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STRONG GEODETIC PROBLEM ON CARTESIAN PRODUCTS OF

GRAPHS

Vesna Iršič1,2 and Sandi Klavžar1,2,3,*

Abstract. The strong geodetic problem is a recent variation of the geodetic problem. For a graph
G, its strong geodetic number sg(G) is the cardinality of a smallest vertex subset S, such that each
vertex of G lies on a fixed shortest path between a pair of vertices from S. In this paper, the strong
geodetic problem is studied on the Cartesian product of graphs. A general upper bound for sg(G�H)
is determined, as well as exact values for Km�Kn, K1,k �Pl, and prisms over Kn–e. Connections
between the strong geodetic number of a graph and its subgraphs are also discussed.
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1. Introduction

Covering vertices of a graph with shortest paths is a natural (optimization) problem arising from different
applied problems that respectively led to several different graph theory models. The seminal of them, the geodetic
problem [10], aims to find a smallest subset of vertices of a given graph such that the geodesics between them cover
all its vertices, see the review [2]. Recent studies on this problem have focused on characterizations of graphs
with large geodetic number [1], on geodesic graphs [19], and connections between the geodetic problem and a
block decomposition [5]. Applications of the geodetic problem can be found in convexity theory [3, 12, 14, 18]
and in game theory [8].

Another variation of the problem of covering vertices with shortest paths is the isometric path problem [6]
where the aim is to determine the minimum number of shortest paths required to cover all the vertices of a
graph. Following [6] this problem has been investigated on Cartesian products of graphs [7], in particular on
Hamming graphs as well as on complete r-partite graphs in [17].

Motivated by applications in social networks, the strong geodetic problem was introduced in [15] as follows.
Let G = (V,E) be a graph. Given a set S ⊆ V , for each pair of vertices {x, y} ⊆ S, x 6= y, let g̃(x, y) be a
selected fixed shortest path between x and y. We set

Ĩ(S) = {g̃(x, y) : x, y ∈ S} ,
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and V (Ĩ(S)) =
⋃

P̃∈Ĩ(S) V (P̃ ). If V (Ĩ(S)) = V for some Ĩ(S), then the set S is called a strong geodetic set. For

a graph G with just one vertex, we consider the vertex as its unique strong geodetic set. The strong geodetic
problem is to find a minimum strong geodetic set of G. The cardinality of a minimum strong geodetic set is the
strong geodetic number of G and is denoted by sg(G).

In the first paper [15] on the strong geodetic number, this invariant has been determined for complete
Apollonian networks and it was proved that the problem is NP-complete. Then, in [13], the problem was
studied on grids and cylinders. Among other results it was proved that if r is large enough compared to n, then
sg(Pr �Pn) = d2

√
n e. Some general properties of the strong geodesic problem, in particular with respect to the

diameter, and a solution for balanced complete bipartite graphs has been very recently reported in [11]. We also
refer to [16] for an edge version of the problem.

In this paper, the strong geodesic problem is studied on Cartesian product graphs. In the next section we give
several upper bounds on sg(G�H) and study their sharpness. In Section 3 we determine the strong geodetic
number for several families of Cartesian products, including products of complete graphs. We also discuss a
possible lower bound for sg(G�H). Motivated by this discussion, in the final section we focus on possible
connections between the strong geodetic number of a graph and its subgraphs. But first we list necessary
definitions.

All graphs considered in this paper are simple and connected. The distance dG(u, v) between vertices u and
v of a graph G is the number of edges on a shortest u, v-path (u, v-geodesic). The diameter diam(G) of G is the
maximum distance between vertices of G. We denote the order of a graph G by n(G). A vertex v of a graph G
is simplicial if its neighborhood induces a clique. We will use the notation [n] = {1, . . . , n} and the convention
that V (Pn) = V (Kn) = V (Cn) = [n] for any n ≥ 1, where the edges of the path Pn, the complete graph Kn,
and the cycle Cn are defined in the natural way.

