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COMBINATORIAL APPROXIMATION OF MAXIMUM k-VERTEX

COVER IN BIPARTITE GRAPHS WITHIN RATIO 0.7

Vangelis Th. Paschos*

Abstract. We propose and analyze a simple purely combinatorial algorithm for max k-vertex cover
in bipartite graphs, achieving approximation ratio 0.7. The only combinatorial algorithm currently
known until now for this problem is the natural greedy algorithm, that achieves ratio (e−1)

e
= 0.632.
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1. Introduction

In the max k-vertex cover problem, a graph G(V,E) with |V | = n and |E| = m is given together with
an integer k 6 n. The goal is to find a subset K ⊆ V with k elements such that the total number of edges
covered by K is maximized. This problem is strongly NP-hard even in bipartite graphs [2, 4] (in what follows,
for clarity reasons, max k-vertex cover problem in bipartite graphs will be denoted by bipartite max
k-vertex cover).

The approximation of max k-vertex cover has been originally studied in [5] and revisited in [6], where
an approximation 1− ( 1

e ) was proved, achieved by the natural greedy algorithm. This ratio is tight in bipartite
graphs [3]. In [1], using a sophisticated linear programming method, the approximation ratio for max k-vertex
cover is improved up to 3

4 . Finally, by an easy reduction from Min Vertex Cover, it can be shown that
max k-vertex cover in general graphs does not admit a polynomial time approximation schema (PTAS),
unless P = NP [7]. The proof-schema of this negative result of [7] does not apply to bipartite max k-vertex
cover since Min Vertex Cover is polynomial in bipartite graphs. Obviously, the result of [1] immediately
applies to bipartite max k-vertex cover. More recently, [4] has improved this ratio for bipartite max
k-vertex cover up to 8

9 , always using involved linear programming techniques,1 but the existence of a PTAS
for such graphs always remains open.

Finally, let us note that bipartite max k-vertex cover is polynomial in regular bipartite graphs (where
all the vertices have the same degree) or in semi-regular ones (where the vertices of each color class have the
same degree but the two degrees are different). Indeed, in the case of regular bipartite graphs, it suffices to
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1The complexity of the algorithm is not given in [4]; a rough evaluation of it, gives a complexity of O((|V1||V2|)

11
2 ) which is

bounded above by O(n11), where V1 and V2 are the two independent that form the vertex-set of the bipartite graph (|V1|+ |V2| = n).
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chose k vertices in one color class,2 while in the case of semi-regular ones, it suffices to chose k vertices in the
color class with the maximum degree.

Our principal motivation for this paper is to study in what extent combinatorial methods for bipartite max
k-vertex cover compete with linear programming ones. In other words, what is the ratios’ level, a purely
combinatorial algorithm can guarantee? In this purpose, we devise an O(n3) algorithm that builds five distinct
solutions and returns the best among them; for this algorithm, we prove a worst case 0.7-approximation ratio.
Let us note that a similar issue is presented in [8] for max cut where a 0.531-ratio combinatorial algorithm
is given. Comparison of classes of methods with respect to their abilities to solve problems seems to be a
very interesting research issue. This may bring new insights to both the problems handled and the methods
themselves. Furthermore, such studies may exhibit interesting and funny mathematical problems.

2. Preliminaries

Consider a bipartite graph B(V1, V2, E), fix an optimal solution O for bipartite max k-vertex cover (i.e.,
a vertex-set on k vertices covering a maximum number of edges in E) and denote by k1 and k2 the cardinalities
of the subsets O1 and O2 of O lying in the color-classes V1 and V2, respectively. W.l.o.g., we assume k1 6 k2
and we set:

k1 = µ · k2, µ 6 1 (2.1)

k = k1 + k2 = (1 + µ) · k2 (2.2)

Denote by δ(V ′), V ′ ⊆ V = V1 ∪ V2, the number of edges covered by V ′ and by opt(B) the value of an optimal
solution (i.e., the number of edges covered by O).

