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1. Introduction

Madan et al. [1] investigated the queuing system with two types of general heterogeneous service for batch
arrival queue by introducing the concept of re-service. In such a system, the server provides two types of
general heterogeneous services and an arriving customer can choose either type of service before its service
start. However, if a customer is not satisfied by the service provided by the server then it may repeat the same
type of service once again. Among some other related works in this area, we should mention the papers by
Madan et al. [2], Al-khedhairi and Tadj [3], Tadj and Ke [4] and Baruah et al. [5].

The reliability function for an unreliable server queuing system was first investigated by Li et al. [6]. Tang
[7] investigated similar type of model for batch arrival queue. Consequently, Wang [8] studied such a model for
two phase of service.

The batch arrival N policy queue was first studied by Lee and Sirinivasan [9], where the server remains idle
till the queue size becomes N(≥ 1), i.e. batches of size N accumulated in the system. Later, Lee et al. [10] had
made an extensive analysis on this model through different techniques. Recently, Choudhury et al. [11] have
investigated a similar type of model for unreliable server with two phase of service. More recently, Choudhury
and Tadj [12] generalized this model for Bernoulli vacation schedule.

Although several aspects has been discussed on queuing model under N policy, however no works has been
done on reliability function for such type of model. Thus in this present paper we proposed to analyse reliability
function to an unreliable MX/G/1 queue provides two types of general heterogeneous service with optional
repeated service under N policy.
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From the practical point of view one may encounter utility of such queuing situation in production
manufacturing system, maintenance and quality control in industrial organization, inventory system, etc.

For example, consider a production system in which the production does not start until some specified number
of raw materials, say N, are accumulated during an idle period. We assume that the production system produces
two different types of product and the raw materials for either type of product arrive in batches. It may so
happen that the production process could be interrupted due to some unpredictable events (breakdowns) in
the system. Moreover, re-production of some produced item may be necessary if the item does not satisfy a
desired quality level on a quick on the spot inspection on completion of a production. Hence, it is worthwhile
to investigate such a system from the reliability point of view.

The remaining part of the paper is organized as follows. In Section 2 we briefly describe the mathematical
model, Section 3 deals with prerequisite definition for the model, in Section 4 we derive LST of the system
reliability function. Finally, numerical illustration of the system reliability measures MTFF is done in Section 5.

2. Mathematical model

We consider an MX/G/1 queuing system with two types of general heterogeneous service and optional
repeated service in which an unreliable server operates anN -policy, where the number of individual primary units
arrive to the system according to compound Poisson process with arrival rate λ. The size of successive arriving
batches are i.i.d. random variables X1, X2, . . . , distributed with probability mass function cn = Prob{X =
n};n ≥ 1, PGF c(z) = E[zX ], and finite factorial moments c[k] = E[X(X − 1) · · · (X − k + 1)]. The server is
turned off each time until the queue size (including one being served, if any) becomes N (threshold). As soon
as the queue size exceeds N(≥1), the server is turned on and begin to serve all the arriving units. The server
provides two types of general heterogeneous service to each unit on first come first served (FCFS) basis, before
its service starts, each unit has the option to select either type of service. i.e., each unit can select either first
type of service (FTS) denoted by S1 with probability p1 or second type of service (STS) denoted by S2 with
probability p2, where p1 + p2 = 1. Thus the time required by a unit to complete the service is given by,

S =

{
S1, with probability p1

S2, with probability p2

The service time random variable Si(i = 1, 2) (respectively S) of ith type of service (respective total service
time) are assumed to follow general law of probability with distribution function (d.f.) Si(x) (respectively S(x)),
Laplace Stieltjes Transform (LST) S∗i (θ) = E[e−θSi ] (respectively S∗(θ) = E[e−θS ] and finite kth moments
s
(k)
i , i = 1, 2 (respectively sk)(k ≥ 1).