The Cartesian product G�H of graphs G and H is the graph with vertex set V (G) × V (H), where the
vertices (g, h) and (g′, h′) are adjacent if either g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). If h ∈ V (H),
then a subgraph of G�H induced by the set of vertices {(x, h); x ∈ V (G)} is isomorphic to G; it is denoted by
Gh and called a G-layer, a horizontal layer or a row. Analogously H-layers are defined; if g ∈ V (G), then the
corresponding H-layer, called a vertical layer or a column, is denoted gH. Moreover, if X is a subgraph of G,
then its isomorphic copy from the layer Gh will be denoted with Xh. Similarly, if Y is a subgraph of H, then
its isomorphic copy in the layer gH will be denoted with gY .

2. Upper bounds on sg(G�H)

The investigations from [13] indicate that it is not easy to determine the strong geodetic number of an
arbitrary integer grid, that is, sg(Pr �Pn). As these grids are among the simplest Cartesian product graphs, it
would be too ambitious to expect a formula for sg(G�H). In this section we therefore consider upper bounds
for sg(G�H) and discuss their sharpness.

Note first that lifting a strong geodetic set of G (resp. H) into each of the G-layers (resp. H-layers) yields
sg(G�H) ≤ min{sg(G)n(H), sg(H)n(G)}. This observation can be improved as follows.

Theorem 2.1. If G and H are graphs, then

sg(G�H) ≤ min{sg(H)n(G)− sg(G) + 1, sg(G)n(H)− sg(H) + 1}.

Proof. Since the Cartesian product operation is commutative, it suffices to prove that sg(G�H) ≤ sg(H)n(G)−
sg(G) + 1.

Let SG be a strong geodetic set of G, Ĩ(SG) fixed geodesics in G, SH a strong geodetic set of H, and

Ĩ(SH) fixed geodesics in H, where |SG| = sg(G) = k and |SH | = sg(H) = l. Set SG = {g0, g1, . . . , gk−1} and

SH = {h0, h1, . . . , hl−1}. Denote with Pi the g0, gi-geodesic from Ĩ(SG) for all i ∈ [k − 1] and with Qj the

h0, hj-geodesic from Ĩ(SH) for all j ∈ [l − 1].
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Figure 1. A graph G3 and its strong geodetic set.

Define T = (V (G) × SH) − {(gi, h0); i ∈ [k − 1]}. Clearly, |T | = sg(H)n(G) − sg(G) + 1. We claim that T
is a strong geodetic set of G�H. To show it, we first fix geodesics in H-layers between vertices from T in the
same way as they are fixed in Ĩ(SH). The only (possibly) uncovered vertices are the ones lying in H-layers giH
for i ∈ [k − 1] that lie on paths giQj for j ∈ [l − 1]. To cover them we fix (gi, hj), (g0, h0)-geodesics as paths
giQj joined with Ph0

i for all i ∈ [k − 1], j ∈ [l − 1]. In this way all the vertices of G�H are covered, hence
sg(G�H) ≤ |T |.

If n ≥ 2, then sg(Pn�K2) = 3 = sg(Pn)n(K2) − sg(K2) + 1. This example shows that the inequality of
Theorem 2.1 is best possible. To construct more sharpness examples we need the following general property.

Lemma 2.2. If G and H are graphs, v is a simplicial vertex of G, and S is a strong geodetic set of G�H,
then S ∩ vH 6= ∅.

Proof. Suppose on the contrary that S ∩ vH = ∅. Let P ∈ Ĩ(S) be an arbitrary geodesic that contains some
vertices of vH. By the assumption, P starts and ends outside vH. Let (g, h) be the first vertex of P with a
neighbor in vH and let (g′, h′) be the first subsequent vertex of P that does not lie in vH. Suppose g 6= g′.
Then a ((g, h), (g, h′))-geodesic together with the edge (g, h′)(g′, h′) (which exists since v is a simplicial vertex
of G) yields a shorter ((g, h), (g′, h′))-path than the ((g, h), (g′, h′))-subpath of P , a contradiction with the fact
that P is a geodesic. If g = g′ we get the same contradiction, except that there is no need to add the edge
(g, h′)(g′, h′).

If n ≥ 3, then let Gn be the graph obtained from C3n by adding vertices u, v, w and edges u ∼ 1, v ∼ n + 1,
and w ∼ 2n + 1; cf. Figure 1 for G3.

