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A GENERALIZED MODEL AND A HEURISTIC ALGORITHM FOR

THE LARGE-SCALE COVERING TOUR PROBLEM

Keisuke Murakami*

Abstract. The covering tour problem (CTP) is defined on a graph, where there exist two types of
vertices. One is called visited vertex, which can be visited. The other is called covered vertex, which
must be covered but cannot be visited. Each visited vertex covers a subset of covered vertices, and the
costs of edges between visited vertices are given. The objective of the CTP is to obtain a minimum
cost tour on a subset of visited vertices while covering all covered vertices. In this paper, we deal with
the large-scale CTPs, which are composed of tens of thousands of vertices; in the previous studies, the
scales of the instances in the experiments are at most a few hundred vertices. We propose a heuristic
algorithm using local search techniques for the large-scale CTP. With computational experiments, we
show that our algorithm outperforms the existing methods.
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1. Introduction

The covering tour problem (CTP) is defined on a graph G = (V ∪W,E ∪ E′), where V is a set of vertices
that can be visited and W is a set of vertices that must be covered but cannot be visited. The edge set E is
the set of undirected edges between two vertices in V (i.e., E = {(vi, vj) : vi, vj ∈ V, i < j}) and E′ is the set
of undirected edges between vk ∈ V and vl ∈W (i.e., E′ = {(vk, vl) : vk ∈ V, vl ∈W )}. Let cij > 0 be the cost
of edges (vi, vj) ∈ E and dkl > 0 be the cost of edges (vk, vl) ∈ E′. Each vertex in V covers a subset of W . In
general, vk ∈ V is likely to cover vl ∈ W when dkl is small. The objective of the CTP is to obtain a minimum
cost tour covering all vl ∈ W ; the tour consists of a subset of V . We refer to vi ∈ V as the visited vertex and
vl ∈ W as the covered vertex (Fig. 1). The CTP is NP-hard as it reduces to the traveling salesman problem
when each vertex of W is covered by just one vertex in V .

There are several applications of the CTP. For example, the construction of tours for visiting health care
teams in developing countries is equivalent to solving the CTP. Traveling health care teams can only access a
limited number of villages due to infrastructural restrictions, but the health care team must meet every person
at least once [7, 14]. The health care team’s goal is to minimize travel time to see as many patients as possible.
Another example is to determine the locations of post boxes among a set of candidates [17]. The post boxes must
be located within a reasonable distance from every household. Then, the aim of the post office is to minimize
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Figure 1. Examples of two models.

the travel time of a collection route through all post boxes. A similar example would be to locate a number
of regional distribution centers among a set of candidate sites in such a way that all customers are within
reasonable distance from at least one regional distribution center and that the cost of delivery and pick-up
routes is minimized [6]. This example is also applied to a decision of the location of satellite distribution centers
to cater humanitarian supplies [23].

1.1. Related studies and our contribution

Several studies on the CTP have been conducted. The problem was first introduced by Current and Schilling
[6]. Although they named it “covering salesman problem (CSP)”, it is a special case of CTP. Gendreau et al.
presented a new formulation and proposed the first exact algorithm, as well as a heuristic [10]. Baldacci et al.
presented a model and three scatter-search algorithms for the CTP. They also formulated the CTP as a mixed
integer programming and proposed several valid inequalities [3]. Salari and Naji-Azimi proposed an integer
linear programming based heuristic algorithm [27]. Golden et al. generalized the CTP, where each vertex is
covered at least several times, and they proposed local search algorithms for the generalized CTP [11]. Salari et
al. proposed a hybrid heuristic algorithm by combining the ant colony optimization algorithm with the dynamic
programming technique [28]. Farahani et al. surveyed several covering problems in facility location, including
the CTP [8]. Motta et al. proposed a GRASP meta-heuristic for a generalized CTP in which the vertices of W
can also be visited [21]. Hachicha et al. introduced the multi-vehicle covering tour problem (m-CTP) [13] and
Ha et al. proposed an exact algorithm and a metaheuristic for the m-CTP [12]. Jozefowiez et al. investigated
the bi-objective CTP [16], where one objective function is the minimization of the tour length and the other is
the minimization of radius of the cover. They have proposed a solution method combining a genetic algorithm
with a branch-and-cut algorithm.

Moreover, there are several similar problems to the CTP, such as the (hub) location-routing problems. The
location-routing problem (LRP) is not unique and well-defined. Thus, Nagy and Salhi defined the problem
as “location planning with tour planning aspects taken into account” [22]; this is a combination of facility
location and multi-depot vehicle routing problem. Some facility are located, and tours through customers are
obtained, considering each facility as a depot. Each customer must be visited by one of the tours. In the
problem, there exist two types of vertices, i.e., the potential facility (depot) vertex and customer vertex; these
vertices are equivalent to the visited and covered vertices in the CTP, respectively. The CTP does not find
the tours through covered vertices (customers), but obtains a tour through visited vertices (facilities). On the
other hand, the LRP does not find a tour through visited vertices (facilities), but constructs the tours through
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covered vertices (customer). Prodhon and Prins presented a survey of the related works on LRP [24]. The hub
location-routing problem (HLRP) is closely similar to the LRP [26]. The only difference from the LRP is that
we also find a tour thorough facility vertices in HLRP. One of the applications of HLRP is an organization
participating in disaster relief operations in developing countries, where intermediate depots are set up and
relief teams transport the goods from each intermediate depot to the disaster victims [19, 25]. Andrade et al.
introduced the k-interconnected multi-depot multi-traveling salesman problem (k-IMDMTSP) [1], which is a
special case of the HLRP. The k-IMDMTSP permits only a single (or empty) cycle for each facility vertex.

In this paper, we generalize the model of CTP. Although previous studies do not specify the definition of
cover, the costs dkl of edges (vk, vl) ∈ E′ are defined in their experiments by direct distances in Euclidean space
and if dkl is smaller than a certain fixed value d (i.e., radius of the cover), vk covers vl. We call this the “ fixed
radius model” (Fig. 1). It seems that some of the existing algorithms provide good solutions in the fixed radius
model. However, the ability to cover may differ according to the visited vertex and there are barriers such as
mountains and river in the real world. Hence, even if the Euclidean distance between vk ∈ V and vl ∈ W is
short, vk cannot always cover vl. We therefore determine a subset of W which is covered by each visited vertex
in the generalized model, when we consider the realistic conditions (Fig. 1).

