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CONSTRAINED INTEGRATED INVENTORY MODEL FOR

MULTI-ITEM UNDER MIXTURE OF DISTRIBUTIONS

R. Uthayakumar and M. Ganesh Kumar*

Abstract. When the demand of different customers are not identical during the lead time, then
one cannot use only a single distribution to describe the demand during that lead time. Hence, in
this paper we have studied a mixture of normal distributions and a mixture of distribution free for
several products under vendor-buyer integrated approach (coordination between both parties). Many
integrated inventory models have proved that the integrated total cost is minimum when compared
to sum of the total cost of the individuals. The inventory is continuously reviewed by the buyer and
next order is placed when the inventory reaches some level called reorder level. The buyer has limited
warehouse space capacity and also limited budget to purchase all products. The lead time of receiving
all products from the vendor is a variable which is controlled by adding crashing cost. Shortages are
allowed for all products and a fraction of shortages will be backordered and the remaining are lost. A
mathematical model is developed and a solution procedure is employed in this study to obtain optimum
order quantities, lead time and number of shipments in which the integrated total cost function attains
its minimum subject to the floor space constraint and budget constraint. The expected integrated
cost function is non-linear mixed integer with inequality constraints. Therefore, the proposed model
have been solved by using Lagrangian multiplier technique. Finally numerical examples and sensitivity
analysis were performed to illustrate the effectiveness of the proposed model.
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1. Introduction

In the lead time, the demand of the different customers may not be identical, then we cannot use a single
distribution (such as Ben-Daya and Hariga [5], Dey and Giri [11], Huang [21]) to describe the lead time demand.
The demand of above mentioned works follow a normal distribution, i.e., the demand have unique mean and
standard deviation. Several buyer may not have the identical demand and their mean demand also need not be
identical in the practical situation. To tackle this scenario, in this paper a mixture of distribution is proposed.
The mean of the mixture distribution µ∗ = pµ1 + (1 − p)µ2 where µ1 and µ2 are the mean of the probability
distribution functions F1 and F2 respectively and 0 ≤ p ≤ 1 is called the weight of the component distribution,
i.e., for different values of p one can get different means. In particular, if p = 0 or 1, then this mixture distribution
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becomes ordinary probability distribution function. Therefore in this paper a mixture of distribution approach
have been investigated to describe the lead time demand. Wu and Tsai [40] addressed the mixture of normal
distribution in the inventory control theory. Here the lead time consists of n mutually independent components,
Economic Order Quantity (EOQ) and lead time are the decision variables. Further, the authors proved that the
both order quantity and total cost of complete backorder case is less than the order quantity and total cost of
completely lost sale case respectively. The n mutually independent lead time components will be explain later
in a detailed manner. Lee et al. [26] assumed that the demand of the lead time follows mixture of distribution
free approach and the problem have been extended to mixture of normal distribution model as a special case
of mixture of distribution free approach. Lee et al. [27] dealt the same approach of Lee et al. [26] but it differs
only in lead time crashing cost, i.e., the negative exponential lead time crashing cost is implemented instead
of usual n components lead time crashing cost. Here the lead time can be reduced by adding crashing cost
and the crashing cost is related to the lead time by a function of the form R(L) = αe−γL where α and γ are
constants. Recently Annadurai [1] examined the mixture of distribution free approach for single item, and the
author reduced the ordering cost by adding the logarithmic investment function introduced by Porteus [32].
Annadurai [1] have incorporated the n mutually independent component lead times.

The controllable lead time becomes a prominent issue and its control leads to many benefits. In fact, lead
time usually consists of the following components as in Tersine [39] order preparation, order transit, supplier
lead time, delivery time, and set-up time. Ben-Daya Raouf [4] dealt with controllable lead time in which the
demand is assumed to follow a normal distribution. Ouyang et al. [29] extended Ben-Daya and Raouf [4] model
by incorporating controllable time, allowing shortages and adding the stock-out costs. In addition, the total
amount of stock-out is considered as a mixture of backorders and lost sales during the stock-out period. Ouyang
et al. [30] developed lead time reduction inventory models under various crashing cost function and practical
situations. Recently Hossain et al. [20] investigated a generalized lead time distribution model for completely
backordering and late delivery cost. Braglia et al. [8] studied the completely backorder case in continuous review
policy with Gaussian lead-time demand. In inventory control, under most of situations, unsatisfied demands are
either completely backordered or completely lost. However, in some real inventory systems, it is more reasonable
to assume that some of the excess demands are backordered and the rest is lost.

Integrated strategy gets more attention in last three decades. Because the integrated total cost is min-
imum compared to the sum of the total cost of the individuals. Firstly, Goyal [15] proved the integrated
approach among the single supplier and single customer. After that many researchers like Banarjee [2], Ha [18],
Ben Daya [4], Rabbani et al. [36] and Güler et al. [17] have employed in the synchronization of buyer and vendor.
Goyal [16] proved that the integrated approach, the different lot size shipment policies gives a better result when
compared with equal lot sized model. Hill [19] proposed a more general batch and shipping policy involving the
successive shipment size of the first m shipments increases by a fixed factor and remaining shipments would
be equal sized. Recently, Hsien-Jen [23] considered the integrated single vendor single buyer inventory model
for defective items. Simultaneously the author reduced the defective percentage by implementing logarithmic
investment function in a distribution free approach. Dey and Giri [11] considered the buyer vendor coordination
in which the buyer keeps the inventories in two bins such as good items and defective items, also the holding
costs of defective and non-defective items are not same. The authors assumed that the holding cost of defective
items is less than the holding cost of the non-defective items. Similar to Hsien-Jen [23] the logarithmic invest-
ment, power investment functions are incorporated by Dey and Giri [11] to reduce the defective percentage.
Braglia et al. [9] developed a periodic-review Joint-replenishment problem with ordering cost reduction and
controllable lead times are taking into the account. Braglia et al. [10] studied the distribution free model in
Joint-Replenishment Problem with stochastic demands and assuming that the ordering cost is controllable.
Priyan and Manivannan [35] also employed the integrated approach in which the defective inventories are incor-
porated into the model. The defectiveness is assumed to follow a fuzziness and the quality inspection error also
taking into the account. Feng et al. [13] investigated a capacity constraints integrated inventory model for single
vendor and multiple buyers via transshipment.

Most of the inventory literature deals only for single item. However in the buyer’s requirement may con-
sist several items. So that, we have developed a multi-item inventory model. If we take a multi-item problem,
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the natural questions arrives is, whether this model has any constraints like inventory constraints, floor space
constraint, budget constraint, warehouse constraints or order constraint. In this model we have studied two
types of constraints; one is, buyer’s warehouse constraint and another one is buyer’s budget constraint. We have
to optimize the total cost function within some limitations. Benton [6] investigated multiple item for multiple
supplier with resource limitations. Also examined an efficient Heuristic programming procedure for evaluating
alternative discount schedules. Ben-Daya and Raouf [3] considered multi-item inventory model under the bud-
get and floor space constraints and the demand is assumed to follows a uniform distribution. Bhattacharya [7]
developed a multi product inventory model for defective items. Taleizadeh et al. [38] investigated very rigorous
assumptions, that is multi buyer multi-vendor multi-item multi-constraint problem. The authors solved this
non-linear programming problem by using Genetic Algorithm (GA) and Harmony Search Algorithm (HSA).
Finally, the authors compared the optimal solutions obtained from both GA and HSA, and they reveal the
optimal solutions of HSA is better than the optimal solutions of GA. Pal et al. [31] developed multiple supplier
a manufacturer and multiple retailer with multi-item, and assuming the manufacturer produces a finished item
by the combination of certain percentage of various types of raw materials. Huang and Lin [22] addressed an
integrated model for multi-item in which they determined delivery route and truck loads. The objective is to
minimize the total travel length by using Ant Colony Optimization (ACO) algorithm. Priyan and Uthayakumar
[33] attempted the mathematical model in which the quality inspection error is encountered. Some limitations
to the buyer’s side also studied. They are space and budget constraints. The authors determined the optimal
solutions by using simple Lagrangian multiplier technique. Priyan and Uthayakumar [34] developed the inte-
grated inventory system for multi-item with permissible delay in payment and considered both budget and
floor space constraint. In our proposed model we employ the same Lagrangian multiplier technique to solve the
non-linear objective function. Rabbani et al. [37] addressed a multi-item problem subject to multi constraints
such as storage space, time period and budget constraints under the Vendor Managed Inventory (VMI) policy.
Two algorithms, namely simulated annealing and tabu search have been used to minimize the cost function
and determining the batch sizes. A multi-item economic production quantity (EPQ) model proposed by Kangi
et al. [25] dealt the fact that production systems are often not perfect and developing the model by assuming
the delivery due date, storage capacity and order frequency are an integral part of many real-world inventory
systems.

The remainder of this paper is organized as follows. Motivation of the proposed model is provided in Section 2.
In Section 3 Notations and Assumptions are given. The mathematical model is developed in Section 4. Mixture
of normal distribution model for multi-item and mixture of distribution free approach for multi-item is examined
in Sections 4.1 and 4.2 respectively. For both models, numerical examples and sensitivity analysis are given to
illustrated the effectiveness of the proposed result in Section 5. Further, managerial implication is also given in
the same section. Finally, conclusion of this study is summarized in Section 6.

2. Motivation to the model

In the previous section we look a detailed literature survey about integrated approach, inventory model of
multi-item, inventory control under some constraints, probabilistic environment, mixture of distributions. There
are many literature available in the integrated inventory model for multi-item under the stochastic environment.
Among the stochastic situations there is no literature discussed about the mixture of distributions for multi-
item under some resource limitations. The comparison of present stochastic model with some other existing
literatures are tabulated in Table 1. So that in this paper our aim is to develop a mathematical model of
constrained integrated inventory system consisting of several products under the mixture of distribution model.
In this mixture of distribution model, two cases namely mixture of distribution free approach and mixture
of normal distribution approach have been discussed. Free distribution approach is nothing but only the first
and second moments (and hence, mean and variance are also known and finite) and we could not predict the
distribution of the lead time demand. Another purpose of this paper is to model a partial backorder policy
which we observed in practice, where firms buy similar products from competitors to cover shortages. Since the
demand is stochastic, the actual shortages during the lead time is not known priori.
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Table 1. A comparison of the present stochastic model with some existing literatures.

