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1. Introduction

Price is one of the most effective variables of the business profit. By changing the price, hotel managers can
encourage or restrict the demand in a short term, as well as regulate the on-hand inventories (free rooms). A
rapid development of the information technologies, growth of the e-commerce and the universal deployment of
the Internet have led to the situation that, in the first decade of the 21st century, the dynamic pricing tools have
become an active component of the revenue management systems, see Feng and Gallego [39], Dasu and Tong
[33], Anjos, Cheng and Currie [3] and Lin [80]. The main reasons for the increasing implementation of these tools
are the following: (1) digital data processing allows efficient collection and use of valuable information about the
demand and available inventory, prices of competitors, and processing this information in real time; (2) costs
of retyping price tags and informing customers about the price changes have almost disappeared (Brynjolfsson
and Smith [18]), (3) customers can easily follow the price changes. Abrate and Viglia [1] observed that Internet
also has a feedback affect on dynamic pricing because online reputation becomes more important than the
traditional star rating of the hotels.

Revenue management and dynamic pricing belong to the most popular intelligent decision tools to increase
profitability of various businesses, see Palmer and McMahon-Beattie [96]. Through them, a hotel offers prices
which correlate with the current level of the demand and occupancy, and respond to their changes. Dynamic
pricing can be used as a tool to compete for the maximal profit with firms offering the same service (Rubel [102],
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Sybdari and Pyke [106]). Computer experiments conducted by Koenig and Meissner [67] and analytical results
of Sato and Sawaki [103] revealed an advantage of dynamic pricing versus list pricing.

We will describe basic concepts of revenue management and dynamic pricing, their interrelation and
applicability in the hotel business. A review of the relevant operational research literature will be given.

1.1. Definitions of revenue management

We will give several popular definitions of the revenue management in the hotel terminology. Note that the
term of revenue management replaced the earlier concept of yield management, see Kimes [63]. El Haddad
et al. [51] define revenue management as a tool that correlates supply of rooms with demand and maximizes
income of a hotel by dividing its customers into different categories based on their booking choices and the
current capacity of the hotel. Kimes and Wirtz [65] define the term as employment of the information systems
and pricing strategies, which match orders with the corresponding free rooms over time. Jauncey et al. [58]
consider revenue management as an integrated, continuous, systematic approach for maximizing the income
coming from the sale of rooms with variable prices, based on the forecasted demand. Donaghy et al. [36] follow
approximately the same concept, but also stress the importance of the market segmentation. They define revenue
management as a method of maximizing the revenue, which increases the net income of a hotel through the
correlation of the predicted number of available rooms with the predefined segments of the market at an optimal
price. Jones and Hamilton [59] argue that the revenue management tries to maximize the room price when the
demand exceeds the supply, and to maximize the hotel capacity when the supply exceeds the demand, without
falling in price below the average cost. All the definitions point to the ability of the revenue management to
increase the income of a company without a direct control of costs. The essence of all these definitions is that
the Hotel Revenue Management (HRM) is a tool to increase the income of a hotel by making appropriate room
prices and hotel capacity decisions. Elmaghraby and Keskinocak [37] stress that dynamic pricing models differ
from the traditional optimization models of inventory management in which various given demand scenarios
with fixed prices are considered.

1.2. Advantages

Dynamic pricing and revenue management techniques first appeared in the passenger air service in the late
1970’s. Their advantages were fully revealed by American Airlines in 1985. There, the result of the first year of
deployment of the revenue management and dynamic pricing systems led to the income increase by more than
14% and profit increase by 48%, see Nguyen [92]. In the 1990’s, the hotel business has begun to adopt passenger
air service experience of revenue management and dynamic pricing by adjusting their principles, models and
tools for its own specificity. The implementation of the revenue management and dynamic pricing models in
the hotel business turned possible because hotel, transportation and other service businesses have the following
similar characteristics: (1) limited resources, such as rooms, passenger seats, rented cars, entertainment tickets;
(2) the products or services with a limited period of sale, whose value deteriorates over time; (3) the ability
to accept orders to be satisfied in the future; (4) low per product or service costs and high fixed costs; (5)
fluctuating demand for products or services; (6) the ability to segment the market or customers, see Kimes [63]
and Casado and Ferrer [22]. Many service companies possess these characteristics. That is why, in the recent
past, such companies which offer renting of convention centers, golf courses, cars, traveling on cruise liners, as
well as restaurants, shopping centers, etc., have begun to use revenue management and dynamic pricing in their
operations, see Maddah [85]. Zhuang and Li [135] study a dynamic pricing problem with two revenue streams
coming from the hotel rooms sales and a casino of this hotel.

1.3. Disadvantages and their handling

Kahneman et al. [60, 61], Kimes [62], Wirtz et al. [125] reason that, in spite of all obvious advantages of the
revenue management and dynamic pricing for the user company, such as the increase of income and no risk
in transition to dynamic pricing, these models can cause a sense of “unfair trade” to clients and can lead to
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the loss of their confidence. An explanation is that, due to the dynamic pricing, the room price for the same
period of stay and the same room type can be different for different orders. Customers dissatisfaction from the
fact that the same room was sold to another customer at a cheaper price can reduce the demand and lead to
the hotel income reduction in the long run. El Haddad et al. [51] indicate that the high growth of income from
using revenue management models should not be considered successful without rating a monetary equivalent
of losing customers confidence to the hotel. Complementing this observations, Palmer and McMahon-Beattie
[96] made a conclusion that not just the room prices, but the level of the individual customers awareness of the
pricing rules affects clients confidence. Palmer and McMahon-Beattie also argued that certain types of clients
are more compliant to the dynamic pricing and like its rules, while the other customers do not understand
the rules, and this causes their dissatisfaction. Young, mobile and well-educated people tend to trust dynamic
pricing. Moreover, some of them become rational buyers, who do not immediately agree to buy a service if
the proposed price is lower than the price they perceive, but they start to analyze and “play” with the service
offering companies, trying to forecast future price movement. In order to make revenue management models and
decision tools able to account for the behavior of the rational customers, Besanko and Winston [12] suggested
using game theory approaches. This suggestion was supported by Bitran and Caldentey [13], Elmaghraby and
Keskinocak [37] and Lin and Sidbari [81]. Kwon et al. [70] employ evolutionary game theory to account for
the demand learning. They describe the demand dynamics by means of a continuous time differential equation.
However, the effectiveness of the game theory approaches for modeling the behavior of rational customers is still
poorly investigated. Another way to address customer purchase behavior is to employ discrete choice models.
Meissner and Strauss [88] suggest to correct bid prices based on any choice-based revenue management method
that provides estimates of the marginal value of the service capacity. The basic idea is to start with an initial bid
price, and then to raise bid prices in a greedy fashion to exclude service products that have a negative impact
on the overall profit because of the buy-down effects.

