
RAIRO-Oper. Res. 52 (2018) 55–60 RAIRO Operations Research
https://doi.org/10.1051/ro/2017089 www.rairo-ro.org

HIERARCHICAL OPTIMIZATION ON AN UNBOUNDED

PARALLEL-BATCHING MACHINEI

Cheng He* and Li Li

Abstract. This paper studies a hierarchical optimization problem on an unbounded parallel-batching
machine, in which two objective functions are maximum costs, representing different purposes of two
decision-makers. By a hierarchical optimization problem, we mean the problem of optimizing the sec-
ondary criterion under the constraint that the primary criterion is optimized. A parallel-batching
machine is a machine that can handle several jobs in a batch in which all jobs start and complete
respectively at the same time. We present an O(n4)-time algorithm for this hierarchical scheduling
problem.

Mathematics Subject Classification. 90B35, 90C29

Received March 1, 2017. Accepted November 30, 2017.

1. Introduction

In recent years, there has been an increasing interest in multicriteria scheduling problems because of their
great application potential. For example, decision-makers usually pursue several performance criteria simultane-
ously in product quality evaluations. Among different types of the bicriteria scheduling problems, the hierarchical
optimization problems play a basic role, in which we are asked to optimize the secondary criterion under the
constraint that the primary criterion is optimized. The status of research in this direction can be consulted in
[12, 13].

In this paper we study a new model of hierarchical optimization on a batching machine, in which each job Jj
has a processing time pj and two maximum cost functions fmax and gmax. This is motivated by the situation that
different decision-makers may have different cost functions for a job, representing different expected expenses.
For example, the first maximum cost fmax may serve as the cost expected by the investment corporation (or the
consumer), while the second maximum cost gmax may be the planned cost required by the project executor (or
the producer). A similar scenario appears in the two-agent scheduling problems [1, 2, 3], in which each agent
has his own objective.

For the batch scheduling, we concentrate on the unbounded parallel-batching (rather than serial-batching)
model in which the jobs that are processed together form a batch with the same starting time and completion
time, and the processing time of a batch is equal to the largest processing time of jobs in it. This model is moti-
vated by the applications of burn-in operations for integrated circuit manufacturing and other areas. Following

IThis work was supported by NSFC (11201121) and NSFSTDOHN (162300410221).

Keywords and phrases: Hierarchical optimization, batching machine, maximum cost.

School of Science, Henan University of Technology, Zhengzhou 450001, Henan, PR China.

* Corresponding author: hech202@163.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2017089
https://www.rairo-ro.org/
mailto:hech202@163.com
http://www.edpsciences.org

56 C. HE AND L. LI

the three-field notation scheme of Graham et al. [7], we denote the problem by 1|p-batch|Lex(fmax, gmax), where
“p-batch” refers to the parallel-batching and Lex(γ1, γ2) represents minimizing γ2 subject to the restriction that
γ1 is optimized (“Lex” stands for lexicographical optimization). Moreover, we study the unbounded model in
which the number of jobs in each batch is unlimited. In this paper, we present an O(n4)-time algorithm for this
hierarchical optimization problem.

For detail developments of batch scheduling and multicriteria scheduling, we refer to surveys [4] and [11, 12],
respectively. We only mention a few related results here. For the batch scheduling problem 1|p-batch|Lmax,
Brucker et al. [5] presented a dynamic programming algorithm that requires O(n2) time for minimizing the
maximum lateness. As a byproduct, Brucker et al. [5] also pointed the feasibility (decision) problem 1|p-
batch, fmax ≤ k|· is solvable in O(n2 + n logP) time, where P =

∑
1≤j≤n pj . So problem 1|p-batch|fmax can

be solved in polynomial time by binary search for the feasibility problem. Geng and Yuan [6] provided an
improved algorithm which solves the problem in O(n4) time. In [8], an O(n3)-time algorithm for this hierarchical
scheduling problem with two maximum lateness 1|dj , d′j , p-batch|Lex(Lmax, L

′
max) is given. The problems 1|p-

batch|(Lmax, Cmax) and 1|p-batch|(fmax, Cmax) have been solved inO(n3) time andO(n3 logP) time, respectively
[9, 10], Geng and Yuan [6] presented an improved O(n4)-time algorithm for this problem 1|p-batch|(fmax, Cmax),
where (γ1, γ2) refers to the simultaneous optimization in the sense of finding all Pareto optimal schedules for
two criteria γ1 and γ1.