Two heuristics for the CTP have been proposed in previous studies [6, 10]. One is called the “2-stage method”,
where the set-covering problem (SCP) and the traveling salesman problem (TSP) are considered separately
within the CTP. In the first stage, we find a minimum subset of V which covers all vl ∈ W ; this corresponds
to solving the SCP. In the second stage, we obtain a shortest tour that consists of the subset of V found in the
first stage; this corresponds to solving the TSP. The solution (tour) to the TSP is finally a solution to the CTP.
However, the 2-stage method is not appropriate for the generalized CTP model, because in the first stage, the
solution to the SCP might not be good. For example, when several vertices are covered by “a” visited vertex or
by “a few” visited vertices, the 2-stage method in the first stage (SCP) selects the former, because the first stage
minimizes the number of visited vertices belonging to the solution (tour); this would lead to a good solution in
the fixed radius model. However, in the generalized model this is not an appropriate selection because the cost
might be lower to visit “a few” vertices than “a” vertex, as shown in Figure 2. Note that even in the fixed radius
model, the number of visited vertices included in the optimal solution might not be lower than that included in
the non-optimal solution.

The other heuristic is proposed by Gendreau et al. [10]. They combine the GENIUS heuristic for the TSP
[9] with the PRIMAL1 heuristic for the SCP [2]. This method reconstructs the tour by using GENIUS, every
time one vertex that is to be added to the tour is determined by using PRIMAL1. The Gendreau’s heuristic
seems to find a good (near-optimal) solution for both models. However, we are afraid that this heuristic cannot
perform well for large-scale problems because the GENIUS heuristic is not likely to find a good feasible solution
to the large-scale TSP. The performances of the GENIUS heuristic have been tested by our preliminary exper-
iments, where we compared the results of the GENIUS heuristic with optimal solutions in several instances.
The GENIUS heuristic could find good solutions for small-scale problems, but it could not perform well for
large-scale problems.

We therefore propose an algorithm for the large-scale CTP, even though previous studies do not target the
large-scale problems (the instance scale of the experiments in the previous studies is at most |V | = 100 and
|W | = 500). Our algorithm is based on local search technique, called “ruin and recreate method [29]”, where
we solve a subproblem using a type of labeling algorithm and heuristic algorithm. This is iterated until the
termination condition is satisfied. In computational experiments, we compare the results obtained using our
local search algorithm with those using the two existing methods in the fixed radius model and the generalized
model. We show that our algorithm outperforms the existing methods in the generalized model.

This paper is organized as follows. Section 2 presents the generalized model and formulation. In Section 3,
we propose an algorithm, where we explain how to generate a subproblem and we present a solution method
for the subproblem. In Section 4, we compare the results obtained using our algorithm with those using the
existing methods. Section 5 concludes this study.
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Figure 2. Paths in the generalized model.

2. Model

The generalized CTP model can be formulated as an integer linear program as follows [10]. Note that our
formulation is not exactly the same as that of [10], because the model of [10] considers a set of vertices that must
be visited (i.e., T ⊂ V ) though our model does not address it. Here, we define “tour” as a feasible solution which
covers all vertices of W ; in particular, an optimal solution is called “optimal tour”. We let V = {v1, v2, ..., vn}.
For vk ∈ V , let yk be a binary variable equal to 1, if vertex vk belongs to an optimal tour. Otherwise yk equals 0.
For vi, vj ∈ V and i < j, let xij be a binary variable equal to 1, if edge (vi, vj) ∈ E belongs to an optimal tour.
Otherwise, xij equals 0. Let δlk denote a binary coefficient equal to 1 if vl ∈ W can be covered by vk ∈ V . In
the fixed radius model, a threshold value d is given, and if the Euclidean distance between vertices vl ∈W and
vk ∈ V is shorter than or equal to d, δlk = 1; otherwise, δlk = 0. On the other hand, in the generalized model,
we assume that δlk is given on the basic of geographical conditions. We also define Sl = {vk ∈ V |δlk = 1} for
every vl ∈W . Then, |Sl| ≥ 1 for all vl ∈W .

min
∑
i<j

cijxij (2.1)

s.t.
∑

vk∈Sl

yk ≥ 1, ∀vl ∈W (2.2)

∑
i<k

xik +
∑
j>k

xkj = 2yk, ∀vk ∈ V (2.3)

∑
vi∈S,vj∈V \S

or vj∈S,vi∈V \S

xij ≥ 2(yt + yu − 1),

S ⊂ V, 2 ≤ |S| ≤ n− 2, vt ∈ S, vu ∈ V \ S (2.4)

xij ∈ {0, 1}, 1 ≤ i < j ≤ n (2.5)

yk ∈ {0, 1}, vk ∈ V (2.6)

The objective function (2.1) represents the minimization of the sum of the costs. Equation (2.2) ensures cov-
ering constraints, whereas equation (2.3) ensures degree constraints. Equation (2.4) expresses subtour breaking
constraints, and equations (2.5) and (2.6) ensure xij and yk are binary variables.
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Figure 3. Generation of subproblem.

3. Algorithm

Our solution method consists of the following three algorithms:

1. Ruin and recreate heuristic (R&R)
2. Labeling algorithm (LAB)
3. Heuristic algorithm (HEU)

The main algorithm is R&R, where LAB is used as a subroutine. Furthermore, HEU is used as a subroutine
inside LAB. We present the R&R, LAB, and HEU in Sections 3.1, 3.2, and 3.3, respectively.

3.1. Ruin and recreate heuristic

The R&R is a local search algorithm [29]. It first finds an initial tour (solution). Next, the tour is ruined and
a subproblem of the CTP is generated. Then, a new tour is recreated (the subproblem is solved). If the cost of
the new tour is improved, we update the tour. This is repeated until the termination condition is satisfied. Our
R&R for the CTP is described as follows.

Algorithm 3.1. R&R for the CTP

Step 0: Find an initial tour and set it to current tour.
Step 1: Destroy a part of the current tour and generate a subproblem of the CTP.
Step 2: Recreate the partial tour (solve the subproblem).
Step 3: If the cost of the current tour is improved by Step 2, update the current tour.
Step 4: If the termination condition is satisfied, exit; otherwise, return to Step 1.

