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THE SUPER EDGE CONNECTIVITY OF KRONECKER PRODUCT GRAPHS

Gülnaz Boruzanlı Ekinci1,∗ and Alpay Kirlangic1

Abstract. Let G1 and G2 be two graphs. The Kronecker product G1×G2 has vertex set V (G1×G2) =
V (G1) × V (G2) and edge set E(G1 × G2) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)}. In
this paper we determine the super edge–connectivity of G×Kn for n ≥ 3. More precisely, for n ≥ 3, if
λ′(G) denotes the super edge–connectivity of G, then at least min{n(n− 1)λ′(G),minxy∈E(G){degG(x)
+degG(y)}(n−1)−2} edges need to be removed from G×Kn to get a disconnected graph that contains
no isolated vertices.
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1. Introduction

Let G be a finite and simple graph, where V (G) and E(G) denote the set of vertices and the set of edges of G,
respectively. If there is an edge e = uv ∈ E(G), then u and v are adjacent vertices, while u and e are incident,
as are v and e. For a vertex u ∈ V (G), the neighborhood NG(u) is {v : uv ∈ E(G)}. The degree of a vertex u is
the cardinality of NG(u), that is degG(u) = |NG(u)|. Let δ(G) be the minimum degree over all vertices of G.
The degree of an edge e, denoted by ξG(e), is degG(u) + degG(v) − 2, where e = uv. The complete graph and
the star graph on n vertices are denoted by Kn and K1,n−1, respectively. For two disjoint non–empty sets A
and B of vertices of G, let [A,B] denote the set of edges with one end-vertex in A and the other in B.

A graph G is connected if there is a path between any two vertices of G; otherwise G is disconnected. A
connected subgraph of a graph G is a component of G if it is not a proper subgraph of a connected subgraph
of G. For an arbitrary subset S ⊆ E(G), we use G − S to denote the graph obtained by removing all edges in
S from G. For any connected graph G, if G − S is disconnected, then S is an edge-cut. The edge–connectivity
of a graph G, denoted by λ(G), is the minimum cardinality of an edge–cut of G. A connected graph G is
super edge–connected, or simply super–λ, if every edge–cut of size λ isolates a vertex. A graph G is maximally
edge–connected if λ(G) = δ(G). Analogous definitions exist for vertex–connectivity denoted by κ(G).

The edge–connectivity is an important measure of the fault tolerance of a network and gives the minimum
cost to disrupt the network. It is known that the most reliable networks are those having the largest edge–
connectivity. Harary [12] generalized the notion of connectivity by imposing conditions on the components of
G− S and proposed the concept of conditional connectivity. The conditional connectivity of G with respect to
some graph-theoretic property P is the smallest cardinality of a set S of edges (vertices), if such a set exists,
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such that G − S is disconnected and every remaining component has property Fiol et al. [10] introduced the
super edge–connectivity. An edge–cut S is called a super edge–cut of G, if G− S contains no isolated vertices.
In general, super edge–cuts do not always exist. The super edge–connectivity λ′(G) is the minimum cardinality
over all super edge–cuts, if any, that is,

λ′(G) = min{|S| : S ⊆ E(G) is a super edge cut of G}.

If the super edge–connectivity does not exist, then we write λ′(G) = +∞. Esfahanian and Hakimi [9] showed
that if G is neither K1,n−1 nor K3, then λ′(G) exists and satisfies λ(G) ≤ λ′(G) ≤ ξ(G), where ξ(G) denotes
the minimum edge–degree of G defined as ξ(G) = mine∈E(G){ξG(e)}. It is easy to see that λ′(G) > λ(G) is a
necessary and sufficient condition for G to be super–λ. For notation and terminology not defined here we follow
West [21].

Given any two graphs and the Cartesian product of their vertex sets, four standard graph products are the
Cartesian product, the Kronecker product, the strong product and the lexicographic product. The Kronecker
product G1×G2 of two graphs G1 and G2 is the graph having V (G1×G2) = V (G1)×V (G2) and E(G1×G2) =
{(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)}.

The Kronecker product of graphs has been investigated in areas such as graph colorings, graph recognition
and decomposition, graph embeddings, matching theory and graph stability (see, for example, [1, 4], and the
references therein). This product has generated a lot of interest mainly due to its various applications. For
instance, it is used in complex networks to generate realistic networks [14], in multiprocessor systems to model
the concurrency [13], and in automata theory [11]. Moreover, it is known that every graph is an induced
subgraph of a suitable Kronecker product of complete graphs [16].

