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REVERSE MAXIMUM FLOW PROBLEM UNDER THE WEIGHTED

CHEBYSHEV DISTANCE

Javad Tayyebi1,2, Abumoslem Mohammadi2

and Seyyed Mohammad Reza Kazemi1,*

Abstract. Given a network G(V,A,u) with two specific nodes, a source node s and a sink node t, the
reverse maximum flow problem is to increase the capacity of some arcs (i, j) as little as possible under
bound constraints on the modifications so that the maximum flow value from s to t in the modified
network is lower bounded by a prescribed value v0. In this paper, we study the reverse maximum
flow problem when the capacity modifications are measured by the weighted Chebyshev distance. We
present an efficient algorithm to solve the problem in two phases. The first phase applies the binary
search technique to find an interval containing the optimal value. The second phase uses the discrete
type Newton method to obtain exactly the optimal value. Finally, some computational experiments
are conducted to observe the performance of the proposed algorithm.
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1. Introduction

For an optimization problem, the corresponding inverse problem is to modify some parameters of the problem
as less cost as possible in such a way that some desired goals are achieved. Two general classes of inverse problems
are interested in the literature (see [11, 16] for a survey):

• Given an optimization problem as well as its a feasible solution x0, modify some parameters of the problem
as little as possible so that x0 becomes an optimal solution with respect to new parameters.

• Given a maximization problem, adjust some parameters of the problem minimally so that the optimal
objective value of the modified problem is lower bounded by a prescribed value v0.

The first class is called “the inverse optimization problem” in the literature [2, 3]. To make distinction from the
first, the other is referred to as “the reverse optimization problem” [24, 25, 27].

In the inverse and reverse optimization problems, suppose that we wish to modify the vector u = (ui)i∈I into
û = (ûi)i∈I . The objective function is to minimize the distance between the initial vector u and the modified
vector û. For instance, each one of the following distance functions can be applied as the objective function:
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• Euclidean distance (l2): (
∑

i∈I wi(ûi − ui)2)
1
2 ;

• Manhattan distance (l1):
∑

i∈I wi|ûi − ui|;
• Chebyshev distance (l∞): maxi∈I wi|ûi − ui|;
• Sum-type Hamming distance (H1):

∑
i∈I wiH(ui, ûi);

• Bottleneck-type Hamming distance (H∞): maxi∈I wiH(ui, ûi);

in which wi > 0 is a weight (or a penalty) associated with ui and H(ui, ûi) is the Hamming distance between
ui and ûi, i.e., H(ui, ûi) = 0 if ûi = ui and H(ui, ûi) = 1 otherwise.

Burton and Toint [5, 6] were the first to introduce the reverse shortest path problem under the Euclidean
distance. Since then, different inverse and reverse optimization problems have been studied by many authors
under the Manhattan, Chebyshev and Hamming distances. For example, the reverse shortest path problem
under l1, l2 and H1 is investigated in [26, 27]. It is proved that the problem is strongly NP-hard. For the special
case that the network is a tree, efficient algorithms is designed to solve the problem [21]. The inverse shortest
path problem is also considered by several authors [3, 7, 8, 14]. It is shown that the inverse shortest path problem
under the distances l1, l∞ and H∞ can be solved in polynomial time while the problem under the sum-type
Hamming distance is NP-hard.

The inverse maximum flow problem is to modify arc capacities minimally so that a given flow becomes a
maximum flow with respect to the modified capacities. This problem under the distances l1 andH1 is investigated
by several authors [10, 18, 19, 23]. The general result is that the problem can be reduced to a minimum cut
problem in an auxiliary network and consequently, it can be solved in strongly polynomial time. The inverse
maximum flow problem under l∞ is studied by Deaconu [9] and an optimal solution of the problem is computed
by finding a min-max cut on an auxiliary network.

The reverse maximum flow problem is to look for a new capacity vector such that the maximum flow value
with respect to new capacities is lower bounded by a prescribed value v0. The goal of the problem is to minimize
the distance between the initial and the new capacity vectors. A problem, called the budget-constrained flow
improvement problem, has a structure similar to the reverse maximum flow problem. This problem is to increase
the capacities within a budget constraint such that the flow value from the source to the sink is maximized.
Notice that by applying the binary search, we can obtain an optimal solution to either of the problems by
solving the other. However, both the problems arise from some practical applications in designing transport
networks.

The budget-constrained flow improvement problem is studied in [17] whenever the budget constraint is with
respect to the distances l1 and H1. It is shown that the problem under l1 is solvable in polynomial time while
it under H1 is strongly NP-hard.

1.1. Our contribution

In this paper, the reverse maximum flow problem is considered under the weighted Chebyshev distance. The
problem under l2 and H∞ is not studied in this paper because the first case yields a quadratic programming
problem while the other can be solved by a formal search procedure [12, 22].