In Step 0, an initial tour is found; the detailed explanation is provided in Section 3.3. Step 1 ruins a part of
the current tour and generates a subproblem of the CTP. The subproblem is generated as follows. We randomly
choose a path included in the current tour (i.e., a part of the current tour) as shown in the left schematic of
Figure 3. The path is temporarily ruined, i.e., the vertices on the path are not visited. As a result, some vertices
in W are not covered. We find all vertices that are not covered and let W ′ denote the set of these uncovered
vertices. Next, we find the visited vertices, each of which covers at least one vertex in W ′ and denote V ′ to be
the set of these visited vertices. Let s and t refer to the two ends of the path (Fig. 3). Then, the shortest path
problem with covering constraints is generated, where the source vertex is s, the target vertex is t, the set of
the visited vertices is V ′ and the set of the covered vertices is W ′. The shortest path problem is the subproblem
of the CTP. We name the subproblem of the CTP “shortest path problem with covering constraints (SPCC)”.
Step 2 recreates the path that covers all vertices in W ′, i.e., it is equivalent to solving the SPCC. We also
propose a labeling algorithm for the SPCC in Section 3.2.
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3.2. Labeling algorithm for the SPCC

A shortest path problem is often solved using the labeling algorithm, which is an improvement over the
dynamic programming method. Examples of well known labeling methods are the Dijkstra’s algorithm and
the Bellman–Ford algorithm. However, the SPCC is not a standard shortest path problem due to covering
constraints, and so we cannot use such well known algorithms without any change. We therefore propose a new
labeling method for the SPCC.

The number of labels on a vertex is not always one for the SPCC, even though that is one for standard
shortest path problems, because there are multiple criteria of labels in the SPCC. For example, two labels
(Label 1 and Label 2) exist on a vertex; Label 1 covers a set W1 ⊂ W and the objective function is c1, and
Label 2 covers a set W2 ⊂ W and the objective function is c2. When W2 ⊂ W1 and c2 < c1, we cannot judge
which label is superior. Thus, the two labels must remain on the vertex. Consequently, a lot of labels might
remain on each vertex in a Pareto-optimal fashion, and this causes the computation time to be long.

In our labeling algorithm for the SPCC, the number of labels on each vertex reduces to one to find a feasible
solution within reasonable time, although the optimality is lost. In standard labeling algorithm such as the
Dijkstra’s algorithm, the label on a vertex is represented by the cost of the path from the source to that vertex.
We call the path from the source to that vertex as the “previous path” of that vertex. However, in SPCC, we
must evaluate a label by using not only the cost of the previous path but also the vertices covered by the previous
path. To generate an objective problem (not multi-objective problem), we define the objective function as the
sum of the cost and the number of covered vertices (i.e., cost + w× (number of covered vertices); w implies a
weight). When we use the objective function, the number of labels on each vertex is always one. However, this
objective function has a serious drawback that the labeling algorithm is likely to terminate (i.e., the updating
of the labels terminates.) before a feasible path is found. We are afraid that we cannot appropriately evaluate
the labels by using only the previous path. We therefore consider not only the previous path of that vertex but
also the path from that vertex to the target vertex. We call the path from that vertex to the target vertex as the
“forward path”. That is, we find a feasible path including that vertex and the cost of the feasible path is used
as a label on that vertex (we present a heuristic algorithm for finding a feasible path in Sect. 3.3). The feasible
path covers all vertices vl ∈W ′. We expect the cost of the feasible path to be one of the most appropriate labels.

We describe our labeling algorithm (LAB) for the SPCC below, where a label is expressed by the cost of a
feasible path. Let l(i) be the label on vertex vi ∈ V ′. Let R be a vertex set that cannot lead to update other
vertices. Let p(i) denote the cost of the previous path of the vertex vi ∈ V ′ and let f(i) denote the cost of the
forward path from vertex vi ∈ V ′.

Algorithm 3.2. LAB for the SPCC

Step 0: Set l(s)← 0 and p(s)← 0. Set l(k)←∞ and p(k)←∞ for all vk ∈ V ′ \ {s}. Set R← ∅.
Step 1: Find a vertex vj ∈ V ′ \R such that l(j) = min

vk∈V ′\R
l(k).

Step 2: For all vi ∈ V ′ \R, if l(i) > p(j) + cji + f(i), then set l(i)← p(j) + cji + f(i), p(i)← p(j) + cji
and R← R \ {vi}.
Step 3: Set R← R ∪ {vj}.
Step 4: If V ′ = R, then exit; otherwise, return to Step 1.

Step 0 initializes each parameter. In Step 1, the vertices with minimum label value are found. Step 2 updates
the labels, where p(j) + cji + f(i) represents the cost of a feasible path and we need to find the forward path
from vertex vi to compute f(i). The method for finding the forward path is presented in Section 3.3. Note that
we do not need the extra method for finding the previous path, because it is found in LAB (p(i)← p(j) + cji).
Step 3 updates the value of R. In Step 4, if the termination condition is satisfied, then exit; otherwise, return
to Step 1.
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3.3. Heuristic algorithm for finding the forward path

We propose a heuristic algorithm for the problem of finding the forward path from vertex vi. The problem
must quickly be solved in addition to finding high-quality solution because it is computed many times. We
notice that the problem has a characteristic of the SCP. A fast and high-accuracy algorithm for the SCP has
been proposed by Chvata [4]; this algorithm is based on a greedy heuristic, where we select a vertex covering
more vertices for its cost. For each vertex, an evaluation value is computed, i.e., (number of vertices covered by
the vertex)/(cost of the vertex). Then, we find the vertex with the largest evaluation value and that identified
vertex is added to the solution. This is repeated until all the vertices are covered. This heuristic is likely to find
a good feasible solution quickly.

Here in, we improve the greedy heuristic to find the forward path from vertex vi. This improved heuristic
starts with vertex vi and then repeats the determination of the next vertex to be visited using the evaluation
value similar to the greedy heuristic for the SCP. That is, the improved heuristic combines the greedy heuristic
for the SCP with the nearest neighbor method for the TSP. We explain this improved heuristic for finding the
forward path from vertex vi below.

