improved solutions in the outside loop;
NTinner Counter of not improved solutions in the inside loop;
SO Current solution;
SO0 Initial solution;

SO
′

Solution, which is selected in neighborhood SO;
SObest Best found solution;
TC(SO) Objective function of solution SO;
CR Cooling rate.

The steps of proposed SA algorithm are as follows:

Step 1: Create the initial solution SO0 randomly and let SO = SO0, SObest = SO0, T = T0, NTmain = 0,
NTinner = 0, and Y=False.

Step 2: Create the solution SO
′

in neighborhood SO.
Step 3: Obtain ∆E. If ∆E ≤ 0, let SO = SO

′
. Otherwise, produce a random number falling in the (0, 1)

interval and let it r. If r < e−∆E
T then let SO = SO

′
.

Step 4: If TC(SO) < TC(SObest), then let SObest = SO, NTinner = 0, and Y=True. Otherwise, let NTinner =
NTinner + 1.

Step 5: If NTinner > ISA−inner, go to step 7. Otherwise, go to step 2.
Step 6: Let T = CR ∗ T
Step 7: If Y=True, then NTmain = 0. Otherwise, let NTmain = NTmain + 1.
Step 8: Let Y=False.
Step 9: If NTmain > Imain or T < Tf , then stop. Otherwise, go to step 2.

In Figure 8, the pseudo code of the SA algorithm is given.
In the following, the aspects of the proposed algorithm will be described.
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Figure 8. Pseudo code of the proposed SA.



A HYBRID MARKOV PROCESS-MATHEMATICAL PROGRAMMING APPROACH 1163

Table 2. Distribution of the generated parameters.

hk αk βk Ak Ck πk Fk λ
′

i Uk µ Tki Θ ϑ

U[25,35] U[2,3] U[4,5] U[5,10] U[5,10] U[70,80] U[5000,6500] U[75,110] U[15,20] U[150,350] N[4,10] 1 1

6.3.1. Move

Two procedures are utilized to generate a neighbor for solution SO that one of them is randomly selected
with the same probability.

1. Two retailers that are supplied by different DCs are selected randomly and then their DCs are exchanged.
2. A retailer is selected randomly and then a new random DC is considered for it.

6.3.2. Temperature reduction function

The temperature is reduced based on the following geometric function.

Tit = CR× Tit−1. (6.8)

6.3.3. Equilibrium condition

At each temperature, when there is no improvement after predetermined number of iterations (ISA−inner),
the equilibrium condition is applied.

6.3.4. Stopping criterion

The algorithm is terminated when one of two conditions is satisfied; the current temperature is less than the
final temperature Tf or the algorithm is not improved after predetermined number of iterations (ISA−main).

7. Computational results

In this section, we perform wide experiments to evaluate the effectiveness and efficiency of the proposed
algorithm. Likewise, we conduct sensitivity analysis and draw some important insights. The algorithm is coded
in C++ language and run on a PC with Intel (R) Core (TM) i5-3210M CPU @ 2.50Hz with 4.00GB of RAM. For
each problem instance, we run the algorithm five times and the average of results is reported. The parameters of
the model are uniformly generated that their ranges are given in Table 2. For each fuzzy parameter, the random
generated value is considered for the value of ξ3 and other prominent values, i.e., ξ1, ξ2, and ξ4, are respectively
obtained by multiplying the numbers 0.33, 0.5, and 1.33 by the value of ξ3.

7.1. Parameter tuning

In this part, we aim to tune the values of algorithm parameters regarding two objectives, which include
quality of solution (cost) and CPU time of algorithm. To do so, we apply a procedure, first introduced by
Shishebori et al. [60], which has been built based on 2k factorial design. In this procedure, each objective is
considered as a response and expressed by a regression model shown by equation (7.1).

RE (x1, x2, . . . , xK) = βE0 +

K∑
i=1

βEixi +
∑∑

i<j

βEijxixj , (7.1)
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Table 3. Considered factors and their levels for the proposed algorithm.

NO Factors Low level High level

1 T0 1000 1200
2 Tf 0.01 0.03
3 CR 0.9 0.95
4 ISA−inner 60 75
5 ISA−main 15 25

Table 4. Regression model coefficients related to solution quality.

βo β1 β2 β3 β4 β5 β12 β13 β14 β15 β23 β24 β25 β34 β35 β45
104090 −196 587 960 290 181 −408 −407 265 45 446 −91 −54 88 −16 −307
β123 β124 β125 β134 β135 β145 β234 β235 β245 β345 β1234 β1235 β1245 β1345 β2345 β12345
−512 −234 140 188 17 379 −151 −276 −409 −535 −409 −101 98 208 −602 −152

Table 5. Regression model coefficients related to CPU Time.

