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INTUITIONISTIC FUZZY DEA/AR AND ITS APPLICATION TO FLEXIBLE

MANUFACTURING SYSTEMS

Sanjeet Singh

Abstract. The concept of assurance region (AR) was proposed in Data Envelopment Analysis (DEA)
literature to restrict the ratio of any two weights within a given lower and upper bounds so as to
overcome the difficulty of ignoring or relying too much on any of the input or output while calculating
the efficiency. Further, AR approach was extended to handle fuzzy input/output data. But, available
information is not always sufficient to define the impreciseness in the input/output data using classical
fuzzy sets. Intuitionistic Fuzzy Set (IFS) is a generalized fuzzy set to characterize the impreciseness
by taking into account degree of hesitation also. In this paper, intuitionistic fuzzy DEA/AR approach
has been proposed to evaluate the efficiency where input/output data are represented as intuitionistic
fuzzy. Based on the expected value approach, classical cross efficiency has also been generalized to rank
the DMUs for the case of intuitionistic fuzzy data. To the best of my knowledge, this is the first attempt
to propose assurance region approach (DEA/AR) in DEA with intuitionistic fuzzy input/output data.
This approach is useful for the experts and decision makers when they are hesitant about defining the
degree of membership/non-membership of fuzzy data. Results have been illustrated and validated using
a case of flexible manufacturing systems (FMS).
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1. Introduction

Data Envelopment Analysis (DEA) was first introduced by Charnes et al. [1] to calculate the relative efficiency
of firms or decision-making units (DMUs) producing multiple outputs by consuming multiple inputs. Based on
Farrell’s [2] work on productive efficiency, DEA relies on unknown input and output weights to measure the
relative efficiency of DMUs. Over the past 39 years, DEA has been applied to a variety of application areas that
include banks, hospitals, sports, manufacturing, finance, education, airlines, social welfare, crews, insurance,
supply chain, etc. see [3–8]. As an extension to the classical CCR [1] and BCC models [9], researchers have
proposed various models [3, 10] to handle diverse nature of practical problems. In DEA, DMUs select input
and output weights that are most favorable to maximize their efficiency in the form of weighted output to
input ratio. In this process, DMUs often rely too heavily only on some of the input and output parameters
or ignore some of them altogether. However, in certain practical problems relative importance of pairwise
input and output weights has to vary within the given bounds specified by the decision-maker, For example,
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in production systems, one has to have a certain minimum/maximum level of each raw material to produce a
reliable and quality product. To overcome this shortcoming, Thompson et al. [11,12] proposed Assurance Region
(AR) method. In AR method, relative importance bounds for pairwise input and output weights or multipliers
(prices/costs) are imposed based on a priori information obtained through expert opinion, experience, common
sense, and historical trends. Subsequently, DEA/AR method has been applied to many practical problems that
include urban planning [13], small business development [14], Banks [15], Sports [16], hotels [17], among others.

One common limitation of the conventional DEA models is that they can handle crisp input and output
data only. However, observed data in real-world problems are often imprecise or vague. The imprecise values for
inputs and outputs may be the result of the incomplete, unquantifiable, and non-obtainable information. The
uncertainty of the data may also be due to the error in the different stages of data collection. Fuzzy DEA models
were proposed by various researchers to handle the uncertainty or vagueness in the data. Sengupta [18,19] was
the first to incorporate fuzzy mathematical programming approach into DEA. In fuzzy DEA imprecise input
and output values are represented by fuzzy numbers characterized by membership functions [20, 21]. Since
then various researchers have developed fuzzy DEA models and methods to deal with imprecise input and
output [22–30] values. The literature review by Emrouznejad et al. [31] may be referred for the taxonomy and
summary of the current research in fuzzy DEA.

The main concept behind classical fuzzy sets is that the degree of membership of an element can take any
value in the interval [0,1] unlike crisp set when it takes either 0 or 1 only. The degree of non-membership is au-
tomatically assumed to be one minus degree of membership. However, decision makers/experts/human beings,
while expressing the degree of membership of an element in a fuzzy set, very often do not give any hint or do
not express the corresponding degree of non-membership as the complement of the degree of membership. In
most of the real life problems, evaluations are done by human beings who always have certain limitations of
knowledge, lack of proper understanding of the problem context, uncontrollable external environment impact-
ing input/output values. As a result, experts or decision–makers have some degree of hesitation in evaluation
activities. This is where the concept of an intuitionistic fuzzy set (IFS) has the advantage over classical fuzzy
set theory. The IFS was introduced by Atanassov [32]. The main advantage of IFS over the FS is that it sep-
arately defines the degree of membership and non-membership of an element in the set. Since its introduction
in 1986, IFS has found applications to many practical problems such as medical diagnosis [33], pattern recog-
nition [34], personnel selection [35], job-shop scheduling [36], consensus building [37], multi-attribute group
decision-making [38], etc.

Although, the theory of IFS has been used extensively in decision-making problems, there are not many
studies that have incorporated IFS to handle uncertainty or vagueness in DEA. Rouyendegh [39] was the first
to use intuitionistic fuzzy TOPSIS method in a two-stage process to fully rank the DMUs. Gandotra et al. [40]
proposed an algorithm to rank DMUs in the presence of intuitionistic fuzzy weighted entropy. Hajiagha et al. [41]
developed a DEA model when input/output data was expressed in the form of IFS. They further extended the
model to the case of weighted aggregated operator for IFS. Puri and Yadav [42] developed optimistic and
pessimistic DEA models under intuitionistic fuzzy input data. They also presented the application of their
proposed models through a case from the banking sector in India where some of the inputs were represented as
Triangular Intuitionistic Fuzzy Numbers (TIFN).

This paper proposes a new intuitionistic fuzzy DEA/AR (IFDEA/AR) approach to handle intuitionistic
fuzzy input/output data. To the best of my knowledge, this is the first study to analyze DEA/AR efficiency
under intuitionistic fuzzy environment when input/output data and weights are considered as TIFN. Based
on Expected Value Approach (EVA), a model is formulated to evaluate the relative efficiency of any DMU.
A cross efficiency approach is also proposed for the complete ranking of DMUs in IFDEA/AR. To validate
and illustrate the proposed approach and ranking method, a case of Flexible Manufacturing Systems (FMS) is
considered where two inputs (capital and operating cost) and three outputs (work-in-process, number of tardy
jobs, yield) are represented as TIFN.