Recall from [15] that a simplicial vertex lies in every strong geodetic set. Hence sg(Gn) ≥ 3. On the other
hand, {u, v, w} is a strong geodetic set which implies that sg(Gn) = 3. (We note that for the geodetic problem
the graphs G with the property that the set of simplicial vertices of G is geodetic, were studied under the name
extreme geodesic graphs [4].) Consider now the product Gn�K2. By Lemma 2.2 we have sg(Gn�K2) ≥ 3.
Suppose sg(Gn�K2) = 4 and let S be a strong geodetic set with |S| = 4. Then S must have two vertices
in each of the Gn-layers. Thus, applying Lemma 2.2 again, we can assume without loss of generality that
{(u, 1), (v, 2), (w, 2)} ⊆ S. If s is the fourth vertex of S, then s lies in G1

n and equals one of (n+ 2, 1), . . . , (2n, 1),

for otherwise these vertices could not lie on any geodesic from Ĩ(S). Without loss of generality assume that the
s, (u, 1)-geodesic contains the vertex (n + 1, 1). But then it is not possible to cover all vertices (2n + 2, 1), (2n +
2, 2), . . . , (2n− 1, 1), (2n− 1, 2), as n ≥ 3. In conclusion,

sg(Gn�K2) = 5 = sg(Gn)n(K2)− sg(K2) + 1 ,

hence we have constructed another infinite family attaining equality in Theorem 2.1.
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If G = (V,E) is a graph and S ⊆ V , then S is called a 2-packing if d(x, y) ≥ 3 holds for any x, y ∈ S, x 6= y.
Equivalently, S is not a 2-packing if and only if S contains vertices u 6= v such that d(u, v) ≤ 2. Now we can
improve Theorem 2.1 in the following case.

Proposition 2.3. If G is a graph with sg(G) ≥ 3 that admits a strong geodetic set which is not a 2-packing,
then

sg(G�Kn) ≤ n sg(G)− n.

Proof. Let S be a strong geodetic set of a graph G with the desired properties: |S| = sg(G) = k and S =

{u, v, u1, . . . , uk−2}, where d(u, v) ≤ 2. Let Ĩ(S) be a set of fixed geodesics. Let Puv ∈ Ĩ(S) be the path between

u and v and note that the length of Puv is either 1 or 2. For i ∈ [k − 2] denote by Pi ∈ Ĩ(S) the u, ui-geodesic

and by Qi ∈ Ĩ(S) the v, ui-geodesic.
Set T = ((S − {u})× {1}) ∪ ((S − {v})× {2, . . . , n}). Clearly, |T | = nsg(G)− n. Fix the same geodesics as

in Ĩ(S) between vertices in (S −{u})×{1} and between vertices in (S −{v})×{j} for all j ∈ {2, . . . , n}. Some
possibly uncovered vertices are the ones lying on paths P 1

i in G1 and on paths Qj
i in Gj for j ∈ {2, . . . , n}. Thus

we also fix geodesics P 1
i joined with the edge (u, 1) ∼ (u, 2) for all i ∈ [k − 2] and geodesics Qj

i joined with the
edge (v, j) ∼ (v, 1) for all i ∈ [k − 2] and j ∈ {3, . . . , n}.

If d(u, v) = 1, all vertices are already covered. If d(u, v) = 2 and w is the middle vertex of the path Puv, the
only possible uncovered vertices are (w, j) for all j ∈ [n]. These can be covered by fixing geodesics P j

uv in Gj

joined with the edge (v, j) ∼ (v, 1) for all j ∈ {3, . . . , n} and a geodesic (v, 1) ∼ (w, 1) ∼ (w, 2) ∼ (u, 2). Hence,
sg(G�K2) ≤ nsg(G)− n.

We point out that Proposition 2.3 does not hold in the case when sg(G) = 2, that is, when G is isomorphic
to a path [11]. Indeed, if m ≥ 2, then sg(Pm�K2) = 3 and 2 sg(Pm)− 2 = 2.

A special case of this proposition is the following result for prisms.

Corollary 2.4. If G is a graph with sg(G) ≥ 3 that admits a strong geodetic set S which is not a 2-packing,
then

sg(G�K2) ≤ 2 sg(G)− 2.