Let Si, i = 1, 2, be the ki vertices of Vi that cover a maximum number of edges. Obviously, Si is the set of
the ki largest degree vertices in Vi (breaking ties arbitrarily) and the following hold:

δ (S1) > δ (O1)

δ (S2) > δ (O2) (2.3)

In what follows, we call “best” vertices, a set of vertices that cover a maximum number of uncovered edges3

in B. Furthermore, we will also use the following additional notations and conventions (we assume that vertices
in both V1 and V2 are ordered in decreasing degree order), where all the used Greek letters imply parameters
that are all smaller than, or equal to, 1:

• δ(O1): the number of edges covered by O1; for conciseness we set δ(O1) = α · opt(B);
• β1 · δ (O1) = β1 · α · opt(B): the number of edges covered by S1 ∩O1;
• δ′(O2): the number of private edges covered by O2, i.e., the edges already covered by O1 are not counted

up to δ′(O2); obviously, δ′(O2) = (1− α) · opt(B);
• θ · δ(O1): the number of edges (if any) from O1 that go “below” O2 (recall V1 and V2 are ordered in

decreasing degree order);
• γ · δ′(O2): symmetrically, it denotes the number of edges of O2 that go below the vertices of O1;
• ζ · δ(O1): suppose that after taking the k best vertices of V1, there still remain, say, k′1 vertices of O1 that

have not been encountered yet; then, ζ · δ(O1) is the number of edges covered by those vertices;
• λ · δ′(O2): this is the symmetric of the quantity ζ · δ(O1) for the pair (V2, O2) (supposing that the number

of vertices in O2 that have not been encountered is k′2).

2For the rest of the paper, following standard graph-theoretic vocabulary, given a bipartite graph B(V1, V2, E), vertex-sets V1

and V2 will be referred as color classes of B.
3For instance, saying “we take S1 plus the k2 best vertices in V2, this means that we take S1 and then k2 vertices of highest

degree in B[(V1 \ S1), V2].
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In Figure 1, the edge-sets defined by the parameters above are illustrated. Heavy lines within rectangles V1
and V2 represent the borders of S1 and S2 (the upper ones) and those of the k best vertices (the lower ones).
Edges from O1 (arg(δ(O1))) are not shown in the the figure. They can go everywhere in V2. Private edges
of O2 (arg(δ′(O2))) are shown as heavy lack lines (the set of edges δ′2). They can go everywhere in V1 \O1.

The basic idea of the algorithm is quite simple. It computes the best among five solutions built. It is presented
and analyzed in Section 3.

3. Combinatorial algorithms can lead to at
least 0.7-approximation ratio

Consider Algorithm 3.1. The sorting in the first line is performed in time O(n log n). The guessing in the
second line can be performed by running it for all pairs of integers (k1, k2) such that k1 + k2 = k 6 n; thus, the
time needed for this is O(n2). Finally, since the vertices are ordered, each of the solutions SOL1 to SOL4 can
be built in linear time. So, the overall complexity of Algorithm 3.1 is O(n3). Let us also note that since the
algorithm runs for any value of k1 and k2, it will run for k1 = k and k2 = k. So, it is optimal for the family of

instances of [3], where the greedy algorithm attains the ratio (e−1)
e . For these instances, the optimal solution

consists of taking k vertices from one of the two color classes of the input graph, while the greedy algorithm
fails to do this. Finally, let us note that Step 2 in SOL4 of Algorithm 3.1 may seem to be redundant. But, as it
will hopefully become clear later in Lemma 3.5, it is useful in order to simplify its proof.

Algorithm 3.1. A combinatorial algorithm for bipartite max k-vertex cover.

Input: A bipartite graph B(V1, V2, E) and a constant k < |V1|+ |V2|
Output: A k-VERTEX cover of B
sort the vertices of V1 and V2 in decreasing degree-order;
guess k1, k2 of O1 and O2, respectively;
build the following solutions;
SOL1: take S1 plus the k2 remaining best vertices from V2;
SOL2: take S2 plus the k1 remaining best vertices from V1;
SOL3: take the k best vertices of V2;
SOL4: take the best between the following two solutions:

1. the k best vertices of V1;
2. the best 2 · k1 vertices of V1 plus the remaining k − 2 · k1 best vertices of V2;

return the best among the solutions computed.