Let W̃ ′ ⊆W ′ be the set of the vertices that are not covered by the previous path of vi. Let W ′
k denote the set

of the vertices covered by the visited vertex vk ∈ V ′. Let W̃ ′
k denote the set of uncovered vertices and covered

by vertex vk, where we initialize W̃ ′
k = W̃ ′ ∩W ′

k. Then, the next vertex to be visited is determined in the SCP

fashion; we use the ratio |W̃ ′
k|/cik. The next vertex is represented by the following equation:

vk0 = arg max
vk∈V ′

{
|W̃ ′

k|/cik
}
. (3.1)

When the next visited vertex vk0
is found using equation (3.1), the uncovered set W̃ ′

k is updated by

W̃ ′
k = W̃ ′

k \W ′
k0
, ∀vk ∈ V ′. (3.2)

Procedures (3.1) and (3.2) are iterated until all the vertices are covered (W̃ ′
k = ∅, ∀vk ∈ V ′). Finally, the

target vertex, vtarget, is visited. Furthermore, the solution (cost and path) is improved by using the 2-opt method
and removing the redundant vertices. Let σ′

i be the forward path from vertex vi. We describe the heuristic for
finding the forward path from vertex vi (HEU) as follows.

Algorithm 3.3. Heuristic for finding the forward path (HEU)

Step 0: Initialize σ′
i ← vi, vk0

← vi and W̃ ′
k for all vk ∈ V ′.

Step 1: Set vk0
← arg max

vk∈V ′

{
|W̃ ′

k|/ck0,k

}
.

Step 2: Set σ′
i ← σ′

i + vk0
.

Step 3: Update W̃ ′
k ← W̃ ′

k \W ′
k0

for all vk ∈ V ′.

Step 4: If W̃ ′
k = ∅ for all vk ∈ V ′, set σ′

i ← σ′
i + vtarget and go to Step 5; otherwise, return to Step 1.

Step 5: Apply 2-opt method to σ′
i and update σ′

i.
Step 6: Remove redundant vertices from σ′

i.

Step 0 initializes each parameter. Step 1 selects the vertex with maximum evaluation value as the next vertex
to be visited (Eq. (3.1)). In Step 2, the vertex vk0 is allocated to the tail of the path σ′

i. In Step 3, the uncovered
set W̃ ′

k is updated (Eq. (3.2)). Step 4 checks whether the covering constraints are satisfied or not. In Step 5, the
path σ′

i is improved. It is known that the solutions to the nearest neighbor algorithms for the TSP are improved
by using the 2-opt method [18]. Thus, we use the 2-opt method here to improve the solution. The input to the
2-opt method is a path σ′

i obtained previously from executing Steps 0–4. Note that we ignore everything but
the vertices that are included in the path σ′

i, i.e., this 2-opt method is the same as that often used to solve the
TSP.
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In Step 6, we remove the redundant vertices from path σ′
i because this heuristic might generate redundant

vertices. Even if the redundant vertices are removed, all vl ∈W ′ remain to be covered. The method for removing
the redundant vertices is next explained. We first enumerate the critical vertices from path σ′

i. If vl ∈ W ′ is
covered by only one visited vertex, that visited vertex is critical. Then, let Cr(σ′

i) ⊆ V ′ denote the critical vertex
set in path σ′

i and let W ′
Cr(σ′

i)
⊆W ′ be the vertex set covered by Cr(σ′

i). In addition, let C̄r(σ′
i) denote the set

of vertices that are on path σ′
i but are not included in Cr(σ′

i). The critical vertices Cr(σ′
i) cannot be removed

because if one of them is removed, all v ∈W ′ are not covered. Therefore, we next select some removal vertices
from C̄r(σ′

i). Note that we can preliminarily remove the visited vertex covering only the subset of W ′
Cr(σ′

i)
from

C̄r(σ′
i), if such vertices exist, because the visited vertex is determinately redundant. Because it might take a

long time to select the optimal removal vertices, we use the following method to quickly find removal vertices.
We compute the saving cost of each vertex in C̄r(σ′

i) to decide which vertex to remove. The saving cost of
vertex vr ∈ C̄r(σ′

i) is computed by

∆cr = ckr + crh − ckh ∀vr ∈ C̄r(σ′
i), (3.3)

where vk and vh represent the predecessor and successor vertices, respectively, of vertex vr on path σ′
i. The

vertex that has the largest saving cost is then removed. After we remove a redundant vertex, we connect the
predecessor vertex to the successor one of the removed vertex. This is how path σ′

i is updated. Then, Cr(σ′
i)

and C̄r(σ′
i) are also updated. This process is iterated until the redundant vertices set, C̄r(σ′

i), is empty. The
method for removing redundant vertices (RRV) is described as follows.

Algorithm 3.4. Removal of Redundant Vertices (RRV)

Step 0: Initialize Cr(σ′
i) and C̄r(σ′

i).
Step 1: Compute ∆cr ← ckr + crh − ckh for all vr ∈ C̄r(σ′

i), where vk and vh are the predecessor and
successor vertices of vr, respectively.
Step 2: Set vr′ ← arg max

vr∈C̄r(σ′
i)
{∆cr}.

Step 3: Remove vr′ from σ′
i and update σ′

i.
Step 4: Update Cr(σ′

i) and C̄r(σ′
i).

Step 5: If C̄r(σ′
i) = ∅, exit; otherwise, return to Step 1.

Step 1, computes the saving cost for all vk ∈ C̄r(σ′
i). Step 2 finds the vertex with maximum saving cost

and this vertex is removed from σ′
i in Step 3. In Steps 4 and 5, Cr(σ′

i) and C̄r(σ′
i) are updated and if the

termination condition is satisfied, we exit; otherwise, we return to Step 1.
This is how HEU (Algorithm 3) finds the forward path from vertex vi by using RRV (Algorithm 4). Further-

more, we can find an initial tour (solution) of R&R (Algorithm 1) (i.e., Step 0 in R&R) by using HEU, where
V ′ = V and W̃ ′ = W are set, and vertex vi and the target vertex are set to the same vertex.