The paper is organized as follows. In Section 2 we state some preliminaries. In Section 3, we present a
strongly polynomial-time algorithm, an O(n4) algorithm for the problem. Section 4 gives a short summary. We
shall follow the terminology and notation of [4].

2. Preliminaries

Suppose that we are given n jobs, denoted by J1, J2, . . . , Jn. These jobs are to be scheduled on a single batching
machine that is continuously available from time zero onwards and that can handle any number of jobs at the
same time. Job Jj has a processing time pj and its two cost functions fj and gj (j = 1, . . . , n), respectively, where
fj(t) and gj(t) denotes two costs incurred if the job is completed at time t, which are nondecreasing functions of
t, for j = 1, . . . , n. Given a schedule σ, we denote the completion time of job Jj in σ by Cj(σ), fj(σ) = fj(Cj(σ))
and gj(σ) = gj(Cj(σ)) are defined as two costs of job Jj in σ. Furthermore, fmax(σ) = maxn

j=1 fj(Cj(σ)) and
gmax(σ) = maxn

j=1 gj(Cj(σ)) are the maximum costs of the jobs in σ with respect to cost functions fj(σ) and
gj(σ) respectively. Without loss of generality, we assume that the job parameters are integral.

For problems of minimizing a regular objective function without job release dates, we know that there must
be an optimal solution in which the batches are processed contiguously from time zero onwards. Throughout
the paper, we restrict our attention to the solutions with this property. Thus, a schedule σ can be denoted by a
batch sequence σ = (B1, B2, . . . , Br), where each batch Bl (l = 1, . . . , r) is a set of jobs. The processing time of

batch Bl is p(Bl) = maxJj∈Bl
{pj} and its completion time is C(Bl) =

∑l
q=1 p(Bq). Note that the completion

time of job Jj in σ, for each Jj ∈ Bl and 1 ≤ l ≤ r, is Cj(σ) = C(Bl). When there is no ambiguity, we abbreviate
Cj(σ) to Cj . This type of batching machine is called parallel-batching machine, denoted by “p-batch” in short.
Besides, we only consider the unbounded model in which the number of jobs in each batch is unlimited.

In this paper, the criteria under consideration are two regular minimax objective functions: maximum
costs fmax(σ) and gmax(σ). Our goal is solving the problem 1|p-batch|Lex(fmax, gmax). Here, the objective
Lex(fmax, gmax) stands for the hierarchical (lexicographical) optimization of minimizing gmax under the con-
straint that fmax is minimum, namely, the minimization of gmax is taken in the set of all optimal schedules of
problem 1|p-batch|fmax.

3. Polynomial-time algorithm

Following Brucker et al. [5], a batch schedule σ = (B1, B2, . . . , Br) is called an SPT-batch schedule, if for any
two jobs Ji and Jj , pi ≤ pj implies Ci(σ) ≤ Cj(σ). Further, a schedule σ is called a strict SPT-batch schedule if

HIERARCHICAL OPTIMIZATION ON AN UNBOUNDED PARALLEL-BATCHING MACHINE 57

σ is an SPT-batch schedule and all jobs with identical processing time belong to a common batch in σ. Similar
to Lemma 1 of Brucker et al. [5], we can easily obtain the following lemma.

Lemma 3.1. For problem 1|p-batch|Lex(fmax, gmax), there exists an optimal strict SPT-batch schedule.

Proof. Consider an optimal schedule σ = (B1, . . . , Bl, . . . , Bq, . . . , Br), where 1 ≤ l < q ≤ r, with Jk ∈ Bl, Jj ∈
Bq, and pk ≥ pj . Consider now the schedule σ′ = (B1, . . . , Bl

⋃
{Jj}, . . . , Bq\{Jj}, . . . , Br) that is obtained from

σ by moving job Jj to batch Bl from Bq. Since pk ≥ pj , we have p(Bl

⋃
{Jj}) = p(Bl), p(Bq\{Jj}) ≤ p(Bq).