Reference Distribution Constraints Integrated approach Multi item

Annadurai [1] Mixture Service level No No
Ben-Daya [3] Uniform Budget and floor No Yes
Dey [11] Normal No Yes No
Haung [21] Normal No Yes No
Lin [23] Distribution free No Yes No
Priyan [34] Normal Budget and floor Yes Yes
Priyan [33] Normal Budget and floor Yes No
Taleizadeh [38] Uniform Multi constraints Yes Yes
Lee [40] Mixture No No No
Lee [26] Mixture No No No
Lee [27] Mixture No No No
Present model Mixture Budget and floor Yes Yes

3. Notations and Assumptions

To develop the mathematical model, let us introduce the following notations and assumptions.

3.1. Notations

For products i = 1, 2, 3, . . . ,M the following notations will be used in this paper. Throughout the manuscript
index i denotes the parameter of ith product.

3.1.1. Parameters

M Number of products
Di Demand rate of the buyer for the ith product
Pi Production rate of the vendor for the ith product
Ai Ordering cost per order incurred by the buyer for the ith product
Bi Set-up cost per set-up incurred by the vendor for the ith product
hbi Holding cost of the ith product per unit for the buyer
hvi Holding cost of the ith product per unit for the vendor
πi Fixed penalty cost per unit short for the ith product
πi0 Marginal profit for the ith product (i.e., penalty cost of lost demand of ith product)
βi Fraction of the shortage that will be backordered per shipment of the ith product, 0 ≤ βi ≤ 1
ri Reorder level of the ith product
pci Unit purchase cost of the ith product incurred by the buyer
fi Space occupied per unit of the ith product in the buyer’s warehouse (square feet/unit)
W Maximum available storage space for all product in the buyer warehouse
Ω Maximum available budget for all product incurred by the buyer

3.1.2. Decision variables

Qi Lot size of the ith product
n Number of shipments for all products
L Length of the deterministic lead time for all products
α, γ Lagrangian multiplier
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3.1.3. Random variables

Xi The lead time demand with the mixture of distributions for the ith product as in [12]

3.1.4. Functions and Operators

f(xi) Probability density function of mixture distribution random variable Xi

E(·) Mathematical expectation
C(L) Lead time crashing cost function
x+ Maximum of x and 0, (i.e., x+ = max{x, 0})

3.1.5. Performance measure

ETCN Expected total cost of the system under mixture of normal distribution
ETCU Expected total cost of the system under mixture of distribution free approach

3.2. Assumptions

1. The buyer and vendor belongs to different corporate entities and enthusiastic to have the collaboration
inventory system. Thus, both parties agree to minimize the cost under integrated strategy.

2. The buyer use the continuous review policy for all products and the lot size Qi is placed whenever the
inventory level falls to the reorder point ri.

3. For all products, the lead time L consists ofmmutually independent components. The jth component has a
normal duration bj , minimum duration aj , and crashing cost per unit time cj such that c1 ≤ c2 ≤ · · · ≤ cm.
The components of lead time are crashed one at a time starting from the first component because it has
the minimum unit crashing cost, and then the second component, and so on. Let L0 =

∑m
j=1 bj , and Lj be

the length of the lead time with components 1, 2, . . . , j crashed to their minimum duration, then Lj can

be expressed as Lj = L0 −
∑j
f=1(bf − af ), j = 1, 2, . . . ,m; and for all products, the lead time crashing

cost per cycle C(L) is given by C(L) = cj(Lj−1 − L) +
∑j−1
f=1 cf (bf − af ), L ∈ [Lj , Lj−1].

4. During the stock-out period, a fraction βi of the demand will be backordered, and the remaining fraction
(1− βi) will be lost.

5. The reorder level of the ith product ri = (expected demand during lead time of the ith product) +
(safety stock of the ith product) and safety stock of the ith product = ki× standard deviation of the
lead time demand of the ith product. (i.e., ri = µi∗L+ kiσi∗

√
L.) where µi∗ = piµi1 + (1− pi)µi2, σi∗ =

σi
√

1 + pi(1− pi)ε2i , µi1 = µi∗+ (1−pi)εiσi/
√
L, µi2 = µi∗−piεiσi/

√
L and ki is the safety factor satisfies

the relation P (Xi > ri) = 1 − piF (ri1) − (1 − pi)F (ri2) = qi, where qi represents the allowable stock-
out probability during the lead time L and F represent the cumulative distribution of the standard
normal random variable, ri1 = ki

√
1 + ε2i pi(1− pi) − εi(1 − pi) and ri2 = ki

√
1 + ε2i pi(1− pi) + εipi, ∀

i = 1, 2, . . . ,M .
6. The buyer has two types of limitations namely budget constraint and warehouse constraint. So that, the

buyer receives only limited quantities for all M items.
7. An infinite time horizon is considered.

4. Model development

Consider a two echelon inventory model consisting of M products in which the buyer not only has a limited
warehouse capacity of W for all products, but also the total amount of purchasing for all product is less than or
equal to the maximum available budget Ω. The buyer places an order of size nQi for ith product of non-defective
items. The vendor produces these nQi items in one set-up and transfers it into equal size Qi for n times. The
set-up cost per set-up for the ith product is Bi. The vendor produces ith product in a finite production rate Pi.
Since the demand rate of ith product is Di, so that, the consumption time of Qi quantity is Qi/Di. Therefore
the time for consuming all nQi items is nQi/Di. On the other hand, we assume that the integrated production
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inventory model allows shortages with partial backorders. The fraction βi of shortages was backordered on the
next replenishment. Inventory is continuously reviewed. Replenishment is being made whenever the inventory
level is falling to the reorder point ri. That is, the new ordered is placed whenever the inventory reaches the
reorder point. The expected shortages at the end of the cycle for the ith product is E(Xi − ri)+. Since βi is
the backordered ratio, so that, the expected amount of backorder per cycle is βiE(Xi − ri)+ and the remaining
(1 − βi)E(Xi − ri)+ is lost. The buyer’s inventory pattern for the ith product is depicted in Figure 1. Hence
the expected stock-out cost per unit time is

Di

Qi
[πi + πi0(1− βi)]E(Xi − ri)+. (4.1)

The expected net inventory level just before the order arrives is ri−DiL+ (1−βi)E(Xi− ri)+ and the expected
net inventory level at the beginning of the cycle is Qi + ri − DiL + (1 − βi)E(Xi − ri)+. Hence the average
inventory at any time is

Qi
2

+ ri −DiL+ (1− βi)E(Xi − ri)+. (4.2)

Therefore the buyer’s expected average holding cost is

hbi

{
Qi
2

+ ri −DiL+ (1− βi)E(Xi − ri)+
}
. (4.3)

The buyer has to pay ordering cost Ai for each order and lead time reduction crashing cost C(L) for each
shipments as in assumption (3). Hence, the buyer’s average total ordering cost and lead time crashing cost per
unit time is Di

Qi
[Ai + C(L)]. Therefore the buyer’s average total cost for the ith product is sum of set-up cost,

holding cost, shortage cost and lost sale cost. i.e.,

Di

Qi
[Ai + C(L)] + hbi

{
Qi
2

+ ri −DiL+ (1− βi)E(Xi − ri)+
}

+
Di

Qi
[πi + πi0(1− βi)]E(Xi − ri)+.

Thus the buyer’s total expected cost for all M products is

M∑
i=1

{
Di

Qi

[
Ai + C(L) + (πi + πi0(1− βi))E(Xi − ri)+

]
+hbi

[
Qi
2

+ ri −DiL+ (1− βi)E(Xi − ri)+
]}

. (4.4)

Next we form the vendor’s total cost. For each production run, the set-up cost per unit time is BiDi

nQi
. The vendor

produces the items and delivers it to the buyer. The next delivery will be made after Qi

Di
units of time and this

process continues until the vendor’s inventory level reaches zero. Applying a similar approach of [24], one can
get the vendor holding area as

= (Area of vendor accumulation−Area of buyer accumulation in Fig. 2)÷ nQi/Di

=

[
nQi{Qi/Pi + (n− 1)Qi/Di} − 1

2n
2Q2

i /Pi
]
− Q2

i

Di
[n(n− 1)/2]

nQi/Di

=
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
.
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Figure 1. Inventory pattern of the buyer for the ith product.

Figure 2. Inventory pattern of the buyer and vendor for the ith product.
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The vendor’s expected holding cost per unit time is

hvi
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
. (4.5)

The vendor’s expected annual total cost per unit time for all products, which is composed of set-up cost, holding
cost are expressed by

M∑
i=1

{
BiDi

nQi
+ hvi

Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]}
. (4.6)

Hence the integrated expected total cost ETC per unit time for all products can be expressed as sum of the
buyer’s total cost and vendor’s total cost as in equations (4.4) and (4.6) respectively.

ETC =

M∑
i=1

{
Di

Qi

[
Ai + C(L) + [πi + πi0(1− βi)]E(Xi − ri)+

]
+hbi

[
Qi

2
+ ri −DiL+ (1− βi)E(Xi − ri)+

]}

+

M∑
i=1

{
BiDi

nQi
+ hvi

Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]}
,

=

M∑
i=1

{
Di

Qi

[
Ai +Bi/n+ C(L) + [πi + πi0(1− βi)]E(Xi − ri)+

]
+ hbi

[
Qi

2
+ ri −DiL+ (1− βi)E(Xi − ri)+

]
+hvi

Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]}
. (4.7)

Since our aim is to determine the lot size Qi, lead time L and the number of shipments n for all products in
the system such that the integrated expected total cost in the supply chain attains minimum subject to the
constraints. The constraints are

(i) The warehouse constraint
M∑
i=1

fiQi ≤W

(ii) The budget constraint
M∑
i=1

pciQi ≤ Ω.

The model is to minimize the integrated total cost in equation (4.7) subject to both constraints.