βo β1 β2 β3 β4 β5 β12 β13 β14 β15 β23 β24 β25 β34 β35 β45
67.14 −0.83 −0.03 9.84 7.42 6.12 −0.85 −0.16 −1.06 0.97 −0.37 −3.06 −1.39 0.6 3.45 1.4
β123 β124 β125 β134 β135 β145 β234 β235 β245 β345 β1234 β1235 β1245 β1345 β2345 β12345
−0.36 0.05 0.72 0.42 −0.74 2.77 −2.29 0.15 −1.56 1.12 −2.55 −0.14 0.59 1.88 −1.77 0.63

where the βEs are regression coefficients and xi is coded variable of factor i, i.e., if the factor i is at high level,
xi is equal to +1 and if it is at low level, then xi is equal to −1. Coded variables are often easy to interpret
and preferred for comparing engineering units [61]. As shown in Table 3, five factors are taken into account
to investigate their impacts on the performances of the algorithm. Each factor is also regarded at two levels
and the design is replicated twice. Therefore, 64 experiments are performed while their orders are randomly
generated. The coefficients of each response regression model are reported in Tables 4 and 5. Also, Figures 9
and 10 exhibit the normal probability plots of residuals. It is worth noting that residuals are calculated as the
estimates of experimental errors obtained by subtracting the observed responses from the predicted responses.
From these figures, it seems that the normality assumptions of residuals are agreeable, so we have no reason to
be doubtful that there are any problem with the accuracy of the results.

Each objective is independently optimized using general algebraic modeling system (GAMS) -version 24.1-
software, where CONOPT solver is implemented to solve it. The results are summarized in Table 6. According
to this table, there are some conflicts in the results that we cannot simultaneously adjust a specified constant
value for each factor. Therefore, we utilize a multi-objective optimization method to determine the best values
of the factors. To this aim, we employ the weighted sum method, as shown in equation (7.2).

Z =

2∑
m=1

WOm

∣∣∣∣REm −RE∗mRE∗m

∣∣∣∣ , (7.2)

where WOm and RE∗m are the weight and the optimal value of the response m, respectively. The multi-objective
model is also optimized using GAMS software that the results (i.e., the optimal values of factors) are given in
Table 7. It should be pointed out that the values of WO1 and WO2 are equal to 0.6 and 0.4, respectively.
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Figure 9. Normal probability plot of residuals related to solution quality.

Figure 10. Normal probability plot of residuals related to CPU time.

Table 6. Best value of the considered factors.

Objectivefunction X∗1 X∗2 X∗3 X∗4 X∗5

Quality −1 −1 −1 −1 −1
CPU time −1 −1 +1 −1 −1
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Table 7. Best value of the considered factors.

Objective function X∗1 X∗2 X∗3 X∗4 X∗5

Quality and CPU time +1 −1 +1 −1 +1

Table 8. Comparison of FEM and GAMS software with the proposed algorithm.

No #
Potential
DCs

#
Retailers

GAMS FEM Proposed
algorithm

Cost ($) CPU
time
(sec)

Cost ($) CPU
time
(sec)

Cost ($) CPU
time
(sec)

GAP1
(%)

GAP2
(%)

1 2 4 50 690.23 6 307.2 50 690.23 0.29 50 690.23 9.71 0 0
2 3 7 78 599.52 9 602.64 78 599.52 48.64 78 599.52 13.42 0 0
3 4 9 105 115.01 10800

Limit
103 388.42 6 252.26 103 388.42 16.97 0 1.64

4 5 10 117 112.52 10800
Limit

114 293.48 209 764.37 114 323.04 48.83 −0.02 2.38

5 6 15 181 420.17 10800
Limit

– – 175 948.1802 98.003 – 3.01

GAP1(%) = 100× (FEM. Cost− SA.Cost) /FEM.Cost.

GAP2(%) = 100× (GAMS. Cost− SA.Cost) /Gams.Cost.

7.2. Validating the proposed algorithm

In order to validate the applicability and effectiveness of the proposed algorithm, its performance is first
compared with full enumeration method (FEM) and GAMS software. FEM tests all possible solutions for array
introduced in Section 6.1 and chooses the best solution. In other words, if the problem includes n retailers and
m potential DCs, then all mn alternative solutions are checked. From Table 8, one can see that the solutions
of the proposed algorithm are optimal for instances 1, 2, and 3 and the gap is 0.02% for instance 4. Thus, it is
evident that the solutions of the proposed algorithm are optimal or near-optimal. For instance 5, FEM is unable
to report solution within 72 hours, while the maximum CPU time of the proposed algorithm is 98.003 seconds.
Therefore, with increase in size of the problem, the CPU time of FEM exponentially grows, while it has not
significant effect on the CPU time of the proposed solution approach. The results also corroborate that the
proposed algorithm has better performances than GAMS software in both terms of the solution quality and
CPU time.