The remainder of the paper proceeds as follows. Section 2 deals with related concepts of fuzzy sets, in-
tuitionistic fuzzy sets. Section 3 describes the proposed approach of IFDEA/AR and ranking. In Section 4,
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a case of flexible manufacturing systems is presented to illustrate and validate the theoretical results. Section 5
concludes the paper with main findings of this research.

2. Preliminaries

In this section, basic concepts of fuzzy sets, intuitionistic fuzzy sets, intuitionistic fuzzy numbers, and trian-
gular intuitionistic fuzzy numbers are introduced so as to facilitate further discussion.

2.1. Fuzzy set

Let Xbe the universe of discourse whose elements are denoted by x. A fuzzy set Ã in X is defined by a set
of ordered pairs

Ã = {(x, µÃ(x)) : x ∈ X} ,

where fuzzy set Ã is characterized by its membership function µÃ : X → [0, 1], which associates with each x in
X, a real number µÃ(x) in [0,1]. The value µÃ(x) represents the degree of membership (belongingness) of x in

Ã and that of non-membership (non-belongingness) 1-µÃ(x).

The µÃ(x) indicates evidence only for the degree of membership of x in A, human beings or decision makers
do not provide any evidence or preference for degree of non-membership, and it is by default assumed to be
1-µÃ(x). Atanassov [32] introduced the concept of Intuitionistic Fuzzy Set (IFS) which is characterized by both
membership and non-membership function.

2.2. Intuitionistic fuzzy set (IFS) and intuitionistic fuzzy number (IFN)

Let X be a universe of discourse. An IFS [32] ÃI in X is a set of ordered triples

ÃI = {(x, µÃI (x), νÃI (x)) : x ∈ X},

where IFS ÃI is characterized by its membership function µÃI : X → [0, 1]and non-membership function
νÃI : X → [0, 1]such that

0 6 µÃI (x) + νÃI (x) 6 1∀x ∈ X.

For each x ∈ X,µÃI (x) and νÃI (x) represent the degree of membership and non-membership respectively, of x

in ÃI
. Degree of hesitation (or intuitionistic fuzzy index) πÃI (x) of x in ÃI for each x ∈ X is defined as follows:

πÃI (x) = 1− µÃI (x)− νÃI (x).

Here, it may be seen that fuzzy set is a particular case of IFS when νÃI (x) = 1− µÃI (x).

Let ÃI be an IFS with its membership function , µÃI and non-membership function νÃI . Then ÃI is said to
be an IFN [42] if:

(i) ÃI is intuitionistic fuzzy normal, i.e., there exist at least two points x0, x1 ∈ X such that µÃI (x0) =
1 and νÃI (x1) = 1.

(ii) ÃI is intuitionistic fuzzy convex for µÃI (x), i.e., µÃI (λx1 + (1−λ)x2) > min(µÃI (x1), µÃI (x2)), ∀x1, x2 ∈
<, 0 6 λ 6 1.

(iii) ÃI is intuitionistic fuzzy concave for νÃI (x), i.e., νÃI (λx1 + (1− λ)x2) 6 max(νÃI (x1), νÃI (x2)),∀x1, x2 ∈
<, 0 6 λ 6 1.

From this, an IFN can be represented mathematically as (a1, a2, a3, a4; b1, b2, b3, b4) by eight numbers
a1, a2, a3, a4, b1, b2, b3, b4 ∈ < such that b1 6 a1 6 b2 6 a2 6 a3 6 b4 with membership function µÃI and
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Figure 1. Triangular intuitionistic fuzzy number.

non-membership functionνÃI given by

µÃI (x) =



fÃI (x), a1 6 x < a2,

1, a2 6 x 6 a3,

gÃI (x), a3 < x 6 a4,

0, otherwise

and νÃI (x) =



hÃI (x), b1 6 x < b2,

1, b2 6 x 6 b3,

kÃI (x), b3 < x 6 b4,

0, otherwise

where, fÃI , gÃI , hÃI , kÃI : < → [0, 1] are piecewise continuous functions and 6 µÃI (x) + νÃI (x) 6 1. The
functions fÃ, kÃ are strictly increasing in [a1, a2) and (b3, b4] respectively and functions gÃ, hÃ are strictly
decreasing in (a3, a4] and [b1, b2) respectively.

2.3. Triangular intuitionistic fuzzy number (TIFN)

A TIFN [43], denoted by ÃI = (a1, a2, a3; b1, a2, b3), is a subset of IFS in R with the following membership
and non-membership functions respectively:

µÃI (x) =


x− a1
a2 − a1

, a1 6 x < a2,

a3 − x
a3 − a2

, a2 6 x 6 a3,

0, otherwise

and νÃI (x) =


x− a2
b1 − a2

, b1 6 x 6 a2,

x− a2
b3 − a2

, a2 6 x 6 b3,

1, otherwise

where b1 6 a1 6 a2 6 a3 6 b3 and TIFN is graphically represented as in Figure 1.

Here, it may be noted that µÃI (x) and νÃI (x) are increasing functions with the constant rate in [a1, a2] and
[a2, b3] respectively, and decreasing functions with the constant rate in [a2, a3] and [b1, a2] respectively. In this
paper, for simplicity, triangular intuitionistic fuzzy numbers are used to represent the uncertainty. Data for the
case study in this work has been randomly generated from the crisp data and fuzzy data in [44,45] where crisp
values have been kept as modal values of intuitionistic triangular fuzzy data.