In what follows, in Lemmas 3.2–3.5, we analyze the solutions built by the algorithm and provide several
expressions for the ratios achieved by each of them. All these ratios are expressed as functions of the parameters
specified in Section 2. In order to simplify notations from now on we shall write opt instead of opt(B).

Lemma 3.2. The approximation ratio achieved by solution SOL1 is the maximum of the following quantities:

1− α+ β1 · α (3.1)

α+ γ · (1− α) (3.2)

Furthermore, if S1 and O1 coincide (i.e., S1 ∩O1 = S1), SOL1 is optimal.

Proof. For (3.1), S1 covers, by (2.3), more than δ(O1) = α · opt edges. Decompose this edge-set into a set X of
edges covered by S1 \ (S1 ∩O1) and the set of edges of size β1 ·α · opt of edges covered by S1 ∩O1. On the other
hand, the k2 remaining best vertices in V2 will cover more edges than the k2 remaining best vertices in O2, that
cover more than (1− α) · opt− |X| edges, qed.
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Figure 1. The edge-sets induced by the several parameters. (Color online.)

For (3.2), whenever S1 does not coincide with O1, there are vertices of O1 that are found below S1. Since γ ·
δ′(O2) is the number of edges from O2 that go belong O1, these edges will be not counted up in the set of edges
covered by S1.

Finally, if S1 and O1 coincide, then SOL1 will cover α · opt + (1− α) · opt = opt edges.

Lemma 3.3. The approximation ratio achieved by solution SOL2 is bounded below by:

1− α+ α · θ (3.3)

Proof. The proof is similar with the one of Lemma 3.2 for (3.2).

Lemma 3.4. The approximation ratio achieved by solution SOL3 is the maximum of the following quantities:

1− λ · (1− α)− α · θ (3.4)

(1− α) · (1 + λ · µ) (3.5)

Proof. If after taking the k best vertices of V2 the whole of O2 has been encountered, all but θ · δ(O1) edges of
the optimum have been covered. In this case, an appoximation ratio 1− α · θ is achieved.

Otherwise, by the definition of λ · δ′(O2):

opt− λ · δ′ (O2)− θ · δ (O1) = opt · (1− λ · (1− α)− θ · α)

edges of the optimum are covered.
On the other hand, taking the k best vertices of V2, consists in first taking S2 (covering (1− α) · opt edges)

and then the k1 best vertices below it. Furthermore, below the k best vertices, the group of the k′2 “worst”

vertices of O2 has average degree at least λ·δ′(O2)
k′2

. Since the algorithm takes k1 “better” vertices, they will cover
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at least:

k1
k′2
· λ · δ′ (O2) >

k1
k2
· λ · (1− α) · opt

(2.1)

=
µ · λ · (1− α) · opt

which proves (3.5).

Lemma 3.5. The approximation ratio achieved by solution SOL4 is the maximum of the following quantities:

1− ζ · α− γ · (1− α) (3.6)

(2− β1) · α+
(1− µ) · ζ · α

µ
(3.7)

(1− µ) + α · (2 + µ)− α · β1
2

+
(1− 2 · µ) · ζ · α

2 · µ
(3.8)

Proof. Let us first note that, if after taking the k best vertices in V1 all the vertices of O1 are captured, then
the approximation ratio achieved is 1− γ · (1− α), since only γ · δ′(O2) = γ · (1− α) · opt edges of the optimum
are not covered. Suppose now that k′1 verices of O1 are not captured. In this case, the k vertices taken from V1
cover:

opt− ζ · δ (O1)− γ · δ′ (O2) = (1− ζ · α− γ · (1− α)) · opt

For (3.7) and (3.8) now, observe first that the k vertices taken from V1 can be seen as the union of k
k1

consecutive

k1-groups (called clusters in what follows) and that, by (2.1) and (2.2), k
k1

= (1+µ)
µ . Assume also that the k− k′1

of O1 encountered among the k best vertices of V1 are included in the π first clusters. Denote by κi the number
of vertices of O1 in the ith cluster, i = 1, . . . , π, and suppose that the “optimal” κi vertices of cluster i cover
βi · δ(O1) = βi · α · opt edges.