The proposed algorithm is also compared with the genetic algorithm in larger instances. The initial solutions
and stopping criterion for both algorithms have been accounted to be identical. The results are given in Table 9.
What is observed from the results is that in term of CPU time, the proposed algorithm outperforms the genetic
algorithm. As such, in term of solution quality, the proposed algorithm mainly has better performances. Overall,
it can be resulted that the proposed algorithm performs efficiently.

7.3. Sensitivity analysis

In this section, sensitivity analysis is carried out to investigate the impacts of parameters on the number of
opened DCs and the objective function.
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Table 9. Comparison of the genetic algorithm with the proposed algorithm in larger size instances.

Genetic algorithm Proposed algorithm GAP(%)

Data set No #
Potential
depots

#
Retailers

Cost ($) CPU
time
(sec)

Cost ($) CPU
time
(sec)

Medium 1 6 15 175 922.3 114.45 175 948.18 98.003 −0.0147
2 8 20 242 408.1 182.545 242 510.13 152.997 −0.04280
3 10 25 297 247.5 232.241 297 069.84 194.617 0.0597
4 12 35 413 632.8 395.776 410 854.63 319.184 0.671
5 15 45 539 702.7 572.375 533 092.37 414.767 1.2248

Large 6 17 55 647 988.4 786.22 636 255.89 669.877 1.8106
7 19 70 813 654.9 1 166.143 790 903.81 959.478 2.7961
8 21 80 922 279.9 1 323.44 901 226.33 1 203.768 2.2827
9 28 95 1 111 873 1 536.85 1 074 769.8 1 455.63 3.337
10 35 100 1 154 040 16 451.52 1 123 858.60 1 596.881 2.6152

GAP(%) = 100 × (GA.Cost − SA.Cost) /GA.Cost.

Figure 11. Sensitivity analysis of the number of opened DCs with respect to the value of µ.

7.3.1. Number of opened DCs

This sub-section aims to examine the effects of parameters on the number of established DCs. Figure 11
shows as the value of µ gets to be larger, the number of opened DCs decreases. The rationale behind this is
that with increase in the value of µ, the orders of opened DCs are supplied sooner and less retailer demands are
lost. Therefore, an opened DC can cover more retailers and the supply chain opens less opened DCs to decrease
its setup costs. We multiply different integer coefficients by the repair and break rates of potential DCs and
then study their impacts on the number of opened DCs. The results are shown in Figure 12. It can be seen that
when the repair rates of potential DCs increase, more DCs are opened. On the other hand, as the break rates
of potential DCs increase, the number of opened DCs decreases. It is manifested that the supply chain tends
to open more strength DCs. Figure 13 compares the number of opened DCs for different instances between the
PCCP and RPP models. What is seen form the results is that the number of opened DCs in the RPP model is
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Figure 12. Sensitivity analysis of the number of opened DCs with respect to the coefficients
multiplied by repair rates and break rates of potential DCs.

Figure 13. Comparing the number of opened DCs between the PCCP and RPP models in
different instances.

greater than or equal to the one in the PCCP model. This highlights that the RPP model provides a risk-averse
method to propose solution that is less sensitive to the variations in the noisy and uncertain data. Figure 14
displays with increase in optimality robustness importance, the number of opened DCs increases in order to
decrease the difference between the two extreme possible values of the objective function and keep it close to
optimal value under almost all possible realizations.

7.3.2. Objective function

We now investigate the behavior of the objective function with respect to the value of µ, the repair rates and
the break rates of potential DCs. As shown in Figure 15, with increase in the value of µ, the objective function
decreases. The intriguing point is that the rate of decrease in the objective function becomes more stabilized
towards the larger values of µ. Practically, it can be inferred that if the supplier can decrease its lead-time in
small ranges of µ, significant cost saving may be realized, while much improvement cannot be brought in larger
values of µ. Figure 16 displays when the strength of potential DCs increases (i.e., the break rates/repair rates
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Figure 14. Sensitivity analysis of the number of opened DCs with respect to the value of γ.