Based on the above ideas, we can state our second main result of this section that generalizes Proposition 2.3
and in a special case decreases by 1 the upper bound of Theorem 2.1.

Theorem 2.5. If G is a graph, and H is a graph with sg(H) ≥ 3 that admits a strong geodetic set which is not
a 2-packing, then

sg(G�H) ≤ sg(H)n(G)− sg(G).

Proof. Let SH be a strong geodetic set of a graph H with the desired properties: |SH | = sg(H) = l ≥ 3 and

SH = {u, v, h1, . . . , hl−2}, where d(u, v) ≤ 2. Let Ĩ(SH) be a set of fixed geodesic that cover V (H). Let Puv ∈
Ĩ(SH) be the path between u and v. Denote by Pi ∈ Ĩ(SH) a fixed u, hi-geodesics and by Qi ∈ Ĩ(SH) a fixed
v, hi-geodesics for all i ∈ [l − 2].

Let SG be a strong geodetic set of G, Ĩ(SG) fixed geodesics and |SG| = sg(G) = k. Set SG = {w, g1, . . . , gk−1}.
Denote with Ri a fixed w, gi-geodesic from Ĩ(SG) for all i ∈ [k − 1].

Set T = (V (G) × SH) − ({(gi, u); i ∈ [k − 1]} ∪ {(w, v)}). Clearly, |T | = sg(H)n(G) − sg(G). Geodesics in

H-layers between vertices from T are fixed in the same way as in Ĩ(SH). The only (possibly) uncovered vertices
are the ones lying in H-layers giH for i ∈ [k − 1] that lie on paths giPj for j ∈ [l − 2] and those on paths wQj

in the layer wH for j ∈ [l − 2]. Thus we also fix (gi, hj), (w, u)-geodesics as paths giPj joined with Ru
i for all

i ∈ [k − 1], j ∈ [l − 2] and (w, hj), (gi, v)-geodesics as paths wQj joined with Rv
i for all i ∈ [k − 1], j ∈ [l − 2].
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If d(u, v) = 1, all vertices of G�H are already covered. If d(u, v) = 2 and t is the middle vertex on Puv, then
we also fix geodesic (gi, v) ∼ (gi, t) ∼ (w, t) ∼ (w, u) for all i ∈ [k − 1]. Now all vertices of G�H are covered,
hence sg(G�H) ≤ |T |.

Corollary 2.6. If G and H are graphs with diam(G) = diam(H) = 2 and sg(G), sg(H) ≥ 3, then

sg(G�H) ≤ min{sg(H)n(G)− sg(G), sg(G)n(H)− sg(H)}.

3. Exact values for some Cartesian products

In this section we determine the strong geodetic number of prisms over Kn–e (Thm. 3.1), of K1,k �Pl

(Prop. 3.2), and of Hamming graphs Km�Kn (Thm. 3.3). At the end of the section we pose a conjecture
asserting a general lower bound on sg(G�H). The conjecture has been verified for small prisms by computer
and is, provided it holds true, best possible by the results of this section.

Theorem 3.1. If n ≥ 5 is an integer, then sg(Kn − e) = sg((Kn − e)�K2) = n− 1.

Proof. Let G = Kn − e and e = {u, v}, u � v. Denote V (G) = {u, v, x1, . . . , xn−2}. As G is not a complete
graph, it follows from [11] that sg(G) ≤ n− 1. Let S be a minimum strong geodetic set of G. As vertices u and v
are simplicial, u, v ∈ S. Any u, v-geodesic covers exactly one other vertex, say xn−2. Thus S − {u, v} is a strong
geodetic set of G− {u, v, xn−2}, a complete graph on n− 3 vertices. Hence, sg(G) ≥ 2 + sg(Kn−3) = n− 1.

We now prove that sg(G�K2) ≤ n − 1. Consider S = {(u, 1), (u, 2), (v, 1), (v, 2)} and T = {(xi, 1); i ∈
{4, . . . , n− 2}}. Geodesics between vertices from S can be fixed in such a way that {(xi, j); i ∈ [3], j ∈ [2]} are
all covered. The remaining uncovered vertices can be covered with geodesics (xi, 1) ∼ (xi, 2) ∼ (u, 2). Hence,
S ∪ T is a strong geodetic set of the graph G�K2 and sg(G�K2) ≤ |S ∪ T | = 4 + (n− 5) = n− 1.