Thus fi(σ) ≥ fi(σ′) and gi(σ) ≥ gi(σ′) (i = 1, . . . , n), i.e., fmax(σ′) ≤ fmax(σ) and gmax(σ′) ≤ gmax(σ). Hence,
the new schedule σ′ is also optimal. A finite number of repetitions of this procedure yields an optimal schedule
of the required form.

Lemma 3.1 shows that we may restrict our attention to the strict SPT-batch schedules. To simplify the
model, we re-index the jobs according to the SPT rule so that p1 ≤ p2 ≤ · · · ≤ pn, which takes O(n log n) time.
Assume that the n jobs have m different processing times p(1), p(2), . . . , p(m) so that p(1) < p(2) < · · · < p(m). Let
J (i) = {Jj : pj = p(i)} and ni = |J (i)| denotes the number of jobs in job set J (i) (i = 1, . . . ,m). By Lemma 3.1,
we may regard each J (i) as a merged job with processing times p(i) and cost function f (i)(t) = max{fj(t) : Jj ∈
J (i)} and g(i)(t) = max{gj(t) : Jj ∈ J (i)} for t ≥ 0 without affecting the costs fmax and gmax. Note that, f (i)(t)
and g(i)(t) can be calculated in O(ni) time for each given i and t. Introducing of the merged jobs J (i) simplifies
our discussions and representations. Furthermore, we need not calculate f (i)(t) and g(i)(t) for all values of t
in our algorithm, which guarantees the polynomial-time complexity. Hence we assume that our discussions are
based on introducing of the merged jobs in the following.

Lemma 3.2. [6] An optimal strict SPT-batch schedule for the problem 1|p-batch|f can be obtained in O(n4)
time, where f ∈ {fmax, gmax}.

Let σ∗ and π∗ be the optimal schedules of 1|p-batch|fmax and 1|p-batch|gmax, respectively. Let f∗ := fmax(σ∗)
and g := gmax(σ∗) and g := gmax(π∗). Then problem 1|p-batch|Lex(fmax, gmax) is equivalent to problem 1|p-
batch, fmax ≤ f∗|gmax and g ≤ gmax ≤ g. Assume that there is a DP(g) that may solve the problem 1|p-
batch, fmax ≤ f∗, gmax ≤ g|·. Then 1|p-batch, fmax ≤ f∗|gmax can be solved by solving a series of the feasibility
problems 1|p-batch, fmax ≤ f∗, gmax ≤ g|· for the decreasing g, where g ≤ g ≤ g. The iteration procedure as
follows.

3.1. Iteration procedure (DP(g))

Step 1: Let σ∗ be defined as above.
Step 2: If gmax(σ∗) = g, then σ∗ is an optimal schedule of 1|p-batch|Lex(fmax, gmax) and stop. Otherwise, let
g := gmax(σ∗)− 1.
Step 3: Solving the problem 1|p-batch, fmax ≤ f∗, gmax ≤ g|· by DP(g). If the problem is infeasible, then σ∗

is an optimal schedule of 1|p-batch|Lex(fmax, gmax) and stop. Otherwise, let σ∗ is the schedule obtained by
performing DP(g), go back to Step 2.

In fact, we solve problem 1|p-batch, fmax ≤ f∗, gmax ≤ g|· by solving problem 1|p-batch, fmax ≤ f∗, gmax ≤
g|Cmax, and if the optimal value Cmax < +∞, then problem 1|p-batch, fmax ≤ f∗, gmax ≤ g|· is feasible; oth-
erwise infeasible. The problem 1|p-batch, fmax ≤ f∗, gmax ≤ g|Cmax can be solved by the following dynamic
programming algorithm.
DP(g): Let C(j, g) be the minimum makespan for all feasible SPT-batch schedules, in respect to the jobs

J (1), J (2), . . . , J (j), of 1|p-batch, fmax ≤ f∗, gmax ≤ g|Cmax. Besides, we use {J (k+1), J (k+2), . . . , J (j)} to denote
the last batch in the schedule. Thus the last batch {J (k+1), J (k+2), . . . , J (j)} has completion time C(k, g) + p(j).
The initialization is C(0, g) = 0 and the recursion relation for j = 1, . . . ,m is

C(j, g) = min{C(k, g) + p(j) : 0 ≤ k < j, max
k+1≤i≤j

{f (i)(C(k, g) + p(j))} ≤ f∗, max
k+1≤i≤j

{g(i)(C(k, g) + p(j))} ≤ g}.