2.4. Arithmetic operations on TIFNs

Let ÃI
1 = (a1, a2, a3; b1, a2, b3) and ÃI

2 = (a
′

1, a
′

2, a
′

3; b
′

1, a
′

2, b
′

3) be two TIFNs
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Addition: ÃI
1 ⊕ ÃI

2 = (a1 + a
′

1, a2 + a
′

2, a3 + a
′

3; b1 + b
′

1, a2 + a
′

2, b3 + b
′

3). Subtraction: ÃI
1ΘÃ

I
2 = (a1 − a

′

3, a2 −
a

′

2, a3 − a
′

1; b1 − b
′

3, a2 − a
′

2, b3 − b
′

1). Multiplication: ÃI
1 ⊗ ÃI

2 = (p1, p2, p3; p
′

1, p2, p
′

3), where

p1 = min
{
a1a

′

1, a1a
′

3, a3a
′

1, a3a
′

3

}
, p3 = max

{
a1a

′

1, a1a
′

3, a3a
′

1, a3a
′

3

}
p

′

1 = min
{
b1b

′

1, b1b
′

3, b3b
′

1, b3b
′

3

}
, p

′

3 = max
{
b1b

′

1, b1b
′

3, b3b
′

1, b3b
′

3

}
, p2 = a2a

′

2

For ÃI
1, Ã

I
2 > 0, we have

ÃI
1 ⊗ ÃI

2 = (a1a
′

1, a2a
′

2, a3a
′

3; b1b
′

1, a2a
′

2, b3b
′

3)

Scalar multiplication: kÃI = {ka1, ka2, ka3; kb1, ka2, kb3} for k > 0 and

kÃI = {ka3, ka2, ka1; kb3, ka2, kb1} for k < 0.

2.5. Expected value and ordering of TIFNs

The expected value [46] of a TIFN is given by (proof is omitted)

EV (ÃI) = (b1 + a1 + 4a2 + a3 + b3)/8. (2.1)

An accuracy function H(ÃI) = ((a1 + 2a2 + a3) + (b1 + 2a2 + b3))/8 for TIFN was defined by Nagoogani and
Ponnalagu [47] which is essentially the same as the expected value EV (A). Based on the accuracy function
following order has been established:

ÃI > B̃I ⇔ H(ÃI) > H(B̃I) (2.2)

where H(ÃI) and H(B̃I) are the accuracy functions for the TIFN ÃI and B̃I respectively.

3. Methodology

Consider n DMUs each having m inputs and s outputs. Let xij , and yrj be the amount of ith(i = 1, 2, . . . ,m)
input and rth (r = 1, 2, . . . , s) output, respectively, of jth (j = 1, 2, . . . , n) DMU. Let ui and vr denote the
weights for the ith input and rth output, respectively, under the efficiency evaluation of the kth DMU. Following
BCC DEA model was first formulated by Banker et al. [9] to calculate the efficiency of the kth DMU under
crisp inputs and outputs:

Max Ek =

s∑
r=1

vryrk + v0

m∑
i=1

uixik

subject to

s∑
r=1

vryrj + v0

m∑
i=1

uixij

6 1, j = 1, 2, . . . , n,

ui > ε > 0, i = 1, 2, . . . ,m,

vr > ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.
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Here, ε is a small non-Archimedean number [48]. Above model can be converted to an equivalent multiplier
form (linear programming) given below by applying Charnes-Cooper transformation [49]. (BCC–DEA)

Max Ek =

s∑
r=1

vryrk + v0

subject to
m∑
i=1

uixij = 1,

s∑
r=1

vryrj −
m∑
i=1

uixij + v0 6 0, j = 1, 2, . . . , n,

ui > ε > 0, i = 1, 2, . . . ,m,

vr > ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.

In conventional DEA models, input and output weights are assumed to be non-negative. As a result, weights for
inputs and outputs with very high and very low values tend to be zero, and therefore such inputs and outputs
often ignored in the efficiency evaluation. To overcome this problem, Charnes and Cooper [48] introduced a
small non-Archimedean number ε as in above models. However, subsequently, issues were faced regarding the
fixed value selection of ε which is required by the models to actually calculate the numeric value of efficiency
Thompson et al. [12] suggested the Assurance Region (AR) approach in the form of pairwise relative importance
of input and output weights. AR approach proved to be a robust strategy to address the difficulty in assigning a
fixed value to ε as well as to deal with the situations when decision makers assign relative importance to various
input and output parameters. In AR, the relative importance of weights is expressed in the form of following
mathematical inequalities:

lo
p

uoq
6
vp
vq

6
uo

p

loq
, p < q = 2, 3, . . . , s, (3.1)

lI
p

uIq
6
up
uq

6
uI

p

lIq
, p < q = 2, 3, . . . ,m. (3.2)

For the ease of algebraic simplification,

let glpq =
lop
uoq
, gupq =

uop
loq
, hlpq =

lIp
uIq
, and hupq =

uIp
lIq
. (3.3)

Adding these AR constraint in (BCC-DEA), we get the following DEA/AR model.
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(DEA/AR)

Max Ek =

s∑
r=1

vryrk + v0

subject to

m∑
i=1

uixij = 1,

s∑
r=1

vryrj −
m∑
i=1

uixij + v0 6 0, j = 1, 2, . . . , n,

− vp + glpgvq 6 0, vp − gupgvq 6 0, ∀p < q = 2, 3, . . . , s,

− up + hlpguq 6 0, up − hupguq 6 0, ∀p < q = 2, 3, . . . ,m,

ui > ε > 0, i = 1, 2, . . . ,m,

vr > ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.