Our contribution is to develop an efficient algorithm for solving the reverse maximum flow problem under
the weighted Chebyshev distance. The algorithm contains two phases. The first phase uses the binary search
technique to find an interval containing the optimal value. The second phase reduces the dual of the problem to
a maximum ratio cut problem and then, applies the discrete type Newton method to obtain the optimal value.
Finally, an optimal solution is constructed from the optimal value. In a series of computational experiments,
the performance of the algorithm is illustrated.

The rest of the paper is organized as follows: Section 2 provides some primary notions about the maximum
flow problem. In Section 3, the reverse maximum flow problem is formulated and some primary results are
presented. Section 4 considers the reverse maximum flow problem under the Chebyshev distance and presents
an efficient algorithm for solving it. In Section 5, some computational experiments are conducted to observe the
performance of the algorithm. Finally, some concluding remarks are given in Section 6.
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2. Preliminaries

In this section, we provide some notions and notations used throughout this paper.
Suppose that G(V,A,u) is a directed network where V = {1, 2, . . . , n} is the node set and A is the set of m

arcs. A nonnegative capacity uij is associated with each arc (i, j). Without loss of generality, we assume that G
does not contain both arcs (i, j) and (j, i) for every i, j ∈ V . If not, we split (i, j) into two arcs (i, k) and (k, j)
by introducing a dummy node k.

In the maximum flow problem, we wish to send as much flow as possible between two specific nodes, a source
node s and a sink node t, without exceeding the capacity of any arc. This problem is formulated as follows:

max v (2.1a)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =


v i = s,

0 i ∈ V \{s, t},
−v i = t,

(2.1b)

0 ≤ xij ≤ uij ∀(i, j) ∈ A, (2.1c)

The problem (2.1) has been studied extensivelyin both theoretic and algorithmic aspects and has wide range of
applications [1]. A vector x satisfying constraints (2.1b) and (2.1c) for some v ≥ 0 is refer to as a feasible flow
and v is called its value.

For a feasible flow x0 to the problem (2.1), its residual network Gx0(V,A′,u′) can be constructed by the
following algorithm in which u′(i, j) is called the residual capacity of arc (i, j) [1].

Algorithm 2.1. Constructing the residual network.

1: The node set is still V .
2: for (i, j) ∈ A
3: if x0ij < uij then
4: Add (i, j) to A′ with u′ij = uij − x0ij .
5: end if
6: if x0ij > 0 then
7: Add (j, i) to A′ with u′ji = x0ij .
8: end if
9: end for

We denote the arc sets created by Steps 2 and 3 by A′1 and A′2, respectively. Obviously, A′1 ⊆ A and A′ =
A′1 ∪A′2.

Let us now recall some definitions. An st-path is a directed path from s to t. An st-cut C is a minimal set of
arcs so that if they are removed, then there is not any st-path in G. Thus the removal of arcs belonging to an
st-cut will separate some S, S̄ ⊆ V into exactly two connected components so that s ∈ S and t ∈ S̄. We refer
to an arc (i, j) with i ∈ S and j ∈ S̄ as a forward arc of C, and refer to an arc (i, j) with i ∈ S̄ and j ∈ S as a
backward arc. Suppose (S, S̄) and (S̄, S) denote respectively the set of forward and backward arcs in an st-cut
C. The capacity of an st-cut is the sum of capacities of its forward arcs. An st-cut with minimum capacity is
called a minimum st-cut. It is customary to denote an st-cut by C = [S, S̄] and its capacity by u(C) = u[S, S̄].
The following theorem establishes the relationship between the maximum flow problem and the minimum cut
problem [15].

Theorem 2.2 (Max-flow Min-cut Theorem). The value of a maximum flow from s to t in a capacitated network
G(V,A,u) equals the capacity of its minimum st-cut.
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3. Problem statement

In this section, we introduce and formulate the reverse maximum flow problem and then, establish some
primary results on the problem. Given an instance of the problem (2.1), the reverse maximum flow problem is
to look for a new capacity vector û so that the following conditions are satisfied:

• The maximum flow value in the network G(V,A, û) is lower bounded by a prescribed value v0 ≥ 0.
• uij ≤ ûij ≤ uij + pij for every (i, j) ∈ A where pij ≥ 0 is a given bound for increasing uij .
• The distance between u and û is minimized.

Thus the reverse maximum flow problem is formulated as follows:

min z = d(u, û) (3.1a)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji


≥ v0 i = s,

= 0 i 6= s, t,

≤ −v0 i = t,

∀i ∈ V, (3.1b)

0 ≤ xij ≤ ûij ∀(i, j) ∈ A, (3.1c)

uij ≤ ûij ≤ uij + pij ∀(i, j) ∈ A, (3.1d)

in which d(., .) is a function to measure the distance between u and û. Throughout this paper, we suppose that
two following assumptions hold.

Assumption 3.1. The optimal value of the problem (3.1) is greater than zero.

Assumption 3.2. All data of the problem (3.1) are integral.