Claim 3.6. Consider cluster i and denote by Ō1,i the part of O1 not captured by clusters 1, 2, . . . , i− 1 (thus,

Ō1,i =
∑π
j=i κj + k′1). Then, the vertices of cluster i will cover at least (1−

∑i−1
j=1 βj) · α · opt edges.

In order to prove Claim 3.6, observe that the part of δ(O1) covered by Ō1,i is:

δ
(
Ō1,i

)
= δ (O1)−

i−1∑
j=1

βj · δ (O1) =

1−
i−1∑
j=1

βj

 · α · opt

and that the δ(Ō1,i) edges are covered by
∑π
j=i κj + k′1 = k1 − (

∑i−1
j=1 κj) 6 k1 vertices, while cluster i contains

exactly k1 vertices with degree at least as large as those of Ō1,i. An easy average argument derives then that
the vertices of cluster i will cover at least:

k1 ·

(
1−

∑i−1
j=1 βj

)
· α · opt

k1 −
(∑i−1

j=1 κj

) >

1−
i−1∑
j=1

βj

 · α · opt

edges, qed.
Consider the two first groups clusters taken from V1. The first of them (S1) covers more than δ(O1) = α · opt

edges (by (2.3)) while, by Claim 3.6, the second one will cover more than ( k1
(k1−κ1)

) · (1− β1) · δ(O1) > (1− β1) ·
α · opt edges. Observe also that, by (2.1) and (2.2), k

k1
= (1+µ)

µ . In any of the remaining ( (1+µ)
µ ) − 2 = (1−µ)

µ
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clusters, their vertices obviously cover more than ζ · δ(O1) = ζ · α · opt edges (indeed, by the average argument

of Claim 3.6, more than k1 · ζ·δ(O1)
k′1

> ζ · δ(O1))). Therefore:

|SOL4| >
[
(2− β1) +

1− µ
µ
· ζ
]
· δ (O1) =

[
(2− β1) +

1− µ
µ
· ζ
]
· α · opt

that proves (3.7).
Let us now get some more insight in the value of SOL4. By extending the discussion just above, the k1

vertices of cluster i will cover more than:

k1

k1 −
i−1∑
j=1

κj

·

 π∑
j=i

βj + ζ

 · δ (O1) >

1−
i−1∑
j=1

βj

 · δ (O1) (3.9)

Furthermore, as seen previously, all clusters below the π first ones containing the k1 − k′1 captured vertices
of O1, will cover more than ζ · δ(O1) each.

Hence, summing (3.9) for i = 1 to π, taking into account the remark just above, and setting β0 = 0, the
following relation holds:

|SOL4| >

π−1∑
i=0

1−
i∑

j=0

βj

+

(
1 + µ

µ
− π

)
· ζ

 · δ (O1)

=

(
π −

π−1∑
i=1

(π − i) · βi +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1)

=

(
π − π ·

π−1∑
i=1

βi +

π−1∑
i=1

i · βi +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1) (3.10)

Observe now that:

π ·
π−1∑
i=1

βi = π · (1− βπ − ζ) · δ (O1) (3.11)

and combine (3.11) with (3.10). Then, the latter becomes:

|SOL4| >

(
π − π · (1− βπ − ζ) +

π−1∑
i=1

i · βi +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1)

=

(
π∑
i=1

i · βi + πζ +

(
1 + µ

µ
− π

)
· ζ

)
· δ (O1)

=

(
π∑
i=1

i · βi +

(
1 + µ

µ

)
· ζ

)
· δ (O1)

=

(
π∑
i=1

βi +

π∑
i=2

βi +

π∑
i=3

(i− 2) · βi +
1 + µ

µ
· ζ

)
· δ (O1)
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=

(
(1− ζ) + (1− β1 − ζ) +

π∑
i=3

(i− 2) · βi +
1 + µ

µ
· ζ

)
· δ (O1)