Minimize ETC =

M∑
i=1

{
Di

Qi

[
Ai +

Bi

n
+ C(L) + (πi + πi0(1− βi))E(Xi − ri)+

]
+ hbi

[
Qi

2
+ ri −DiL+ (1− βi)E(Xi − ri)+

]
+hvi

Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]}
, (4.8)

subject to
∑M
i=1 fiQi ≤ W and

∑M
i=1 pciQi ≤ Ω. When the demand of the different customers do not have

identical in the lead time, then we cannot use a single distribution to determine the demand of the lead time. So
that, in this paper the demand of the lead time follows a mixture distribution have been assumed. Two types of
mixture distributions, such as mixture of normal distribution and mixture of distribution free approach will be
investigated. Moreover, mixture of normal distribution is a special case of mixture of distribution free approach
when the distribution function is known.
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4.1. Mixture of normal distribution approach

For the lead time L and assume that the demand of the lead time Xi follows the mixture of normal
distributions with the probability density function is given by

f(xi) = pi
1√

2πσi
√
L

exp

(
− (xi − µi1L)2

2σ2
iL

)
+ (1− pi)

1√
2πσi

√
L

exp

(
− (xi − µi2L)2

2σ2
iL

)
, (4.9)

where µi1 − µi2 = εiσi/
√
L or µi1L − µi2L = εiσi

√
L, εi > 0, −∞ < xi < ∞, 0 ≤ pi ≤ 1, σi > 0, εi ∈ R

(see [1, 12, 26, 27]).
Then the expected shortage at the end of the cycle is given by

E(Xi − ri)+ =

∫ ∞
ri

(xi − ri)f(xi)dxi = σi
√
LΨ(ri1, ri2, pi), (4.10)

where, Ψ(ri1, ri2, pi) = pi {φ(ri1)− ri1(1− F (ri1))}+ (1− pi) {φ(ri2)− ri2(1− F (ri2))} .
The expected net inventory level just before the order arrives is

E[(Xi − ri)−I(0<x<r)]− βE(Xi − ri)+

= σi
√
L

{
pi

[
ri1F

(
µi1
√
L

σi

)
− φ

(
µi1
√
L

σi

)]
+ (1− pi)

[
ri2F

(
µi2
√
L

σi

)
− φ

(
µi2
√
L

σi

)]}
+ (1− βi)E(Xi − ri)+,

= σi
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
(1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}
+ (1− βi)E(Xi − ri)+, (4.11)

where, Y − =

{
−Y, Y < 0,
0, Y > 0,

and I(0<x<r) =

{
1, 0 < x < r,
0, otherwise,

and the expected net inventory level at the beginning of the cycle is

Qi + σi
√
L

{
pi

[
ri1F

(
µi1
√
L

σi

)
− φ

(
µi1
√
L

σi

)]
+ (1− pi)

[
ri2F

(
µi2
√
L

σi

)
− φ

(
µi2
√
L

σi

)]}
+ (1− βi)E(Xi − ri)+,

= Qi + σi
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
+ (1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}
+ (1− βi)E(Xi − ri)+. (4.12)

Therefore, the expected buyer’s total cost per unit time is

hbi

{
Qi
2

+ σi
√
L

{
pi

[
ri1F

(
µi1
√
L

σi

)
− φ

(
µi1
√
L

σi

)]
+ (1− pi)

[
ri2F

(
µi2
√
L

σi

)
− φ

(
µi2
√
L

σi

)]}}
+ hbi(1− βi)E(Xi − ri)+,
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= hbi

{
Qi
2

+ σi
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
+ (1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}}
+ hbi(1− βi)E(Xi − ri)+. (4.13)

By using equation (4.10) and (4.13) the integrated expected total cost in equation (4.8) becomes

Minimize ETCN =

M∑
i=1

{
Di

Qi

[
Ai +Bi/n+ C(L) + (πi + πi0(1− βi))σi

√
LΨ(ri1, ri2, pi)

]
+ hbi

{
Qi
2

+ σi
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
(1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}}

+ hbi(1− βi)σi
√
LΨ(ri1, ri2, pi) +hvi

Qi
2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]}
. (4.14)

We denote the expected total cost of mixture of normal distributions model by ETCN . Equation (4.14) is the
integrated total expected cost for all M products in the mixture normal distribution model. Now our aim is to
minimize the expected total cost in equation (4.14) subject to the constraints

M∑
i=1

fiQi ≤W and

M∑
i=1

pciQi ≤ Ω.

4.1.1. Solution procedure

The problem in equation (4.14) is a constrained mixed integer non-linear programming model. Therefore we
present a simple Lagrangian multiplier technique similar to [33, 34] to solve the given problem. The detailed
solution approach of the non-linear problem will be discussed in the following cases.

Case 1. In this case, we temporarily ignore the constraints
∑M
i=1 fiQi ≤W and

∑M
i=1 pciQi ≤ Ω then determine

the optimal solutions of Qi, L and n which minimize the integrated expected total cost ETCN . For fixed Q
and L ∈ [Lj , Lj−1], ETCN is convex in n, which indicates that n = n∗ which satisfies the following relation

ETCN (Q,L, n∗ − 1) >ETCN (Q,L, n∗) ≤ ETCN (Q,L, n∗ + 1) where Q = (Q1, Q2, . . . , QM ),

because
∂

∂n
ETCN =

M∑
i=1

{
−BiDi

n2Qi
+ hvi

Qi
2

(
1− Di

Pi

)}
(4.15)

and
∂2

∂n2
ETCN =

M∑
i=1

2BiDi

n3Qi
> 0, for all n > 0. (4.16)
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Now, for fixed n, taking partial derivatives of ETCN with respect to Qi and L we get

∂

∂Qi
ETCN =

[
Ai +

Bi
n

+ C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

] [
−Di

Q2
i

]
+
hbi
2

+
hvi
2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
, (4.17)

∂

∂L
ETCN =

M∑
i=1

{
−cj

Dj

Qi
+ (πi + πi0(1− βi))

σiΨ(ri1, ri2, pi)Di

2
√
LQi

+ hbi
(1− βi)σiΨ(ri1, ri2, pi)

2
√
L

+
hbiσi

2
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
+ (1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}

+
hbi
2
µi∗

[
pi

(
ri1 +

µi∗
√
L

σi
+ (1− pi)εi

)
φ

(
µi∗
√
L

σi
+ (1− pi)εi

)

+ (1− pi)

(
ri2 +

µi∗
√
L

σi
− piεi

)
φ

(
µi∗
√
L

σi
− piεi

)]}
, (4.18)

respectively. It is clear that for given ri1, ri2 and pi we have Ψ(ri1, ri2, pi) > 0, for all i = 1, 2, . . . ,M . For fixed
L ∈ [Lj , Lj−1] and n equation (4.14) is convex in Qi, since

∂2

∂Q2
i

ETC =

[
Ai +

Bi
n

+ (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

] [
2Di

Q3
i

]
> 0 ∀ Qi > 0. (4.19)

However for fixed (Q,n), the equation (4.14) is concave in L ∈ [Lj , Lj−1], because

∂2

∂L2
ETC =

M∑
i=1

{
−(πi + πi0(1− βi))

σiΨ(ri1, ri2, pi)Di

4QiL
3
2

− hbi
(1− βi)σiΨ(ri1, ri2, pi)

4L
3
2

− hbi
σi

4L
3
2

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
+ (1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}

− hbi
µi∗
4L

{
piφ

(
µi∗
√
L

σi
+ (1− pi)εi

)[
µi∗
√
L

σi

(
µi∗
√
L

σi
+ (1− pi)εi

)(
ri1 +

µi∗
√
L

σi
+ (1− pi)εi

)

−

(
ri1 +

2µi∗
√
L

σi
+ (1− pi)εi

)]
+ (1− pi)φ

(
µi∗
√
L

σi
− piεi

)[
µi∗
√
L

σi

(
µi∗
√
L

σi
− piεi

)
(
ri2 +

µi∗
√
L

σi
− piεi

)
−

(
ri2 +

2µi∗
√
L

σi
− piεi

)]}}
< 0, (4.20)
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if µi∗
√
L

σi
− piεi >

√
2, ∀ i = 1, 2, . . . ,M . Therefore, for fixed Q and n, the minimum ETCN will occur at the

end points of the interval [Lj , Lj−1]. Equating (4.17) to zero and solve it with respect to Qi, we get

Qi =


[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]


1
2

, L ∈ [Lj , Lj−1]. (4.21)

For fixed n and L ∈ [Lj , Lj−1], both the constraints
∑M
i=1 fiQi ≤W and

∑M
i=1 pciQi ≤ Ω are ignored, then the

equation (4.21) gives optimal values of Qi. The following iterative algorithm have been developed to find the
optimal values of Qi, L and n.

Algorithm 4.1.

Step 1 Set n = 1.
Step 2 For each Lj , j = 0, 1, 2, . . . ,m preform Steps (2.1) and (2.2).

Step 2.1 Determine the corresponding Qi (i = 1, 2, . . . ,M) from equation (4.21).
Step 2.2 Compute the corresponding ETCN (Q,Lj , n) from equation (4.14)
where Q = (Q1, Q2, . . . , QM ).

Step 3 Find min
j=0,1,2,...,m

ETCN (Q,Lj , n)

Step 4 Set ETC(Q∗(n), L
∗
(n), n) = min

j=0,1,2,...,m
ETCN (Q,Lj , n) and (Q∗(n), L

∗
(n)) is the

optimal solution for fixed n.
Step 5 Set n by n+ 1 and repeat the Steps 2 to 4, to get ETC(Q∗(n), L

∗
(n), n).

Step 6 If ETC(Q∗(n), L
∗
(n), n) < ETC(Q∗(n−1), L

∗
(n−1), n− 1) then go to Step 5. Otherwise go to Step 7.

Step 7 Set (Q∗, L∗, n∗) = (Q∗(n−1), L
∗
(n−1), n− 1) and (Q∗, L∗, n∗) is the optimal solutions.

Stop the algorithm.

Case 2. In this case, we consider only buyer’s floor space constraint and ignore budget constraint. To solve this
problem, apply the Lagrangian multiplier α:

Minimize ETCN =

M∑
i=1

{
Di

Qi

[
Ai +

Bi
n

+ C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]

+ hbi

{
Qi
2

+ σi
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
+ (1− pi)εi

)]

+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}}

+ hbi(1− βi)σi
√
LΨ(ri1, ri2, pi) +hvi

Qi
2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
+ α(fiQi −W )

}
.

(4.22)

For fixed n and L ∈ [Lj , Lj−1], the optimal Qi can be determined by solving the equation ∂
∂Qi

ETCN = 0 and
∂
∂αETC

N = 0. i.e.,

Qi =


[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi


1
2

, L ∈ [Lj , Lj−1], (4.23)
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and α can be determined by solving the equation (4.24)

M∑
i=1

fi


√√√√√
[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi

−W = 0. (4.24)

Similar to Case 1, one can prove the equation (4.22) is convex with respect to Qi and n and concave with respect
to L ∈ [Lj , Lj−1]. Here we developed an iterative algorithm to find optimal solutions for Qi,Li, n and α.

Algorithm 4.2.

Step 1 Set n = 1.
Step 2 For each Lj , j = 0, 1, 2, . . . ,m preform Steps (2.1) and (2.3).

Step 2.1 Calculate α from equation (4.24).
Step 2.2 Determine the corresponding Qi (i = 1, 2, . . . ,M) from equation (4.23).
Step 2.3 Compute the corresponding ETCN (Q,Lj , n, α) from equation (4.22)
where Q = (Q1, Q2, . . . , QM ).

Step 3 Find min
j=0,1,2,...,m

ETCN (Q,Lj , n, α).