The connectivity of Kronecker products of two connected graphs has been investigated by Miller [15] and
Weichsel [20]. Brešar an Špacapan [5] obtained some bounds on the vertex–connectivity and edge–connectivity of
the Kronecker product of graphs with some exceptions. Wang and Xue [18] and Wang and Wu [19] independently
showed that κ(G × Kn) = min{nκ(G), (n − 1)δ(G)} for n ≥ 3 for any graph G. Wang et al. [17] proved
that G × Kn (n ≥ 3) is super−κ for any maximally connected graph, except when n = 3 and G = Km,m

for m ≥ 1. Zhou [22] proved that G × Kn is not super−κ if and only if either κ(G × Kn) = nκ(G) or
G×Kn

∼= K`,` ×K3(` > 0), where n ≥ 3. The authors [3] established the super–connectivity and the h–extra–
connectivity of the graphs Km,r × Kn and Km × Kn, where Km,r is the complete bipartite graph. Recently,
the authors [2] determined the super–connectivity of G×Kn, for any connected graph G satisfying some given
conditions.

Cao et al. [6] obtained the following result for the edge–connectivity of the Kronecker product of a graph and
a complete graph.

Theorem 1.1 [6]. For any graph G and n ≥ 3, λ(G×Kn) = min{n(n− 1)λ(G), (n− 1)δ(G)}.

The Kronecker product of a maximally edge–connected graph G and a complete graph Kn, for n ≥ 3,
was shown to be super edge–connected by Cao and Vumar [7]. It is thus natural to ask what is the super
edge–connectivity of the Kronecker product of a maximally edge–connected graph G and a complete graph Kn.
Moreover, Harary [12] enquired about the value of the conditional connectivity of G1 ◦ G2 in terms of the
conditional connectivities of G1 and G2, where ◦ is any binary operation on graphs. Motivated by the above,
in this paper we establish the super edge–connectivity of G×Kn for any graph G.

2. Main result

We follow the notation used in [17]. For a graph G and a complete graph Kn (n ≥ 3), we let V (G) =
{u1, u2, . . . , um} and V (Kn) = {v1, v2, . . . , vn}. A vertex (ui, vj) is abbreviated as ωij , where i ∈ {1, 2, . . . ,m}
and j ∈ {1, 2, . . . , n}. For any vertex ui ∈ V (G), we let Kui

n = {(ui, vj) ∈ V (G) × V (Kn) : vj ∈ V (Kn)} and
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call it the Kn–layer of G×Kn with respect to ui. For all i ∈ {1, 2, . . . ,m}, the set Kui
n = {ωi1, ωi2, . . . , ωin} is

an independent set in G×Kn.

Lemma 2.1. For any graph G,

λ′(G×Kn) ≤ min{n(n− 1)λ′(G), min
xy∈E(G)

{degG(x) + degG(y)}(n− 1)− 2},

where n ≥ 3.

Proof. Consider a minimum super edge–cut T ⊂ E(G) of the graph G. The resulting graph G− T has exactly
two components each having more than one vertex, say X1 and X2. Let Y1 = V (X1) × V (Kn) and Y2 =
V (X2)× V (Kn). Since the subgraphs of G×Kn induced by Y1 and Y2 are both connected and do not contain
an isolated vertex, the edge set [Y1, Y2] forms a super edge–cut of the graph G×Kn. Thus,

λ′(G×Kn) ≤ |[Y1, Y2]| = n(n− 1)λ′(G).

On the other hand, since ξ(G×Kn) = minxy∈E(G){degG(x)+degG(y)}(n−1)−2 and λ′(G×Kn) ≤ ξ(G×Kn),
the result follows. �

Lemma 2.2. For any connected graph G, let S ⊂ E(G×Kn) be a super edge–cut of G×Kn and let C1, C2, . . . Cr

be the components of (G×Kn)− S, where r ≥ 2. For every vertex ui ∈ V (G), if there exists a component Cf ,
for f ∈ {1, 2, . . . , r}, such that Kui

n ⊆ Cf , then |S| ≥ n(n− 1)λ′(G).

Proof. Suppose that one of the components, say C1, of (G×Kn)− S contains only one intact Kn–layer. Since
Kui

n is an independent set in G ×Kn for any ui ∈ V (G), the component C1 is composed of isolated vertices,
a contradiction. Thus, every component of (G ×Kn) − S contains at least two intact Kn–layers. This implies
that the set of vertices of G corresponding to the first index of the vertices of each component has two or more
vertices. The super edge–connectivity of G, λ′(G), gives the minimum number of edges that need to be removed
from G to get a disconnected graph that contains no isolated vertex, that is, the minimum number of adjacent
vertices in G which are in different components when the edges of a super edge–cut of G are removed. Hence,
there are at least λ′(G) pairs of vertices such that Kui

n ⊆ Ct and K
uj
n ⊆ Ck, where t 6= k and uiuj ∈ E(G). The

result follows since |[Kui
n ,K

uj
n ]| = n(n− 1) for any edge uiuj ∈ E(G). �

Theorem 2.3. For any graph G, and n ≥ 3

λ′(G×Kn) = min{n(n− 1)λ′(G), min
xy∈E(G)

{degG(x) + degG(y)}(n− 1)− 2}.