It remains to prove that sg(G�K2) ≥ n− 1. Notice that the longest geodesics and the only ones of length
3 in graph G�K2 are (u, 1), (v, 2)- and (u, 2), (v, 1)-geodesics. All other geodesics are of length 1 or 2 and can
therefore cover at most one K2-layer. Furthermore, any K2-layer that is not covered with one of the longest
geodesics must contain at least one vertex from the strong geodetic set. Let S be the minimum strong geodetic
set of G�K2 and Ĩ(S) the fixed geodesics. Consider the following cases:

(a) If Ĩ(S) contains two longest geodesics, then geodesics between vertices {(u, 1), (u, 2), (v, 1), (v, 2)} can
cover five different K2-layers. To cover the remaining n− 5 K2-layers, S must contain at least n− 5 more
vertices. Hence, |S| ≥ n− 1.

(b) If Ĩ(S) contains only one of the longest geodesics, this geodesic lies in three K2-layers. To cover the
remaining n− 3 K2-layers, we need at least n− 3 more vertices. Hence, |S| ≥ 2 + (n− 3) = n− 1.

(c) If Ĩ(S) contains none of the longest geodesics, then at most one vertex among {(u, 1), (u, 2), (v, 1), (v, 2)}
lies in S. Thus at least n− 1 K2-layers are still completely uncovered, hence |S| ≥ n− 1.

It follows from the above, that sg(G�K2) ≥ n− 1.

Notice that Theorem 3.1 does not hold for n ≤ 4, as sg(K4 − e) = 3 < 4 = sg((K4 − e)�K2).
We now derive two exact results for Cartesian products which are not prisms.

Proposition 3.2. If k, l are integers, k ≥ 5 and l ≥ 1, then sg(K1,k �Pl) = sg(K1,k).

Proof. The graph K1,k is a tree with k leaves, hence sg(K1,k) = k and sg(K1,k �Pl) ≥ k.
Let V (K1,k) = {v, l1, . . . , lk−2, r1, r2} where v is the vertex of degree k. Define S = {(l1, l), . . . , (lk−2, l), (r1, 1),

(r2, 1)}. As shortest paths in K1,k and Pl are unique, x, y-geodesic can be denoted by x  y. Fix geodesics
between vertices from S in the following way:

(li, l) ∼ (v, l) ∼ (ri, l) (ri, 1)
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for i ∈ [2],

(li, l) ∼ (v, l) (v, 1) ∼ (r2, 1)

for i ∈ {3, . . . , k − 2}, and

(li, l) (li, 1) ∼ (v, 1) ∼ (rf(i), 1),

where

f(i) =

{
2; i = 1,

1; i 6= 1.

Clearly, these geodesics cover all vertices of the graph (as k − 2 ≥ 3), hence sg(K1,k �Pl) = k.

Proposition 3.2 does not hold for k ≤ 4 if l ≥ 3 (the cases l ∈ {1, 2} are simple). Consider the following
example. Let V (K1,4) = {v, l1, l2, r1, r2} as above. Suppose sg(K1,4�Pl) = 4. If Kl

1,4 (or equivalently K1
1,4)

contains only one vertex from a minimum strong geodetic set, say l1, then geodesics from (l1, l) to the other three
vertices must contain vertices (l2, l), (r1, l), (r2, l), (l1, l − 1) which is not possible. Hence, any strong geodetic
set of size 4 contains two vertices in the layer K1

1,4 and two vertices in Kl
1,4. Without loss of generality let S =

{(l1, l), (l2, l), (r1, 1), (r2, 1)} be a minimum strong geodetic set. Geodesics (l1, l) ∼ (v, l) ∼ (l2, l) and (r1, 1) ∼
(v, 1) ∼ (r2, 1) are clearly fixed. Each of the remaining four geodesics can cover at most l− 1 uncovered vertices.
But the graph has 4(l − 1) + (l − 2) vertices to cover, hence sg(K1,4�Pl) ≥ 5. Since the set S ∪ {(v, 1)} is a
strong geodetic set, we have sg(K1,4�Pl) = 5.