Our R&R (Algorithm 1) finally finds a solution to the CTP by using LAB (Algorithm 2) and HEU (Algo-
rithm 3). We now discuss the size of SPCC (Step 1 in R&R). The performance of the R&R depends heavily on
the size of the SPCC. When it is too small, R&R might not perform well. This is because the path (solution)
is not likely to improve, even though only a few vertices on the path are switched with others. However, when
the size of the SPCC is too large, R&R might also not perform well, because it is too time-consuming to solve
the SPCC. Thus, we empirically suggest an appropriate size for the SPCC. We generate an SPCC where the
number of vertices is about 100 (i.e. |V ′| = 100). These subproblems are difficult to generate without prior
information, because the conditions are different with respect to each problem (instance). So, we conduct few
preliminary experiments and determine the appropriate size of the part of the current tour that is temporarily
ruined.
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4. Computational experiments

We show the comparative results of the computational experiments obtained using our R&R, the 2-stage
method [6] and Gendreau’s heuristic (GH) [10]. The 2-stage method and the GH are presented in Section 1.1.
Our R&R and the GH are implemented in C++ using STL vector. The 2-stage method solves the SCP and the
TSP using the MIP solver called CPLEX 12.6 for the SCP [15] and the Chained-Lin–Kernighan heuristic for
the TSP [5], respectively. All tests were performed on a 3.7 GHz Core i7-4820k with a Linux operating system
(CentOS release 6.6) with 64 GB of RAM memory. Note that none of the implementations used multi-cores.

We randomly generate several types of problems from |V | = 100, 1000, 5000, 10000 and |W | =
|V |, 2|V |, ..., 5|V | in two models (fixed radius and generalized models). In other words, we generate 4× 5 types of
problems in each model. In the instances of the fixed radius model, we set a fixed radius d and if the Euclidean
distance between a covered vertex vl ∈W and a visited vertex vk ∈ V is shorter than d, vk covers vl. This fixed
radius d is given by

d = max(max
vk∈V

min
vl∈W

{dkl}, max
vl∈W

{dk(l),l}), (4.1)

where k(l) is the index of the vertex of V that is the second closest to vl [10].
In the instances of the generalized model, we determine some vertices that are covered by each visited vertex

as follows. We first set the value d′ = 2×d, where d is given by equation (4.1). Then, vk covers vl if the Euclidean
distance between the covered vertex vl ∈ W and the visited vertex vk ∈ V is shorter than d′ and rnd ≤ 0.5,
where rnd is a uniform random number (0 ≤ rnd ≤ 1).

We compare the results obtained using our R&R algorithm with the 2-stage method and the GH with
respect to the cost (objective function), tour size (number of vertices) and computation time (seconds). Each
computational experiment is performed up to 3600 s. Note that in the 2-stage method, the solvers of the SCP
and the TSP both perform up to 3600 s. Also, the termination condition of our R&R is set to be the scenario
when the solution does not show any improvement for the 50th time in a row (i.e., R&R is iterated 50 times
without improvement in the solution). We show the experimental results with respect to the cost, tour size, and
computation time in Tables 1–4, 5–8, and 9–12, respectively of the fixed radius model and Tables 13–16, 17–20,
and 21–24, respectively of the generalized model. Note that the costs in the tables are rounded to the nearest
integer, even though the costs cij and dkl are positive real numbers.

Because our R&R and the GH somewhat uses random numbers, we perform 30 independent runs of them
for each instance, where the random numbers are generated by using Mersenne Twister [20]. Then, we test the
normality of the these distributions using Shapiro–Wilk. In each instance, if normalities of both distributions
obtained using R&R and GH are satisfied, t-test is applied to estimate the difference in means of the two
distributions; otherwise, the Wilcoxon–Mann–Whitney test is applied to estimate the difference in medians of
them. In the t-test, if the null hypothesis of equality of variance is not rejected, the Student’s t-test is performed;
otherwise, the Welch’s t-test is performed. In addition, to find the confidence interval for the mean or median
of each distribution obtained using R&R, we use t-test or bootstrapping method with resample size of 10000.
For all tests, we assume a confidence interval of 95%.

In all Tables, we show the results of normality tests, where if the normality of the distribution is satisfied, it
is denoted by “A”; otherwise, it is denoted by “R”.

To compare our R&R with the GH, we indicate the results of the tests of differences in means or medians,
where we find the t-value or difference in location (diff. loc.) and p-value. If the t-value (or diff. loc.) is positive
and the p-value is less than 0.05, we can conclude that the value obtained using our R&R is smaller than
that obtained using the GH. If the t-value (or diff. loc.) is negative and the p-value is less than 0.05, we can
conclude that the value obtained using our R&R is larger than that obtained using the GH. Furthermore, in
each instance, we show the medians or means; if the normality is satisfied, it is mean; otherwise, it is median.
Note that the median of a normal distribution theoretically equals to the mean value. We also compute a gap
between the values (mean or median) obtained using R&R and that obtained using the GH if the p-value is less
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Table 1. Cost (fixed radius model, |V | = 100).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

100 R R 32.4 5.9e−07 385 419 8.9 [377,389] 388 –
200 R R 1.6 0.67 347 347 – [333,362] 329 −5.3
300 R R 2.9 0.33 308 317 – [306,311] 302 −2.0
400 R R 9.5 1.4e−04 353 363 2.9 [350,356] 343 −2.9
500 R R 2.4 0.84 424 414 – [412,451] 409 −3.6

Table 2. Cost (fixed radius model, |V | = 1000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

1000 R R 653.9 3.0e−14 8924 9605 7.6 [8887,8958] 8787 −1.5
2000 R A 435.1 9.9e−13 9330 9771 4.7 [9253,9380] 9029 −3.2
3000 R A 320.9 5.4e−12 10385 10683 2.9 [10346,10439] 9867 −5.0
4000 R A 103.0 1.5e−04 9641 9695 0.6 [9602,9703] 9008 −6.6
5000 A A 17.9 2.2e−16 9726 10289 5.8 [9706,9746] 9518 −2.1

Table 3. Cost (fixed radius model, |V | = 5000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

5000 A A 73.1 2.2e−16 17035 18917 11.0 [17017,17054] 16542 −2.9
10000 A R 1744.6 2.0e−12 21227 22916 8.0 [21214,21240] 20375 −4.0
15000 A A 79.0 2.2e−16 23292 25332 8.8 [23278,23305] 22708 −2.5
20000 R A 1671.7 7.4e−15 19815 21495 8.5 [19807,19823] 19527 −1.5
25000 A R 1434.0 7.3e−13 18992 20480 7.8 [18972,19012] 18572 −2.2

than 0.05. We denote the gap by Gap1, which is computed as follows:

Gap1[%] =
GH− R&R

R&R
× 100, (4.2)

where GH and R&R represent the values (means or medians) obtained using the GH and R&R, respectively. In
the tables, the symbol “−” implies that the p-value is more than 0.05 (i.e., we assume that there is no significant
difference between the two values).