3.1. Proposed Intuitionistic fuzzy DEA/AR

Consider again n homogeneous DMUs, and each DMU has m intuitionistic fuzzy inputs and s intu-
itionistic fuzzy outputs. Let x̃Iij = (x1ij , x

2
ij , x

3
ij ;x

1′

ij , x
2
ij , x

3′

ij) and ỹIrj = (y1rj , y
2
rj , y

3
rj ; y

1′

rj , y
2
rj , y

3′

rj) be the

ith (i = 1, 2, . . . ,m) and rth (r = 1, 2, . . . , s) intuitionistic fuzzy input and output, respectively, of the jth
(j = 1, 2, . . . , n) DMU. Then intuitionistic fuzzy DEA/AR (IFDEA/AR) to measure the efficiency of the kth
DMU is given by

(IFDEA/AR)

Max ẼI
k =

s∑
r=1

ṽIr ⊗ ỹIrk + v0

subject to

m∑
i=1

ũIi ⊗ x̃Iij = 1̃,

s∑
r=1

ṽIr ⊗ yIrjΘ
m∑
i=1

ũIi ⊗ x̃Iij + v0 6 0̃, j = 1, 2, . . . , n,

glpg ṽ
I
qΘṽ

I
p 6 0̃, ṽIpΘg

u
pg ṽ

I
q 6 0̃, ∀p < q = 2, 3, . . . , s,

hlpgũ
I
qΘũ

I
p 6 0̃, ũIpΘh

u
pgũ

I
q 6 0̃, ∀p < q = 2, 3, . . . ,m,

ũIi > ε > 0, i = 1, 2, . . . ,m,

ṽIr > ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.
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Here, ũIi = (u1i , u
2
i , u

3
i ;u1

′

i , u
2
i , u

3′

i ) and ṽIr = (v1r , v
2
r , v

3
r ; v1

′

r , v
2
r , v

3′

r ) are the intuitionistic fuzzy weights of the ith
intuitionistic fuzzy input and rth intuitionistic fuzzy output, respectively.

Substituting the values of intuitionistic fuzzy inputs, outputs, and weights, IFDEA/AR model can be rewrit-
ten as

Max ẼI
k =

s∑
r=1

(v1r , v
2
r , v

3
r ; v1

′

r , v
2
r , v

3′

r )⊗ (y1rk, y
2
rk, y

3
rk; y1

′

rk, y
2
rk, y

3′

rk) + v0

subject to
m∑
i=1

(u1i , u
2
i , u

3
i ;u1

′

i , u
2
i , u

3′

i )⊗ (x1ik, x
2
ik, x

3
ik;x1

′

ik, x
2
ik, x

3′

ik) = (1, 1, 1; 1, 1, 1),

s∑
r=1

(v1r , v
2
r , v

3
r ; v1

′

r , v
2
r , v

3′

r )⊗ (y1rj , y
2
rj , y

3
rj ; y

1′

rj , y
2
rj , y

3′

rj)

Θ

m∑
i=1

(u1i , u
2
i , u

3
i ;u1

′

i , u
2
i , u

3′

i )⊗ (x1ij , x
2
ij , x

3
ij ;x

1′

ij , x
2
ij , x

3′

ij) + v0

6 (0, 0, 0; 0, 0, 0), j = 1, 2, . . . , n,

glpq

(
v1q , v

2
q , v

3
q ; v1

′

q , v
2
q , v

3′

q

)
Θ
(
v1p, v

2
p, v

3
p; v1

′

p , v
2
p, v

3′

p

)
6 (0, 0, 0; 0, 0, 0) , ∀p < q = 2, 3, . . . , s,(

v1p, v
2
p, v

3
p; v1

′

p , vp, v
3′

q

)
Θgupq

(
v1q , v

2
q , v

3
q ; v1

′

q , v
2
q , v

3′

q

)
6 (0, 0, 0; 0, 0, 0) , ∀p < q = 2, 3, . . . , s,

hlpq

(
u1q, u

2
q, u

3
q;u1

′

q , u
2
q, u

3′

q

)
Θ
(
u1p, u

2
p, u

3
p;u1

′

p , u
2
p, u

3′

p

)
6 (0, 0, 0; 0, 0, 0) , ∀p < q = 2, 3, . . . ,m,(

u1p, u
2
p, u

3
p;u1

′

p , u
2
p, u

3′

p

)
Θhupq

(
u1q, u

2
q, u

3
q;u1

′

q , u
2
q, u

3′

q

)
6 (0, 0, 0; 0, 0, 0) , ∀p < q = 2, 3, . . . ,m,(

u1i , u
2
i , u

3
i ;u1

′

i , u
2
i , u

3′

i

)
> ε > 0, i = 1, 2, . . . ,m,(

v1r , v
2
r , v

3
r ; v1

′

r , v
2
r , v

3′

r

)
> ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.

By applying arithmetic operations on intuitionistic TIFN fuzzy numbers (as given in Sect. 2.4), above model
can be transformed into the following model:

Max ẼI
k =

(
s∑

r=1

v1ry
1
rk,

s∑
r=1

v2ry
2
rk,

s∑
r=1

v3ry
3
rk;

s∑
r=1

v1
′

r y
1′

rk,

s∑
r=1

v2ry
2
rk,

s∑
r=1

v3
′

r y
3′

rk

)
+ v0

subject to(
m∑
i=1

u1ix
1
ik,

m∑
i=1

u2ix
2
ik,

m∑
i=1

u3ix
3
ik;

m∑
i=1

u1
′

i x
1′

ik,

m∑
i=1

u2ix
2
ik,

m∑
i=1

u3
′

i x
3′

ik

)
= (1, 1, 1; 1, 1, 1),

s∑
r=1

v1ry
1
rj −

m∑
i=1

u3ix
3
ij ,

s∑
r=1

v2ry
2
rj −

m∑
i=1

u2ix
2
ij ,

s∑
r=1

v3ry
3
rj−

m∑
i=1

u1ix
1
ij ;

s∑
r=1

v1
′

r y
1′

rj −
m∑
i=1

u3
′

i x
3′

ij ,
s∑

r=1
v2ry

2
rj −

m∑
i=1

u2ix
2
ij ,

s∑
r=1

v3
′

r y
3′

rj −
m∑
i=1

u1
′

i x
1′

ij


+ v0 6 (0, 0, 0; 0, 0, 0), j = 1, 2, . . . , n,
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glpqv