Our last exact result is the following.

Theorem 3.3. If m,n are positive integers and m ≥ n, then

sg(Km�Kn) =


2n− 1; m = n,

2n; n < m < 2n,

m; m ≥ 2n.

Proof. Since every vertex of a complete graph is simplicial, Lemma 2.2 implies that any strong geodetic set
of Km�Kn contains at least one vertex from each row and at least one vertex from each column, hence
sg(Km�Kn) ≥ max{m,n} = m. We now distinguish three cases:

1. Suppose first m = n. By the above, sg(Kn�Kn) ≥ n. Take n vertices, one in each row and one in each
column. Since diam(Kn�Kn) = 2, these n vertices can cover at most

(
n
2

)
other vertices of Kn�Kn.

Moreover, at most one row and at most one column can be covered completely with geodesics between
them. Hence, at least

(
n
2

)
vertices of Kn�Kn remain uncovered. As at least n − 1 rows and columns

are still uncovered, it follows that at least n − 1 more vertices are needed to cover them. Therefore,
sg(Kn�Kn) ≥ n + (n− 1) = 2n− 1.
Consider the set S = S1 ∪ S2 where S1 = {(i, i); i ∈ [n]} and S2 = {(i, i + 1); i ∈ [n− 1]} (cf. Fig. 2).

Fix geodesics for Ĩ(S) in such a way that geodesics between vertices from S1 cover all the vertices {(i, j); i ≥
j} and geodesics between vertices from S2 cover the vertices {(i, j); i < j}. Thus S is a strong geodetic
set of size 2n− 1. Hence, sg(Kn�Kn) = 2n− 1.

2. Suppose next n < m < 2n. Consider an arbitrary strong geodetic set S′ of Km�Kn. Since S′ contains at
least one vertex from each row and at least one vertex from each column, we may without loss of generality
assume that S1 ∪ S2 ⊆ S′, where S1 = {(i, i); i ∈ [n]} and S2 = {(n + i, i); i ∈ [m − n]}. Consider the
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Figure 2. A strong geodetic set of K5�K5.
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Figure 3. Sets A,B,C,D and E of K10�K7.

disjoint sets

A = [m− n]× {m− n + 1, . . . , n},
B = {n + 1, . . . ,m} × {m− n + 1, . . . , n},
C = {m− n + 1, . . . , n} × [m− n],

D = {(i, j); i < j, i, j ∈ {m− n + 1, . . . , n}}, and

E = {(i, j); i > j, i, j ∈ {m− n + 1, . . . , n}},

which are shown in Figure 3 for the case K10�K7.
Vertices in A can only be covered with geodesics between vertices from S1, thus these geodesics cannot
cover C. The set B can only be covered with geodesics between vertices from S1 and S2 and thus these
geodesics cannot cover C. Hence, C is left uncovered. Similarly we observe that either D or E is left
uncovered. It follows that vertices lying in 2n −m different columns and vertices from n − 1 different
rows are left uncovered. To cover them, at least min{2n−m,n− 1} additional vertices must be added to
S1 ∪ S2. As m > n, we have min{2n−m,n− 1} = 2n−m. Hence, sg(Km�Kn) ≥ m + (2n−m) = 2n.
Consider the set S = S1 ∪S2 ∪S3, where S1 and S2 are as above and S3 = {(i, 1); i ∈ {m−n+ 1, . . . , n}}
(cf. Fig. 4). Denote S1 = Sd

1 ∪Su
1 , where Sd

1 = {(i, i); i ∈ [m−n]} and Su
1 = {(i, i); i ∈ {m−n+1, . . . , n}}.