Next, we show the confidence intervals (CI) for the value (mean or median) obtained using R&R and the
results obtained using the 2-stage method. Note that the result obtained using the 2-stage method is not a
distribution but a unique value. We also compute a gap the value obtained using R&R and that obtained using
the 2-stage method. We denote the gap by Gap2, which is computed as equation (4.2), where GH is replaced
with the value obtained using the 2-stage method. Note that, in each instance, if the value obtained using
the 2-stage method is in the CI, the gap is not computed, because we can consider that there is no difference
between the two values.

In the Tables of the results with respect to computation time (Tabs. 9–12 and 21–24), the terms “SCP”
and “TSP” represent the computation times of the first and second stages, respectively, and the term “#sol.”
expresses the number of optimal solutions found in the first stage.
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Table 4. Cost (fixed radius model, |V | = 10000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

10000 A R 3501.6 4.2e−14 27136 30611 12.8 [27121,27151] 26535 −2.2
20000 A R 2707.7 2.7e−13 27263 29988 10.0 [27250,27275] 26463 −2.9
30000 A A 114.6 2.2e−16 29258 31954 9.2 [29246,29269] 28676 −2.0
40000 A A 88.0 2.2e−16 25691 27890 8.6 [25679,25703] 25598 −0.4
50000 A A 72.3 2.2e−16 27094 29134 7.5 [27079,27110] 26149 −3.5

Table 5. Size (fixed radius model, |V | = 100).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

100 R R −1.0 0.38 20 19 – [19,21] 17 −15.0
200 R R 0.5 0.72 14 15 – [14,14] 13 −7.1
300 R R −1.0 0.45 14 13 – [13,15] 11 −21.4
400 R R −1.0 0.45 17 16 – [16,18] 13 −23.5
500 R R −1.0 0.45 22 21 – [21,23] 17 −22.7

Table 6. Size (fixed radius model, |V | = 1000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

1000 R A 0.5 0.77 106 108 – [105,106] 81 −23.2
2000 R R 3.3 0.03 110 114 3.6 [109,113] 85 −22.7
3000 R A 1.4 0.35 136 140 – [136,136] 105 −22.8
4000 R A 0.0 1.00 116 117 – [115,117] 84 −27.6
5000 R A 2.0 0.46 127 129 – [127,128] 94 −26.0

Table 7. Size (fixed radius model, |V | = 5000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

5000 R A 21.5 2.7e−05 412 430 4.5 [409,414] 311 −24.4
10000 R R 2.0 0.69 625 628 – [624,625] 475 −23.9
15000 R A 21.0 5.8e−06 732 753 2.9 [731,733] 582 −20.5
20000 R A 2.7 0.55 547 549 – [545,549] 440 −19.6
25000 R R −9.7 0.01 512 502 −2.0 [511,512] 406 −20.6

In Tables 1–12, we first observe the results of the fixed radius model with respect to cost, size, and time.
We mainly look at Gap1 and Gap2 because these data summarize the information of performances of the three
algorithms.

Cost: There are no significant differences between the results obtained using R&R and GH in three of small-
scale five instances (Tab. 1). In the other instances, our R&R outperforms the GH because Gap1 are
between 0.6% and 12.8% (i.e., positive values). We believe R&R finds near-optimal solutions in small-scale
instances because the GH can also find near-optimal solutions in the instances generated by |V | = 100;
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Table 8. Size (fixed radius model, |V | = 10000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

10000 R R 43.5 3.7e−05 1054 1100 4.4 [1053,1055] 813 −22.9
20000 R A 15.0 1.7e−03 1045 1065 1.9 [1044,1046] 847 −18.9
30000 R R 22.0 1.4e−03 1190 1213 1.9 [1188,1192] 982 −17.5
40000 R A 9.5 0.05 924 933 1.0 [922,925] 800 −13.4
50000 R R −5.0 0.41 1019 1007 – [1017,1021] 838 −17.8

Table 9. Computation time (fixed radius model, |V | = 100).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

100 A R −8.3 3.7e−04 8.58 0.01 −99.9 [8,10] 5.30 50.44 4920 549.4
200 R R −37.1 4.3e−05 37.13 0.03 −99.9 [27,45] 6.07 56.05 5692 67.3
300 A R −56.0 3.7e−04 61.11 0.03 −100.0 [54,68] 9.57 87.65 6664 59.1
400 R R −61.4 3.7e−04 61.44 0.04 −99.9 [53,70] 25.49 289.59 21252 412.9
500 R R −42.0 3.7e−04 42.02 0.05 −99.9 [35,49] 31.26 0.59 44 −24.2

Table 10. Computation time (fixed radius model, |V | = 1000).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

1000 R A −246.2 2.0e−12 247.03 0.88 −99.6 [194,315] 3600 0.04 2 1357.3
2000 R A −226.6 2.7e−13 228.02 1.45 −99.4 [170,283] 3600 0.01 1 1478.8
3000 A A −10.9 9.0e−12 294.03 2.22 −99.2 [239,349] 3600 0.01 1 1124.3
4000 A A −11.7 1.6e−12 619.61 2.00 −99.7 [512,727] 3600 0.01 1 481.0
5000 R A −397.2 1.1e−13 399.57 2.36 −99.4 [280,500] 3600 0.03 1 801.0

Table 11. Computation time (fixed radius model, |V | = 5000).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

5000 R A −349.3 2.2e−16 385.76 35.90 −90.7 [290,473] 3600 0.23 2 833.3
10000 R A −87.5 3.1e−13 173.14 85.87 −50.4 [122,215] 3600 0.23 1 1979.4
15000 R A −28.4 0.29 152.96 124.85 − [98,203] 3600 0.61 2 2254.0
20000 R A −287.9 2.2e−16 380.66 91.15 −76.1 [265,488] 3600 0.20 1 845.8
25000 R A −562.7 2.2e−16 651.55 92.88 −85.7 [378,898] 3600 0.17 1 452.6

their report shows that the gaps between the costs obtained using the GH and optimal solutions are less
than 4% [10]. Also, the 2-stage method is superior to our R&R in almost all the instances. However, the
gaps (Gap2) are larger than −6.6%; thus we perceive that the differences between the performances of
the R&R and the 2-stage method are small.