Step 4 Set ETC(Q∗(n), L
∗
(n), n, α

∗
(n)) = min

j=0,1,2,...,m
ETCN (Q,Lj , n, α) and (Q∗(n), L

∗
(n), α

∗
(n)) is the

optimal solution for fixed n.
Step 5 Set n by n+ 1 and repeat the Steps 2 to 4, to get ETC(Q∗(n), L

∗
(n), n, α

∗).

Step 6 If ETC(Q∗(n), L
∗
(n), n, α

∗
(n)) < ETC(Q∗(n−1), L

∗
(n−1), n− 1, α∗(n)) then go to Step 5.

Otherwise go to Step 7.
Step 7 Set (Q∗, L∗, n∗, α∗) = (Q∗(n−1), L

∗
(n−1), n− 1, α∗(n)) and (Q∗, L∗, n∗, α∗) is the optimal solutions.

Stop the algorithm.

Case 3. In this case, consider the buyer’s budget constraint and ignore floor space constraint. By adding
Lagrangian multiplier γ, the problem have been solved

Minimize ETCN =

M∑
i=1

{
Di

Qi

[
Ai +

Bi
n

+ C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]

+ hbi

{
Qi
2

+ σi
√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
(1− pi)εi

)]

+(1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}}

+ hbi(1− βi)σi
√
LΨ(ri1, ri2, pi) +hvi

Qi
2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
+ γ(pciQi −Ω)

}
.

(4.25)

For fixed n and L ∈ [Lj , Lj−1], the optimal Qi can be determined by solving the equation ∂
∂Qi

ETCN = 0 and
∂
∂γETC

N = 0. e.g.,

Qi =


[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ γpci


1
2

, L ∈ [Lj , Lj−1], (4.26)
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and γ can be determined by solving the equation (4.27)

M∑
i=1

pci


√√√√√
[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ γpci

−Ω = 0. (4.27)

Similar to Case 1, we can prove equation (4.25) is convex with respect to Qi and n and concave with respect to
L ∈ [Lj , Lj−1]. Here we developed an iterative algorithm to find optimal solutions for Qi,Li,n and γ.

Algorithm 4.3.

Step 1 Set n = 1.
Step 2 For each Lj , j = 0, 1, 2, . . . ,m perform Steps (2.1) and (2.3).

Step 2.1 Calculate γ from equation (4.27).
Step 2.2 Determine the corresponding Qi (i = 1, 2, . . . ,M) from equation (4.26).
Step 2.3 Compute the corresponding ETCN (Q,Lj , n, γ) from equation (4.25)
where Q = (Q1, Q2, . . . , QM ).

Step 3 Find min
j=0,1,2,...,m

ETCN (Q,Lj , n, γ).

Step 4 Set ETC(Q∗(n), L
∗
(n), n, γ

∗
(n)) = min

j=0,1,2,...,m
ETCN (Q,Lj , n, γ) and (Q∗(n), L

∗
(n), γ

∗
(n)) is the

optimal solution for fixed n.
Step 5 Set n by n+ 1 and repeat the Steps 2 to 4, to get ETC(Q∗(n), L

∗
(n), n, γ

∗).

Step 6 If ETC(Q∗(n), L
∗
(n), n, γ

∗
(n)) < ETC(Q∗(n−1), L

∗
(n−1), n− 1, γ∗(n)) then go to Step 5.

Otherwise go to Step 7.
Step 7 Set (Q∗, L∗, n∗, γ∗) = (Q∗(n−1), L

∗
(n−1), n− 1, γ∗(n−1)) and (Q∗, L∗, n∗, γ∗) is the optimal

solutions. Stop the algorithm.

Case 4. In this case, we consider both the buyer’s budget constraint and floor space constraint. To solve this
problem, we add Lagrangian multipliers α and γ in the objective function as follows:

Minimize ETCN =

M∑
i=1

{
Di

Qi

[
Ai +

Bi

n
+ C(L) + (πi + πi0(1− βi))σi

√
LΨ(ri1, ri2, pi)

]

+ hbi

{
Qi

2
+ σi

√
L

{
pi

[
ri1F

(
µi∗
√
L

σi
+ (1− pi)εi

)
− φ

(
µi∗
√
L

σi
(1− pi)εi

)]
+ (1− pi)

[
ri2F

(
µi∗
√
L

σi
− piεi

)
− φ

(
µi∗
√
L

σi
− piεi

)]}}
+ hbi(1− βi)σi

√
LΨ(ri1, ri2, pi)

+hvi
Qi

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
+ α(fiQi −W ) + γ(pciQi −Ω)

}
. (4.28)

For fixed n and L ∈ [Lj , Lj−1], the optimal solutions can be determined by solving the equation ∂
∂Qi

ETCN = 0,
∂
∂αETC

N = 0 and ∂
∂γETC

N = 0. i.e.,

Qi =


[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi + γpci


1
2

, L ∈ [Lj , Lj−1], (4.29)



INVENTORY CONTROL 863

M∑
i=1

fi


√√√√√
[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi + γpci

−W = 0, (4.30)

M∑
i=1

pci


√√√√√
[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi + γpci

−Ω = 0. (4.31)

Similar to Case 1, one can prove equation (4.28) is convex with respect to Qi and n and concave with respect
to L ∈ [Lj , Lj−1]. An iterative algorithm have been developed to find optimal solutions for Qi,Li,n, α and γ.

Algorithm 4.4.

Step 1 Set n = 1.
Step 2 For each Lj , j = 0, 1, 2, . . . ,m preform Steps (2.1) and (2.3).

Step 2.1 Calculate α and γ from solving equations (4.30) and (4.31).
Step 2.2 Determine the corresponding Qi (i = 1, 2, . . . ,M) from equation (4.29).
Step 2.3 Compute the corresponding ETCN (Q,Lj , n, α, γ) from equation (4.28)
where Q = (Q1, Q2, . . . , QM ).

Step 3 Find min
j=0,1,2,...,m

ETCN (Q,Lj , n, α, γ).

Step 4 Set ETC(Q∗(n), L
∗
(n), n, α

∗
(n), γ

∗
(n)) = min

j=0,1,2,...,m
ETCN (Q,Lj , n, α, γ) and (Q∗(n), L

∗
(n), α

∗
(n), γ

∗
(n))

is the optimal solution for fixed n.
Step 5 Set n by n+ 1 and repeat the Steps 2 to 4, to get ETC(Q∗(n), L

∗
(n), n, α

∗
(n), γ

∗
(n)).

Step 6 If ETC(Q∗(n), L
∗
(n), n, α

∗
(n), γ

∗
(n)) < ETC(Q∗(n−1), L

∗
(n−1), n− 1, α∗(n−1), γ

∗
(n−1)) then go to Step 5.

Otherwise go to Step 7.
Step 7 Set (Q∗, L∗, n∗, α∗, γ∗) = (Q∗(n−1), L

∗
(n−1), n− 1, α∗(n−1), γ

∗
(n−1)) and (Q∗, L∗, n∗, α∗, γ∗) is the

optimal solutions. Stop the algorithm.

4.1.2. Main computational procedure

By using above four cases one can determine the optimal solutions with in the given limitations (constraints).
The computational steps are as follows and the flow chart is given in Figures 3–5:

Step 1 Ignoring both the constraints, we find the optimal values using Algorithm 4.1. If Qi satisfy both
constraints, then the obtained values of Qi, L and n are optimal solutions and go to Step 5.

Step 2 Else optimize the cost function subject to floor space constraint and ignore budget constraint. That
is, determine the optimal values using Algorithm 4.2. If Qi satisfies the budget constraint, then the
obtained values of Qi, L, α and n are optimal solutions and go to Step 5.

Step 3 Else optimize the cost function subject to budget constraint and ignore space constraint. That is,
determine the optimal values using Algorithm 4.3. If Qi satisfies the space constraint, then the obtained
values of Qi, L, γ and n are optimal solutions and go to Step 5.

Step 4 If none of the above three steps then, both constraints are active. Now optimize the cost function
subject to both constraints such as floor space and budget. That is, determine the optimal values using
Algorithm 4.4 and the optimal solutions Qi, L, α, γ and n has been found such that the integrated
expected total cost is minimum and go to Step 5.

Step 5 Stop.
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Figure 3. Flowchart of the solution procedure.

4.2. The mixture of distribution free model

Let R be the set of all single cumulative distribution functions with a finite mean and variance. We assume
that the demand of the lead time Xi has the mixture of cumulative distribution function F∗ with finite mean µi∗L
and standard deviation σi∗ where F∗ = piF1 + (1− pi)F2, F1 has a finite mean µi1L, standard deviation σi

√
L,

F2 has finite mean µi2L, standard deviation σi
√
L, µi1 − µi2 = εiσi/

√
L, εi ∈ R, F1, F2 ∈ R and 0 ≤ pi ≤ 1

∀ i = 1, 2, , . . . ,M . Since the expected shortages at the end of the cycle for the ith product is E(Xi − ri)+. By
using the same procedure in Section 4.1, the expected total cost of the mixture of distribution free will become

ETCF =

M∑
i=1

{
Di

Qi

[
Ai +

Bi
n

+ C(L) + [πi + πi0(1− βi)]E(Xi − ri)+
]

+ hvi
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
+hbi

[
Qi
2

+ ri −DiL+ (1− βi)E(Xi − ri)+
]}

. (4.32)

The superscript F denote the mixture of distribution free approach. The minimax approach for this model is
to find the most unfavorable cumulative distribution functions F1 and F2 then to minimize the total expected
annual cost over (Q,n, L). i.e., our problem is to solve

min
Q,L,n

max
F1,F2∈R

ETCF (Q,L, n). (4.33)

The above problem is solved through the following proposition. The proof of the proposition is given in [14].

Proposition 4.5. For each F ∈ R,

E(X − r)+ ≤ 1

2

{√
σ2L+ (r − µL)2 − (r − µL)

}
. (4.34)
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Figure 4. Flowchart of Process A.

Moreover, the upper bound of (4.34) is tight. In other words we can always find a distribution in which the above
bound is satisfied with equality for every r.