Let x∗ be a maximum flow in the network G(V,A,u) with the maximum flow value v∗. Obviously, if
v0 ≤ v∗, then (û,x) = (u,x∗) is an optimal solution to the problem (3.1) whose objective value is equal to
zero. Assumption 3.1 guarantees that the initial capacity vector u is not an optimal solution to the problem
(3.1).

Let x0 be a feasible flow in G. A significant point about the reverse maximum flow problem is that one
can simply introduce the problem on the residual network Gx0(V,A′,u′) instead of G(V,A,u) in the following
manner.

min z = d(u′, û′) (3.2a)

s.t.
∑

(i,j)∈A∪A′2

xij −
∑

(j,i)∈A∪A′2

xji


≥ v0 − v∗ i = s,

= 0 i 6= s, t,

≤ −v0 + v∗ i = t,

∀i ∈ V, (3.2b)

0 ≤ xij ≤ û′ij ∀(i, j) ∈ A ∪A′2, (3.2c)

u′ij ≤ û′ij ≤ u′ij + pij ∀(i, j) ∈ A. (3.2d)

û′ij = x∗ji ∀(i, j) ∈ A′2. (3.2e)

In the problem (3.2), notice that arc (i, j) ∈ A with zero residual capacity is added to the residual network
whenever its residual capacity changes to a positive value. For this reason, we have to modify the residual
capacity of arcs belonging to A and not only that of arcs in A′1. On the other hand, we don’t modify the residual
capacity of arcs belonging to A′2 because their residual capacity are not in term of the capacity vector u. The
following proposition is an immediate result on the relationship between the problems (3.1) and (3.2).
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Figure 1. An instance of the problem (4.1) whose optimal solution is not integer. By assuming
v0 = 7, the problem has the optimal solution ûij = uij + 1

3 for every arc (i, j) and consequently,

its optimal value is 1
3 .

Proposition 3.3. The problem (3.2) has an optimal solution (x∗, (û′)∗) if and only if the problem (3.1) has an
optimal solution (x∗∗, û∗) in which û∗ij = (û′)∗ij + x0ij and x∗∗ij = x∗ij − x∗ji + x0ij for each (i, j) ∈ A. Furthermore,
the optimal objective values of both the problems are the same.

Proof. The proof is straightforward.

Lemma 3.4. There exists an optimal solution of the problem (3.1) to satisfy the constraints (3.1b) in the
equality form.

Proof. Suppose that (x∗, û∗) is an optimal solution to the problem (3.1) and v̂∗ is the value of the flow x∗ in

the network G(V,A, û∗). It is easy to verify that ( v0

v̂∗x
∗, û∗) is also a feasible solution and its objective value is

equal to that of (x∗, û∗). Moreover, the solution ( v0

v̂∗x, û) satisfies the constraints (3.1b) in the equality form.
This completes the proof.

4. Reverse problem under the weighted Chebyshev distance

In this section, we consider the reverse maximum flow problem in the case that the distance function d(., .)
is the weighted Chebyshev distance and we propose an efficient algorithm to solve the problem.

The reverse maximum flow problem under the weighted Chebyshev distance is formulated as follows:

min z = max
(i,j)∈A

wij(ûij − uij) (4.1a)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji


≥ v0 i = s,

= 0 i 6= s, t,

≤ −v0 i = t,

∀i ∈ V, (4.1b)

0 ≤ xij ≤ ûij ∀(i, j) ∈ A, (4.1c)

uij ≤ ûij ≤ uij + pij ∀(i, j) ∈ A, (4.1d)

in which wij is a nonnegative weight associated with each arc (i, j) and the other parameters are defined as in
the problem (3.1).

One can simply show that the reverse maximum flow problems under l1 and H1 have at least an integer
optimal solution whenever Assumption 3.2 is satisfied (see the similar results to the budget-constrained flow
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improvement problem in [17]). Unfortunately, this result is not valid in the case of the Chebyshev distance (see
Fig. 1 for an example). However, we show that the problem can be solved in strongly polynomial time.

Define p̂ij = ûij − uij for each (i, j) ∈ A and p̂max = max(i,j)∈A wij p̂ij . By Lemma 3.4, the problem (4.1) is
reduced to the following linear programming problem.

min z = p̂max (4.2a)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =


v0 i = s,

0 i 6= s, t,

−v0 i = t,

∀i ∈ V, (4.2b)

0 ≤ xij ≤ uij + p̂ij ∀(i, j) ∈ A, (4.2c)

wij p̂ij ≤ p̂max ∀(i, j) ∈ A, (4.2d)

0 ≤ p̂ij ≤ pij ∀(i, j) ∈ A. (4.2e)

Lemma 4.1. If (x, p̂) is a feasible solution to the problem (4.2), then ( v0

v∗x
∗, p̂) is also feasible in which x∗ is

a maximum flow with the value v∗ in the network G(V,A,u + p̂). Furthermore, the values of both the solutions
are the same.

Proof. The proof follows from Lemma 3.4.