(3.1)

58 C. HE AND L. LI

Hence C(j, g) is the minimum value of C(k, g) + p(j) from among these feasible schedules. Finally, the optimal
value is equal to C(m, g) and the corresponding optimal schedule can be found by backtracking. In more detail,
let kj(g) be the value of k attaining the minimum of C(k, g) + p(j) in (1), i.e., the optimal decision of stage j
(if there is no k so that (1) holds, then let C(j, g) = +∞ and kj(g) = +∞ and the problem is infeasible). Then
the optimal schedule σ is obtained by taking {J (km(g)+1), . . . , J (m)} as the last batch, and {J (kj(g)+1), . . . , J (j)}
where j = km(g) as the second last batch, and so on.

For the solutions of equation (3.1), we have the following properties:

Property 3.3. Let tk(j, g) = C(k, g) + p(j) for 0 ≤ k < j and g ≤ g ≤ g. Then

(a) C(j − 1, g) < C(j, g)for j = 2, 3, . . . ,m.
(b) kj(g) = min{k : 0 ≤ k < j, maxk+1≤i≤j{f (i)(tk(j, g))} ≤ f∗, maxk+1≤i≤j{g(i)(tk(j, g))} ≤ g}.
(c) kj−1(g) ≤ kj(g).
(d) If g′ < g, then C(j, g′) ≥ C(j, g).
(e) If g′ < g and kj(g

′) is defined, then kj(g
′) ≥ kj(g).

Proof. By definition, C(j, g) is the minimum makespan of the first j jobs while C(j − 1, g) is the minimum
makespan of the first j − 1 jobs and p(j−1) < p(j), so (a) is clear.

For (b), it follows from (a).
For (c), if kj(g) = j − 1, then kj(g) = j − 1 > kj−1(g). Otherwise kj(g) < j − 1, kj(g) = min{k :

0 ≤ k < j − 1, maxk+1≤i≤j{f (i)(tk(j, g))} ≤ f∗,maxk+1≤i≤j{g(i)(tk(j, g))} ≤ g} ≥ min{k : 0 ≤ k < j −
1, maxk+1≤i<j{f (i)(tk(j − 1, g))} ≤ f∗, maxk+1≤i<j{g(i)(tk(j − 1, g))} ≤ g} = kj−1(g) (since p(j) > p(j−1) and
tk(j, g) ≥ tk(j − 1, g)).

For (d), we compare the two solutions obtained by DP(g) for the jobs J (1), J (2), . . . , J (j) with respect to g
and g′, respectively. By induction, we assume that C(k, g) ≤ C(k, g′) for k < j. Then if kj(g

′) = k′ < j, we have
C(j, g′) = C(k′, g′) + p(j) ≥ C(k′, g) + p(j), i.e., tk′(j, g′) ≥ tk′(j, g) and

max
k′+1≤i≤j

{f (i)(tk′(j, g))} ≤ max
k′+1≤i≤j

{f (i)(tk′(j, g′))} ≤ f∗,

max
k′+1≤i≤j

{g(i)(tk′(j, g))} ≤ max
k′+1≤i≤j

{g(i)(tk′(j, g′))} ≤ g′ < g.