1.4. Basic publications

Since the first practical success of the revenue management, an extensive research on this subject has been con-
ducted, see, for example, Kimes [63], Bitran and Caldentey [13], Chiang et al. [29], Elmaghraby and Keskinocak
[37], Weatherford and Bodily [119]. At present, theoretical knowledge, practical experience and application soft-
ware are well developed in the revenue management for airlines (McGill and van Ryzin [87]). Papers on revenue
management in other businesses often refer to the results from this business and employ its terminology. Similar-
ity of the sale conditions between the hotel rooms and seats in the airplane explains that some authors describe
only the transition conditions of a model from one area to another. For hospitality business, there exist several
important studies considering systematic aspects of revenue management and dynamic pricing (Kimes [63],
Jones and Hamilton [59], Chiang et al. [29], Ivanov and Zhechev [56, 57]), as well as the forecasting component
alone (Burger et al. [19], Chen and Kachani [25], Phumchusri and Mongkolkul [98]) and an optimization com-
ponent alone (Bitran and Monschein [14], Goldman et al. [49]). Academic publications rarely describe complex
revenue management approaches for hotels. On the other hand, practical hotel revenue management systems
for major hotel chains exist, see for example, Koushik et al. [69] and Pekgun et al. [97]. Based on data collected
from almost 1000 European hotels, Abrate et al. [2] report that the large majority of hotels use dynamic pricing
of some form. Our experience shows that there is a lack of revenue management models and methods, which are
easy for use and include all necessary components, as well as inexpensive software tools for small and medium
size hotels.

Our review considers studies of revenue management in the hotel business which have been carried out since
the late 1990’s mostly. We also touch research of revenue management in the other businesses which have direct
implications for the hotel business. The rest of the paper is organized as follows. Section 2 describes general
structure of an HRM system, surveys revenue management tools and classification schemes for dynamic pricing
methods. In Section 3, processes of revenue management are considered. A special attention is paid to the
processes of forecasting and optimization. Section 4 presents key ideas of our customized revenue management
method for the hotel business. Section 5 summarizes this survey and points future research directions.
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Figure 1. Revenue management system of a hotel.

2. Hotel revenue management system

2.1. System structure

Revenue management of a hotel can be represented as a system with interconnected elements. A general
structure of such a system is given in Figure 1. It is a refined version of the structure suggested by Ivanov and
Zhechev [57]. There, abbreviation RM stands for revenue management.

The system operates as follows. A booking request comes from a client and the system registers it. The
system includes the revenue management department, a subsystem of processes of the revenue management
and a data processing subsystem. The latter subsystem has four closely related elements: (1) data input, (2)
hotel revenue centers, (3) specialized software, and (4) revenue management tools. Input data contain all the
information about the booking request and, possibly, information about the customer. Specialized software
registers a booking request and begins its processing with a certain strategy. If the hotel has only one revenue
center, then it is responsible only for the basic income from the room sales. If there are several revenue centers,
then each of them is responsible for the corresponding service: spa and fitness area, restaurant and bar, game
room, and others. The subsystem of processes treats a specific order and determines its status: the number
and types of ordered rooms, period of stay and price. Revenue management department, directly or indirectly,
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approves the result of this treatment, and it goes back to the customer. The result and the decision approach
of handling the orders affect the customers perception of the hotel pricing system and the hotel in general, and
customers intention to deal with the hotel in the future. Revenue management system is constantly influenced
by the external and internal environments.

2.2. Decision instruments

Choosing the right decision instrument, by which the revenue management system will maximize the hotel
income, is very important. There exist many such instruments. Basically, they can be divided into price and
non-price ones. Price based instruments include price discrimination, price barriers, dynamic pricing, guaranties
of the lowest prices and other tools directly affecting the price. Non-price instruments do not change prices
directly, but they are related to the resource management, control of overbooking, room availability and the
duration of stay. Both types of instruments are often used in practice simultaneously.

2.3. Non-price instruments

Pullman and Rogers [100] examine resource management tasks from a general perspective. They divide them
into short term and strategic ones. Strategic tasks are associated with a physical increase of the hotel capacity
(number of rooms) depending on the demand. Short term tasks deal with planning everyday occupancy, check-
in/check-out time and workforce timetabling. The process of the overbooking control is based on the assumption
that, for some reason, a part of clients will not show to the hotel. Therefore, hotels may sell more rooms than
they have, but it is important to plan the excess level. This topic was explored by Hadjinicola and Panayi [52],
Ivanov [54, 55], Koide and Ishii [68], Netessine and Shumsky [90]. Less attention in the literature is paid to the
control of the duration of stay. Kimes and Chase [64] and Vinod [116] investigated an opportunity for the hotel
to fix the minimum number of nights to stay in the periods of high demand.

2.4. Price instruments

The core of price instruments is price discrimination, which is based on the price sensitivity of different
groups of customers, such as tourists and business people, see Kimes and Wirtz [65], Hanks et al. [53], Ng [91].
Due to the price discrimination, the same room can be sold at different prices to the customers of different
groups. To avoid the transition of customers from high prices to low, hotels set up price barriers, see Zhang
and Bell [132]. Special conditions of room sale define these barriers. For example, a hotel may sell rooms at low
prices only for certain days of the week or for a certain minimal duration of stay. It can keep a strict policy
of cancellation or sell specific rooms only to certain types of customers. Sometimes hotels guarantee customers
the lowest price, which is available on the market. This means that, if a client in 24 hours will find another
hotel with a room at a lower price, they will equate the prices. This approach was explored by Carvell and
Quan [21] and Demirciftci et al. [35]. Lanady [71] studied the problem of optimal market segmentation and
suggested a model which assumes that the demand-price relations are non-linear. Guo et al. [50] developed a
similar model and an optimal dynamic pricing strategy based on market segmentation for identical rooms in
the online distribution channel of a hotel. Chen and Farias [24] studied a dynamic pricing model in which the
demand is unpredictable. They suggested and analyzed a simple pricing policy which observes only sales.

2.5. Combining dynamic pricing with resource and inventory management

Many experts came to understanding that resource optimizing and inventory control decisions cannot be
separated from the pricing decisions and that the dynamic pricing tools must be a part of the global revenue
management system. An opportunity to handle the forecasted demand by the dynamic pricing tools as well as
the optimization models of revenue management is the reason that the names of both methods have become
interchangeable, see Boyd and Bilegan [16]. Van Ryzin and Gallego [113] indicate the natural affinity between
pricing and resource management models. If price is treated as a variable, then it can be continuously monitored,
and a decision to refuse an order can be effectuated by sufficiently raising the price. The revenue management
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problems through the prism of dynamic pricing were also studied by Ladany and Arbel [72], Gallego and Van
Ryzin [47, 113], Feng and Gallego [39] and You [128]. Levi and Shi [77] and Chen et al. [28] suggested efficient
and simple heuristic approaches to revenue management of reusable resources with advanced reservations within
the scope of queuing theory. The results in [28] are applicable for fixed prices as well as for variable prices.

Integration of pricing and capacity allocation decisions have been carried out by Feng and Xiao [43, 44]. Their
continuous-time models combine price and inventory decisions, and the pricing and capacity control policy is
based on a sequence of precalculated threshold time points that take into consideration the inventory, price and
the demand intensity. The set of thresholds are obtained by solving the Hamilton-Jacobi equation. This model
applies to maximizing revenues for a single time period. A similar approach has been used by Shi et al. [105] for
determining the production level and selling price of one type of a product in a make-to-stock manufacturing
system. Cao et al. [20] extend studies of continuous-time models by incorporating a discounting revenue criterion
into them.

McGill and Van Ryzin mentioned the works of Gaimon [46], Lau and Lau [74] and Weatherford [118], where
the price determination and the resource management problems are combined. Gaimon attempted to consolidate
price and capacity issues. Weatherford considered the average value of a normally distributed demand as a linear
function of the price. Some researchers, for example, Boyd and Bilegan [16], tend to separate dynamic pricing
models from the revenue management models. However, they still acknowledge their interrelation and similarity
in certain cases such as the case of the one room type.