Figure 15. Sensitivity analysis of the objective function with respect to the value of µ.

of DCs decrease/increase), the costs of supply chain dramatically decrease. Indeed, as the strength of potential
DCs gets to be larger, DCs are more capable to satisfy the demands and fewer demands are lost.

8. Performance analysis of the RPP model

In order to evaluate the effectiveness and desirability of the RPP model, we compare it with the PCCP model.
For this end, 100 realizations of uncertain parameters are uniformly generated. In fact, if ξ = (ξ1, ξ2, ξ3, ξ4) is
an imprecise parameter with trapezoidal possibility distribution, the realization is created by generating a
random number uniformly between the two extreme points of the related possibility distribution function (i.e.,
ξreal ∼ [ξ1, ξ4]). Then, the solutions of the RPP and PCCP models are achieved (i.e., (x∗, z∗)) and substituted
in a linear programming model that its compact form is as follows:

minw = frealz
∗ + crealx

∗ + ωR (8.1)

Ax∗ −R ≤ Ureal z
∗ (8.2)

Bx∗ ≤ 0 (8.3)

Nx∗ = 1 (8.4)
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Figure 16. Sensitivity analysis of the objective function with respect to the coefficient
multiplied by repair rates and break rates of potential DCs.

Figure 17. Comparison between the RPP and PCCP models with respect to the average of
the objective functions under random realizations.

R ≥ 0. (8.5)

In above linear programming model, R is a decision variable that denotes the violation of chance constraint
under random realization. In other words, if a constraint violates the corresponding crisped capacity, the value of
R is greater than zero and otherwise, it equals zero. In addition, ω represents violation penalty. The average and
standard deviation of the objective functions under random realizations are utilized to compare the performance
of the models. The results of this experiment are demonstrated in Figures 17 and 18.

From Figure 17, it can be observed that with respect to the average of the objective functions, the performance
of the RPP model is better when the value of ω is greater than about 6000. Additionally, Figure 18 illustrates
that in term of standard deviation, the RPP model has a better performance as the value of ω is greater than
about 4000. All in all, it can be said that under higher values of ω, the RPP model is more applicable versus
the PCCP model.
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Figure 18. Comparison between the RPP and PCCP models with respect to the standard
deviation of the objective functions under random realizations.

9. Conclusions

This paper proposes a joint location-inventory problem to design the distribution network of a supply chain
under random supply disruptions. Motivated by shortcomings in the literature, this study develops a hybrid
framework based on the Markov process and mathematical programming techniques to determine decisions
across the supply chain simultaneously. In the first phase, some performance features of inventory policy, i.e., the
number of reorders, the number of shortages, and the mean inventory level are derived using the Markov process.
In the second phase, based on the outputs of the Markov process, the location-inventory model is formulated
to determine four decisions: (4.1) the number of facilities to be located; (4.2) the location of facilities; (4.3)
the assignment of retailers to opened facilities; and (4.4) the optimal inventory policy at each established
facility.

This paper contributes to the literature of joint location-inventory problem through the following avenues.
The proposed location-inventory model is able to incorporate random supply disruptions in the problem. That
is, opened facilities change intermittently between available and unavailable states that period of each state is
considered under uncertainty. Considering lost sale shortages is the other issue that distinguishes this study
from the ones existed in the literature. The demands of retailers and lead-time are also uncertain to make the
problem more realistic. In addition, to the best of our knowledge, this is the first time in the location-inventory
problems that a robust possibilistic program is implemented to tackle the lack of knowledge about the real
value of input parameters. Finally, since the proposed problem belongs to the class of NP-hard problems, an
SA-based meta-heuristic algorithm is developed to solve the problem in an efficient way.

Wide experiments are conducted to analyze the performances of the proposed hybrid approach and the
algorithm. The numerical results propose a number of insights. Specially, we show that (4.1) the proposed
solution approach performs efficiently for different sizes of the problem; (4.2) RPP provides solution that is less
sensitive to the variations in the noisy and uncertain data; (4.3) the supply chain tends to open more strength
DCs as well as the costs of supply chain dramatically decrease when the strength of DCs gets to be larger; (4.4)
significant cost savings may be realized, if the supplier can improve its lead-time in small ranges of µ; and (4.5)
under higher values of ω, the RPP model is more applicable versus the PCCP model.

The current study can be extended in a number of promising ways. Addressing routing decisions in order to
investigate the joint location, inventory, and routing problem is an attractive subject for future research. The
proposed problem can also be extended by accounting multi-product models, multi-echelon inventory control,
and lateral transshipments between facilities. Finally, regarding computational complexity of the problem, future
research may be aimed to develop other meta-heuristic methods for solving it.
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