More specifically, the LST of the total service time after the choice of a service is given by

S∗(θ) = p1S
∗
1 (θ) + p2S

∗
2 (θ). (2.1)

As soon as either type of service completed by an unit, such an unit has further option to repeat the same
type of service denoted by Bi once again with probability qi or leave the system with probability (1− qi), for
i = 1, 2 . Thus the total service time required to a unit to complete the ith type of service which may be called
modified service time (i = 1, 2) is given by

Si =

{
Si +Bi, with probability qi
Si, with probability(1− qi)

Also it is assumed that repeated service time random variable follows general distribution law with probability
distribution function Bi(x), LST B∗i (θ) = E[e−θBi ] and finite kth moments b(k)i for i = 1, 2.
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Clearly, the LST S∗i (θ) of Si for i = 1, 2 is

S∗i (θ) = (1− qi)S∗i (θ) + qiS
∗
i (θ)B∗i (θ). (2.2)

Now utilizing equation (2.2) in (2.1) for i = 1,2, we get the LST of the modified service time is given by

S∗(θ) = {(1− q1) + q1B
∗
1(θ)}p1S

∗
1 (θ) + {(1− q2) + q2B

∗
2(θ)}p2S

∗
2 (θ). (2.3)

This type of queuing model is known as two type of heterogeneous service queue with optional repeated

service discipline with N- policy. In Kendal’s notation our model is denoted by MX/

(
G1

G2

)
/1(UR)/N −Policy

repeated service queue, where UR represents unreliable server. While the server is working with any type of
service or repeated service, it may breakdown at any time for a short interval of time. The breakdown i.e.,
server’s life times are generated by exogenous Poisson process with rates α1 for FTS or FTRS (i.e., first type
of repeated service) and α2 for STS or STRS (i.e., second type of repeated service).

Further we assume that arrival process, service time, repeated service time and server’s life time random
variables are mutually independent of each other.

3. Prerequisite definition

Let NQ(t) be the queue size (including the one being served, if any) at time t, S0
i (t) and B0

i (t) be the elapsed
service time and elapsed repeated service time of the customer for the ith types of service at time t for i = 1, 2
denoting type 1 and type 2 service respectively.

Also let us consider the following random variable:

Y (t) =



0, if the server is idle at time t
1, if the server is busy with type 1 service at time t
2, if the server is busy with type 2 service at time t
3, if the server is busy with repeating type 1 service at time t
4, if the server is busy with repeating type 2 service at time t

We now introduce the supplementary variables S0
i (t), B0

i (t) for i = 1, 2 in order to obtain a bivariate Markov
process {NQ(t), Y (t)}.Let us now define the following probabilities.

Un(t) = Pr{NQ(t) = n, Y (t) = 0};n = 0, 1, 2, . . . , N − 1.

and for n ≥ 1

Pn,1(x; t)dx = Pr{NQ(t) = n, Y (t) = 1;x < S0
1(t) ≤ x+ dx};x > 0

Pn,2(x; t)dx = Pr{NQ(t) = n, Y (t) = 2;x < S0
2(t) ≤ x+ dx};x > 0

Qn,1(x; t)dx = Pr{NQ(t) = n, Y (t) = 3;x < B0
1(t) ≤ x+ dx};x > 0

Qn,2(x; t)dx = Pr{NQ(t) = n, Y (t) = 4;x < B0
2(t) ≤ x+ dx};x > 0.
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Further, it is assumed that Si(0) = 0, Si(∞) = 1, Bi(0) = 0, Bi(∞) = 1, for i = 1, 2; Si(x) is continuous at
x = 0, Bi(x) is continuous at x = 0, for i = 1, 2 so that

µi(x)dx =
dSi(x)

1− Si(x)
, ηi(x)dx =

dBi(x)
1−Bi(x)

,

are the first order differential (hazard rate) function of Si and Bi respectively for i = 1, 2.

4. Reliability function

Our aim in this paper is to derive the system reliability function. Let π be the time to the first failure of the
server, and then the reliability function of the server is R(t) = P (π > t).

We obtain the reliability of the server by considering the failure state of the server is the absorbing state,
which yields a new system. In order to derive the LST of reliability function of this system, the Kolmogorov
forward equations (e.g. see Cox [13]) can be written as follows:

∂Un(t)
∂t

+ λUn(t) = δn,0

2∑
i=1

[
(1− qi)

∫ ∞
0

Pn+1,i(x; t)µi(x)dx+
∫ ∞

0

Qn+1,i(x; t)ηi(x)dx
]

+(1− δn,0)λ
n∑
k=1

ckUn−k(t);n = 0, 1, 2, . . . , N − 1 (4.1)

and for i = 1, 2, and n ≥ 1

(
∂

∂t
+

∂

∂x

)
Pn,i(x; t) + [λ+ αi + µi(x)]Pn,i(x; t) = λ

n∑
k=1

ck Pn−k,i(x; t) (4.2)

(
∂

∂t
+

∂

∂x

)
Qn,i(x; t) + [λ+ αi + ηi(x)]Qn,i(x; t) = λ

n∑
k=1

ck Qn−k,i(x; t), (4.3)

where δi,j is the Knocker’s delta function.
The boundary conditions at x = 0 for i = 1, 2; to solve the above equations are