Using inequality (4.34) for F1 and F2, we obtain

E(Xi − ri)+ =

∫ ∞
ri

(xi − ri)dF∗(x)

= pi

∫ ∞
ri

(xi − ri)dF1(x) + (1− pi)
∫ ∞
ri

(xi − ri)dF2(x),

≤ pi
2

{√
σ2
iL+ (ri − µi1L)2 − (ri − µi1L)

}
+

1− pi
2

{√
σ2
iL+ (ri − µi2L)2 − (ri − µi2L)

}
,

= −ri − µi∗L
2

+
pi
2

√
σ2
iL+ [(1− pi)εiσi

√
L+ µi∗L− ri]2

+
1− pi

2

√
σ2
iL+ [−piεiσi

√
L+ µi∗L− ri]2,

= −kiliσi
√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2 +
1− pi

2
σi
√
L
√

1 + (piεi + kili)2, (4.35)
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where li =
√

1 + pi(1− pi)ε2i . Then the equation (4.33) can be written as

min
Q,L,n

ETCU =

M∑
i=1

{[
Ai +

Bi
n

+ C(L) + [πi + πi0(1− βi)]
{pi

2
σi
√
L
√

1 + [(1− pi)εi − kili]2

− kiliσi
√
L

2
+

1− pi
2

σi
√
L
√

1 + (piεi + kili)2

}]
Di

Qi
+ hvi

Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]

+ hbi

{
Qi
2

+ ri − µi∗L+ (1− βi)

{
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2

+
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
}}}

. (4.36)

Here ETCU denote max
F1,F2∈R

ETCF (Q,L, n). For our convenient equation (4.36) can be rewritten as

min
Q,L,n

ETCU =

M∑
i=1

{[
Ai +

Bi
n

+ C(L)

]
Di

Qi
+ hbi

[
Qi
2

+ ri − µi∗L
]

+ hvi
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]

+

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]{
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2

+
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
}}

. (4.37)

Equation (4.37) is the expected integrated total cost for all M products in the mixture of distribution free

model. Now we have to optimize (minimize) the equation (4.37) subject to the constraints
∑M
i=1 fiQi ≤W and∑M

i=1 pciQi ≤ Ω.

4.2.1. Solution procedure

The same Lagrangian multiplier technique which used in Section 4.1.1 is utilized in this solution procedure.

Case 1. In this case, we temporarily ignore the constraints
∑M
i=1 fiQi ≤W and

∑M
i=1 pciQi ≤ Ω then determine

the optimal solutions of Qi ,L and n which minimize the integrated expected total cost ETCU . For fixed Qi
and L ∈ [Lj , Lj−1] the ETCU is convex in n, which indicates that there is a n = n∗ which satisfies the following
relation

ETCU (Q,L, n∗ − 1) >ETCU (Q,L, n∗) ≤ ETCU (Q,L, n∗ + 1) where Q = (Q1, Q2, . . . , QM ).

Because
∂

∂n
ETCU =

M∑
i=1

{
−BiDi

n2Qi
+ hvi

Qi
2

(
1− Di

Pi

)}
, (4.38)

and
∂2

∂n2
ETCU =

M∑
i=1

2BiDi

n3Qi
> 0, for all n ∈ N. (4.39)
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Figure 5. Flowchart of Process B.

Table 2. Summary for the values of r1, r2 and k.

p r1 r2 k

0.0 0.14161 0.84161 0.84161
0.1 0.22806 0.92806 0.83974
0.2 0.31245 1.01245 0.84013
0.3 0.39370 1.09370 0.84147
0.4 0.47102 1.17102 0.84284
0.5 0.54394 1.24394 0.84376
0.6 0.61226 1.21226 0.84401
0.7 0.67595 1.37595 0.84361
0.8 0.73524 1.43524 0.84282
0.9 0.79036 1.49036 0.84199
1.0 0.84161 1.54161 0.84161

Table 3. Parameters of the buyer.

Product (i) Di Ai hbi σi fi πi πi0

1 600 200 25 7 4 50 150
2 1000 300 35 8 6 50 150
3 800 250 30 7.5 5.5 50 150
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Table 4. Parameters of the vendor.

Product (i) Pi Bi hvi pci

1 2000 1500 20 500
2 2500 1650 30 600
3 2300 1600 25 400

Table 5. Lead time component with data.

Lead time Normal duration Minimum duration Unit crashing
component j bj (days) cost aj (days) cj ($/days)

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

Now, for fixed n, taking partial derivatives of ETCU with respect to Qi and L we get,

∂

∂Qi
ETCU =

[
Ai +

Bi
n

+ C(L)

](
−Di

Q2
i

)
+
hbi
2

+
hvi
2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
+ [πi + πi0(1− βi)]

(
−Di

Q2
i

)
×

{
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2 +
1− pi

2
σi
√
L
√

1 + (piεi + kili)2

}
, (4.40)

∂

∂L
ETCU =

M∑
i=1

{
−cj

Di

Qi
+
σilikihbi

2
√
L

+

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]
×
{
−kiliσi

4
√
L

+
pi

4
√
L
σi
√

1 + [(1− pi)εi − kili]2 +
1− pi
4
√
L
σi
√

1 + (piεi + kili)2
}}

,

=

M∑
i=1

{
−cj

Di

Qi
+
σilikihbi

2
√
L

+
1

4L

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]
−×

[
−kiσili

√
L+ piσi

√
L
√

1 + [(1− pi)εi − kili]2 + (1− pi)σi
√
L
√

1 + (piεi + kili)2
]}

. (4.41)

For fixed n and L ∈ [Lj , Lj−1], ETCU is convex in Qi, since

∂2

∂Q2
i

ETCU =

[
Ai +

Bi
n

+ C(L)

]
2Di

Q3
i

+ [πi + πi0(1− βi)]
(

2Di

Q3
i

){
−kiliσi

√
L

2

+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2 +
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
}
> 0. (4.42)

Because −kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2 is the upper bound of the
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Table 6. Summarized lead time data.

Lead time (week) C(L)

8 0
6 5.6
4 22.4
3 57.4

E(Xi − ri)+. So it should be positive. However for fixed (Q,n), ETCU is concave in L ∈ [Lj , Lj−1], because

∂2

∂L2
ETCU =

M∑
i=1

{
−σiliki

4L
3
2

hbi −
1

4L2

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]
×
[
−kiσili

√
L+ piσi

√
L
√

1 + [(1− pi)εi − kili]2 + (1− pi)σi
√
L
√

1 + (piεi + kili)2
]

+
1

4L

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

][
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2

+
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
]}

,

=

M∑
i=1

{
−σiliki

4L
3
2

hbi −
1

8L2

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

] [
piσi
√
L
√

1 + [(1− pi)εi − kili]2

− kiσili
√
L+ (1− pi)σi

√
L
√

1 + (piεi + kili)2
]}

< 0. (4.43)

Therefore, for fixed Q, n, the minimum ETCU will occur at the end points of the interval [Lj , Lj−1]. Equating
(4.40) to zero, we can determine Qi, as follows

Qi =

√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

] . (4.44)

For fixed n and L ∈ [Lj , Lj−1], when both constraints
∑M
i=1 fiQi ≤ W and

∑M
i=1 pciQi ≤ Ω are ignored,

equation (4.44) gives optimal values of Qi such that ETCU is minimum. Then, the similar solution procedure
proposed in Algorithm 4.1 can be performed to obtain the optimal solutions of (Qi, L, n).

Case 2. In this case, consider the buyer’s floor space constraint and ignore budget constraint. To solve this
problem, we add Lagrangian multiplier α:

min
Q,L,n

ETCU =

M∑
i=1

{[
Ai +

Bi
n

+ C(L)

]
Di

Qi
+ hbi

[
Qi
2

+ ri − µi∗L
]

+ hvi
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]

+

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]{
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2

+
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
}

+ α(fiQi −W )

}
. (4.45)
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For fixed n and L ∈ [Lj , Lj−1], the optimal Qi and α can be determined by solving the equation ∂
∂Qi

ETCU = 0

and ∂
∂αETC

U = 0. i.e.,

Qi =

√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi

. (4.46)

e.g.

M∑
i=1

fi



√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi

−W = 0.

(4.47)

Similar to Case 1, in this section one can prove equation (4.45) is convex with respect to Qi and n, and concave
with respect to L ∈ [Lj , Lj−1]. Then, the similar solution procedure which is proposed in Algorithm 4.2 can be
performed to obtain the optimal solution of (Qi, L, n) and α.

Case 3. In this case, we consider the buyer’s budget constraint and ignore floor space constraint. To solve this
problem, we add Lagrangian multiplier γ:

min
Q,L,n

ETCU =

M∑
i=1

{[
Ai +

Bi
n

+ C(L)

]
Di

Qi
+ hbi

[
Qi
2

+ ri − µi∗L
]

+ hvi
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]

+

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]{
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2

+
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
}

+ γ(pciQi −Ω)

}
. (4.48)

For fixed n and L ∈ [Lj , Lj−1], the optimal Qi and γ can be determined by solving the equation ∂
∂Qi

ETCU = 0

and ∂
∂γETC

U = 0. i.e.,

Qi =

√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ γpci

. (4.49)

M∑
i=1

fi



√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ γpci

−Ω = 0.

(4.50)
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Similar to Case 1, in this section we can prove equation (4.48) is convex with respect to Qi and n, and concave
with respect to L ∈ [Lj , Lj−1]. Then, the similar solution procedure which is proposed in Algorithm 4.3 can be
performed to obtain the optimal solution of (Qi, L, n) and γ.

Case 4. In this case, we consider both buyer’s budget constraint and floor space constraint. To solve this
problem, we add Lagrangian multiplier α and γ:

min
Q,L,n

ETCU =

M∑
i=1

{[
Ai +

Bi
n

+ C(L)

]
Di

Qi
+ hbi

[
Qi
2

+ ri − µi∗L
]

+ hvi
Q

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]

+

[
[πi + πi0(1− βi)]

Di

Qi
+ hbi(1− βi)

]{
−kiliσi

√
L

2
+
pi
2
σi
√
L
√

1 + [(1− pi)εi − kili]2

+
1− pi

2
σi
√
L
√

1 + (piεi + kili)2
}

+ α(fiQi −W ) + γ(pciQi −Ω)

}
. (4.51)

For fixed n and L ∈ [Lj , Lj−1], the optimal Qi, α and γ can be determined by solving the equation
∂
∂Qi

ETCU = 0, ∂
∂αETC

U = 0 and ∂
∂γETC

U = 0. e.g.,

Qi =

√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi + γpci

. (4.52)

M∑
i=1

fi



√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi + γpci

−Ω = 0.

(4.53)

M∑
i=1

pci



√√√√√√√
Di

[
Ai + Bi

n + C(L) + (πi + πi0(1− βi))
]

×
{
−kiliσi

√
L

2 + pi
2 σi
√
L
√

1 + [(1− pi)εi − kili]2 + 1−pi
2 σi

√
L
√

1 + (piεi + kili)2
}

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]
+ αfi + γpci

−W = 0.