2.6. Classification of dynamic pricing models

There exist several classification schemes for the dynamic pricing models. Bitran and Caldentey [13] formulate
a general problem of maximizing the income of a company, which owns a limited, deteriorating in value set of
resources, and deals only with the price sensitive customers. For this problem, they suggest using various dynamic
pricing models, dividing them into deterministic and stochastic ones. In each category, they study the cases of
single and multiple types of products, and consider solutions with one static price for the whole season and with
several dynamic prices. Elmaghraby and Keskinocak [37] divide dynamic pricing models into categories based
on the following: (1) renewable or non-renewable resources; (2) dependent or independent demand; (3) myopic
or rational consumers.

2.7. Price constraints

It should be mentioned that a search for an optimal pricing strategy often includes price constraints. Among
the most common constraints are:

• choosing price from a given set, see Chatwin [23], Feng and Gallego [40], Feng and Xiao [41, 42];
• upper limit on the number of price changes, Feng and Gallego [39];
• a given shape of the price function: decreasing or increasing over time, special offers on certain days, see

Bitran and Mondschein [15];
• price restrictions for a range of products;
• prices limited by costs.

3. Processes of revenue management

There exist different processes in revenue management. Tranter et al. [112] describe eight such processes:
customer awareness, market segmentation, internal analysis, competitive analysis, demand forecasting, analysis
of distribution channels, dynamic pricing and inventory control. Emeksiz et al. [38] suggest five processes to
describe a revenue management system: preparation, supply and demand analysis, application of the revenue
management system, its evaluation, and monitoring and making changes to the system. Based on the literature
review and our experience in the hotel business, we suggest that five processes – analysis, forecasting, optimiza-
tion, control and adjustment – can be used to adequately describe proper functioning of a HRM system. Analysis
includes processing the input data, the most important of which are the demand and the information about
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the clients and the hotel resources. Forecasting and optimization are the two most important and necessary
components of the whole system, see Cross [31]. At the transition from forecasting to optimization, there is a
connection of the future demand with the hotel capacities. It is important to have a low forecast error, which
makes the optimization model adequate. The choice of the forecasting method depends of the demand behavior,
and the choice of the optimization tool depends on the truthfulness and accuracy of the input forecasted data
and the computational complexity of the optimization problem. Control consists in monitoring the achievement
of the main goal – maximization of income – and in identifying errors and omissions of the modeling approach.
Adjustment aims at properly correcting the errors so that they do not appear in the future. Below we will
describe in detail the two main components – forecasting and optimization.

3.1. Forecasting

Forecasting is an essential and necessary part of any HRM system. Its mission is to determine future demand
for the hotel rooms. The quality of the revenue management system is highly dependent on the forecast accuracy.
Pölt [99] calculated that, when using a revenue management system, reducing the forecast error by 20% leads to
the 1% increase of the income. Before setting a forecasting model, the following questions have to be answered:
(1) what to forecast; (2) which degree of aggregation of the forecasting objects to choose; (3) to restrict or not
to restrict the demand; (4) which historical period, called forecast base, to use; (5) which forecasting horizon to
choose; (6) which forecasting method to use; (7) which accuracy is reasonable.

3.1.1. Demand forecasting

The main forecasting object in the hotel business is the demand, each unit of which, called an order, a
reservation or a booking, specifies the reservation date, the arrival date, the room type and the duration of
stay. It can be also associated with a probability of cancellation. The reservations can be placed days, weeks
or months before the arrival date. The nature of reservation cancellations is similar to the reservations, except
for the two important features: one can only cancel a confirmed order, and an order can be canceled a given
number of days before the arrival date. Sierag et al. [107] write that a model without cancellations can lead to a
revenue loss of up to 20%. The difference between the number of real bookings and the number of cancellations
is called net reservations.

The demand can be of different degree of aggregation – aggregated, partly aggregated and completely dis-
aggregated demand – and this degree implies using the corresponding forecasting approach. The choice of the
aggregation degree depends on the type of the available input data. The completely aggregated forecasting
approach generates the overall future demand of the hotel, which is further divided between room categories
based on the given ratios between them. The completely disaggregated approach generates future demand for
each category, and then, if it is needed, the data is combined. Weatherford et al. [121] argue that the fully
disaggregated forecast usually gives better results than partly aggregated or aggregated forecast.

The demand in a hotel business has a high degree of seasonality. If a small forecast base period is used, for
example, eight–twelve weeks, then the seasonality cannot be properly addressed, and if the period is large, then
the seasonality can be better addressed, but, in this case, a proper base period has to be chosen. A large forecast
base period can make the forecast not responsive enough. The period for which the forecast is built is called
forecasting horizon. Forecasting horizon can be long-term and short-term. The long-term horizon usually covers
one year. The short-term horizon usually varies from one day to three months.

3.1.2. Forecasting methods

Lee [75] identifies three types of forecasting methods: historical, advanced and combined. Historical methods
include exponential smoothing, moving average, copying demand from the same day of the previous year,
linear regression and autoregressive methods of Box-Jenkins ARMA and ARIMA. ARMA method combines
autoregressive method and the moving average method, and it applies only to the stationary time series. ARIMA
methods extend ARMA methods for the non-stationary time series. The historical methods use data only from
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Table 1. Forecasting methods.

Exponential smoothing Burger et al. [19], Chen and Kachani [25],
Rajopadhye et al. [101], Weatherford and
Kimes [120], Yüksel [129], Phumchusri and
Mongkolkul [98]

Historical
Moving average Burger et al. [19], Weatherford and Kimes

[120], Yüksel [129]
Autoregressive et al. [19], Lim and Chan [78], Lim et al. [79],

Yüksel [129]

Progressive
Additive Chen and Kachani [25], Weatherford and

Kimes [120]
Multiplicative Weatherford and Kimes [120]

Combined
Regressive Burger et.al. [19], Chen and Kachani [25],

Weatherford and Kimes [120]
Weighted average Chen and Kachani [25]

a certain period in the past, such as the total number of arrivals in a particular day. We observed that the early
studies often concentrated on simple methods, while the later studies deal with the more sophisticated methods
such as ARIMA. The results of the forecasting competition accomplished by Makridakis et al. [86] show that
the sophisticated methods such as ARIMA do not perform statistically better than the simple methods in the
computer experiments with real data.

Advanced methods, also called pickup methods, consider future as well as already committed reservations.
There are additive and multiplicative versions of the advanced methods. The additive version assumes that the
number of already committed reservations at a certain day before the arrival is independent of the final number
of reservations for the arrival day. In contrast, the multiplicative version assumes that the number of already
committed reservations influences future reservations. In the additive method, the number of reservations for a
certain day T , forecasted at the current day T − k, is obtained as the sum of the number of already committed
reservations for day T and the sum of k numbers ct, t = 0, 1, . . . , k, where ct is the number of reservations made
for the day T − t− i , i = 0, 1, . . . , L, t days before the arrival and averaged over i = 1, . . . , L, and T − k − L
is the first day of the historical period. In the multiplicative method, the forecasted number of reservations
for day T forecasted at the current day T − k is obtained as the product of the number of already committed
reservations for day T and the product of k numbers pt, t = 0, 1, . . . , k, where pt is the average ratio of number
of reservations made for day T − t − u to the number of reservations at day T − t − u + 1, u = 1, . . . , L, and
T − k − L is the first day of the historical period.

Combined methods use the best features of the historical and advanced methods and combine them, either
by weighted averaging or regression methods. The method of using neural networks also belongs to this group.
Fildes and Ord [45] and Ben-Akiva [9] believe that the combined methods provide the most accurate forecast
results. A short overview of the forecasting methods is given in Table 1.