Pn,i(0; t) = (1− q1)pi
∫ ∞

0

Pn+1,1(x; t)µ1(x)dx+ (1− q2)pi
∫ ∞

0

Pn+1,2(x; t)µ2(x)dx

+pi
∫ ∞

0

Qn+1,1(x; t)η1(x)dx+ pi

∫ ∞
0

Qn+1,2(x; t)η2(x)dx; 1 ≤ n ≤ N − 1 (4.4)

Pn,i(0; t) = (1− q1)pi
∫ ∞

0

Pn+1,1(x; t)µ1(x)dx+ (1− q2)pi
∫ ∞

0

Pn+1,2(x; t)µ2(x)dx

+pi
∫ ∞

0

Qn+1,1(x; t)η1(x)dx+ pi

∫ ∞
0

Qn+1,2(x; t)η2(x)dx

+λ
N−1∑
k=0

cn−kUk(t); n ≥ N (4.5)
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Qn,i(0; t) = qi

∫ ∞
0

Pn,i(x; t)µi(x)dx; n ≥ 1 (4.6)

and the initial condition is Un(0) = δn,0, n ≥ 0.
We now introduce the following LSTs of probability generating functions (PGFs) for |z| < 1 and i = 1, 2 to

solve the above system of equations:

P ∗i (x, θ; z) =
∞∑
n=1

znP ∗n,i(x; θ); P ∗i (0, θ; z) =
∞∑
n=1

znP ∗n,i(0; θ);

Q∗i (x, θ; z) =
∞∑
n=1

znQ∗n,i(x; θ); Q∗i (0, θ; z) =
∞∑
n=1

znQ∗n,i(0; θ);

U∗N (θ; z) =
N−1∑
n=0

U∗n(θ)zn and U∗n(θ) =
∫ ∞

0

e−θtdUn(t); n = 0, 1, 2, . . . , N − 1.

Now performing Laplace transform with respect to equation (4.1), we get

(λ+ θ)U∗n(θ)− Un(0) = δn,0

2∑
i=1

[(1− qi)
∫ ∞

0

P ∗n+1,i(x; θ)µi(x)dx+
∫ ∞

0

Q∗n+1,i(x; θ)ηi(x)dx]

+(1− δn,0)λ
n∑
k=1

ckU
∗
n−k(θ); n = 0, 1, 2, . . . , N − 1. (4.7)

Proceeding similarly with equations (4.2)–(4.6) for i = 1, 2 and for n ≥ 1, we have

(θ + λ+ αi + µi(x))P ∗n,i(x; θ) +
∂

∂x
P ∗n,i(x; θ) = λ

n∑
k=1

ckP
∗
n−k,i(x; θ) (4.8)

(θ + λ+ αi + ηi(x))Q∗n,i(x; θ) +
∂

∂x
Q∗n,i(x; θ) = λ

n∑
k=1

ckQ
∗
n−k,i(x; θ) (4.9)

P ∗n,i(0; θ) = (1− q1)pi
∫ ∞

0

P ∗n+1,1(x; θ)µ1(x)dx+ (1− q2)pi
∫ ∞

0

P ∗n+1,2(x; θ)µ2(x)dx

+pi
∫ ∞

0

Q∗n+1,1(x; θ)η1(x)dx+ pi

∫ ∞
0

Q∗n+1,2(x; θ)η2(x)dx; 1 ≤ n ≤ N − 1 (4.10)
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P ∗n,i(0; θ) = (1− q1)pi
∫ ∞

0

P ∗n+1,1(x; θ)µ1(x)dx+ (1− q2)pi
∫ ∞

0

P ∗n+1,2(x; θ)µ2(x)dx

+pi
∫ ∞

0

Q∗n+1,1(x; θ)η1(x)dx+ pi

∫ ∞
0

Q∗n+1,2(x; θ)η2(x)dx

+λ
N−1∑
k=0

cn−kU
∗
k (θ); n ≥ N (4.11)

Q∗n,i(0; θ) = qi

∫ ∞
0

P ∗n,i(x; θ)µi(x)dx. (4.12)

Now multiplying equations (4.8) and (4.9) by zn and then taking summation over all possible values of n ≥ 1,
we get two set of differential equation of Lagrangian type whose solution is given by

P ∗i (x, θ; z) = P ∗i (0, θ; z)[1− Si(x)]exp {−(θ + αi + a(z))x} ;x > 0 for i = 1, 2 (4.13)