=

(
(2− β1) +

π∑
i=3

(i− 2) · βi +
1− µ
µ
· ζ

)
· δ (O1)

>

(
(2− β1) +

π∑
i=3

·βi +
1− µ
µ
· ζ

)
· δ (O1) (3.12)

Set
∑π
i=3 ·βi · δ(O1) = X. These edges are covered by both O1 and SOL4. Then, (3.12) becomes:

|SOL4| >
(

(2− β1) +
1− µ
µ
· ζ
)
· δ (O1) +X =

(
(2− β1) +

1− µ
µ
· ζ
)
· α · opt +X (3.13)

On the other hand, consider Item 2 in SOL4. The 2 · k1 best vertices from V1 cover (1− ζ) · δ(O1)−X edges of
the optimum. Let Y + [(1− ζ) · δ(O1)−X] be the total number of edges covered by those vertices. Then, best
k − 2 · k1 vertices of V2 will cover at least as many edges as the k − 2 · k1 best vertices of O2, that will cover at

least ( (k−2·k1)
k2

) · δ′(O2)− Y . Putting all this together, we get:

|SOL4| > Y + [(1− ζ)δ(O1)−X] +
k − 2 · k1

k2
· δ′ (O2)− Y

=

(
(1− ζ) · α+

k − 2 · k1
k2

· (1− α)

)
· opt−X

(2.1),(2.2)
= ((1− ζ) · α+ (1− µ) · (1− α)) · opt−X (3.14)

Expression (3.13) is increasing with X, while (3.14) is decreasing. Equality of them, leads after some easy algebra
to:

X =

(
(1− µ)− α · (2− µ) + β1 · α

2
− ζ · α

2 · µ

)
· opt (3.15)

Embedding (3.15)–(3.13) and dividing the ratio obtained by opt, derives the ratio claimed by (3.8).

The rest of this section is devoted to the proof of the following theorem.

Theorem 3.7. bipartite max k-vertex cover is combinatorially approximable within ratio 0.7.

Proof. For the proof we propose an exhaustive parameter-elimination method (very probably non-optimal) that
has the advantage to be quite simple. It consists in subsequently eliminating parameters from the ratios proved
in Lemmas 3.2–3.5 until two ratios that are only functions of µ are got. These ratios have opposite monotonies
with respect to this parameter, hence, by equalizing them we determine a lower bound for the overall ratio of
the algorithm.

Elimination of θ: ratios (3.3) and (3.4)

Equalizing ratios given by (3.3) and (3.4) leads to 2α · θ = α− λ · (1− α)⇒ α · θ = (α−λ·(1−α)
2 and embedding

it in (3.3) derives:

2− α · (1− λ)− λ
2

(3.16)
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Elimination of λ: ratios (3.5) and (3.16)

Equalizing ratios given by (3.5) and (3.16) gives λ = α
(1−α)·(1+2·µ) . This, together with (3.5), derives:

1− α · 1 + µ

1 + 2 · µ
(3.17)

Elimination of γ: ratios (3.2) and (3.6)

It gives γ = (1−α−ζ·α)
(2·(1−α)) and the ratio obtained is:

1 + α− ζ · α
2

(3.18)

Elimination of ζ: ratios (3.7) and (3.18)

We have:

(2− β1) · α+
(1− µ) · ζ · α

µ
=

1 + α− ζ · α
2

⇒ 2− µ
µ
· ζ · α = 1 + α− 2 · (2− β1) · α = 1− 3 · α+ 2 · β1 · α

⇒ ζ =
µ

2− µ
· 1− 3 · α+ 2 · β1 · α

α
(3.19)

and embedding (3.19) in (3.7), we get:

(2− β1) · α+
1− µ
2− µ

· (1− α · (3− 2 · β1))

=
(2− µ) · (2− β1) · α+ (1− µ)− α · (1− µ) · (3− 2 · β1)

2− µ

=
(1− µ) + α · (1 + µ− µ · β1)

2− µ
(3.20)