3.1.3. Forecast accuracy

Making a proper choice of the forecast method is very important. Most often, accuracy is the main criterion
for this choice. There are several measures to assess the accuracy of the forecast. An assessment based on the
Mean Absolute Error (MAE) is the most simple and applicable method. Absolute deviations of the forecasted
past values from the real past values can be calculated for each day of a historical period. The average of these
deviations is the MAE. The smaller is the MAE value the better is the forecast. The Mean Percentage Error
(MPE), the Mean Absolute Percentage Error (MAPE), the Root Mean Square Deviation (RMSD) and other
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measures indicators are also popular, see Phumchusri and Mongkolkul [98]. Armstrong and Collopy [4] carried
out a fairly complete evaluation of error measures with respect to the reliability, construct validity, sensitivity
to small changes, protection against outliers and relationship to decision making.

The effectiveness of the forecasting methods can be evaluated in different ways. Weatherford and Kimes [120]
used real historical data of Choice Hotels and Marriott Hotels to compare the effectiveness of the forecasting
methods. They deduced that the exponential smoothing, the moving average and the method of selecting already
committed orders provide the most accurate forecasts. Based on the results reported in the literature, Fildes
and Ord [45] concluded that combined methods give better accuracy compared to historical and progressive
methods. Zakhary et al. [130] observed in their computer experiments with simulated data that the additive
version of advanced method gives more accurate results than the multiplicative version. Schnaars [104] noted
that, when the input data is highly variable, the method of transferring the demand from the same day in the
past is superior to other popular methods. Despite some differences in the appraisals, all researchers agree that
different methods should be applied to different data types, determined by the season, type of the customers
and other characteristics.

Some researchers propose to incorporate experience and knowledge of experts into the forecasting methods,
and combine them with the mathematical instruments. This direction of research is popular nowadays. Several
authors state that the hotel managers are able to give a very accurate forecast for the two or three week period,
see, for example, Rajopadhye et al. [101]. The human assessment is particularly useful in the presence of the
external events that can affect the future demand.

3.2. Optimization

Optimization part of the revenue management system is extremely important. It is intended to solve the
problem of maximizing the hotel revenue via identifying best prices or optimal allocation of limited resources
(seats in airplanes, rooms in hotels) or both of them. Taking into account different types of rooms, price fares
and durations of stay, this problem is not as simple as it seems. Details of the optimization methods in the
revenue management are given by Weatherford [117], McGill and Van Ryzin [87], Boyd and Bilegan [16], Park
and Piersma [95].

The first optimization models were developed for the area of passenger air transportation. Then, because of
the similarity of mathematical models and the scope, they moved into the hotel business. We will review the
existing revenue optimization models by using the air transportation terminology. Occasionally, we will provide
hotel interpretation of the results. Optimization techniques of air transportation revenue management are most
often published under the name of seat inventory control. Seat inventory control (optimization) techniques
can be partitioned into two major groups – class control and network seat inventory control methods. Class
control methods are based on stochastic principles which incorporate demand distributions and reservation
and cancellation probabilities. They can be divided into static and dynamic solution methods. Static methods
determine the best allocation of seats once, before sales start, based on the demand forecast and capacity
information available at this moment. It is common way to use static methods repeatedly over the booking
period. Dynamic methods allocate seats in each class over time, depending on the real-time information about
reservations and seats availability. Every time the dynamic system gets a request, it decides on the acceptance
or rejection of the reservation and the price. Network seat inventory control methods include deterministic
and stochastic mathematical programming models, virtual nesting and bid price methods and simulation and
dynamic systems approaches. Below we will review these techniques in more detail.

3.2.1. Seat inventory control

Seat inventory control models form the core of the optimization models in the air passenger transportation,
see Chiang et al. [29]. They aim at maximizing the revenue through the right allocation of the limited number
of seats to each of the fare classes. The seat requests occur over time before the flight departure. The seat
request specifies a route and a specific fare class. Once an optimal allocation of the seats to the fare classes is
computed based on the forecasted demand, it is used to develop a booking control policy, which specifies the
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rules of accepting or rejecting incoming seat requests. The nature of the customer requests is stochastic, and the
customers can pay different prices. Prices for each class in each route segment are given and the airline offers
them to the customers. Naturally, at a certain point in time it is more profitable to reject a low fare request for
a seat in order to be able to accept a higher one later for the same seat.

The main methods of seat inventory control are: (1) single leg seat inventory control (class control), which
optimizes the number of seats sold for each flight leg separately, and (2) Origin-Destination and Fare (ODF)
class control, also called network seat inventory control, which optimizes the number of seats sold for the entire
network of flight legs at all fare classes. ODF control operates with triples (origin, destination, fare class). The
flight leg is the direct flight between two points without a stop. Each route in the network consists of one
or more flight legs. If a flight is going from Minsk to Istanbul and then to Ankara, then Minsk-Istanbul and
Istanbul-Ankara are the legs and Minsk-Ankara is the route. The network refers to the complete network of the
flight legs offered by the airline.

3.2.2. Fare classes

Airlines create a set of services known as classes which vary not only because of the separate location of seats
in the airplane. For example, assume that an airline sells seats in four classes – A, B, C and D. Each class is
associated with its price. Class A is associated with the highest price and deluxe meal, and it has no restriction
on the ticket exchange or refund. Class D price is the lowest, no meal is included, and the tickets cannot be
exchanged or refunded. Classes B and C have reasonable prices, regular meal is included, and there are some
restrictions on the ticket exchange and refund. Different customer segments prefer different fare classes.

3.2.3. Class control

For each leg the class control method determines a certain amount of seats that can be sold in each class.
The amount of seats in each class can be different for each leg. For the entire route which comprises several
legs, the seats of the same passenger must be of the same class for all legs. For example, a passenger can book
tickets of class A on a route comprising leg 1 and leg 2 only if A class tickets are available on both legs. Let us
consider the case of two legs POINT1-POINT2 and POINT2-POINT3 and assume that each of them has only
one empty seat. There are only two customers willing to buy tickets. One passenger is willing to pay 70$ for
class A in the leg POINT1-POINT2 and the other passenger is willing to pay 210$ for class A in the route of
two legs POINT1-POINT2 and POINT2-POINT3. In the class control method, seats are available only if the
leg and the class are both available at the same time. It is also impossible to block the 70$ request for the class
A seat while the 210$ class A seat is still open for sale. The class control method does not control such cases
and therefore loses opportunities to increase income.

3.2.4. Static solutions

Littlewood [82] was the first to propose static solutions with two classes. He suggested closing the class of a
low price and transfer remaining seats to the higher class when the expected income from the sale of the next
seat in this class is lower than the expected income from the sale of the same seat in the higher class. Belobaba
[8] offered a so-called nested approach for multiple classes, which is a modification of the approach of Littlewood
[82]. The new approach has been termed the Expected Marginal Seat Revenue approach (EMSRa). It produces so
called nested protection levels. Such levels are defined as upper bounds on the number of seats allocated to the
fare classes. Optimal policies of this approach were independently presented by Curry [32] and Wollmer [127].
Curry suggested that the distribution of the demand is continuous, while Wollmer supposed that it is discrete.
Brumelle and McGill [17] suggested another approach, named EMSRb, which considers both continuous and
discrete distribution of the demand. It is based on the idea of equating the marginal revenues in the various fare
classes. The authors state that the EMSRb approach provides greater protection for higher valued fare classes
than the EMSRa approach. The nested approach is commonly used to solve class control problems.
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Multistage static stochastic programming model for airlines business was presented by Williams [123]. Since
stochastic programming models have become nowadays a very popular decision tool in many applications,
including hotel business, let us describe this model in detail. We will use the hotel terminology because the
problem in Williams [123] admits an evident hotel business interpretation.