Fix geodesics between vertices in S1 to cover {(i, j); i < j, i, j ∈ [n]}, geodesics between vertices in S2

to cover {(i, j); i < j, i ∈ {n + 1, . . . ,m}, j ∈ [m− n]}, geodesics between Sd
1 and S2 to cover {(i, j); i >

j, i ∈ [m− n] ∪ {n + 1, . . . ,m}, j ∈ [m− n]} and geodesics between Su
1 and S2 to cover {n + 1, . . . ,m} ×

{m− n + 1, . . . , n}. Additionaly, fix geodesics (v, 1) ∼ (v, i) ∼ (i, i) for each v ∈ S3 and i ∈ [n]. Now it is
clear that S is a strong geodetic set of size 2n. Hence, sg(Km�Kn) = 2n.

3. Suppose finally m ≥ 2n. We already know that sg(Km�Kn) ≥ m. Define S = Sl ∪ Sm ∪ Sr, where

Sl = {(i, i); i ∈ [n]},
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Figure 4. A strong geodetic set of K10�K7.

Figure 5. A strong geodetic set of K12�K4.

Sm = {(i, 1); i ∈ {n + 1, . . . ,m− n}}, and

Sr = {(m− n + i, i); i ∈ [n]},

cf. Figure 5, where S is shown for the case K12�K4.
Fix geodesics between vertices from Sl to cover vertices {(i, j); i ≥ j, i, j ∈ [n]}, geodesics between vertices
from Sr to cover {(m− n + i, j); i ≥ j, i, j ∈ [n]}, geodesics between sets Sl and Sr to cover {(i, j); i ≤
j, i, j ∈ [n]} ∪ {(m− n + i, j); i ≤ j, i, j ∈ [n]} and geodesics between a vertex v ∈ Sm and vertices from
Sl to cover {(v, i); i ∈ [n]}. Hence S is a strong geodetic set of Km�Kn and |S| = m. We conclude that
sg(Km�Kn) = m.

From Theorem 3.3 we infer that among Cartesian products of complete graphs the upper bound of
Theorem 2.1 is sharp only for K1�K1, K2�K2, and K3�K2.

Until now we have considered general upper bounds on sg(G�H) and obtained several exact values. Hence
it would also be of interest to have some general lower bound(s). For this sake we pose:

Conjecture 3.4. If G is a graph with n(G) ≥ 2, then sg(G�K2) ≥ sg(G).

If Conjecture 3.4 is true, then it is best possible as demonstrated by Theorem 3.1. We have also verified
the conjecture by computer for all graphs G with n(G) ≤ 7. The equality is never attained for n(G) ≤ 3. For
n(G) = 4 the only equality case is G = K4, while for n(G) = 5 and 6 there are more equality cases. For n(G) = 5
all of them are shown in Figure 6.
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Figure 6. Graphs G on five vertices with sg(G) = sg(G�K2).

Figure 7. Graphs G on six vertices with sg(G) = sg(G�K2) and no simplicial vertex.

For n(G) = 6 the variety of equality graphs is too large to be drawn here. Instead we present in Figure 7
those of them that do not contain simplicial vertices.

More generally as Conjecture 3.4, we pose the following

Problem 3.5. Is it true that if G and H are graphs, then sg(G�H) ≥ max{sg(G), sg(H)}?

Again, if the answer to Problem 3.5 is positive, then the result is best possible as demonstrated by
Proposition 3.2 and by Theorem 3.3 for m ≥ 2n.

4. The strong geodetic number of subgraphs

Since layers of Cartesian products are subgraphs that possess several distinguishing properties, a way to
attack Conjecture 3.4 would be to understand the relation between the strong geodetic number of a graph and
its subgraphs. This is a fundamental question for any graph invariant and has not yet been studied for the
strong geodetic number. The main message of this section is that in general there is no such relation, even for
subgraphs with a very special structure such as layers in products.

4.1. Induced subgraphs

First we observe that there is no connection between a strong geodetic number of the graph and a strong
geodetic number of its (induced) subgraph.
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Figure 8. The strong geodetic sets of graphs G4 and its subgraph H4.

u1 u2 u3

w

x1 x2 x3 x4 x5 x6 x7 x8 x9

y1 y2 y3 y4 y5 y6 y7 y8 y9

v1 v2 v3

Figure 9. The graph Gc
3,3.