First elimination of β1: ratios (3.1) and (3.20)

We have:

1− α+ β1 · α =
(1− µ) + α · (1 + µ− µ · β1)

2− µ
⇒ 2 · β1 · α = (1− µ) + α · (1 + µ)− (2− µ) + α · (2− µ) = −1 + 3 · α

⇒ β1 =
3 · α− 1

2 · α
(3.21)

Now, combination of (3.1) and (3.21) derives:

1− α+ β1 · α = 1− α+
3 · α− 1

2
=

1 + α

2
(3.22)
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First ratio function of µ: combination of ratios (3.17) and (3.22)

Ratio (3.17) is decreasing with α, while ratio (3.22) is increasing. Combination of them allows elimination of α
in order that a first ratio that is only a function of µ is derived. Equalizing (3.17) and (3.22) gives:

1− α · 1 + µ

1 + 2 · µ
=

1 + α

2
⇒ α · (4 · µ+ 3) = 2 · µ+ 1

⇒ α =
2 · µ+ 1

4 · µ+ 3
(3.23)

and embedding (3.23) in (3.17) derives:

1− α · 1 + µ

1 + 2 · µ
= 1− 2 · µ+ 1

4 · µ+ 3
· 1 + µ

1 + 2 · µ

=
2 + 3 · µ
3 + 4 · µ

(3.24)

Second elimination of β1: ratios (3.1) and (3.8)

Revisit ratio (3.8) and observe that its last term ((1−2·µ)·ζ·α)
(2·µ) is negative when µ > 1

2 . On the other hand,

ratio (3.24) is increasing with µ and bounded below by 0.7 as long as µ > 1
2 . We thus seek an “interesting” ratio

when µ 6 1
2 and, in this case ((1−2·µ)·ζ·α)

(2·µ) > 0 and can be omitted.

Hence, combination of ratios (3.1) and (3.8), for µ 6 1
2 , leads to:

(1− µ) + α · (2 + µ)− α · β1
2

= 1− α+ β1 · α

⇒ (1− µ) + α · (2 + µ)− α · β1 = 2− 2 · α+ 2 · β1 · α

⇒ 3 · β1 · α = −(1 + µ) + α · (4 + µ)⇒ β1 =
α · (4 + µ)− (1 + µ)

3 · α
(3.25)

Then, combining (3.1) and (3.25), derives this time:

1− α+ β1 · α =
3− 3 · α+ α · (4 + µ)− (1 + µ)

3
=

2− µ+ α · (1 + µ)

3
(3.26)

Second ratio function of µ: combination of ratios (3.26) and (3.17)

Once again, ratio (3.17) is decreasing with α, while ratio (3.26) is increasing. Combination of them allows
elimination α in order to get a second ratio exclusively function of µ. Equalizing (3.17) and (3.26) gives:

1− α · 1 + µ

1 + 2 · µ
=

2− µ+ α · (1 + µ)

3
⇒ 2 · α · (1 + µ) · (2 + µ)

3 · (1 + 2 · µ)
=

1 + µ

3

⇒ α =
1 + 2 · µ

2 · (2 + µ)
(3.27)

and embedding (3.27) in (3.17) derives:

1− α · 1 + µ

1 + 2 · µ
=

3 + µ

4 + 2 · µ
(3.28)
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Final ratio

As noted above, ratio (3.24) increases with µ, while (3.28) decreases. The value of µ guaranteeing equality of these
ratios also gives a lower bound for them. This value is µ = 1

2 and, with this value, both ratios become 0.7.

4. A final remark

For reasons of simplicity, the proposed algorithm has been analyzed in the unweighted case of bipartite
max k-vertex cover. It is easy to see that exactly the same analysis can be done when dealing with weighted
bipartite max k-vertex cover where the edges of the input graph are weighted and the objective becomes
to determine the k vertices that maximize the total weight of the edges covered. In this case, it suffices to
consider that quantities δ and δ′ defined in Section 2 do not express the number of edges covered, but rather
the total weight of the edges covered. The rest of the analysis remain then exactly the same.
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