1
q − v3p, glpqv2q − v2p, glpqv3q − v1p; glpqv

1′

q − v3
′

p , g
l
pqv

2
q − v2p, glpqv3

′

q − v1
′

p

)
6 (0, 0, 0; 0, 0, 0),∀p < q = 2, 3, . . . , s,(

v1p − gupqv3q , v2p − gupqv2q , v3p − gupqv1q ; v1
′

p − gupqv3
′

q , v
2
p − gupqv2q , v3

′

q − gupqv1
′

q

)
6 (0, 0, 0; 0, 0, 0),∀p < q = 2, 3, . . . , s,(

hlpqu
1
q − u3p, hlpqu2q − u2p, hlpqu3q − u1p;hlpqu

1′

q − u3
′

p , h
l
pqu

2
q − u2p, hlpqu3

′

q − u1
′

p

)
6 (0, 0, 0; 0, 0, 0),∀p < q = 2, 3, . . . ,m,(

u1p − hupqu3q, u2p − hupqu2q, u3p − hupqu1q;u1
′

p − hupqu3
′

q , u
2
p − hupqu2q, u3

′

p − hupqu1
′

q

)
6 (0, 0, 0; 0, 0, 0),∀p < q = 2, 3, . . . ,m,(

u1i , u
2
i , u

3
i ;u1

′

i , u
2
i , u

3′

i

)
> ε > 0, i = 1, 2, . . . ,m,(

v1r , v
2
r , v

3
r ; v1

′

r , v
2
r , v

3′

r

)
> ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.

Above model is intuitionistic fuzzy linear programming problem (IFLPP) which can easily be transformed into
crisp linear programming problem by applying ordering method based on expected value approach described in
Section 2.5. The crisp LPP is given as follows:

Max EV (ẼI
k) = EV

((
s∑

r=1

v1ry
1
rk,

s∑
r=1

v2ry
2
rk,

s∑
r=1

v3ry
3
rk;

s∑
r=1

v1
′

r y
1′

rk,

s∑
r=1

v2ry
2
rk,

s∑
r=1

v3
′

r y
3′

rk

)
+ v0

)
subject to

EV

((
m∑
i=1

u1ix
1
ik,

m∑
i=1

u2ix
2
ik,

m∑
i=1

u3ix
3
ik;

m∑
i=1

u1
′

i x
1′

ik,

m∑
i=1

u2ix
2
ik,

m∑
i=1

u3
′

i x
3′

ik

))
= EV ((1, 1, 1; 1, 1, 1)),

EV




s∑
r=1

v1ry
1
rj −

m∑
i=1

u3ix
3
ij ,

s∑
r=1

v2ry
2
rj −

m∑
i=1

u2ix
2
ij ,

s∑
r=1

v3ry
3
rj−

m∑
i=1

u1ix
1
ij ;

s∑
r=1

v1
′

r y
1′

rj −
m∑
i=1

u3
′

i x
3′

ij ,
s∑

r=1
v2ry

2
rj −

m∑
i=1

u2ix
2
ij ,

s∑
r=1

v3
′

r y
3′

rj −
m∑
i=1

u1
′

i x
1′

ij

+ v0


6 EV ((0, 0, 0; 0, 0, 0)), j = 1, 2, . . . , n,

EV
((
glpqv

1
q − v3p, glpqv2q − v2p, glpqv3q − v1p; glpqv

1′

q − v3
′

p , g
l
pqv

2
q − v2p, glpqv3

′

q − v1
′

p

))
6 EV ((0, 0, 0; 0, 0, 0)) , ∀p < q = 2, 3, . . . , s,

EV
((
v1p − gupqv3q , v2p − gupqv2q , v3p − gupqv1q ; v1

′

p − gupqv3
′

q , v
2
p − gupqv2q , v3

′

q − gupqv1
′

q

))
6 EV ((0, 0, 0; 0, 0, 0)) , ∀p < q = 2, 3, . . . , s,

EV
((
hlpqu

1
q − u3p, hlpqu2q − u2p, hlpqu3q − u1p;hlpqu

1′

q − u3
′

p , h
l
pqu

2
q − u2p, hlpqu3

′

q − u1
′

p

))
6 EV ((0, 0, 0; 0, 0, 0)) , ∀p < q = 2, 3, . . . ,m,
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EV
((
u1p − hupqu3q, u2p − hupqu2q, u3p − hupqu1q;u1

′

p − hupqu3
′

q , u
2
p − hupqu2q, u3

′

p − hupqu1
′

q

))
6 EV ((0, 0, 0; 0, 0, 0)) , ∀p < q = 2, 3, . . . ,m,

EV
((
u1i , u

2
i , u

3
i ;u1

′

i , u
2
i , u

3′

i

))
> ε > 0, i = 1, 2, . . . ,m,

EV
((
v1r , v

2
r , v

3
r ; v1

′

r , v
2
r , v

3′

r

))
> ε > 0, r = 1, 2, . . . , s,

v0 is unrestricted in sign.

Applying equations (2.1) and (2.2) on the above model, we obtain (IFAR)

Max EI
k =

1

8

(
s∑

r=1

(v1
′

r y
1′

rk + v1ry
1
rk + 4v2ry

2
rk + v3ry

3
rk + v3

′

r y
3′

rk)

)
+ v0

subject to

m∑
i=1

(
u1

′

i x
1′

ik + u1ix
1
ik + 4u2ix

2
ik + u3ix

3
ik + u3

′

i x
3′

ik

)
= 8,

s∑
r=1

(
v1

′

r y
1′

rj + v1ry
1
rj + 4v2ry

2
rj + v3ry

3
rj + v3

′

r y
3′

rj

)

−
m∑
i=1

(
u1

′

i x
1′

ij + u1ix
1
ij + 4u2ix

2
ij + u3ix

3
ij + u3

′

i x
3′

ij

)
+ 8v0 6 0, j = 1, 2, . . . , n,

glpq

(
v1

′

q + v1q + 4v2q + v3q + v3
′

q

)
− v3

′

p − v3p − 4v2p − v1p − v1
′

p 6 0, ∀p < q = 2, 3, . . . , s,

v1
′

p + v1p + 4v2p + v3p + v3
′

q − gupq
(
v3

′

q + v3q + 4v2q + v1q + v1
′

q

)
6 0, ∀p < q = 2, 3, . . . , s,

hlpq

(
u1

′

q + u1q + 4u2q + u3q + u3
′

q

)
− u3

′

p − u3p − 4u2p − u2p − u1
′

p 6 0, ∀p < q = 2, 3, . . . ,m,

u1
′

p + u1p + 4u2p + u3p + u3
′

p − hupq
(
u3

′

q + u3q + 4u2q + u1q + u1
′

q

)
6 0, ∀p < q = 2, 3, . . . ,m,

u1
′

i + u1i + 4u2i + u3i + u3
′

i > ε > 0, i = 1, 2, . . . ,m,

v1
′

r + v1r + 4v2r + v3r + v3r > ε > 0, r = 1, 2, . . . , s

u3
′

i > u3i > u2i > u1i > u1
′

i > ε > 0, i = 1, 2, . . . ,m,

v3
′

r > v3r > v2r > v1r > v1
′

r > ε > 0, r = 1, 2, . . . , s.

v0 is unrestricted in sign.