The hotel owns rooms of three types i = 1, 2, 3. Types 1 and 2, and 2 and 3 are called adjacent to one another.
The booking horizon is divided into T time periods and the current time period is t = 0. In each time period
t = 0, 1, . . . , T − 1 room reservations are made for time period T . In time period T , there are ni rooms of type
i, and ri percent of rooms of this type can be transformed into the rooms of the adjacent types. The price of
a room of type i to be used in time period T , which is booked and paid in time period t, 0 ≤ t ≤ T − 1, can
take one of the values ct,i,1, . . . , ct,i,Ot , where Ot is the number of price options in time period t. The model
of Williams [123] decides the room prices and the numbers of rooms of each type for each time period in the
planning horizon. The demand values are the numbers of rooms of each type which will be booked in the current
time period and they will be used in time period T . It is assumed that the demand is uncertain and that its
values depend on the price. Assume that the forecast gives St demand scenarios for time period t. While the
demand values depend on the price, it is assumed that the demand scenarios do not depend on the price. They
depend on the external economical, political and social factors. The demand scenarios in time period t are
assumed to be independent events that form a full system of events in this time period. Let the probability of
scenario s in time period t, 1 ≤ s ≤ St, be pt,s. We have

∑St
s=1 pt,s = 1.

The model suggests the construction of a scenario tree. The tree has T + 1 levels denoted t = 0, 1, . . . , T , each
consisting of a number of nodes. Each node (t, s) of level t is associated with a demand scenario s in time period
t, t = 0, 1, . . . , T , s = 1, . . . , St. Level 0 consists of the artificial node (0, 0), where 0 is an artificial scenario that
happens with probability 1 in time period 0. It is assumed that, for each node (t+ 1, b), there is exactly one arc
((t, a), (t+ 1, b)), which means that the scenario b in time period t+ 1 happens after the scenario a in time period
t, t = 0, 1, . . . , T − 1. This assumption makes precedence relations between the nodes to be tree-like. If there is
an arc ((t, a), (t+ 1, b)), then the node (t, a) is called a parent of the node v = (t+ 1, b) and denoted as prnt(v).
Each node (t, st) of level t is associated with a unique scenario path v = ((0, 0), (1, s1), (2, s2), . . . , (t, st)) ending
in this node, sτ ∈ {1, . . . , Sτ}, τ = 1, . . . , t. Since we are in time period 0, the probability that the scenario
path v = ((0, 0), (1, s1), (2, s2), . . . , (t, st)) will lead to the demand scenario st in time period t is equal to
Pv =

∏t
τ=1 pτ,sτ . Let Vt denote the set of all scenario paths ending in the nodes of level t, t = 1, . . . , T . Due to

the tree-like precedence relations, |Vt| = St. Assume that, for each scenario path v ∈ Vt, the demand in time
period t for rooms of type i and price o to be used in time period T , denoted as dv,i,o, is known or forecasted.
There are the following decision variables:

1. xv,i,o – the number of rooms of type i for time period T to be sold in time period t at price o assuming
that the scenario path v ∈ Vt has realized, 0 ≤ t ≤ T − 1;

2. yv,i,o – auxiliary indicator variable; yv,i,o = 1 if xv,i,o > 0 and yv,i,o = 0 if xv,i,o = 0, v ∈ Vt, 0 ≤ t ≤ T − 1;
3. zv,i – auxiliary variable that expresses the total number of rooms of type i for time period T to be sold

along the scenario path v, v ∈ Vt, 0 ≤ t ≤ T .

The deterministic model of the problem can be formulated as follows.

max

T−1∑
t=0

∑
v∈Vt

Ot∑
o=1

Pvct,i,oxv,i,o, (3.1)

s.t.

Ot∑
o=1

yv,i,o = 1, v ∈ Vt; i = 1, 2, 3; t = 0, . . . , T − 1, (3.2)

xv,i,o ≤ dv,i,oyv,i,o, v ∈ Vt; i = 1, 2, 3; o = 1, . . . , Ot, t = 0, . . . , T − 1, (3.3)
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zv,i =

O1∑
o=1

x0,i,o, v ∈ V1; i = 1, 2, 3, (3.4)

zv,i = zprnt(v),i,o +

Ot∑
o=1

xprnt(v),i,o, v ∈ Vt; prnt(v) ∈ Vt−1; i = 1, 2, 3; t = 2, . . . , T, (3.5)

zv,1 ≤ (n1 + br2n2
100
c), v ∈ VT , (3.6)

zv,2 ≤ (n2 + br1n1 + r3n3
100

c), v ∈ VT , (3.7)

zv,3 ≤ (n3 + br2n2
100
c), v ∈ VT , (3.8)

zv,1 + zv,3 ≤ (n1 + n3 + br2n2
100
c), v ∈ VT , (3.9)

zv,1 + zv,2 + zv,3 ≤ n1 + n2 + n3, v ∈ VT , (3.10)

xv,i,o ∈ Z+, v ∈ Vt; i = 1, 2, 3; o = 1, . . . , Ot; t = 0, . . . , T − 1, (3.11)

yv,i,o ∈ {0, 1}, v ∈ Vt; i = 1, 2, 3; o = 1, . . . , Ot; t = 0, . . . , T − 1, (3.12)

zv,i ∈ Z+, v ∈ Vt; i = 1, 2, 3; o = 1, . . . , Ot; t = 0, . . . , T. (3.13)

The objective function (3.1) is the total expected income from selling rooms in time periods t = 0, 1, . . . , T −1
for time period T . The equations (3.2) guarantee that in any time period only one price option will be chosen
for each room type. The relations (3.3) ensure that for any scenario path and any price option the number of
rooms sold for each of the three room types does not exceed the corresponding demand. The equations (3.4)
and (3.5) represent recursive calculation of values of variables z via values of variables x. The inequalities (3.6)–
(3.10) exhibit upper bounds on the total number of rooms of each type available in time period T and their
combinations.

3.2.5. Dynamic solutions

In the discrete time dynamic programming model of Lee and Hersh [76] demand for each class is modeled by
an inhomogeneous Poisson process of a Markovian type in such a way that, at any given time t, the booking
requests before time t do not affect the decision to be made at time t. The decision rule is that a booking request is
accepted if its fare exceeds the opportunity costs of the seat. Authors define opportunity costs as the expected
marginal value of the seat at time t. Kleywegt and Papastavrou [66] showed that the class control problem
can be formulated as a dynamic stochastic knapsack problem. Subramanian et al. [109] added accounting for
cancellations to the model proposed by Lee and Hersh.

3.2.6. Network seat inventory control

Comparing with the class control method, the network seat inventory control method is more efficient for
reservations which include transfers, because it optimizes the entire network of flights in all fare classes offered
by the airline. One of the techniques of this method is to distribute the expected income of the entire route
in proportion to its legs and then to use the class control method for each leg. Glover et al. [48], Talluri and
Van Ryzin [111] and many others formulate the problem of network seat inventory control as the following
deterministic mathematical programming problem.

max
∑
i∈I

rixi, (3.14)
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s.t.
∑
i∈I(l)

xi ≤ cl, l ∈ L, (3.15)

xi ≤ di, i ∈ I, (3.16)

xi ≥ 0, i ∈ I. (3.17)

where I is the set of all pairs (route, class), ri is the price of one seat for the (route, class) pair i, variable xi is
the number of orders for the pair i, L is the set of legs in the network, I(l), I(l) ⊂ I, is the set of pairs (route,
class) for the leg l, cl is the capacity of the leg l, and di is the expectation of the number of orders for the
pair i. The problem is to determine numbers of orders which maximize the total income

∑
i∈I rixi. Aziz et al.