Based on Lemma 4.1, it is sufficient to calculate the vector p̂ to determine a feasible solution to the problem
(4.2) because x can be computed directly from p̂. We henceforth focus only on finding p̂. A simple property of
the problem (4.2) is that if p̂ is a feasible solution, then any vector p̂′ with p̂ ≤ p̂′ ≤ p is also feasible. Using
this property, the following result is immediate.

Theorem 4.2. If the problem (4.2) has a feasible solution p̂ whose objective value is less than or equal to z,
then p̂z defined as

p̂zij =

{
min{ z

wij
, pij} wij > 0,

pij , wij = 0,
∀(i, j) ∈ A, (4.3)

is also feasible and its objective value is less than or equal to z.

Proof. The result follows from the fact that p̂ij ≤ p̂zij ≤ pij for every (i, j) ∈ A.

Suppose that we have sorted the values of {wijpij : (i, j) ∈ A} ∪ {0} in nondecreasing order and let

0 = z0 ≤ z1 ≤ z2 ≤ z3 ≤ . . . ≤ zm = max
(i,j)∈A

wijpij

denote the sorted list of these values. Based on Theorem 4.2, the following results are immediate.

Corollary 4.3. The problem (4.2) is feasible if and only if p̂zm defined by (4.3) for z = zm is a feasible solution
of the problem.

Proof. The proof of the sufficiency is trivial. On the proof of necessity, since any feasible solution has an objective
value less than or equal to zm, Theorem 4.2 implies the result.

Corollary 4.4. If the problem (4.2) is feasible, then its optimal objective value belongs to (0,min{Wv0, zm}]
where W = max(i,j)∈A wij.
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Proof. Assumption 3.1 states that the optimal objective value of the problem (4.2) is greater than zero. Consider
p̂′ defined by p̂′ij = v0 for every (i, j) ∈ A. Obviously, p̂′ satisfies the constraints (4.2b)–(4.2c) but is not
necessarily feasible because it does not satisfy the bound constraints (4.2e). The result is immediate by noting
that the objective values of p̂zm and p̂′ are respectively zm and Wv0.

Corollary 4.5. If the optimal objective value of the problem (4.2) is z∗, then p̂z∗ defined by (4.3) for z = z∗

is an optimal solution to this problem.

Proof. The result is a direct conclusion from Theorem 4.2.

Corollaries 4.4 and 4.5 imply that the problem (4.2) is reduced to finding a minimum value z∗ ∈
(0,min{Wv0, zm}] such that p̂z∗ defined by (4.3) is a feasible solution to the problem (4.2). Our proposed
algorithm for finding z∗ contains two phases. In the first phase, the algorithm looks for an interval (zk−1, zk],
k = 1, 2, . . . ,m, such that the optimal objective value z∗ belongs to it. In the second phase, the algorithm
calculates exactly the value z∗ by solving a minimum ratio cut problem.

In the first phase, the algorithm searches an index k ∈ {1, 2, . . . ,m} such that p̂zk is a feasible solution to
the problem (4.2) while p̂zk−1 is not feasible where p̂zk−1 and p̂zk are defined by (4.3) for z = zk−1 and z = zk,
respectively. The fact that p̂zk is feasible implies that z∗ ≤ zk and based on Theorem 4.2, the infeasibility of
p̂zk−1 implies that z∗ > zk−1. Then, zk−1 < z∗ ≤ zk. In order to check feasibility of p̂z for z = zk−1, zk, it
suffices to solve the maximum flow problem in G(V,A,u + p̂z). If the maximum flow value is greater than or
equal to v0, then p̂z is feasible and otherwise, it is not feasible (see Lemma 4.1). Therefore, the algorithm looks
for one index k ∈ {1, 2, . . . ,m} such that the maximum flow value in G(V,A,u + p̂zk) is greater than or equal
to v0 and the maximum flow value in G(V,A,u + p̂zk−1) is less than v0. The algorithm uses the binary search
technique to find such the index k.

Hereafter, we describe the second phase. We recall that in the first phase, the algorithm has found one
index k∗ ∈ {1, 2, . . . ,m} such that the optimal objective value z∗ belongs to (zk∗−1, zk∗ ]. Thus we can restrict
ourselves to feasible solutions with objective value z ∈ (zk∗−1, zk∗ ] to find the optimal objective value. For any
value z ∈ (zk∗−1, zk∗ ], the vector p̂z defined by (4.3) is obtained directly from

p̂zij =

{
z

wij
(i, j) ∈ Ak∗ ,

pij (i, j) ∈ A\Ak∗ ,
(4.4)

where Ak∗ = {(i, j) ∈ A : wijpij ≥ zk∗}.
Notice that the optimal objective value z∗ of the problem (4.2) is the minimum value of z ∈ (zk∗−1, zk∗ ] so that
the network G(V,A,u + p̂z) can send v0 units of flow from s to t. Consequently, z∗ is the optimal value of the
following problem.