The model (IFAR) is a crisp LPP model and EI∗
k is known as IFAR efficiency of the kth DMU.

Definition 3.1. The kth DMU is IFAR efficient if EI∗
k =1 otherwise it is IFAR inefficient.



INTUITIONISTIC FUZZY DEA/AR 251

Definition 3.2. The intuitionistic fuzzy efficiency of kth DMU under assurance region is defined as ẼI∗
k =

s∑
r=1

ṽI∗r ⊗ ỹIrk + v0, where ṽI∗r = (v1∗r , v
2∗
r , v

3∗
r ; v1

′∗
r , v2∗r , v

3′∗
r ) is the rth optimal weight in crisp IFAR model.

3.2. Complete Ranking of DMUs under Intuitionistic Fuzzy Environment

DEA has been proved a very effective nonparametric technique in identifying efficient and inefficient DMUs.
Using the idea of best self–evaluation, DEA calculates a most favorable set of weights for input and output
parameters to maximize the efficiency of the observed DMU. However, its inability to distinguish among efficient
DMUs and nature of self-evaluation has been criticized. DEA provides the efficiency score as 1 (or 100%) to all
efficient DMUs despite the fact that these DMUs may differ in actual performance when evaluated w.r.t. a
different set of input and output weights. Thus, the different methods of ranking the DMUs proposed in DEA
literature (Refs. [50] for a review of these methods). Sexton et al. [51] developed the concept of cross efficiency
to rank DMUs using DEA. It was later studied by Doyle and Green [52]. In cross efficiency, DMUs are ranked
based on the idea of peer evaluation. Cross evaluation of each DMU is done not only using self-evaluation
but also using peer–evaluation. Cross evaluation overcomes the problem of unrealistic weight selection without
needing prior weight restriction information from the experts. Ranking or ordering of DMUs is another main
advantage of the cross-evaluation. Doyle and Green [52] observed that the case of alternate optima (non–unique
set of weights) reduces the utility of the cross–efficiency. Cross–efficiency scores of the remaining DMUs will
depend on which particular set of DEA weights is used to calculate the efficiency of the observed DMU. To
address the difficulty of non–uniqueness of weights, Sexton et al. [51] and Doyle and Green [52] formulated the
aggressive (benevolent) models in order to select the optimal weights so that these weights not only maximize
the efficiency of the observed DMU but also minimize (maximize) the efficiency of the remaining DMUs. Cross–
efficiency has found a wide variety of applications, for example, preference voting [53], Railways [54], social
welfare [55], electricity distribution [56], Sports [57], and others.

3.2.1. Proposed Cross-efficiency approach in IFDEA/AR

Considering the intuitionistic fuzzy relative efficiency of a given DMUs as described in definition 2, We can
extend the usual concept of cross efficiency [51,52] to IFAR environment.

Definition 3.3. If ṽI∗d = (v1∗d , v
2∗
d , v

3∗
d ; v1

′∗
d , v2∗d , v

3′∗
d ) is an optimal intuitionistic weight (optimal solution to

(IFAR)) for the dth DMU, then the intuitionistic fuzzy cross efficiency of the jth (j = 1, 2, . . . ., n) DMU is
defined as an intuitionistic fuzzy number ẼI

dj where

ẼI
dj =

s∑
r=1

ṽI∗d ⊗ ỹIrj + v∗0

m∑
i=1

ũI∗d ⊗ x̃Iij
·

Next, as it is usually done in crisp cross efficiency, IFAR intuitionistic fuzzy efficiency score ¯̃EI
j of the jth

(j = 1, 2, . . . , n) DMU is the average of all ẼI
dj for all DMUs j = 1, 2, . . . , n, i.e.

¯̃EI
j =

1

n

n∑
d=1

ẼI
dj . (3.4)

By applying intuitionistic fuzzy arithmetic provided in Section 2.4, intuitionistic fuzzy cross efficiency (IFCE)
score of the jth DMU is an intuitionistic fuzzy number of the following form

¯̃EI
j =

(
E1

j , E
2
j , E

2
j ;E1′

j , E
2
j , E

3′

j

)
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Finally, the complete ranking of DMU can be made by using the ordering method in equation (2.2) for IFN as
follows:

Let ¯̃EI
j and ¯̃EI

k IFCE scores of the jth and kth DMU respectively, then

¯̃EI
j > ¯̃EI

j ⇔ H
(

¯̃EI
j

)
> H

(
¯̃EI
k

)
. (3.5)

4. A case of flexible manufacturing systems

In this section, a case of flexible manufacturing system selection has been considered to illustrate the appli-
cability of the proposed IFDEA/AR approach. The data for this empirical analysis has been taken from the
study of Shiang-Tai Liu [45] which was originally taken from the work of Shang and Sueyoshi [44]. Twelve FMS
alternative (DMUs) are considered each having two input parameters; 1) Capital and Operating costs 2) Floor
space requirement and three output parameters including improvements in; 1) Qualitative factor 2) Work in
process (WIP) 3) Number of tardy jobs 4)Yield. The yield has been taken as throughput minus scrape and
rework. Analytic hierarchy process has been used to assess the improvements in qualitative factors which include
flexibility, learning, exposure to labor union unrest among others. Improvements in WIP, Number of tardy jobs,
Yield has been calculated using simulation. For a detailed discussion on inputs and outputs, work by Shang
and Sueyoshi [44] may be referred. We have modified the data (as shown in Tab. 1) from the study of Shiang–
Tai Liu [45] by taking fuzzy inputs/outputs as intuitionistic fuzzy in the form of TIFN. Here, remaining crisp
input/output can be taken as degenerated TIFN.