[5] suggested an adaptation of this model for hotel revenue maximization.
Let x∗ denote an optimal solution of the problem (3.14)–(3.17). A booking control policy is generated by

setting upper bound x∗i on the number of orders for each pair i, i ∈ I. As it is mentioned by many authors, e.g.,
Pak and Piersma [95] and de Boer et al. [34], the optimal revenue value of (3.14)–(3.17) is an upper bound for
the same stochastic problem. The problem (3.14)–(3.17) assumes that there is a single flight in a single time
window for each route in the network. Multiple flights of the same route can be considered by making copies of
this route. A stochastic version of the model (3.14)–(3.17) was suggested by Wollmer [126]. This model, called
Expected Marginal Revenue (EMR) model, is the following.

max
∑
i∈I

c0i∑
k=1

riPDi≥kXi,k, (3.18)

s.t.
∑
i∈I(l)

c0i∑
k=1

Xi,k ≤ cl, l ∈ L, (3.19)

Xi,k ∈ {0, 1}, i ∈ I, k = 1, 2, . . . , c0i , (3.20)

where Di is the demand for the (route, class) pair i, PDi≥k is the probability that this demand will be at least
k, and c0i = max{cl | i ∈ I(l), l ∈ L} is the largest number of seats available along all legs of the pair i. Decision
variable Xi,k is equal to 1 if at least k seats are reserved for the pair i, and it is equal to 0 otherwise. The
value of riPDi≥k represents the expected marginal revenue of allocating an additional kth seat to the pair i. A
more sophisticated model of similar type that addresses service product upgrades is suggested by Steinhardt
and Gönsch [108].

General stochastic network models, which are based on Markov decision processes, dynamic programming
decomposition and several types of approximations, are offered by Van Ryzin and Talluri [114], Zhang and
Lu [133] and Zhang and Weatherford [134]. Meissner and Strauss [89] incorporated customer choice into these
models, in which probability of selecting a certain product by the arriving customer is given. A customized
application of Markov decision processes to the problem of determining rental rates in the apartment lease
industry is suggested by Chen et al. [27]. Özkan et al. [93] formulate a Markov decision process for situations in
which demand depends on the current external environment, representing economic, financial, social or other
factors that affect customer behavior.

3.2.7. Virtual nesting and bid price methods

The most frequently used approaches in the network seat inventory control are the virtual nesting and the
bid price method. The virtual nesting approach is similar to the class control method, but it eliminates the
major inconvenience of the latter method by creating “virtual buckets” of seats based on the value rather than
on the class. The approach creates value based virtual buckets on each leg, and then requests for each leg in
each pair (route, class) are assigned to these virtual buckets.
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Table 2. Virtual nesting of seats.

Buckets/legs POINT1-POINT2,
number of seats

POINT2-POINT3,
number of seats

Bucket 1 (high value) 1 1
Bucket 2 (low value) 0 0

Consider the example of two legs and two passengers in Section 3.2.3. Two virtual buckets are created in
this case: Bucket 1 is for high value requests, and Bucket 2 is for low value requests, see Table 2. Seats are
made available in Bucket 1 on both legs. To block a low value request and make a high value request eligible,
the method will assign the 70$ Class A request on the leg POINT1-POINT2 to Bucket 2 and the 210$ Class
A request on the legs POINT1-POINT2 and POINT1-POINT2 to Bucket 1. Note that, if there are multiple
fare requests, the process of assigning them to the buckets is not trivial. There are several approaches to assign
different fare requests to the buckets, see Williamson [124] and Boer [34].

The bid price method is similar to virtual nesting but it avoids complications with assigning requests for
pairs (route, class). The bid price is associated with the shadow price and the displacement/opportunity cost
of reducing the capacity of the leg by one seat, see Williamson [124]. A shadow price is linked to each leg in
the network and it represents a marginal lost from reducing the capacity of this leg by one seat. The bid price
(value, opportunity cost of selling one seat) of a pair (route, class) in the network is equal to the sum of the
shadow prices over the legs comprising the route. A class for a route is opened for sale if the fare associated
with this pair (route, class) exceeds its bid price. Otherwise, the class is closed. An advantage of the bid price
method is that it takes into account the remaining capacity and open/closed pair (route, class) status only.
Once a class is opened, there are no limits on the number of accepted requests. In order to control the selling
process, the bid prices are refreshed periodically. Thus, some classes are closed and some classes are opened.
The bid price method was explored by Williamson [124], Wei [122], Talluri and Van Ryzin [110].

3.2.8. Simulation and dynamic approaches

Bertsimas and de Boer [10] presented a simulation based approach for the network seat inventory control
problem. Their approach is a combination of the deterministic linear programming and approximate dynamic
programming. It considers expected revenue function as a function of the booking limits. The linear programming
model finds initial optimal values of those booking limits. Then the approach improves solutions by considering
the stochastic nature of the demand and employing virtual nesting. The booking period is divided into small
time periods, and the booking process is simulated for the current time period. The booking control policy is
formed only for the current period. Revenue is calculated as the sum of the current period revenue and the
estimated revenue of the future periods, which depends on the remaining capacity.

A full dynamic solution of the network seat inventory control problem was first obtained by Chen et al.
[26]. They formulated the problem as a Markov decision problem and used a linear programming model for
the calculation of the objective function. The objective function depends on the time until departure and the
remaining capacity of the flights. The customer requests are assumed to be independent of each other and
Markovian. In order to accept or reject a request, it is decided whether its fare exceeds opportunity costs or not.
The method does an off-line approximation of the objective function but the booking policy is implemented
on-line. A similar approach is also suggested by Cooper and Homem-de-Mello [30].

3.2.9. Similarity of air transportation and hotel businesses

Optimization models and methods are almost the same for airlines and hotels. For an example, consider
a situation that the hotel can transform any room to be of any type, the number of rooms can change over
time, no client can change the room type during the entire stay but changing the rooms is possible. For this
situation, the equivalent notions in both businesses are given in Table 3. Because of these relations, the linear
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Table 3. Equivalent notions.

Air transportation Hotel business

Leg Night

Route Period of stay

Class Room type

Capacity of leg l Number of rooms for night l

Expected number of orders
for the pair (route, class)

Expected number of bookings for the pair
(period of stay, room type)

Price of one seat for the pair
(route, class)

Price of one night for the pair (period of
stay, room type)

programming model (3.14)–(3.17) can be used to maximize the total income of the hotel.
The class control method can be interpreted and used for the hotel business too. In the hotel terminology

it can be called “room type control” method. The method establishes availability of room types for each date
in the planning horizon. A guest can order a room of a certain type if it is available for sale for each date of
the stay period of the order. Similar to the class control method, “room type control” method cannot examine
reservations by the length of stay. Therefore, reservations for a night or two occupy rooms and do not let the
system to accept the reservations with longer length of stay, which leads to the ineffective usage of the resources.
An analogue of the virtual nesting method associates different combinations of the triple “arrival date – length
of stay – room type” with the different buckets of room requests for each night. The buckets differ by prices
of room types. A room is sold if the corresponding room type is present in the same bucket during the entire
period of stay. An analogue of the bid price method determines the bid price for every night. A room is sold if
the total payment for the corresponding stay exceeds the sum of the bid prices of the nights in the entire stay
period.