(4.54)

Similar to Case 1, we can prove equation (4.51) is convex with respect to Qi and n, and concave with respect
to L ∈ [Lj , Lj−1]. Then, the similar solution procedure which is proposed in Algorithm 4.4 can be performed to
obtain the optimal solutions of (Qi, L, n) and (α, γ).

5. Numerical example

The proposed model is illustrated through some numerical examples. The solutions for this examples are
obtained by using the computer MATLAB software. The computational effort and time are small for the
proposed algorithm and it is simple to implement.
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Example 5.1. To avoid huge number of parameters we fix β = βi, p = pi, q = qi, ri1 = r1, ri2 = r2, k = ki,
εi = ε, ∀i = 1, 2, . . . ,M . In this example, we consider a two-echelon supply chain inventory problem for three
products, that is M = 3 and the demand is assumed to follow a mixture of normal distribution. The identical
parameters of the three products are W = 3000 square feet, Ω = 3 lakhs, ε = 0.7, p = 0, β = 1, q = 0.2 (in this
situation, the value of k can be found using the relation P (Xi > ri) = 1 − pF (r1) − (1 − p)F (r2) = q where
r1 = k

√
1 + ε2p(1− p) − ε(1 − p) and r2 = k

√
1 + ε2p(1− p) + εp and also we tabulated the values of r1, r2

and k for given p in Table 2) as in [40]. Other parameters of the buyer and vendor is shown in Tables 3 and 4.
In addition the lead time data is summarized in Tables 5 and 6. The lead time consisting of three components.

5.1. Solution procedure and analysis of numerical results

In this section we are going to see the way of getting optimal solutions. According to Algorithm 4.1 ignore
both budget and floor space constraint, determine the solution.

1. Set n = 1, p = 0 and β = 1
(a) Put L = 8, then we obtain Q = (Q1, Q2, Q3) = (265, 297, 285) using (4.21). We obtain the corresponding

total cost ETCN as 34835 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(b) Put L = 6, then we obtain Q = (Q1, Q2, Q3) = (264, 296, 285) using (4.21). We obtain the corresponding

total cost ETCN as 34530 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(c) Put L = 4, then we obtain Q = (Q1, Q2, Q3) = (264, 296, 284) using (4.21). We obtain the corresponding

total cost ETCN as 34254 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(d) Put L = 3, then we obtain Q = (Q1, Q2, Q3) = (266, 298, 286) using (4.21). We obtain the corresponding

total cost ETCN as 34301 by putting the values Q = (Q1, Q2, Q3) in (4.14). By examine the solutions for
all lead times, we see that the optimal solution for the given n = 1 is Q = (Q1, Q2, Q3) = (264, 296, 284)
and the corresponding ETCN = 34254.

2. Set n = 2, p = 0 and β = 1
(a) Put L = 8, then we obtain Q = (Q1, Q2, Q3) = (168, 196, 184) using (4.21). We obtain the corresponding

total cost ETCN as 32079 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(b) Put L = 6, then we obtain Q = (Q1, Q2, Q3) = (167, 195, 184) using (4.21). We obtain the corresponding

total cost ETCN as 31727 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(c) Put L = 4, then we obtain Q = (Q1, Q2, Q3) = (167, 195, 183) using (4.21). We obtain the corresponding

total cost ETCN as 31442 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(d) Put L = 3, then we obtain Q = (Q1, Q2, Q3) = (169, 197, 185) using (4.21). We obtain the corresponding

total cost ETCN as 31597 by putting the values Q = (Q1, Q2, Q3) in (4.14). By examine the solutions for
all lead times, we see that the optimal solution for the given n = 2 is Q = (Q1, Q2, Q3) = (167, 195, 183)
and the corresponding ETCN = 31442.

3. Set n = 3, p = 0 and β = 1
(a) Put L = 8, then we obtain Q = (Q1, Q2, Q3) = (128, 153, 142) using (4.21). We obtain the corresponding

total cost ETCN as 32066 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(b) Put L = 6, then we obtain Q = (Q1, Q2, Q3) = (128, 152, 141) using (4.21). We obtain the corresponding

total cost ETCN as 31674 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(c) Put L = 4, then we obtain Q = (Q1, Q2, Q3) = (127, 152, 141) using (4.21). We obtain the corresponding

total cost ETCN as 31381 by putting the values Q = (Q1, Q2, Q3) in (4.14).
(d) Put L = 3, then we obtain Q = (Q1, Q2, Q3) = (130, 154, 143) using (4.21). We obtain the corresponding

total cost ETCN as 31626 by putting the values Q = (Q1, Q2, Q3) in (4.14). By examine the solutions for
all lead times, we see that the optimal solution for the given n = 3 is Q = (Q1, Q2, Q3) = (127, 152, 141)
and the corresponding ETCN = 31381.

4. Set n = 4, p = 0 and β = 1
(a) Put L = 8, then we obtain Q = (Q1, Q2, Q3) = (106, 128, 118) using (4.21). We obtain the corresponding

total cost ETCN as 32761 by putting the values Q = (Q1, Q2, Q3) in (4.14).
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(b) Put L = 6, then we obtain Q = (Q1, Q2, Q3) = (105, 128, 117) using (4.21). We obtain the corresponding
total cost ETCN as 32335 by putting the values Q = (Q1, Q2, Q3) in (4.14).

(c) Put L = 4, then we obtain Q = (Q1, Q2, Q3) = (105, 128, 118) using (4.21). We obtain the corresponding
total cost ETCN as 32034 by putting the values Q = (Q1, Q2, Q3) in (4.14).

(d) Put L = 3, then we obtain Q = (Q1, Q2, Q3) = (107, 130, 119) using (4.21). We obtain the corresponding
total cost ETCN as 32359 by putting the values Q = (Q1, Q2, Q3) in (4.14). By examine the solutions for
all lead times, we see that the optimal solution for the given n = 4 is Q = (Q1, Q2, Q3) = (105, 128, 118)
and the corresponding ETCN = 32034.

These numerical values are tabulated in Table 7 and the graphical representation is depicted in Figure 6. From
Table 7 least total cost occur when n = 3 and L = 4, the order quantities are Q = (Q1, Q2, Q3) = (127, 152, 141)
and their corresponding total cost is 31381.

ETCN (Q,L, 2) >ETCN (Q,L, 3) ≤ ETCN (Q,L, 4), where Q = (127, 152, 141).

Now we consider the budget and floor space constraints. Then

f1Q1 + f2Q2 + f3Q3 = 2196 < 3000,

pc1Q1 + pc2Q2 + pc3Q3 = 211100 < 3 lakhs.

The optimal solution does not affect the constraints, it satisfies both floor space and budget constraints.
Suppose that the optimal solution are not satisfied by the constraints then we move to the Algorithms 4.2–4.4
which depends on the order quantities. The sensitivity analysis is performed by changing the parameter β for
fixed p. Optimal lead times, order quantities and total expected cost for different backorder ratio for fixed p is
tabulated from the Tables 8–18. For given p and q the values of r1 and r2 can be found in Table 2 as in [40]. And
the graphical representation of the optimal solutions for different backorder ratios is depicted in Figures 7–17.
In Tables 8–18 and Tables 20–30 the optimal solutions are satisfied by the budget constraint for this numerical

Table 7. Optimal solutions Example 5.1 when p = 0 and β = 1.0.

n L Q ETCN

1 8 (265, 297, 285) 34835
6 (264, 296, 285) 34530
4 (264, 296, 284) 34254
3 (266, 298, 286) 34301

2 8 (168, 196, 184) 32079
6 (167, 195, 184) 31727
4 (167, 195, 183) 31442
3 (169, 197, 185) 31597

3 8 (128, 153, 142) 32066
6 (128, 152, 141) 31674
4 (127, 152, 141) 31381
3 (130, 154, 143) 31626

4 8 (106, 128, 118) 32761
6 (105, 128, 117) 32335
4 (105, 128, 118) 32034
3 (107, 130, 119) 32359
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Figure 6. Graphical representation of total costs of Example refex1 when p = 0 and β = 1.0.

example. So we need not to implement the Lagrangian multiplier γ. Therefore, we avoid the separate column
for γ.

Example 5.2. In this example, we assume that the lead time demand follows a mixture of distribution free and
use the same parameter as in Example 5.1 except k = 3. The same solution procedure and analysis of numerical
results implemented in this section. The optimal solutions of Example 5.2 is tabulated in Table 19. According to
this, the minimum total cost occur when n = 3, Q = (Q1, Q2, Q3) = (128, 152, 142), the lead time is L = 3 and
the minimum total cost is 33834. The graphical representation is depicted in Figure 18. The sensitivity analysis
is performed by changing the parameters β for fixed p. Optimal lead times, order quantities and total expected
cost for different backorder ratio for fixed p is tabulated in Tables 20–30. The graphical representation of the
optimal solutions for different backorder ratios is depicted in Figures 19–29.

5.2. Managerial implications

1. It is clear that if σi = 0, then the optimal safety stock is kiσi
√
L = 0, hence the equation (4.8) is reduced

to a deterministic case. If σi > 0 and min
{
µi1

√
L

σi
, µi2

√
L

σi

}
≥ 3.9 or

min
{
µi∗
√
L

σi
+ (1− pi)εi, µi∗

√
L

σi
− piεi

}
≥ 3.9 then according the properties of normal distribution we

obtain F
(
µij

√
L

σi

)
→ 1 and φ

(
µij

√
L

σi

)
→ 0, j = 1, 2. Hence equation (4.14) can be reduced to

ETCN =

M∑
i=1

{
Di

Qi

[
Ai +

Bi
n

+ C(L) + (πi + πi0(1− βi))σi
√
LΨ(ri1, ri2, pi)

]
+hbi

{
Qi
2

+ σi
√
L(piri1 + (1− pi)ri2)

}
+ hvi

Qi
2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]}
. (5.1)
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Table 8. Sensitivity analysis of β when p = 0.0.

β α L n Q ETCN

0.0 1.1 8 2 (176, 204, 191) 30166
0.1 0.9 8 2 (176, 205, 192) 30902
0.2 0.8 8 2 (176, 204, 191) 31036
0.3 0.6 8 2 (176, 204, 192) 31771
0.4 0.5 8 2 (176, 204, 191) 31905
0.5 0.1 3 2 (176, 204, 192) 32448
0.6 0.0 3 2 (175, 204, 191) 32774
0.7 0.0 4 2 (173, 201, 189) 32464
0.8 0.0 4 2 (171, 199, 187) 32127
0.9 0.0 4 2 (169, 197, 185) 31786
1.0 0.0 4 2 (167, 195, 183) 31442

Table 9. Sensitivity analysis of β when p = 0.1.