Q∗i (x, θ; z) = Q∗i (0, θ; z)[1−Bi(x)]exp{−(θ + αi + a(z))x};x > 0 for i = 1, 2, (4.14)

where a(z) = λ(1− c(z)).
Similarly equation (4.12) yields

Q∗i (0, θ; z) = qiP
∗
i (0, θ; z)S∗i (θ + αi + a(z)) for i = 1, 2. (4.15)

Multiplying equations (4.10) and (4.11) by zn and then taking summation over all possible values of n and

utilizing equation (4.7), by noting
∞∑
n=N

zn
N−1∑
k=0

cn−kU
∗
k (θ) = λU∗0 (θ)−U∗N (θ; z)a(z), also utilizing equation (4.15),

we get on simplification

[z − (1− q1)p1S
∗
1 (θ + α1 + a(z))− p1q1S

∗
1 (θ + α1 + a(z))B∗1(θ + α1 + a(z))]

P ∗1 (0, θ; z) + (a(z) + θ)U∗N (θ; z)zp1

= zp1 + [(1− q2)p1S
∗
2 (θ + α2 + a(z)) + p1q2S

∗
2 (θ + α2 + a(z))B∗2(θ + α2 + a(z))]P ∗2 (0, θ; z) (4.16)

[z − (1− q2)p2S
∗
2 (θ + α2 + a(z))− p2q2S

∗
2 (θ + α2 + a(z))B∗2(θ + α2 + a(z))]

P ∗2 (0, θ; z) + (a(z) + θ)U∗N (θ; z)zp2

= zp2 + [(1− q1)p2S
∗
1 (θ + α1 + a(z)) + p2q1S

∗
1 (θ + α1 + a(z))B∗1(θ + α1 + a(z))]P ∗1 (0, θ; z). (4.17)

Solving equations (4.16) and (4.17), we obtain

P ∗i (0, θ; z) =
[U∗N (θ; z)(θ + a(z))− 1]zpi

{(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+ {(1− q2) + q2B∗2(θ + α2 + a(z))}p2S∗2 (θ + α2 + a(z))− z

for i = 1, 2. (4.18)

Applying expression (4.18) in expression (4.15), we have

Q∗i (0, θ; z) =
[U∗N (θ; z)(θ + a(z))− 1]zpiqiS∗i (θ + αi + a(z))

{(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+ {(1− q2) + q2B∗2(θ + α2 + a(z))}p2S∗2 (θ + α2 + a(z))− z

for i = 1, 2. (4.19)
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Now from equation (4.13), we obtain

P ∗i (θ; z) =
∫ ∞

0

P ∗i (x, θ; z)dx

=
[1− S∗i (θ + αi + a(z))][U∗N (θ; z)(θ + a(z))− 1]zpi

(θ + αi + a(z))[{(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+ {(1− q2) + q2B∗2(θ + α2 + a(z))}p2S∗2 (θ + α2 + a(z))− z]

for i = 1, 2. (4.20)

Similarly from equation (4.12) we get

Q∗i (θ; z) =
∫ ∞

0

Q∗i (x, θ; z)dx

=
[1−B∗i (θ + αi + a(z))][U∗N (θ; z)(θ + a(z))− 1]zpiqiS∗i (θ + αi + a(z))

(θ + αi + a(z))[{(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+ {(1− q2) + q2B∗2(θ + α2 + a(z))}p2S∗2 (θ + α2 + a(z))− z]

for i = 1, 2. (4.21)

Now considering the coefficient

f(z) = {(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+{(1− q2) + q2B
∗
2(θ + α2 + a(z))}p2S

∗
2 (θ + α2 + a(z))− z

It can be shown that the function f (z ) is convex. Hence by Rouche’s theorem f (z ) has exactly one root k0(θ)
inside the unit circle |z| = 1 for Re(z). Therefore we have

U∗N (θ; z) =
N−1∑
n=0

[
1

λ+ θ − λ[k0(θ)]n+1

]
zn

again k0(θ) is the unique root of the equation

z = {(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+{(1− q2) + q2B
∗
2(θ + α2 + a(z))}p2S

∗
2 (θ + α2 + a(z)).