min z (4.5a)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =


v0 i = s,

0 i 6= s, t,

−v0 i = t,

∀i ∈ V, (4.5b)

xij −
1

wij
z ≤ uij ∀(i, j) ∈ Ak∗ , (4.5c)

xij ≤ uij + pij ∀(i, j) ∈ A\Ak∗ , (4.5d)

z ≥ 0, xij ≥ 0 ∀(i, j) ∈ A. (4.5e)

The problem (4.5) is to find the minimum value of z so that the network G(V,A,u + p̂z) can send v0 units
of flow from s to t. The first phase guarantees that the optimal value z∗ belongs to (zk∗−1, zk∗ ]. Hence, one can
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apply the binary search technique to find the optimal value z∗. Here, we will use an other procedure which has
less complexity rather than the binary search technique.

For computing z∗, we will solve the dual of the problem (4.5) because the objective values of both the
problems are the same (see the fundamental theorem of duality in [4]). We associate the dual variable πi with
the ith constraint in (4.5b). Weassociate the dual variable αij , (i, j) ∈ Ak∗ , with each constraint (4.5c) and also
the dual variable αij , (i, j) ∈ A\Ak∗ , with each constraint (4.5d). Using these notations, the dual of the problem
(4.5) is

max w =
∑

(i,j)∈Ak∗

uijαij +
∑

(i,j)∈A\Ak∗

(uij + pij)αij + v0πs − v0πt,

s.t. πi − πj + αij ≤ 0 ∀(i, j) ∈ A, (4.6)∑
(i,j)∈Ak∗

− 1

wij
αij ≤ 1,

αij ≤ 0, ∀(i, j) ∈ A.

This problem is a minimum cut problem with one additional constraint as well as two additional terms in the
objective function. In the following, we will show that the problem is reduced to a maximum ratio cut problem
and then, present an optimal solution to it.

Without loss of generality, we can assume that πt = 0 because if (π, α) is a feasible solution to the problem
(4.6), then for any real number d, (π + d, α) is also feasible with the same objective value. By introducing
nonnegative variable α̂ij = −αij for every (i, j) ∈ A, the problem (4.6) is converted into the following problem.

max w = −
∑

(i,j)∈Ak∗

uijα̂ij −
∑

(i,j)∈A\Ak∗

(uij + pij)α̂ij + v0πs (4.7a)

s.t. πi − πj ≤ α̂ij ∀(i, j) ∈ A, (4.7b)∑
(i,j)∈Ak∗

1

wij
α̂ij ≤ 1, (4.7c)

πt = 0, α̂ij ≥ 0, ∀(i, j) ∈ A. (4.7d)

In the following, we show that the problem (4.7) is equivalent to a minimum ratio cut problem.

Lemma 4.6. For each feasible solution (α̂0, π0) to the problem (4.7), the set {(i, j) ∈ A : α̂0
ij > 0} contains an

st-cut.

Proof. By contradiction, assume that the set {(i, j) ∈ A : α̂0
ij > 0} does not contain any st-cut. Then, there

exists a path P from s to t so that α̂0
ij = 0 for each (i, j) ∈ P . This together with the constraints (4.7b) imply

that πs ≤ 0. Consequently, (α̂, π) = (0, 0) is an optimal solution to the problem (4.7) whose optimal value equals
to zero. This contradicts Assumption 3.1.

By Lemma 4.6, there exists at least one optimal solution (α̂∗, π∗) to the problem (4.7) so that C∗ = {(i, j) ∈
A : α̂∗ij > 0} is an st-cut. For this reason, we henceforth restrict ourself to solutions (α̂, π) with the property
that

• α̂ij > 0 for every (i, j) ∈ C,
• α̂ij = 0 for every (i, j) ∈ A\C,

for some st−cut C.
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Consider the network G′(V,A,u′) where u′ is defined as follows:

u′ij =

{
uij (i, j) ∈ Ak∗ ,

uij + pij (i, j) ∈ A\Ak∗ .
(4.8)

Suppose that (α̂0, π0) is a feasible solution to the problem (4.7) and C = [S, S̄] = {(i, j) : α̂0
ij > 0} is the

corresponding st-cut. For each (i, j) ∈ C, there exists at least one st-path P containing (i, j). By summing the
constraints (4.7b) corresponding to arcs of P , we have πs = πs − πt ≤ u′ij . Thus,

πs ≤ min{u′ij : (i, j) ∈ C}. (4.9)

On the other hand, by substituting α̂ij = 0 into the constraints (4.7b), we have

πi ≤ πj , ∀(i, j) ∈ A\C. (4.10)

Using inequalities (4.9) and (4.10), one can simply show that there is at least an optimal solution to the
problem (4.7) so that the variables α̂ij , (i, j) ∈ C, and πi, i ∈ S, have the same value of πs while the variables
α̂ij , (i, j) ∈ A\C, and πi, i ∈ S̄, are zero. Let πs = γ. Based on the above argument, we define a solution (α̂, π)
as follows:

α̂ij =

{
γ (i, j) ∈ C,
0 (i, j) /∈ C,

∀(i, j) ∈ C, (4.11)

πi =

{
γ i ∈ S,
0 i ∈ S̄,

∀i ∈ V, (4.12)

for some st-cut C∗ = [S, S̄]. Obviously, a solution defined by (4.11) and (4.12) satisfies the constraints (4.7b).
Substituting the solution in the problem (4.7), we have

maxw = γ

v0 − ∑
(i,j)∈C

u′ij

,
γ

 ∑
(i,j)∈Ak∗∩C

1

wij

 ≤ 1, (4.13)

γ ≥ 0,

in which an st-cut C and a value γ are to be determined. Based on Assumption 3.1, γ > 0. On the other hand,
any st-cut C with u′(C) < v0 contains at least one element of Ak∗ because if not, the problem (4.13) has an
infinite optimal value and consequently, the problem (4.5) is infeasible which leads to a contradiction. Then, we
can set γ = (

∑
(i,j)∈Ak∗∩C

1
wij

)−1 and reduce the problem (4.13) to the following problem.

max
C

w =
v0 −

∑
(i,j)∈C u

′
ij∑

(i,j)∈Ak∗∩C
1

wij

. (4.14)

This problem is a special case of linear fractional combinatorial (LFC) problems which is called the maximum
ratio cut problem. Radzik [20] proposed a type Newton method to solve any LFC problem in strongly polynomial
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Algorithm 4.7. Algorithm to solve the problem (4.1).

Input: A network G(V,A,u,p,w) with two specific nodes s and t and a prescribed value v0.
Output: A new capacity vector û.
Phase I:
Sort the values of {wijpij : (i, j) ∈ A} ∪ {0} in nondecreasing order and let z0 = 0 ≤ z1 . . . ≤ zm
be the sorted list. Obtain the maximum flow value v in G(V,A,u + p̂zm).
if v < v0 then

Stop because the problem (4.1) is infeasible.
end if
Obtain the maximum flow value v in G(V,A,u).
if v ≥ v0 then

Stop because the problem (4.1) has the trivial optimal solution û = u.
end if
Set kL = 0 and kU = m.
while kU − kL > 1

Set k = [kL+kU

2 ].
Obtain the maximum flow value v in G(V,A,u + p̂zk).
if v < v0 then
kL = k.

else
kU = k.

end if
end while
Phase II:
Set ε = 10−10.
Set w = zkL

.
Obtain u′ using (4.8).
while True do

Obtain u(w) using (4.15).
Find a minimum cut C in G(V,A,u(w)) with capacity v.
if |v − v0| < ε then

Stop because the optimal solution û = u(w) is found.
else

Set w =
v0−

∑
(i,j)∈C u′ij∑

(i,j)∈C∩Ak∗
1

wij

.

end if
end while

time. Therefore, we apply this method in the second phase to solve the problem in strongly polynomial time.
Based on the result obtained from the first phase, we know that the optimal value w∗ of the problem (4.14) is
in (zk∗−1, zk∗ ]. In the second phase, the algorithm generates an increasing sequence {wl} converging to w∗ by
starting the initial point w0 = zk∗−1. Suppose that the algorithm has calculated the lth term of the sequence,
that is, wl. The algorithm finds the minimum cut C∗ in the network G(V,A,u(wl)) where the capacity vector
u(wl) is defined as follows:

u
(wl)
ij =

{
u′ij + wl

wij
(i, j) ∈ Ak∗ ,

u′ij (i, j) ∈ A\Ak∗ ,
∀(i, j) ∈ A. (4.15)
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Algorithm 4.8. An implementation of Algorithm 4.7 based on the binary search in the second phase.

Input: A network G(V,A,u,p,w) with two specific nodes s and t and a prescribed value v0.
Output: A new capacity vector û.
Phase I:
This fuzz is the same first fuzz of Algorithm 4.7.
Phase II:
Set ε = 10−10.
Set wL = zkL

, wU = zkU
.

while True do
Set w = wL+wU

2 .
Obtain u(w) using (4.15).
Obtain the maximum flow value v in G(V,A,u(w)).
if |v − v0| < ε then

Stop because the optimal solution û = u(w) is found.
else if v < v0 then

Set wL = w.
else

Set wU = w.
end if

end while

Figure 2. An instance of the problem (4.1) with v0 = 10 as well as the results obtained from
the phase II of Algorithm 4.7 for solving the problem.



1118 J. TAYYEBI ET AL.

T
a
b
l
e
1
.

A
ve

ra
ge

p
er

fo
rm

an
ce

st
at

is
ti

cs
o
f

A
lg

o
ri

th
m

s
4
.7

a
n

d
4
.8

fo
r

th
e

b
in

o
m

ia
l

g
ra

p
h

s
w

it
h
p

=
1 2
.

n
A

lg
or

it
h

m
4.