β α L n Q ETCN

0.0 1.1 8 2 (177, 205, 192) 30408
0.1 1.0 8 2 (176, 204, 190) 30526
0.2 0.8 8 2 (177, 205, 192) 31245
0.3 0.7 8 2 (176, 204, 191) 31363
0.4 0.5 8 2 (176, 205, 192) 32082
0.5 0.4 8 2 (175, 204, 191) 32200
0.6 0.0 3 2 (176, 204, 192) 32853
0.7 0.0 3 2 (174, 203, 191) 32555
0.8 0.0 4 2 (171, 200, 188) 32209
0.9 0.0 4 2 (169, 197, 186) 31857
1.0 0.0 4 2 (168, 195, 184) 31502

Table 10. Sensitivity analysis of β when p = 0.2.

β α L n Q ETCN

0.0 1.2 8 2 (176, 204, 191) 29956
0.1 1.0 8 2 (177, 205, 191) 30666
0.2 0.9 8 2 (176, 204, 191) 30775
0.3 0.7 8 2 (176, 205, 191) 31485
0.4 0.5 8 2 (177, 205, 192) 32195
0.5 0.4 8 2 (176, 204, 192) 32304
0.6 0.0 3 2 (176, 205, 193) 32910
0.7 0.0 3 2 (175, 204, 192) 33122
0.8 0.0 4 2 (172, 200, 188) 32263
0.9 0.0 4 2 (170, 198, 186) 31905
1.0 0.0 4 2 (168, 195, 184) 31543
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Table 11. Sensitivity analysis of β when p = 0.3.

β α L n Q ETCN

0.0 1.2 8 2 (177, 205, 191) 30118
0.1 1.0 8 2 (177, 206, 192) 30817
0.2 0.9 8 2 (176, 205, 191) 30915
0.3 0.7 8 2 (177, 205, 192) 31614
0.4 0.6 8 2 (176, 204, 191) 31713
0.5 0.3 6 2 (176, 205, 192) 32304
0.6 0.3 8 2 (175, 204, 191) 32510
0.7 0.0 4 2 (173, 202, 190) 32679
0.8 0.0 4 2 (172, 200, 188) 32318
0.9 0.0 4 2 (170, 198, 186) 31953
1.0 0.0 4 3 (128, 153, 142) 31547

Table 12. Sensitivity analysis of β when p = 0.4.

β α L n Q ETCN

0.0 1.2 8 2 (177, 205, 191) 30041
0.1 1.0 8 2 (177, 205, 192) 30747
0.2 0.9 8 2 (176, 204, 191) 30852
0.3 0.7 8 2 (176, 205, 192) 31558
0.4 0.6 8 2 (176, 204, 191) 31663
0.5 0.4 8 2 (176, 205, 192) 32370
0.6 0.0 3 2 (176, 205, 193) 32948
0.7 0.0 3 2 (175, 203, 191) 32644
0.8 0.0 4 2 (172, 200, 188) 32302
0.9 0.0 4 2 (170, 198, 186) 31942
1.0 0.0 4 3 (128, 153, 142) 31536

Table 13. Sensitivity analysis of β when p = 0.5.

β α L n Q ETCN

0.0 1.2 8 2 (176, 204, 191) 30014
0.1 1.0 8 2 (177, 205, 191) 30723
0.2 0.9 8 2 (176, 204, 191) 30830
0.3 0.7 8 2 (176, 205, 192) 31539
0.4 0.4 6 2 (176, 204, 191) 32081
0.5 0.4 8 2 (176, 204, 192) 32355
0.6 0.0 3 2 (176, 205, 193) 32941
0.7 0.0 3 2 (176, 203, 191) 32638
0.8 0.0 4 2 (172, 200, 188) 32297
0.9 0.0 4 2 (170, 198, 186) 31938
1.0 0.0 4 3 (130, 153, 142) 31532
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Table 14. Sensitivity analysis of β when p = 0.6.

β α L n Q ETCN

0.0 1.2 8 2 (177, 205, 191) 30114
0.1 1.1 8 2 (177, 205, 192) 30208
0.2 0.9 8 2 (176, 204, 191) 30903
0.3 0.7 8 2 (176, 205, 192) 31598
0.4 0.6 8 2 (176, 204, 191) 31692
0.5 0.4 8 2 (176, 205, 192) 32387
0.6 0.3 8 2 (176, 205, 193) 32480
0.7 0.0 3 2 (175, 203, 191) 32641
0.8 0.0 4 2 (172, 200, 188) 32291
0.9 0.0 4 2 (170, 198, 186) 31923
1.0 0.0 4 3 (128, 153, 142) 31517

Table 15. Sensitivity analysis of β when p = 0.7.

β α L n Q ETCN

0.0 1.1 8 2 (177, 205, 192) 30484
0.1 1.0 8 2 (176, 204, 191) 30600
0.2 0.8 8 2 (177, 205, 192) 31318
0.3 0.7 8 2 (176, 204, 191) 31434
0.4 0.5 8 2 (176, 205, 192) 32151
0.5 0.0 8 2 (175, 204, 191) 32268
0.6 0.0 3 2 (176, 204, 192) 32893
0.7 0.0 3 2 (174, 203, 191) 32595
0.8 0.0 4 2 (171, 200, 188) 32253
0.9 0.0 4 2 (170, 198, 186) 31900
1.0 0.0 4 3 (128, 152, 142) 31495

Table 16. Sensitivity analysis of β when p = 0.8.

β α L n Q ETCN

0.0 1.1 8 2 (177, 205, 191) 30387
0.1 1.0 8 2 (176, 204, 191) 30509
0.2 0.8 8 2 (177, 205, 192) 31232
0.3 0.7 8 2 (176, 204, 191) 31354
0.4 0.5 8 2 (176, 205, 192) 32078
0.5 0.1 3 2 (176, 204, 192) 32547
0.6 0.0 3 2 (176, 204, 192) 32855
0.7 0.0 3 2 (174, 203, 191) 32560
0.8 0.0 4 2 (171, 200, 188) 32217
0.9 0.0 4 2 (169, 197, 186) 31868
1.0 0.0 4 3 (128, 152, 141) 31462
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Table 17. Sensitivity analysis of β when p = 0.9.

β α L n Q ETCN

0.0 1.1 8 2 (177, 205, 191) 30283
0.1 0.9 8 2 (177, 205, 192) 31012
0.2 0.8 8 2 (176, 204, 191) 31140
0.3 0.6 8 2 (177, 205, 192) 31869
0.4 0.5 8 2 (176, 204, 191) 31997
0.5 0.1 3 2 (176, 204, 192) 32501
0.6 0.0 3 2 (176, 204, 192) 32812
0.7 0.0 4 2 (173, 201, 189) 32516
0.8 0.0 4 2 (171, 199, 187) 32175
0.9 0.0 4 2 (169, 197, 185) 31830
1.0 0.0 4 3 (128, 152, 141) 31425

Table 18. Sensitivity analysis of β when p = 1.0.

β α L n Q ETCN

0.0 1.1 8 2 (176, 204, 191) 30166
0.1 0.9 8 2 (177, 205, 192) 30902
0.2 0.8 8 2 (176, 204, 191) 31036
0.3 0.6 8 2 (176, 205, 192) 31771
0.4 0.5 8 2 (176, 204, 191) 31905
0.5 0.1 3 2 (176, 204, 192) 32448
0.6 0.0 3 2 (176, 204, 192) 32763
0.7 0.0 4 2 (173, 201, 189) 32464
0.8 0.0 4 2 (171, 199, 187) 32127
0.9 0.0 4 2 (170, 197, 185) 31786
1.0 0.0 4 3 (128, 152, 141) 31381

Figure 7. Effect of β on the ETCN when p = 0.0.
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Figure 8. Effect of β on the ETCN when p = 0.1.

Figure 9. Effect of β on the ETCN when p = 0.2.

2. Let M = 1 and consider only on the buyer’s perspective and let p = 1 (or 0); then r1 (or r2) = k. Hence,
equation (5.1) reduces to the result of [29]. Further, when r1 or r2 = k > 3.9, we obtain Ψ(r1, r2, p)→ 0.
Hence equation (5.1) reduces to the result of [4].

3. Note that if βi = 1, ∀ i = 1, 2, . . . ,M then equation (4.8) reduces to the total of the complete backorder
case, hence (4.21) becomes

Qi =


[
Ai + Bi

n + C(L) + πiσi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]


1
2

, L ∈ [Lj , Lj−1] (5.2)
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Figure 10. Effect of β on the ETCN when p = 0.3.

Figure 11. Effect of β on the ETCN when p = 0.4.

Figure 12. Effect of β on the ETCN when p = 0.5.
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Figure 13. Effect of β on the ETCN when p = 0.6.

Figure 14. Effect of β on the ETCN when p = 0.7.

Figure 15. Effect of β on the ETCN when p = 0.8.
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Figure 16. Effect of β on the ETCN when p = 0.9.

Figure 17. Effect of β on the ETCN when p = 1.0.

and if βi = 0, ∀ i = 1, 2, . . . ,M then equation (4.8) reduces to the total of the completely lost sale case,
hence equation (4.21) becomes

Qi =


[
Ai + Bi

n + C(L) + (πi + πi0)σi
√
LΨ(ri1, ri2, pi)

]
Di

hbi

2 + hvi

2

[
n
(

1− Di

Pi

)
− 1 + 2Di

Pi

]


1
2

, L ∈ [Lj , Lj−1]. (5.3)

Hence, in order to compare the equations (5.2) and (5.3) and their corresponding total costs are tabu-
lated in Tables 8–18 and Tables 20–30. In both mixture of normal distribution case and mixture of free
distribution case, β increases both total cost and order quantities, but at one stage β increases the total
cost and order quantities reduces. This happens because we are using Lagrangian multiplier α. While
considering this problem without constraints for single item, then the buyer’s total cost of this proposed
model becomes similar to [40]. That is Qβ=0 > Qβ=1 and EACβ=1 < EACβ=0.
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Table 19. Optimal solutions of Example 5.2 when β = 1.0 and p = 0.0.

n L Q ETCU

1 8 (263, 295, 283) 38710
6 (262, 294, 283) 37886
4 (262, 294, 283) 36995
3 (264, 296, 285) 36675

2 8 (166, 193, 182) 35805
6 (165, 193, 181) 34952
4 (166, 193, 182) 34075
3 (168, 195, 184) 33880

3 8 (126, 151, 140) 35666
6 (126, 150, 139) 34789
4 (126, 150, 139) 33924
3 (128, 152, 142) 33834