Size: There is not much of a difference between the sizes of tours obtained using R&R and the GH. The sizes of
tours obtained using the 2-stage method are the smallest of the three in all instances. In the fixed radius
model, the smaller sizes of tours are likely to lead to better solutions. Thus, the 2-stage method finds good
solutions. In larger-scale instances, the GH is inferior to our R&R with respect to cost, even though the
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Table 12. Computation time (fixed radius model, |V | = 10000).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

10000 R A 156.3 2.8e−05 143.49 307.22 114.1 [64,183] 3600 0.38 1 2409.2
20000 R A 29.5 0.43 377.71 409.33 − [265,479] 3600 0.38 1 853.2
30000 R A 226.2 8.7e−06 346.78 575.73 66.0 [268,409] 3600 0.48 1 938.3
40000 R A −316.4 7.6e−16 774.60 455.61 −41.2 [550,967] 3600 0.41 1 364.8
50000 R A −400.9 9.4e−06 914.72 510.51 −44.2 [724,1101] 3600 0.44 1 293.6

Table 13. Cost (generalized model, |V | = 100).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

100 R A 32.5 4.3e−07 281 315 11.9 [278,285] 299 6.3
200 R R −10.6 1.8e−03 208 186 −10.6 [203,216] 297 42.6
300 R A 22.5 1.0e−04 237 260 9.6 [237,247] 270 13.7
400 R R 28.9 3.0e−09 233 259 10.7 [226,241] 278 19.1
500 R R 57.4 2.5e−13 292 352 20.5 [286,297] 334 14.5

Table 14. Cost (generalized model, |V | = 1000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

1000 A R 898.3 1.1e−13 5268 6188 17.5 [5215,5322] 6138 16.5
2000 A A 21.6 2.2e−16 5501 6483 17.9 [5443,5559] 6886 25.2
3000 A R 1055.6 2.0e−12 6476 7479 15.5 [6422,6530] 7664 18.3
4000 R A 938.9 1.7e−13 5863 6879 17.3 [5659,6045] 6981 19.1
5000 A A 22.8 2.2e−16 6555 7475 14.0 [6488,6621] 7639 16.5

Table 15. Cost (generalized model, |V | = 5000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

5000 A R 2728.4 1.7e−14 10283 13011 26.5 [10181,10385] 12511 21.7
10000 A R 3511.1 2.0e−12 12980 16573 27.7 [12874,13086] 15496 19.4
15000 R A 3658.0 5.7e−15 14622 18254 24.8 [14577,14696] 16987 16.2
20000 A R 3416.5 6.5e−16 12329 15740 27.7 [12260,12397] 14898 20.8
25000 A A 50.4 2.2e−16 12309 15076 22.5 [12230,12388] 14533 18.1

sizes of tours obtained using the two heuristics are not very different. We believe that this is due to the
substandard performance of GENIUS (in the GH) for large-scale problems.

Time: In small-scale instances (Tab. 9), the GH is faster than the R&R and 2-stage method. In the 2-stage
method, the computation times of TSPs become larger when the numbers of optimal solutions to SCP
(#sol) increase. In larger-scale instances (Tabs. 10–12), the 2-stage method is extremely slow and R&R
and GH gradually slow with expanding scales of instances. The GH is faster than the other two algorithms.
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Table 16. Cost (generalized model, |V | = 10000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

10000 A R 5032.7 1.1e−13 16667 21745 30.5 [16547,16786] 19076 14.5
20000 A R 4859.5 4.2e−14 16615 21414 28.9 [16507,16722] 20058 20.7
30000 R R 4778.2 4.2e−14 18722 23468 25.3 [18625,18831] 21819 16.5
40000 A A 75.8 2.2e−16 16277 20513 26.0 [16228,16326] 19274 18.4
50000 R A 4855.6 4.2e−14 17106 21927 28.2 [17062,17144] 21182 23.8

Table 17. Size (generalized model, |V | = 100).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

100 R A −1.5 0.30 18 17 − [17,19] 12 −33.3
200 R R −3.0 0.09 19 17 − [19,19] 12 −36.8
300 R R −0.5 0.71 18 17 − [16,19] 12 −31.4
400 R R 0.0 1 19 19 − [18,19] 14 −24.3
500 R R 0.0 1 24 24 − [23,25] 17 −27.7

Table 18. Size (generalized model, |V | = 1000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

1000 A A 2.9 0.01 87 89 2.1 [86,88] 58 −33.6
2000 A A −10.2 1.4e−14 107 102 −5.1 [107,108] 69 −35.8
3000 A R −7.0 2.8e−03 129 125 −3.2 [127,130] 92 −28.5
4000 A R 0.0 0.86 114 115 − [113,115] 80 −29.7
5000 A R −4.0 0.04 132 126 −4.8 [131,133] 94 −29.0

Table 19. Size (generalized model, |V | = 5000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

5000 A A −5.6 1.2e−06 363 352 −2.8 [359,366] 245 −32.4
10000 A R −13.0 4.0e−04 540 529 −2.1 [537,542] 389 −27.9
15000 A A 9.8 6.1e−14 634 651 2.7 [632,637] 474 −25.3
20000 A A −4.1 1.4e−04 526 519 −1.3 [523,528] 380 −27.7
25000 A A −2.1 0.04 501 498 −0.7 [499,504] 366 −27.0

Next, we observe the results of the generalized radius model with respect to cost, size, and time in
Tables 13–24.

Cost: In small-scale instances (Tab. 13), the costs obtained using R&R are lower than that obtained using the
GH except for the second instance, and the 2-stage method is inferior to R&R. In larger-scale instances
(Tabs. 14–16), the costs obtained using R&R are lowest. Gap1 increases with scales of instances, whereas
Gap2 depends little on scales of instances. The gaps (Gap1 and Gap2) are large, up to 30.5%; thus, our
R&R outperforms the other two algorithms.
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Table 20. Size (generalized model, |V | = 10000).