7
A

lg
o
ri

th
m

4
.8

m
P

h
as

e
I

P
h

a
se

II
T

o
ta

l
ti

m
e

m
P

h
a
se

I
P

h
a
se

II
T

o
ta

l
ti

m
e

T
im

e
N

u
m

.
of

it
er

.
T

im
e

N
u

m
.

o
f

it
er

.
T

im
e

N
u

m
.

o
f

it
er

.
T

im
e

N
u

m
.

o
f

it
er

.

50
61

8.
10

0.
10

9.
40

0.
04

2
.0

0
0
.1

3
6
2
5
.6

0
0
.1

0
9
.3

0
0
.3

9
3
5
.6

0
0
.4

9
10

0
24

80
.9

0
0.

53
11

.4
0

0.
19

2
.0

0
0
.7

2
2
4
8
0
.5

0
0
.4

7
1
1
.4

0
1
.4

5
3
5
.5

0
1
.9

2
25

0
15

52
6.

40
4.

44
13

.8
0

1.
27

2
.0

0
5
.7

1
1
5
5
5
6
.0

0
3
.9

9
1
4
.0

0
1
0
.2

1
3
5
.8

0
1
4
.2

0
50

0
62

37
5.

40
18

.6
3

16
.0

0
4.

99
2
.0

0
2
3
.6

2
6
2
3
6
5
.6

0
1
8
.3

2
1
6
.0

0
4
0
.5

5
3
4
.8

0
5
8
.8

7

T
a
b
l
e
2
.

A
ve

ra
ge

p
er

fo
rm

an
ce

st
at

is
ti

cs
o
f

A
lg

o
ri

th
m

s
4
.7

a
n

d
4
.8

fo
r

th
e

b
in

o
m

ia
l

g
ra

p
h

s
w

it
h
n

=
1
0
0
.

p
A

lg
or

it
h

m
4.

7
A

lg
o
ri

th
m

4
.8

m
P

h
as

e
I

P
h

a
se

II
T

o
ta

l
ti

m
e

m
P

h
a
se

I
P

h
a
se

II
T

o
ta

l
ti

m
e

T
im

e
N

u
m

.
of

it
er

.
T

im
e

N
u

m
.

o
f

it
er

.
T

im
e

N
u

m
.

o
f

it
er

.
T

im
e

N
u

m
.

o
f

it
er

.

0.
10

48
9.

10
0.

07
9.

10
0.

03
2
.0

0
0
.1

0
4
8
7
.8

0
0
.0

7
9
.0

0
0
.3

2
4
3
.0

0
0
.3

9
0.

20
99

4.
10

0.
18

10
.0

0
0.

07
2
.0

0
0
.2

4
9
8
7
.5

0
0
.1

7
9
.8

0
0
.6

7
4
1
.7

0
0
.8

4
0.

30
14

86
.8

0
0.

30
10

.8
0

0.
11

2
.0

0
0
.4

0
1
5
0
1
.7

0
0
.2

8
1
0
.9

0
1
.1

0
4
1
.4

0
1
.3

8
0.

40
19

72
.0

0
0.

41
10

.9
0

0.
15

2
.0

0
0
.5

6
1
9
5
7
.7

0
0
.3

6
1
0
.9

0
1
.4

0
4
1
.3

0
1
.7

6
0.

50
24

57
.9

0
0.

53
11

.2
0

0.
18

2
.0

0
0
.7

1
2
4
6
1
.7

0
0
.5

0
1
1
.2

0
1
.9

3
4
0
.8

0
2
.4

3
0.

60
29

61
.9

0
0.

61
11

.9
0

0.
21

2
.0

0
0
.8

2
2
9
7
1
.7

0
0
.6

1
1
1
.7

0
2
.1

3
4
0
.7

0
2
.7

4
0.

70
34

64
.3

0
0.

65
11

.8
0

0.
22

2
.0

0
0
.8

7
3
4
5
0
.6

0
0
.6

7
1
1
.8

0
2
.4

5
4
0
.4

0
3
.1

2
0.

80
39

56
.6

0
0.

76
11

.9
0

0.
26

2
.0

0
1
.0

1
3
9
5
8
.5

0
0
.7

7
1
2
.0

0
2
.6

1
4
0
.0

0
3
.3

8
0.

90
44

60
.9

0
0.

87
12

.2
0

0.
29

2
.0

0
1
.1

6
4
4
6
4
.2

0
0
.8

6
1
2
.1

0
2
.8

8
3
8
.8

0
3
.7

4
1.

00
49

50
.0

0
0.

94
12

.3
0

0.
31

2
.0

0
1
.2

6
4
9
5
0
.0

0
0
.9

9
1
2
.1

0
3
.2

6
3
8
.4

0
4
.2

5



REVERSE MAXIMUM FLOW PROBLEM UNDER THE WEIGHTED CHEBYSHEV DISTANCE 1119

In this state, two distinct cases may occur:

Case I (u(wl)(C∗) = v0): In this case, we have

wl =
v0 −

∑
(i,j)∈C∗ u

′
ij∑

(i,j)∈Ak∗∩C∗
1

wij

≥
v0 −

∑
(i,j)∈C u

′
ij∑

(i,j)∈Ak∗∩C
1

wij

for each st-cut C. Then, wl is the optimal value of the problem (4.14).