Hence from equations (4.20) and (4.21), we have

R∗(θ) = U∗N (θ) +
2∑
i=1

[P ∗i (θ) +Q∗i (θ)]

= U∗N (θ; 1) +
2∑
i=1

[P ∗i (θ; 1) +Q∗i (θ; 1)], (4.22)

where,

P ∗i (θ; 1) =
[1− S∗i (θ + αi)][θU∗N (θ)− 1]pi

(θ + αi)[{(1− q1) + q1B
∗
1(θ + α1)}p1S

∗
1 (θ + α1)

+ {(1− q2) + q2B∗2(θ + α2)}p2S∗2 (θ + α2)− 1]

for i = 1, 2
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Q∗i (θ; 1) =
[1−B∗i (θ + αi)][θU∗N (θ)− 1]piqiS∗i (θ + αi)

(θ + αi)[{(1− q1) + q1S
∗
1 (θ + α1)}p1S

∗
1 (θ + α1)

+ {(1− q2) + q2S∗2 (θ + α2)}p2S∗2 (θ + α2)− 1]

for i = 1, 2.

The above results may be summarize in the following theorem.

Theorem 4.1. The Laplace transform of the reliability function R(t) is given by

R∗(θ) = U∗N (θ) +

[p1{(1− S∗1 (θ + α1)) + (1−B∗1(θ + α1))q1S∗1 (θ + α1)}(θ + α2)
+ p2{(1− S∗2 (θ + α2)) + (1−B∗2(θ + α2))q2S∗2 (θ + α2)}(θ + α1)][θU∗N (θ)− 1]

(θ + α1)(θ + α2)[{(1− q1) + q1B
∗
1(θ + α1)}

p1S∗1 (θ + α1) + {(1− q2) + q2B∗2(θ + α2)}p2S∗2 (θ + α2)− 1]

where U∗N (θ) =
N−1∑
n=0

[1/(λ+ θ − λ[k0(θ)]n+1)] and k0(θ) is the unique root of the equation

z = {(1− q1) + q1B
∗
1(θ + α1 + a(z))}p1S

∗
1 (θ + α1 + a(z))

+{(1− q2) + q2B
∗
2(θ + α2 + a(z))}p2S

∗
2 (θ + α2 + a(z))

inside |z| = 1, Re(θ) > 0 and a(z) = λ(1− c(z)).

Performance measure: The mean time of the first failure (MTFF) of the server is given by

MTFF =
∫ ∞

0

R(t)dt = R∗(θ)|θ=0. (4.23)

By Tauberian theorem of Laplace Transform, we have

lim
θ→ 0

θU∗N (θ) = lim
t→∞

UN (t) = UN .

Now, let us define

Un = UNψn;n = 0, 1, 2, . . . , (N − 1) and ψ0 = 1. (4.24)

where Un = lim
t→∞

Un(t), ψn= Pr {A batches of ‘n’ units arrive in the system during an idle period} and UN is
a normalizing constant.

Now considering the normalizing condition under steady state condition

N−1∑
n=0

Un +
2∑
i=1

∞∑
n=1

[∫ ∞
0

Pn,i(x)dx+
∫ ∞

0

Qn,i(x)dx
]

= 1,

we have

UN =
1− ρs
N−1∑
n=0

ψn

, (4.25)

where ρs = p1(ρs1 + q1ρb1) + p2(ρs2 + q2ρb2) such that ρsi = λc[1]s
(1)
i and ρbi = λc[1]b

(1)
i for i = 1, 2.
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Hence by substituting UN in (4.23), we finally obtain

MTFF = U∗N (0)

+

[
1− ρs −

N−1∑
n=0

ψn

]
[
p1{(1− S∗1 (α1)) + (1−B∗1(α1))q1S∗1 (α1)}(α2)

+ p2{(1− S∗2 (α2)) + (1−B∗2(α1))q2S∗2 (α1)}(α1)

]
(
N−1∑
n=0

ψn)(α1)(α2)

[[{(1− q1) + q1B∗1(α1)}p1S∗1 (α1) + {(1− q2) + q2B∗2(α2)}p2S∗2 (α2)]− 1]

.

5. Numerical illustration

In this section, we illustrate the effect of system parameters on the reliability measures MTFF. For illustrative
purpose, we assume that the arrival batch size follows geometric distribution with parameter ε for which the
PGF is given by

c(z) =
ε

1− (1− ε)z
.

The service time and repeated service time random variables is assumed to follow exponential distributions with
service rates βi and γi respectively for i = 1, 2 (denoting type 1 and type 2 service) for which LST is given by

S∗i (θ) =
βi

θ + βi
for i = 1, 2 and B∗i (θ) =

γi
θ + γi

for i = 1, 2.