In the study of Shiang-Tai Liu [45], relative importance (in a scale of 1.0) for different input and output
parameters has been defined in the form of intervals with lower and upper bounds as follows:

v1 = [0.7500, 0.8333] : relative importance of capital and operating costs.

v2 = [0.1667, 0.2500] : relative importance of floor space requirement.

u1 = [0.4023, 0.4667] : relative importance of qualitative factor.

u2 = [0.0795, 0.1361] : relative importance of WIP.

u3 = [0.1392, 0.1850] : relative importance of no. of tardy jobs.

u4 = [0.2766, 0.3146] : relative importance of yield.

Now, AR for the relative importance of input and output parameters can be calculated (using Eqs. (3.1)–(3.3))
as below

hl12 = 3, hu12 = 4.998, gl12 = 2.9559, gl13 = 2.1746, gl14 = 1.2788

gu12 = 5.8704, gu13 = 3.3527, gu14 = 3.4291, gl23 = 0.4297, gl24 = 0.2527

gu23 = 0.9777, gu24 = 0.4920, gl34 = 0.4425, gu34 = 0.6686

i.e.

3 6
u1
u2

6 4.998, 2.9559 6
v1
v2

6 5.8704, 2.1746 6
v1
v3

6 3.3527, 1.2778 6
v1
v4

6 3.4291,

0.4297 6
v2
v3

6 0.9777, 0.2527 6
v2
v4

6 0.4920, 0.4425 6
v3
v4

6 0.6686.

We have applied the IFDEA/AR models developed to calculate IDEA/AR efficiency of FMS alternatives and
same has been shown in Table 2.

IFCE score ( ¯̃EI
j ) of any jth FMS alternative has been calculated using equations (3.4). Based on the IFCE

score, the performance of the FMS alternatives has been ranked (using Eq. (3.5)) as shown in Table 3. It can
be seen that alternative 4 is the best, followed by alternatives 5, 1, and so on. The above IFCE score associated
ranking can help the manufacturing firm to choose the preferred alternatives when the inputs and outputs are
represented as crisp and intuitionistic fuzzy data.
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Table 2. Intuitionistic fuzzy efficiency and IFAR efficiency of FMS alternatives.

FMS Alternative (DMU) Intuitionistic Fuzzy Efficiency IFAR Efficiency
1 (0.8613, 0.8773, 1.379; 0.8497, 0.8773, 1.4007) 1
2 (0.5419, 0.5447, 0.5448; 0.5401, 0.5447, 4.1365) 0.9931
3 (0.4680, 0.4782, 0.4867; 0.4612, 0.4782, 4.6517) 0.9976
4 (0.9639, 0.9998, 1.0373; 0.9411, 0.9998, 1.0585) 1
5 (0.8451, 0.8593, 1.4283; 0.8358, 0.8593, 1.4539) 1
6 (0.5047, 0.5301, 0.5567; 0.4820, 0.5301, 4.0332) 1
7 (0.9622, 0.9652, 0.9684; 0.9595, 0.9652, 1.2492) 1
8 (0.6335, 0.6439, 0.6549; 0.6305, 0.6439, 3.2345) 0.9661
9 (1, 1, 1; 1, 1, 1) 1
10 (0.1837, 0.1862, 0.1866; 0.1821, 0.1862, 5.4492) 0.8435
11 (0.5979, 0.6310, 0.6641; 0.5869, 0.6310, 3.6270) 1
12 (0.4835, 0.4978, 0.5120; 0.4802, 0.4978, 3.0853) 0.819

Table 3. Ranking of the FMS alternatives.

FMS Alternative IFCE Ranking
1 0.8729 3
2 0.8557 6
3 0.8659 4
4 0.8824 1
5 0.8811 2
6 0.7609 9
7 0.8618 5
8 0.8396 8
9 0.5275 12
10 0.7239 10
11 0.8479 7
12 0.7119 11

4.1. Results validation

For results validation, we will compare our findings with those of Liu [45]. Liu [45] developed a fuzzy DEA/AR
method to evaluate the efficiency of FMS alternatives when inputs and outputs are represented as fuzzy and crisp
data. His work was based on the α-cuts approach for fuzzy numbers to calculate the lower and upper bounds
of the fuzzy efficiency scores of the FMS alternatives. In his work, ranking of the alternatives was done based
on the self–efficiency scores whereas in this study, ranking is based on the proposed cross efficiency approach
for intuitionistic fuzzy data. A comparison of rankings of FMS alternatives, using the proposed approach with
those of Liu (2014), has been shown in the Table 4. We notice that our approach is in agreement with Liu [45]
for the ranking of alternatives of 2, 5, and 8. Furthermore, we notice that alternative 4 is at the top in our
approach and ranked third in Liu [45]. Rankings of most of the other alternatives in the proposed approach
differ by one or two positions with the work of Liu [45]. This difference in ranking is due to the fact that in the
proposed approach ranking of alternatives are ranked based on the peer evaluation (cross efficiency) whereas
they are ranked using self–evaluation in Liu [45].

5. Conclusions

This paper has proposed a new idea of assurance region method to handle the practical situations when
some vague or imprecise input and output data are defined as intuitionistic fuzzy sets instead of fuzzy sets. The
concept of intuitionistic fuzzy set allows defining the degree of non–membership which cannot simply be taken as
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Table 4. Ranking of FMS alternatives using the proposed approach.