4 8 (104, 126, 116) 36251
6 (103, 126, 115) 35353
4 (104, 126, 116) 34499
3 (106, 128, 118) 34501
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Figure 18. Graphical representation of total costs of Example 5.2 when β = 1.0 and p = 0.0.
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Table 20. Sensitivity analysis of β when p = 0.0.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 192) 34792
0.1 0.1 3 2 (177, 205, 193) 35185
0.2 0.1 3 2 (175, 204, 192) 34976
0.3 0.0 3 2 (176, 204, 192) 35370
0.4 0.0 3 2 (173, 202, 190) 34556
0.5 0.0 3 2 (172, 200, 189) 34951
0.6 0.0 3 2 (171, 199, 187) 34739
0.7 0.0 3 2 (170, 198, 186) 34527
0.8 0.0 3 2 (169, 197, 185) 34312
0.9 0.0 3 2 (169, 197, 185) 34097
1.0 0.0 3 3 (128, 152, 142) 33834

Table 21. Sensitivity analysis of β when p = 0.1.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 192) 34826
0.1 0.1 3 2 (176, 205, 193) 35223
0.2 0.1 3 2 (175, 203, 191) 35017
0.3 0.0 3 2 (176, 204, 192) 35414
0.4 0.0 3 2 (175, 203, 191) 35208
0.5 0.0 3 2 (173, 202, 190) 35001
0.6 0.0 3 2 (172, 200, 189) 34793
0.7 0.0 3 2 (171, 199, 187) 34583
0.8 0.0 3 3 (130, 155, 144) 34441
0.9 0.0 3 2 (169, 196, 185) 34160
1.0 0.0 3 3 (128, 152, 142) 33897

Table 22. Sensitivity analysis of β when p = 0.2.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 192) 34852
0.1 0.1 3 2 (176, 205, 192) 35251
0.2 0.0 3 2 (177, 205, 193) 35650
0.3 0.0 3 2 (176, 204, 192) 35448
0.4 0.0 3 2 (174, 203, 191) 35244
0.5 0.0 3 2 (173, 201, 190) 35039
0.6 0.0 3 2 (172, 200, 188) 34833
0.7 0.0 3 2 (171, 199, 187) 34626
0.8 0.0 3 2 (170, 198, 186) 34418
0.9 0.0 3 2 (169, 196, 185) 34208
1.0 0.0 3 3 (128, 152, 141) 33945
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Table 23. Sensitivity analysis of β when p = 0.3.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 191) 34870
0.1 0.1 3 2 (176, 204, 192) 35271
0.2 0.0 3 2 (177, 205, 193) 35671
0.3 0.0 3 2 (175, 204, 192) 35471
0.4 0.0 3 2 (174, 203, 191) 35269
0.5 0.0 3 2 (173, 201, 190) 35066
0.6 0.0 3 2 (172, 200, 188) 34862
0.7 0.0 3 2 (171, 199, 187) 34656
0.8 0.0 3 2 (170, 198, 186) 34450
0.9 0.0 3 2 (169, 196, 185) 34242
1.0 0.0 3 3 (128, 152, 141) 33979

Table 24. Sensitivity analysis of β when p = 0.4.

β α L n Q ETCU

0.0 0.2 3 2 (175, 204, 191) 34881
0.1 0.1 3 2 (176, 204, 192) 35282
0.2 0.0 3 2 (176, 205, 193) 35684
0.3 0.0 3 2 (175, 204, 192) 35484
0.4 0.0 3 2 (174, 203, 191) 35284
0.5 0.0 3 2 (173, 201, 189) 35082
0.6 0.0 3 2 (172, 200, 188) 34878
0.7 0.0 3 2 (171, 199, 187) 34674
0.8 0.0 3 2 (170, 198, 186) 34469
0.9 0.0 3 2 (169, 196, 185) 34262
1.0 0.0 3 3 (128, 152, 141) 33999

Table 25. Sensitivity analysis of β when p = 0.5.

β α L n Q ETCU

0.0 0.2 3 2 (175, 204, 191) 34883
0.1 0.1 3 2 (176, 204, 192) 35285
0.2 0.0 3 2 (176, 205, 193) 35687
0.3 0.0 3 2 (175, 203, 192) 35488
0.4 0.0 3 2 (174, 203, 191) 35288
0.5 0.0 3 2 (173, 201, 189) 35086
0.6 0.0 3 2 (172, 200, 188) 34884
0.7 0.0 3 2 (171, 199, 187) 34680
0.8 0.0 3 2 (170, 198, 186) 34474
0.9 0.0 3 2 (169, 196, 185) 34268
1.0 0.0 3 3 (128, 152, 141) 34005
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Table 26. Sensitivity analysis of β when p = 0.6.

β α L n Q ETCU

0.0 0.2 3 2 (175, 204, 191) 34878
0.1 0.1 3 2 (176, 204, 192) 35280
0.2 0.0 3 2 (176, 205, 193) 35682
0.3 0.0 3 2 (175, 204, 192) 35483
0.4 0.0 3 2 (174, 203, 191) 35282
0.5 0.0 3 2 (173, 201, 189) 35080
0.6 0.0 3 2 (172, 200, 188) 34877
0.7 0.0 3 2 (171, 199, 187) 34673
0.8 0.0 3 2 (170, 198, 186) 34468
0.9 0.0 3 2 (169, 196, 185) 34261
1.0 0.0 3 3 (128, 152, 141) 33998

Table 27. Sensitivity analysis of β when p = 0.7.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 191) 34866
0.1 0.1 3 2 (176, 204, 192) 35267
0.2 0.0 3 2 (177, 205, 193) 35668
0.3 0.0 3 2 (175, 204, 192) 35468
0.4 0.0 3 2 (174, 203, 191) 35266
0.5 0.0 3 2 (173, 201, 189) 35064
0.6 0.0 3 2 (172, 200, 188) 34860
0.7 0.0 3 2 (171, 199, 187) 34655
0.8 0.0 3 2 (170, 198, 186) 34448
0.9 0.0 3 2 (169, 196, 185) 34241
1.0 0.0 3 3 (128, 152, 141) 33978

Table 28. Sensitivity analysis of β when p = 0.8.

β α L n Q ETCU

0.0 0.2 3 2 (175, 204, 192) 34848
0.1 0.1 3 2 (176, 204, 192) 35247
0.2 0.0 3 2 (177, 205, 193) 35642
0.3 0.0 3 2 (176, 204, 192) 35444
0.4 0.0 3 2 (174, 203, 191) 35241
0.5 0.0 3 2 (173, 201, 190) 35036
0.6 0.0 3 2 (172, 200, 188) 34831
0.7 0.0 3 2 (171, 199, 187) 34624
0.8 0.0 3 2 (170, 198, 186) 34416
0.9 0.0 3 2 (169, 196, 185) 34207
1.0 0.0 3 3 (128, 152, 141) 33944
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Table 29. Sensitivity analysis of β when p = 0.9.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 192) 34823
0.1 0.1 3 2 (176, 205, 192) 35219
0.2 0.1 3 2 (175, 203, 191) 35014
0.3 0.0 3 2 (176, 204, 192) 35411
0.4 0.0 3 2 (175, 203, 191) 35206
0.5 0.0 3 2 (173, 202, 190) 34999
0.6 0.0 3 2 (172, 200, 188) 34791
0.7 0.0 3 2 (171, 199, 187) 34581
0.8 0.0 3 2 (170, 198, 186) 34371
0.9 0.0 3 2 (169, 196, 185) 34159
1.0 0.0 3 3 (128, 152, 142) 33896

Table 30. Sensitivity analysis of β when p = 1.0.

β α L n Q ETCU

0.0 0.2 3 2 (176, 204, 192) 34792
0.1 0.1 3 2 (177, 205, 193) 35185
0.2 0.1 3 2 (175, 204, 192) 34976
0.3 0.0 3 2 (176, 204, 192) 35370
0.4 0.0 3 2 (175, 203, 191) 35161
0.5 0.0 3 2 (174, 202, 190) 34951
0.6 0.0 3 2 (172, 200, 189) 34739
0.7 0.0 3 2 (171, 199, 187) 34527
0.8 0.0 3 2 (170, 198, 186) 34312
0.9 0.0 3 2 (169, 197, 185) 34097
1.0 0.0 3 3 (128, 152, 142) 33834

Figure 19. Effect of β on the ETCU when p = 0.0.
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Figure 20. Effect of β on the ETCU when p = 0.1.

Figure 21. Effect of β on the ETCU when p = 0.2.

Figure 22. Effect of β on the ETCU when p = 0.3.
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Figure 23. Effect of β on the ETCU when p = 0.4.

Figure 24. Effect of β on the ETCU when p = 0.5.

Figure 25. Effect of β on the ETCU when p = 0.6.
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Figure 26. Effect of β on the ETCU when p = 0.7.

Figure 27. Effect of β on the ETCU when p = 0.8.

Figure 28. Effect of β on the ETCU when p = 0.9.
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Figure 29. Effect of β on the ETCU when p = 1.0.

4. We can easily observed that for fixed Q = (Q1, Q2, Q3), L, n the Lagrangian multiplier α and γ increases,
then their corresponding total cost decreases. From Tables 8–18 and Tables 20–30 one can realize that the
Lagrangian multiplier α decreases if the backorder ratio β increases.

5. Table 7 shows that when the number of shipments n increase, the order quantity Qi, i = 1, 2, 3 decreases.
This is not unexpected, because in practice this fact may occur in the supply chain system.

6. Conclusion

The consumption rate of the several customers are not identical in the lead time, so one cannot use only a
single distribution to describe the lead time demand. Hence in this paper the mixture of distribution model for
multi-item is developed. An integrated vendor-buyer inventory policy for a continuous review model have been
considered, because the integrated total cost is minimum when compared to the total cost of the individuals.
The buyer has limited spaces and budget constraints, and within this constraints the buyer and vendor try to
minimize their costs and the procurement lead time is assumed as n mutually independent components. The
model allows shortages and they are backordered partially. We have divided the paper into two cases of demand
patterns: (i) mixture of normal distribution (ii) mixture of distribution free approach. In each case we utilize the
Lagrangian multiplier technique to optimize the cost function. Since the objective function is highly non-linear,
so we have presented an algorithm to find the optimal solutions such as Qi, L and n. Sensitivity analysis is
performed for the different values of backorder ratio β and p. The graphical interpretation of the sensitivity
analysis is also presented. Managerial implications are also given according to the results of the sensitivity
analysis.

In future research, it would be interesting to deal with different constraints like ordering constraints, inventory
constraints etc., This work can be extended by incorporating deterministic demand patterns such as stock-
depend demand or price-depend demand.
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