In a recent review, Ivanov and Zhechev [57] observed that stochastic programming (Goldman et al. [49], Lai
and Ng [73], Liu et al. [83, 84]) and simulation methods (Baker and Collier [7], Rajopadhye et al. [101], Zakhary
et al. [131]) prevail among the optimization tools. Deterministic linear programming methods (Goldman et al.
[49], Liu et al. [84]), integer programming methods (Bertsimas and Shioda [11]), dynamic programming methods
(Badinelli [6], Bertsimas and Shioda [11]) and fuzzy goal programming methods (Padhi and Aggarwal [94])
received less attention, but there is a growing interest in them. The bid price method (Baker and Collier [7]) is
poorly used in the hotel business.

4. Our revenue management approach

Our revenue management approach for the hotel business employs a rolling horizon decision strategy. It
combines adaptive methods of demand forecasting, dynamic pricing and resource management methods for profit
maximization. The main stages of the approach are: determination of input parameters and decision variables,
data input, forecasting, determination of demand-price relations, optimization and output of the results. Profit
maximization is gained by solving a mathematical programming problem with a concave quadratic objective
function and linear constraints. Our method allows transforming a room of one type into a room of an adjacent
type, it takes into account non-linearity of the objective function and it is efficient in terms of computational
time and computer memory. By using the existing terminology, our method can be classified as that of the
network seat inventory control type and it can be employed to manage a single property hotel or a hotel chain,
provided that the season periods of all hotels are the same. Our method is expected to be competitive to the
existing optimization models of stochastic programming, dynamic programming and fuzzy goal programming,
which require much more computing resources, what makes them inappropriate for large scale problems or too
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expensive in order to be run on a high-performance computing hardware. A brief description of our revenue
management method is given below.

4.1. Input parameters and decision variables

We conjecture that disaggregation of the demand into several categories will increase the accuracy of the
forecast method. We suggest that the demand categories are to be determined by the experts. Parameters
defining a category can be: (1) high season-low season indicator, (2) weekday-weekend indicator, (3) indicator
of the length of stay (up to 7 nights and more than 8 nights), (4) room type (1, 2, 3), and (5) number of nights
between reservation and arrival (1–7 nights, 8–30 nights and more than 30 nights). The set of the specific values
of these parameters defines the corresponding demand category. For the suggested parameter set, there are 72
demand categories. The demand value in each category for each night in the future within the planning horizon
will be further represented as a function of the corresponding price. These functions will be the input for the
optimization stage.

The other input parameters are the planning horizon, the room operation cost for each room type, the
lower and upper bounds on the price values in the demand categories, the reference price for each demand
category, percent of the rooms of each type, which can be transformed to rooms of the adjacent types, and the
corresponding transformation costs. Usually, reference price for a demand category is the price of the last sale in
this category. However, it can also account for earlier prices of the same hotel and hotels-competitors, see Viglia
et al. [115] for a discussion of the reference price concept. We assume that the pairs of adjacent room types are
(1,2) and (2,3), that is, rooms of types 1 and 3 are adjacent to a room of type 2. With respect to the price
ranges and the reference prices, we suggest two input options: giving lower and upper bounds for each demand
category, or giving a reference price for each demand category. If the decision maker gives lower and upper
bounds, then the reference price is calculated as the average of these bounds. If the decision maker gives the
reference price, which can be the last actual price in this demand category adjusted for the prices of competitors,
then the lower and upper bounds on the price values are the result of 50% deviation from the reference price.
The decision variables are prices for rooms in each demand category and each night of the planning horizon.

4.2. Data input

The hotel can store the reservation history in different formats. We extract from the historical data the
number of realized arrivals for each demand category and each night in the historical period, as well as the
length of stay associated with each arrival. Input parameters, time series of the numbers of realized arrivals for
each category and time series of lengths of stay for each category are the input data for our revenue management
method. Note that the season-offseason and the weekday-weekend indicators uniquely determine the sequence
of dates in the time series of each category. For example, the sequence of dates in the category characterized
by high season and weekends will consist of Fridays, Saturdays and Sundays of high season months (June, July,
August and September). Due to the presence of these indicators, there is no need to take into account the
seasonality factor of the time series.

4.3. Forecasting

We forecast the number of arrivals and the length of stay associated with each arrival for each demand
category and each night in the planning horizon based on the category dependent time series. Note that disag-
gregation of the demand into categories can make data in historical periods too sparse and lead to big forecasting
errors. Therefore, for sparse data, we suggest to use simple forecasting methods such as moving average with
a modification for handling non-integer number of forecasted arrivals. If the historical data are saturated, we
suggest to use Holt’s forecasting method of double exponential smoothing. We consider data as saturated if at
least one arrival is present in the arrival time series for each category and each day of the historical period. For
the long term planning horizons such as more than 3 months ahead, we apply a modified “the same day last
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year” forecasting method. The method takes the value of the same day in the last year and adds to it the trend
value calculated by Holt’s double exponential smoothing method on the data of the latest month.

Determination of the demand-price relations requires the forecasted number of occupied rooms for each
demand category and each night in the planning horizon. This information is obtained by means of arithmetic
manipulations with the forecasted arrivals and lengths of stay.

4.4. Determination of demand-price relations

Consider an arbitrary demand category c. We restrictively assume that the demand for this category in any
night τ is a linear function fτ,c of the price pτ,c for this night and category, and that the slope of this function is
the same for all nights in the planning horizon: fτ,c(pτ,c) = aτ,c− bcpτ,c, where bc > 0 is the category dependent
slope of the demand function, which is also called elasticity coefficient in the demand-price studies, and aτ,c > 0
is a constant. The elasticity coefficient bc can be determined by the regression analysis, which operates with the
numbers of rooms occupied in the historical period. The elasticity coefficient does not depend on τ because it
tends to change only in a long term under the influence of external political and economic factors. The constant
aτ,c is calculated as aτ,c = d̂τ,c + bp0c , where p0c is the reference price for category c and d̂τ,c is the forecasted
number of occupied rooms for this category in day τ .

4.5. Optimization

We will maximize the total profit of the hotel via solving the following constrained mathematical programming
problem.

max

k∑
c=1

t+T∑
τ=t+1

(aτ,c − bcpτ,c)(pτ,c − hc)− o1,2
t+T∑
τ=t+1

xτ,1,2

− o2,1
t+T∑
τ=t+1

xτ,2,1 − o2,3
t+T∑
τ=t+1

xτ,2,3 − o3,2
t+T∑
τ=t+1

xτ,3,2 −W
k∑
c=1

t+T∑
τ=t+1

yτ,c, (4.1)

subject to

Lτ,c ≤ pτ,c, τ = t+ 1, . . . , t+ T, c = 1, . . . , k, (4.2)

pτ,c ≤ Uτ,c + yτ,c, τ = t+ 1, . . . , t+ T, c = 1, . . . , k, (4.3)

aτ,c ≥ bcpτ,c, τ = t+ 1, . . . , t+ T, c = 1, . . . , k, (4.4)

pτ,c ≥ hc, τ = t+ 1, . . . , t+ T, c = 1, . . . , k, (4.5)

3∑
j=1

∑
c∈Mj

(aτ,c − bcpτ,c) ≤
3∑
j=1

Rτ,j , τ = t+ 1, . . . , t+ T, (4.6)

∑
c∈M1

(aτ,c − bcpτ,c) = xτ,1 + xτ,2,1, τ = t+ 1, . . . , t+ T, (4.7)

∑
c∈M2

(aτ,c − bcpτ,c) = xτ,2 + xτ,1,2 + xτ,3,2, τ = t+ 1, . . . , t+ T, (4.8)