Hence, C(j, g) = min{tk(j, g) : 0 ≤ k < j, maxk+1≤i≤j{f (i)(tk(j, g))} ≤ f∗, maxk+1≤i≤j{g(i)(tk(j, g))} ≤ g} ≤
tk′(j, g) ≤ tk′(j, g′) = C(j, g′)

For (e), we have tk(j, g) = C(k, g) + p(j) ≤ C(k, g′) + p(j) = tk(j, g′) by (d). Therefore, if f (i)(tk(j, g′)) ≤
f∗, g(i)(tk(j, g′)) ≤ g′, then f (i)(tk(j, g)) ≤ f (i)(tk(j, g′)) ≤ f∗, g(i)(tk(j, g)) ≤ g(i)(tk(j, g′)) ≤ g′ < g. It fol-
lows that kj(g

′) = min{k : 0 ≤ k < j,maxk+1≤i≤j{f (i)(tk(j, g′))} ≤ f∗, maxk+1≤i≤j{g(i)(tk(j, g′))} ≤ g′} ≥
min{k : 0 ≤ k < j,maxk+1≤i≤j{f (i)(tk(j, g))} ≤ f∗, maxk+1≤i≤j{g(i)(tk(j, g))} ≤ g} = kj(g). The proof is
completed.

Theorem 3.4. If all jobs are indexed according to the SPT rule and merged in advance, then the running time
of DP(g), for each given g, based on equation (3.1) is O(n2).

Proof. By Property 3.3(c), 0 = k1(g) ≤ k2(g) ≤ · · · ≤ km(g) ≤ m − 1 < n. For each j with 1 < j ≤ m, we
determine kj(g) and C(j, g) by deciding if f (i)(tk(j, g)) ≤ f∗ and g(i)(tk(j, g)) ≤ g for k = kj−1(g), kj−1(g) +
1, . . . kj(g) and k+ 1 ≤ i ≤ j by Property 3.3(b-c), and deciding if f (i)(tk(j, g)) ≤ f∗ and g(i)(tk(j, g)) ≤ g need
O(nk+1 + nk+2 + · · ·+ nj) = O(n) time for given k and all k+ 1 ≤ i ≤ j. so determining kj(g) and C(j, g) take
O(n(kj(g)− kj−1(g) + 1)) time for given j. Hence, in O(nm) = O(n2) time, we determine all kj(g) and C(j, g),
1 ≤ j ≤ m. It follows that the running time of DP(g) is O(n2).

HIERARCHICAL OPTIMIZATION ON AN UNBOUNDED PARALLEL-BATCHING MACHINE 59

Proposition 3.5. The number of steps of the Iteration Procedure (DP(g)) is at most O(n2).

Proof. By Theorem 3.4, DP(g) solves problem 1|p-batch, fmax ≤ f∗, gmax ≤ g|Cmax in O(n2) time. So DP(g)
also solves problem 1|p-batch, fmax ≤ f∗, gmax ≤ g|· in O(n2) time. Further, we can solve the problem 1|p-
batch|Lex(fmax, gmax) by iteration procedure (DP(g)).

We compare two successive solutions gi and gi+1 with gi+1 < gi. The corresponding schedules are σi and
σi+1 respectively. Suppose that σi = (B1, B2, . . . , Br). The last job in a batch is called the boundary job of this
batch. Let Jkl

be the boundary job of batch Bl. Then k1 < k2 < · · · < kr−1 < kr = m. We define a weight of
schedule σi as λ(σi) = k1 + k2 + · · ·+ kr−1. On the other hand, suppose that σi+1 = (B′1, B

′
2, . . . , B

′
r′) and the

indices of the boundary jobs are k′1, k
′
2, . . . , k

′
r′−1,m. Then the weight of σi+1 is λ(σi+1) = k′1 + k′2 + · · ·+ k′r′−1.

We have the following claim.

Claim λ(σi) < λ(σi+1).
In fact, for the last batches of σi and σi+1, by Property 3.3(e), we have kr−1 = km(gi) ≤ km(gi+1) = k′r′−1.

Furthermore, let j = kr−1 and j′ = k′r′−1. Then j ≤ j′. By (c) and (e) of Property 3.3, we have kr−2 =
kj(g

i) ≤ kj′(g
i) ≤ kj′(g

i+1) = k′r′−2. Assume that r0 = min{r, r′}. Then by the same argument, we can show
that kr−h ≤ k′r′−h for 1 ≤ h ≤ r0 − 1. If r0 = min{r, r′} = r′ 6= r, i.e., r′ < r, then kr−r0+1 ≤ k′1, where
r − r0 + 1 ≥ 2. Similarly, let l = kr−r0+1 and l′ = k′1. Then l ≤ l′. By (c) and (e) of Property 3.3 again,
we have 1 ≤ kr−r0 = kl(g

i) ≤ kl′(g
i) ≤ kl′(g

i+1) = 0, a contradiction. Therefore r′ ≥ r and kr−h ≤ k′r′−h for
1 ≤ h ≤ r − 1. Hence λ(σi) ≤ λ(σi+1). However, these two schedules are different, and so they cannot have the
same set of boundary jobs. Thus the claim follows.