Normality test Diff. loc. Median (mean) R&R
|W | R&R GH t-value p-value R&R GH Gap1 CI 2-stage Gap2

10000 A A 1.3 0.20 864 868 – [858,870] 614 −28.9
20000 A A −7.7 2.3e−10 927 907 −2.2 [923,931] 652 −29.7
30000 R R 9.7 0.09 1054 1071 – [1048,1059] 797 −24.3
40000 A R −8.0 0.02 902 897 −0.6 [900,905] 641 −29.0
50000 R R −2.0 0.53 995 997 – [993,996] 748 −24.8

Table 21. Computation time (generalized model, |V | = 100).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

100 R R −15.6 4.0e−03 15.67 0.04 −99.8 [12,19] 3.56 0.06 2 −76.9
200 A R −6.6 3.7e−04 6.62 0.04 −99.4 [5,8] 7.84 0.06 2 19.4
300 A R −18.1 3.7e−04 19.89 0.05 −99.7 [16,23] 4.40 0.15 9 −77.1
400 A R −11.4 3.7e−04 13.25 0.07 −99.5 [11,16] 17.30 0.12 2 31.5
500 R R −32.5 4.3e−05 32.60 0.11 −99.7 [29,37] 2.59 0.27 16 −91.2

Table 22. Computation time (generalized model, |V | = 1000).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

1000 A R −1072.5 2.0e−12 1025.03 1.16 −99.9 [917,1133] 3600 0.01 1 251.2
2000 A A −14.4 9.7e−15 367.83 2.22 −99.4 [316,420] 3600 0.01 1 878.7
3000 A A −11.3 4.2e−12 389.87 3.01 −99.2 [320,460] 3600 0.03 1 823.4
4000 A A −9.5 2.1e−10 313.66 3.38 −98.9 [247,381] 3600 0.03 1 1047.8
5000 A A −14.3 1.1e−14 313.71 4.22 −98.7 [270,358] 3600 0.01 1 1047.6

Table 23. Computation time (generalized model, |V | = 5000).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

5000 A A −12.8 1.8e−13 2359.20 48.71 −97.9 [1990,2728] 3600 0.36 3 52.6
10000 A A −7.4 3.3e−08 702.75 107.38 −84.7 [539,866] 3600 0.20 1 412.3
15000 R A −166.4 9.7e−04 325.83 158.78 −51.3 [173,485] 3600 0.23 1 1005.0
20000 R A −454.4 1.7e−12 613.87 159.43 −74.0 [342,928] 3600 0.14 1 486.5
25000 R R −734.4 3.9e−13 891.95 154.45 −82.7 [657,1263] 3600 0.17 1 303.6

Size: There is not much of a difference between the sizes of tours obtained using R&R and the GH. The sizes
of tours obtained using the 2-stage method is the smallest of the three in all instances. In the generalized
model, because the small size of tour does not always lead to a good solution (see Fig. 2), the 2-stage
method cannot always find good solutions.

Time: In small-scale instances (Tab. 21), the GH is faster than the other heuristics. The 2-stage method in
the generalize model is faster than in the fixed radius model because of the smaller numbers of optimal
solutions to SCP (#sol.) in the generalize model. In larger-scale instances (Tabs. 22–24), the performance
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Table 24. Computation time (generalized model, |V | = 10000).

Normality test Diff. loc. Median (mean) R&R 2-stage
|W | R&R GH t-value p-value R&R GH Gap1 CI SCP TPS #sol. Gap2

10000 A A −10.7 1.3e−11 2326.16 376.45 −83.8 [1954,2698] 3600 1.12 3 54.8
20000 A A −8.8 1.0e−09 1872.76 575.73 −69.3 [1572,2173] 3600 0.38 1 92.2
30000 R A 127.6 0.33 661.65 794.56 − [252,1022] 3600 0.47 1 444.2
40000 A A −4.8 3.7e−05 1377.90 759.26 −44.9 [1118,1638] 3600 0.36 1 161.3
50000 R A 112.0 0.30 753.17 866.64 − [504,986] 3600 0.38 1 378.0

R&R

Gendreau's Heuristic

2-stage-method

Figure 4. Three tours.

of the three heuristics gradually slows down with expanding scales of problems. In particular, the 2-stage
method is extremely slow. The GH is faster than the other heuristics in almost all instances.

In the paragraphs below, we qualitatively summarize the performances of the three algorithms with respect
to cost and (computation) time.

R&R: The performance is good in most instances. In particular, they are much better than the other heuristics
in the generalized model.

2-Stage method: In the fixed radius model, the performance with respect to cost is slightly better than that
of R&R. However, in the generalized model, it is much inferior to R&R. The computation times for the
SCP explode when the scale of the problem expands, whereas those of the TSP are very fast in spite of
the increase in scale of the problems

Gendreau’s heuristic (GH): In small-scale instances, the performance is very good. However, it deteriorates
quite a lot for larger-scale instances. We believe that this is because the GENIUS heuristic is unlikely to
find a good feasible solution to large-scale TSP.

We show an example of the tours in Figure 4. We describe three tours (solutions) obtained using our R&R,
the 2-stage method and the GH in the generalized model generated by |V | = 100 and |W | = 400.

The 2-stage method traces a roundabout route, and our R&R and the GH trace smaller tours than the
2-stage method, even when the sizes of tours are larger. (The sizes of tours obtained using the R&R, GH, and
2-stage method, are 18, 19, and 14, respectively. Note that the sizes are not equal to those listed in Table 17
because Figure 4 shows the result from only one in 30 runs of |V | = 100 and |W | = 400). This occurrence is
shown in Figure 2.
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5. Concluding remarks

In this study, we proposed an algorithm for the large-scale CTP. Our algorithm is based on the ruin and
recreate heuristic (R&R). This ruin and recreate heuristic first generates a subproblem and solves the subproblem
by using a labeling algorithm. In the labeling algorithm, we use the cost of a feasible path as a label on a vertex
instead of the cost from the source to that vertex. We also proposed a heuristic for finding the feasible path.
Computational experiments revealed that our R&R performs as well as the existing methods for the fixed radius
model scenario. On the other hand, for the case of the generalized model, our R&R algorithm outperforms the
existing methods and performs well even for large-scale instances.
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