Let Gn = P2n�K2 and Hn its subgraph induced on vertices V (Gn)− {(2i, 1); i ∈ [n]} (cf. Fig. 8). Clearly,
sg(Gn) = 3, as {(1, 1), (2n, 1), (2n, 2)} is a strong geodetic set. The subgraph Hn is a tree with n + 1 leaves,
thus sg(Hn) = n + 1. Hence, the strong geodetic number of an induced subgraph can be arbitrarily larger than
the strong geodetic number of a graph. The converse is also true. Consider H = Pn as a(n) (induced) subgraph
of some tree T . It holds sg(H) = 2, but the strong geodetic number of T can be arbitrarily large (and equals
the number of its leaves).

4.2. Convex subgraphs

A subgraph H of graph G is convex if every shortest path in G between vertices from H lies entirely in H.
This is a stronger concept than induced subgraphs. Layers of Cartesian products are convex.

As paths are convex subgraphs of trees, it is clear that the strong geodetic number of a graph can be arbi-
trarily larger than the strong geodetic number of its convex subgraphs. The following example shows that the
converse also holds.

Let k, l ∈ N. Define Gc
k,l to be the graph with V (Gc

k,l) = {u1, . . . , uk} ∪ {w} ∪ {x1, y1, . . . , xkl, ykl} ∪
{v1, . . . , vl} and edges w ∼ ui for i ∈ [k], w ∼ xi for i ∈ [kl], xi ∼ yi for i ∈ [kl] and yi ∼ vj for all i ∈ [kl]
and j ∈ [l] (cf. Fig. 9). Let H be its subgraph induced by {w}∪ {x1, . . . , xkl}. Note that H is a convex subgraph
with sg(H) = kl (as it is a tree).

As vertices {u1, . . . , uk} are simplicial, they lie in any strong geodetic set of Gc
k,l. But due to the structure

of the graph, each vertex vi must also lie in any strong geodetic set. Hence, sg(Gc
k,l) ≥ k + l. Consider the

set S = {u1, . . . , uk} ∪ {v1, . . . , vl} and fix the geodesics ui ∼ w ∼ x(i−1)l+j ∼ y(i−1)l+j ∼ vj for all i ∈ [k] and
j ∈ [l]. These geodesics cover all vertices of the graph, hence sg(Gc

k,l) = k + l, which is arbitrarily smaller than
kl, the strong geodetic number of the convex subgraph H.

4.3. Gated subgraphs

A subgraph H of graph G is gated if for every v ∈ V (G) there exists an x ∈ V (H) that lies on a shortest
u, v-path for every u ∈ V (H). Every gated subgraph is convex [9]. Layers of Cartesian product are not only
convex but also gated.
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Figure 10. The graph Gg
2,3.

Unfortunately, there is also no connection between the strong geodetic number of a graph and its gated
subgraphs. Again, as paths are gated subgraphs of trees, the strong geodetic number of a graph can be arbitrarily
larger than the strong geodetic number of its gated subgraphs. The following example shows that the converse
is also true.

Let k, l ∈ N such that kl ≥ 5. Define the graph Gg
k,l with vertices {x, y}∪{vi,j ; i ∈ [k], j ∈ [l]}∪{x1, . . . , xk}∪

{y1, . . . , yl} and edges x ∼ xi for i ∈ [k], y ∼ yj for j ∈ [l], x ∼ vi,j ∼ y for i ∈ [k], j ∈ [l] (cf. Fig. 10).
Let S = {x1, . . . , xk, y1, . . . , yl}. Vertices in S are all simplicial, thus sg(Gg

k,l) ≥ |S| = k + l. If we fix geodesics

xi ∼ x ∼ vi,j ∼ y ∼ yj for all i ∈ [k], j ∈ [l], then it is clear that S is a strong geodetic set. Hence, sg(Gg
k,l) = k+ l.

Let H be a subgraph of G induced on the vertex set {x, y} ∪ {vi,j ; i ∈ [k], j ∈ [l]}. Clearly, H ∼= K2,kl. The

subgraph H is gated in G. It follows from kl ≥ 5, that
(
kl−1

2

)
≥ kl and thus by [11] it holds that sg(H) = kl.

Hence, the strong geodetic number of a gated subgraph can be arbitrarily larger than the strong geodetic number
of a graph.
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