FMS alternative (DMU)
Proposed Model (IFDEA/AR) Liu (2014)

Cross-efficiency (IFCE) Ranking Efficiency Ranking

1 0.8729 3 0.8445 4

2 0.8557 6 0.8022 6

3 0.8659 4 0.7951 7

4 0.8824 1 0.8524 3

5 0.8811 2 0.8985 2

6 0.7609 9 0.8289 5

7 0.8618 5 0.9166 1

8 0.8396 8 0.7741 8

9 0.5275 12 0.5954 10

10 0.7239 10 0.5887 11

11 0.8479 7 0.7668 9

12 0.7119 11 0.4852 12

the complement of the degree of membership. This is useful in practical situations when experts/decision makers
are not confident enough in assigning the degree of membership/ non–membership for the imprecise data. We
have also proposed the generalization of the classical cross efficiency approach to the case of intuitionistic fuzzy
DEA/AR. The case of twelve flexible manufacturing alternatives is discussed to illustrate the theoretical results
developed in this paper. Using the expected value approach for intuitionistic fuzzy numbers, the ranking of the
FMS alternatives have been provided. Results have been compared with the existing fuzzy DEA/AR approach.
The difference in the ranking is mainly attributed to the fact that in our approach alternatives are ranked
based on the peer evaluation (cross efficiency) whereas, in the existing work on fuzzy DEA/AR, they are ranked
using self-evaluation. The results help the firms to select the “best” FMS alternative when inputs/outputs
are represented as intuitionistic fuzzy data. Our approach of efficiency evaluation under assurance region is
particularly useful when available information is not sufficient to define the impreciseness in input/output data
using classical fuzzy set.

Acknowledgements. The author would like to express his gratitude to the esteemed Associate Editor and anonymous
reviewers for their valuable comments and suggestions which have significantly improved the quality of the paper.
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[35] Ö. Bali, S. Gümü and M. Dadeviren, A group MADM method for personnel selection problem using Delphi technique based
on intuitionistic fuzzy sets. J. Mil. Inf. Sci. 1 (2013) 1–13.

[36] X. Zhang, Y. Deng, F.T.S. Chan, P. Xu, S. Mahadevan and Y. Hu, IFSJSP: A novel methodology for the Job-Shop Scheduling
Problem based on intuitionistic fuzzy sets. Int. J. Prod. Res. 51 (2013) 5100–5119.

[37] J. Wu and F. Chiclana, Multiplicative consistency of intuitionistic reciprocal preference relations and its application to missing
values estimation and consensus building. Knowledge-Based Syst. 71 (2014) 187–200.

[38] H. Nguyen, A new knowledge-based measure for intuitionistic fuzzy sets and its application in multiple attribute group decision
making. Expert Syst. Appl. 42 (2015) 8766–8774.

[39] B. Daneshvar Rouyendegh, The DEA and Intuitionistic Fuzzy TOPSIS Approach to Departments’ Performances: A Pilot
Study. J. Appl. Math. 2011 (2011) 1–16.

[40] N. Gandotra, R.K. Bajaj and N. Gupta, Sorting of decision making units in data envelopment analysis with intuitionistic fuzzy
weighted entropy. D.C. Wyld al. Adv. Comput. Sci. Eng. Appl., AISC 166 (2012) 567–576.

[41] S.H. Hajiagha, H. Akrami, E.K. Zavadskas and S.S. Hashemi, An intuitionistic fuzzy data envelopment analysis for efficiency
evaluation under uncertainty: case of a finance and credit institution. E+M Ekon. Manag. 1 (2013) 128–137.

[42] J. Puri and S.P. Yadav, Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. Expert
Syst. Appl. 42 (2015) 4982–4998.

[43] G.S. Mahapatra and T.K. Roy, Intuitionistic Fuzzy Number and Its Arithmetic Operation with Application on System Failure.
J. Uncertain Syst. 7 (2013) 92–107.

[44] J. Shang and T. Sueyoshi, A unified framework for the selection of a Flexible Manufacturing System. Eur. J. Oper. Res. 85
(1995) 297–315.

[45] S.-T. Liu, A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Comput. Ind. Eng. 54 (2008) 66–76.

[46] P. Grzegorzewski, Distances and orderings in a family of intuitionistic fuzzy numbers. EUSFLAT Confere. 5 (2003) 223–227.



INTUITIONISTIC FUZZY DEA/AR 257

[47] A. Nagoorgani and K. Ponnalagu, A New Approach on Solving Intuitionistic Fuzzy Linear Programming Problem. Appl. Math.
Sci. 6 (2012) 3467–3474.

[48] A. Charnes and W.W. Cooper, The non-archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare. Eur. J.
Oper. Res. 15 (1984) 333–334.

[49] A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logist. Q. 9 (1962) 181–186.

[50] N. Adler, L. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context. Eur. J.
Oper. Res. 140 (2002) 249–265.

[51] T.R. Sexton, R.H. Silkman and A.J. Hogan, Data envelopment analysis: Critique and extensions. New Dir. Progr. Eval. 1986
(1986) 73–105.

[52] J. Doyle and R. Green, Efficiency and Cross-Efficiency in DEA: Derivations, Meanings and Uses. J. Oper. Res. Soc. 45 (1994)
567.

[53] R.H. Green, J.R. Doyle and W.D. Cook, Preference voting and project ranking using DEA and cross-evaluation. Eur. J. Oper.
Res. 90 (1996) 461–472.

[54] S.A. George and N. Rangaraj, A performance benchmarking study of Indian Railway zones. Benchmarking An Int. J. 15
(2008) 599–617.

[55] S. Singh, Evaluation of world’s largest social welfare scheme: An assessment using non-parametric approach. Eval. Program
Plan. 57 (2016) 16–29.

[56] T. yieth Chen, An assessment of technical efficiency and cross-efficiency in Taiwan’s electricity distribution sector. Eur. J.
Oper. Res. 137 (2002) 421–433.

[57] J. Wu, L. Liang and Y. Chen, DEA game cross-efficiency approach to Olympic rankings. Omega 37 (2009) 909–918.


	Introduction 
	Preliminaries
	Fuzzy set
	Intuitionistic fuzzy set (IFS) and intuitionistic fuzzy number (IFN)
	Triangular intuitionistic fuzzy number (TIFN)
	Arithmetic operations on TIFNs
	Expected value and ordering of TIFNs

	Methodology
	Proposed Intuitionistic fuzzy DEA/AR
	Complete Ranking of DMUs under Intuitionistic Fuzzy Environment
	Proposed Cross-efficiency approach in IFDEA/AR


	A case of flexible manufacturing systems
	Results validation

	Conclusions
	References