Now, the MTFF obtained in the previous section can be written as follows:

MTFF =
N−1∑
n=0

[
1

λ− λ[k0(0)]n+1

]

+



[
1− ρs −

N−1∑
n=0

ψn

]
p1

{(
1− β1

α1 + β1

)
+
(

1− γ1

α1 + γ1

)(
q1β1

α1 + β1

)}
(α2)

+ p2

{(
1− β2

α2 + β2

)
+
(

1− γ2

α2 + γ2

)(
q2β2

α2 + β2
)
)}

(α1)




(
N−1∑
n=0

ψn

)
(α1)(α2)[[{

(1− q1) +
q1γ1

α1 + γ1

}(
p1β1

α1 + β1

)
+
{

(1− q2) +
q2γ2

α2 + γ2

}(
p2β2

α2 + β2

)]
− 1
]

(5.1)
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where k0(0) is the unique root of the equation

z =

(1− q1) +
q1γ1

α1 + γ1 + λ
(

1− ε
1−(1−ε)z

)

 p1β1

α1 + β1 + λ
(

1− ε
1−(1−ε)z

)


+

(1− q2) +
q2γ2

α2 + γ2 + λ
(

1− ε
1−(1−ε)z

)

 p2β2

α2 + β2 + λ
(

1− ε
1−(1−ε)z

)
 (5.2)

inside |z| = 1 which we solve for z numerically.
Further, for the sake of computational convenience, the settings of system’s parameter are as follows:

• The arrival rate of batches λ = 0.6
• ε = 0.5, so that c[1] = 1/(ε) = 0.5. It is important to note that, in this case, it is straightforward to show

that ψn = ε for all n = 1, 2, . . . , N − 1 and thus
N−1∑
n=0

ψn = 1 +Nε.

• β1 = 2 and β2 = 1.5 for type 1 and type 2 services respectively
• γ1 = 3.5 and γ2 = 2.5 for type 1 and type 2 services respectively
• p1 = p2 = 0.5, q1 = 0.15 and q2 = 0.2

The result of MTFF are shown for the following two cases:

Case 1: We choose α2 = 0.4 and vary the value of α1 from 0 to 1 for different values of N .
Case 2: We choose α1 = 0.4 and vary the value of α2 from 0 to 1 for different values of N .

Now for the above values of the system parameters the equation (5.2) reduces for case 1 and 2 as follows:

(0.25α2
1 + 1.675α1 + 2.665)z5 − (1.96785α2

1 + 13.0971α1 + 20.9749)z4

+(5.94857α2
1 + 39.7066α1 + 65.081)z3 − (8.44227α2

1 + 57.5321α1 + 99.1455)z2

+(5.35771α2
1 + 38.7826α1 + 73.7565)z − (1.04914α2

1 + 9.13531α1 + 21.2542) = 0

Figure 1. Effect of α1 on MTFF at different threshold level (color online).
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Figure 2. Effect of α2 on MTFF at different threshold level (color online).

and

(0.25α2
2 + 1.3α2 + 1.6275)z5 − (1.99722α2

2 + 10.2356α2 + 12.7807)z4

+(6.14167α2
2 + 31.29α2 + 39.5947)z3 − (8.90333α2

2 + 45.8247α2 + 60.2978)z2

+(5.82444α2
2 + 31.3724α2 + 44.9346)z − (1.21333α2

2 + 7.59733α2 + 13.02) = 0.

The solutions of these two equations can easily be obtained using MATLAB/ MATHEMATICA software
which yields five roots for each of the equation. Here we consider only that root for each of the equation which
lie inside the unit circle |z| = 1.

The figures below show the effect of breakdown rates on the MTFF. From Figures 1 and 2 we observe that
the value of the MTFF decreases as breakdown rates increases at all threshold level. The figures also reveal the
effect of threshold level on MTFF. The figures show that MTFF increases as threshold value increases.

6. Conclusion

In this paper, we have studied reliability analysis of a batch arrival N policy unreliable queue with two types
of general heterogeneous service and optional repeated service where the server does not start service until the
queue size becomes “N” as model building of a production system in which production does not starts until “N”
specified raw materials accumulated in the system .We have obtained LST of reliability function and MTFF of
the model under the study. Further, we have performed some numerical experiments to investigate parameter
effects on MTFF. The result can be further generalized by introducing the concept of a setup period. As possible
extension of our model we mentioned possibility of assuming batch arrival with vacation under different vacation
policies as auxiliary tools leading to the development of more versatile queuing model.
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