Case II (u(wl)(C∗) < v0): In this case,
v0−

∑
(i,j)∈C∗ u

′
ij∑

(i,j)∈Ak∗∩C
∗

1
wij

> wl. Consequently, wl is a lower bound on the

optimal value. Then the algorithm sets wl+1 =
v0−

∑
(i,j)∈C∗ u

′
ij∑

(i,j)∈Ak∗∩C
∗

1
wij

. Notice that wl < wl+1 ≤ w∗.

It is notable that the case that u(wl)(C∗) > v0 never occur because the inequality u(w0)(C∗) < v0 is guaran-
teed from the first phase and if u(wl)(C∗) > v0 for l ≥ 1, then u(wl)(C) > v0 for every st-cut C and consequently,

wl >
v0−

∑
(i,j)∈C u′ij∑

(i,j)∈Ak∗∩C
1

wij

for every st-cut C which contradicts the fact that wl is constructed in the preceding

iteration by wl =
v0−

∑
(i,j)∈C0 u′ij∑

(i,j)∈Ak∗∩C
0

1
wij

for some st-cut C0.

Our proposed algorithm is formally stated in Algorithm 4.7. Radzik [20] proved that the discrete type Newton
method solves any LFC problem in strongly polynomial time. Thus, the following result is immediate.

Theorem 4.9. Algorithm 4.7 solves the problem (4.1) in strongly polynomial time.

5. Experimental results

We recall that for solving the problem (4.1), Algorithm 4.7 performs two phases. The first phase finds an
interval (zk, zk+1] containing the optimal value. The second phase uses the Newton method to solve the dual of
the problem (4.5) for obtaining the optimal value of the problem (4.1). A straight idea is to apply the binary
search technique in the second phase for solving the problem (4.5) (see Algorithm 4.8). In this section, we have
conducted a computational study to observe the performance of these two algorithms.

The following computational tools were used to develop algorithms: Python 2.7.5, Matplotlib 1.3.1 and
NetworkX 1.8.1. All computational experiments were conducted on a 32-bit Windows 10 with Processor Intel(R)
Core(TM) i5− 3210M CPU @2.50GHz and 4 GB of RAM.

For computational experiments, we have used a special class of undirected random graphs, called binomial
graphs, which are first introduced by Paul Erdõs and Alfréd Rényi [13] in 1959. The binomial graphs are
generated by determining two parameters n and p which n is the number of nodes and any edge (i, j) is
included in the graph with the probability p ∈ [0, 1]. The parameter p can be thought of as a weighting function;
as p increases from 0 to 1, the graph becomes more dense. In particular, the case p = 1 corresponds to a complete
graph. In experiments, to construct a directed graph G(V,A), an undirected binomial graph is first generated
and then, any edge (i, j) with i < j is directed from i to j. In generated instances, we have supposed that
the source is node 1 and the sink is node n. We have used random data generated using a uniform random
distribution as follows:

uij ∼ U(0, n) ∀(i, j) ∈ A,
pij ∼ U(0, n) ∀(i, j) ∈ A,
wij ∼ U(0, n) ∀(i, j) ∈ A,
v0 ∼ U(v∗, v∗∗),
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in which v∗ and v∗∗ are respectively the maximum flow value in G(V,A,u) and G(V,A,u + p). The condition
v∗ ≤ v0 ≤ v∗∗ guarantees that the problem (4.1) is feasible and has not the trivial optimal solution û = u.

We have tested the algorithms on five classes of networks which differ from the number of nodes, varying from
50 to 500 (see Tab. 1) and also, differ from the probability value p, varying from 0.1 to 1.0 (see Tab. 2). There are
10 random instances generated for each class of graphs. Tables 1 and 2 present average performance statistics of
the algorithms. The experimental results illustrate that the performance of Algorithm 4.7 is significantly better
than Algorithm 4.8.

An important observation of experiments is that the number of iterations of Algorithm 4.7 is even equal to 2.
In spite of this observation, unfortunately, this is not a general result. Figure 2 provides us with a counterexample
to this observation.

6. Conclusion

In this paper, we studied the reverse maximum flow problem under the weighted Chebyshev distance and
proposed an efficient algorithm to solve the problem in two phases. The first phase uses the binary search
technique to find an interval containing the optimal value and the second phase applies the discrete type Newton
method to obtain the optimal value. As a result from Radzik’s paper [20], our proposed algorithm solves the
problem in strongly polynomial time. Furthermore, the experimental results show that the performance of the
algorithm is better than one which uses the binary search in the second phase.

As future works, we propose studying the problem under other distances and its extension on hypergraphs.
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