∑
c∈M3

(aτ,c − bcpτ,c) = xτ,3 + xτ,2,3, τ = t+ 1, . . . , t+ T, (4.9)

xτ,1,2 ≤ b
r1Rτ,1

100
c, τ = t+ 1, . . . , t+ T, (4.10)

xτ,2,1 + xτ,2,3 ≤ b
r2Rτ,2

100
c, τ = t+ 1, . . . , t+ T, (4.11)
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xτ,3,2 ≤ b
r3Rτ,3

100
c, τ = t+ 1, . . . , t+ T, (4.12)

xτ,1 + xτ,1,2 ≤ Rτ,1, τ = t+ 1, . . . , t+ T, (4.13)

xτ,2 + xτ,2,1 + xτ,2,3 ≤ Rτ,2, τ = t+ 1, . . . , t+ T, (4.14)

xτ,3 + xτ,3,2 ≤ Rτ,3, τ = t+ 1, . . . , t+ T, (4.15)

pτ,c1 ≤ pτ,c2 , c1 ∈M1, c2 ∈M2, τ = t+ 1, . . . , t+ T, (4.16)

pτ,c2 ≤ pτ,c3 , c2 ∈M2, c3 ∈M3, τ = t+ 1, . . . , t+ T, (4.17)

pτ,c ≥ 0, xτ,j ≥ 0, xτ,j,i ≥ 0, yτ,c ≥ 0, ∀ τ, c, i, j. (4.18)

where the variables are pτ,c, yτ,c, xτ,j,i and

• [t+ 1, t+ T ] is the planning horizon,
• Lτ,c is the lower bound on the price pτ,c,
• Uτ,c is the upper bound on the price pτ,c,
• hc is the operational cost of a room in category c,
• Rτ,j is the number of rooms of type j available in day τ ,
• xτ,j is the number of rooms of type j with no transformation,
• xτ,j,i is the number of rooms of type j to be transformed to the adjacent type i,
• rj is the percent of rooms of type j that can be transformed into rooms of the adjacent types,
• oj,i is the cost of transforming a room of type j into a room of type i,
• yτ,c is the auxiliary variable which allows price upper bounds to be violated,
• W is a sufficiently large number that is greater than the optimal value of the problem in which all variables
y are equal to zero (price upper bounds are not violated). For example, W can be set as the sum of maximal
values of the functions (aτ,c − bcpτ,c)(pτ,c − hc) with respect to the variables pτ,c for all τ and c,

• Mj is the set of all categories that include room type j. We assume that the sets Mj are numbered in the
non-decreasing order of the room prices.

The objective function (4.1) includes total profit with the positive sign and room transformation costs and
price upper bounds extension costs with the negative sign. The inequalities (4.2) and (4.3) address price lower
and upper bounds, respectively. Note that the positive values of the variables y provide an extra information
to the decision maker. The inequalities (4.4) guarantee that the demand, that is, the number of rooms to be
occupied, takes non-negative values only. The inequalities (4.5) require that the room price is not less than
the room operational cost. The inequalities (4.6), the equalities (4.7)–(4.9) and the inequalities (4.10)–(4.15)
address the room transformation constraints. The inequalities (4.6) ensure that the sum of the requested number
of rooms of each type in different categories in day τ does not exceed the sum of numbers of available rooms of
these types. The equalities (4.7)–(4.9) guarantee that the requested number of rooms of each type in different
categories in day τ is equal to the number of rooms of this type that are transformed and not transformed.
The inequalities (4.10)–(4.12) restrict the number of rooms to be transformed from each type to the number
of rooms in accordance with the corresponding percent value. The inequalities (4.13)–(4.15) ensure that the
number of rooms to be transformed from each type does not exceed the available number of rooms of this
type. The inequalities (4.16)–(4.17) secure the price hierarchy of room types. The problem (4.1)–(4.18) is a
mathematical programming problem with a concave quadratic objective function and linear constraints. The
objective function is concave because it is the sum of concave quadratic functions of one variable. The problem
(4.1)–(4.18) can be solved by a standard optimization software such as CPLEX or MATLAB.

Note that the problem (4.1)–(4.18) can be decomposed into T subproblems. Each such a subproblem considers
one day τ and, hence, index τ of the variables and the input parameters of the subproblem is fixed, τ =
t + 1, . . . , t + T . An optimal solution of the original problem is determined by the optimal solutions of the
subproblems.
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4.6. Output

Solution of the problem (4.1)–(4.18) is the optimal price for each category c in each day τ of the planning
horizon, the values of the room transformation variables x and the values of the price upper bound slack variables
y. Given optimal prices p∗τ,c, we can compute corresponding demands aτ,c− bcp∗τ,c. These values are estimates of
the hotel occupancy for each day and room type and they can be used for planning service activities. Solution
of the problem (4.1)–(4.18) can be analyzed and approved or modified by the decision makers. An approved
solution can be made accessible by the potential clients in a friendly format. There can be two booking policies
based on the solution of the problem. The first policy is to accept every incoming request and update solution
after each booking. The second policy is to accept as many requests from each category as determined by the
optimal demand values aτ,c − bcp∗τ,c. The excessive requests will be rejected. The efficiency of the second policy
strongly depends on the demand forecast quality.

4.7. Computer experiments

We are currently in the process of developing and implementing a computer system that realizes our revenue
management approach. Initial computer experiments with real hotel data were performed. In the experiments,
the number of demand categories was 72, with 3 room types. The actual revenue of the example hotel in the past
period of 90 days, obtained by employing a static pricing strategy, was compared with the modeled potential
revenue generated by our approach for the same past period, assuming that the demand behaves according to
the suggested linear elastic model. A modified moving average forecasting method was used. The experiments
were run on a conventional PC. Three types of scenarios were considered for the selection of the historical input
data. In the steady scenario, daily number of check-ins in the historical period does not much differ from the
daily number of check-ins in the planning horizon. Low-grow and high-grow scenarios are characterized by low
and high growth, respectively, of daily check-ins in the planning horizon in comparison with the same values
in the historical period. Experiments demonstrated that our dynamic pricing approach is efficient because each
run required only few seconds. Regarding the solution quality, the average revenue of the hotel in comparison
with the static pricing strategy was increased by about 3-5%, with distribution of 3%, 4% and 5% for the steady,
low-grow and high-grow input data scenarios.

5. Conclusion

We gave several definitions of the Hotel Revenue Management (HRM) and pointed advantages and disad-
vantages of the HRM systems. A special attention has been paid to the dynamic pricing. Processes of a HRM
system are described and a detailed overview of the research of the forecasting and optimization processes is
provided. We discussed what has to be forecasted, described main forecasting methods and measures to asses
accuracy of the forecast. For optimization, we reviewed seat inventory control models, gave equivalent notions of
air transportation and hotel business and interpreted airlines seat inventory control models in terms of the hotel
revenue management. We also introduced our own revenue management method for the hotel business. This
method disaggregates the demand into several categories, forecasts the demand in each category, determines
demand-price relations assuming their elasticity and finds optimal prices for categories by solving a mathe-
matical programming problem with a concave quadratic objective function and linear constraints. The method
allows room transformations.

This review revealed that most of the studies concentrate either on forecasting or on optimization and that
a combined revenue management approach is rarely described. The existing practical systems are sophisticated
and expensive software tools, which are employed by the major hotel chains. There is a need of complete solution
approaches which are easy to implement, computationally efficient and can be employed by small and medium
size hotels. We believe that our method described in this paper possesses these characteristics.
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