The claim says that the weight λ(σi) is strictly increasing during the iteration procedure. However, the weight
λ(σ) has an upper bound 1 + 2 + · · ·+ (m− 1) = 1

2m(m− 1) ≤ O(n2) for any schedule σ. Hence the number of
steps is at most O(n2), proving the result.

To summarize, we obtain the following theorem.

Theorem 3.6. Iteration procedure (DP(g)) solves the hierarchical optimization problem 1|p-batch|Lex(fmax, gmax)
in O(n4) time.

Proof. The correctness of iteration procedure (DP(g)) is due to the analysis in proof of Proposition 3.5. Let
us see the running time of the algorithm. Step 1 takes O(n4) time by Lemma 3.2. From Theorem 3.4 and
Proposition 3.5, the number of steps of the iteration procedure (DP(g)) in Step 2-3 is O(n2), and in each step,
the DP(g) of (1) takes O(n2) time. Besides, all jobs are sorted and merged in advance in O(n log n) time.
Therefore the overall complexity is O(n4). Thus the result is proved.

4. Concluding remarks

In the foregoing discussion, we investigate hierarchical optimization problem with two maximum cost func-
tions. Moreover, for the simultaneous optimization problem, in the sense of finding all Pareto optimal schedules,
with two objective functions maximum cost and makespan, [6, 10] presented respectively a polynomial-time algo-
rithm. One of our future work would be simultaneous optimization problem with two maximum cost functions
on an an unbounded parallel-batching machine.

References
[1] A. Agnetis, P.B. Mirchani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents. Oper. Res. 52

(2004) 229–242.
[2] A. Agnetis, J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli and A. Soukhal, Multiagent Scheduling - Models and Algorithms

Problems. Springer-Verlag, Berlin (2014).

[3] K.R. Baker and J.C. Smith, A multiple-criterion model for machine scheduling. J. Sched. 6 (2003) 7–16.

[4] P. Brucker, Scheduling Algorithms, 4th edn. Springer-Verlag, Berlin (2004).
[5] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn et al., Scheduling a batching machine. J.

Sched. 1 (1998) 31–54.
[6] Z.C. Geng and J.J. Yuan, A note on unbounded parallel-batch scheduling. Inf. Process. Lett. 115 (2015) 969–974.

60 C. HE AND L. LI

[7] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing
and scheduling: a survey. Ann. Discret. Math. 5 (1979) 287–326.

[8] C. He and H. Lin, Hierarchical optimization with double due dates on an unbounded parallel-batching machine to minimize
maximum lateness. 4OR Q. J. Oper. Res. 14 (2016) 153–164.

[9] C. He, Y.X. Lin and J.J. Yuan, Bicriteria scheduling on a batching machine to minimize maximum lateness and makespan.
Theor. Comput. Sci. 381 (2007) 234–240.

[10] C. He, H. Lin, J.J. Yuan and Y.D. Mu, Batching machine scheduling with bicriteria: maximum cost and makespan. Asia-Pac.
J. Oper. Res. 31 (2014) 1–10.

[11] J.A. Hoogeveen, Single-machine Scheduling to minimize a function of two or three maximum cost criteria. J. Algorithms 21
(1996) 415–433.

[12] H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res. 167 (2005) 592–623.

[13] V. Tkindt and J.-C. Billaut, Multicriteria Scheduling: Theory, Models and Algorithms (2nd edn). Springer-Verlag, Berlin
(2006).

	Hierarchical optimization on an unbounded parallel-batching machine
	1 Introduction
	2 Preliminaries
	3 Polynomial-time algorithm
	3.1 Iteration procedure (DP(g))

	4 Concluding remarks

	References