Proof. From Lemma 2.1, we have

λ′(G×Kn) ≤ min{n(n− 1)λ′(G), min
xy∈E(G)

{degG(x) + degG(y)}(n− 1)− 2},

where n ≥ 3. In order to prove the theorem, it is enough to show that λ′(G) ≥ min{n(n −
1)λ′(G),minxy∈E(G){degG(x) + degG(y)}(n − 1) − 2}. Suppose, to the contrary, that S is a minimum super
edge–cut of G×Kn such that |S| < n(n− 1)λ′(G) and |S| < minxy∈E(G){degG(x) + degG(y)}(n− 1)− 2. The
resulting graph (G×Kn)− S has exactly two components C1 and C2 each having at least two vertices.

If each Kn–layer of G × Kn is contained in one of the two components, then by Lemma 2.2, we get |S| ≥
n(n−1)λ′(G), a contradiction. Thus there is at least one Kn–layer Kui

n , where ui ∈ V (G), which has vertices in
both C1 and C2, that is Kui

n ∩C1 6= ∅ and Kui
n ∩C2 6= ∅. Without loss of generality, assume that ωip ∈ Kui

n ∩C1

and ωiq ∈ Kui
n ∩ C2, where p 6= q and vp, vq ∈ V (Kn). Since S is a super edge–cut, the vertex ωip is not an

isolated vertex in C1. Thus, NG×Kn
(ωip) ∩ C1 6= ∅. Similarly, NG×Kn

(ωiq) ∩ C2 6= ∅.
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Harary [12] stated that for any graph theoretical property P and a graph containing two disjoint subgraphs
F and H having the property P , Dirac’s form [8] of Menger’s theorem says that the minimum number of
edges which separate F and H equals the maximum number of edge disjoint paths between F and H. Using
this statement, |S| is not less than the maximum number of edge–disjoint paths connecting the vertices of C1

and C2. We consider the following two cases:

(1) There is a vertex uj ∈ NG(ui) such that the layer K
uj
n has vertices in both C1 and C2,

(2) For each uj ∈ NG(ui), the layer K
uj
n is contained completely in either C1 or C2.

Case 1. Suppose that there is a vertex uj ∈ NG(ui), such that K
uj
n ∩ C1 6= ∅ and K

uj
n ∩ C2 6= ∅. If the

vertices ωjp and ωjq are in different components, then we let ωjr be the one in K
uj
n ∩C1 and ωjs be the one in

K
uj
n ∩ C2, that is, ωjr ∈ {ωjp, ωjq} ∩ C1 and ωjs ∈ {ωjp, ωjq} ∩ C2. If both of the vertices ωjp and ωjq are in

the same component, say {ωjp, ωjq} ⊆ C1, then without loss of generality we let ωjr be the vertex ωjp and let
ωjs ∈ K

uj
n ∩ C2 such that s /∈ {p, q}.

Let NG(ui) = {uj (= uh1
), uh2

, . . . , uhk
} and NG(uj) = {ui (= ug1), ug2 , . . . , ug`}, where k = degG(ui) and

` = degG(uj). Consider the following paths in the Kronecker product graph G×Kn.

• For each t ∈ {2, . . . , k} and each f ∈ {1, 2, . . . , n} \ {p, q}, there exists a path P1 defined in the following
way:

P1 := ωip → ωhtf → ωiq.
The number of the paths with this structure is (k − 1)(n− 2).

• For each t ∈ {2, . . . , `} and each f ∈ {1, 2, . . . , n}\{r, s}, there exists a path P2 defined in the following way:
P2 := ωjr → ωgtf → ωjs.

The number of the paths with this structure is (`− 1)(n− 2).
• For each t ∈ {2, . . . , k}, there exists a path P3 defined in the following way:

P3 := ωip → ωhtq → ωif → ωhtp → ωiq,
where f ∈ {1, 2, . . . , n} \ {p, q}. The number of the paths with this structure is (k − 1).

• For each t ∈ {2, . . . , `}, there exists a path P4 defined in the following way:
P4 := ωjr → ωgts → ωjf → ωgtr → ωjs,

where f ∈ {1, 2, . . . , n} \ {r, s}. The number of the paths with this structure is (`− 1).
• For each f ∈ {1, 2, . . . , n} \ {r, s}, there exists a path P5 defined in the following way:

P5 := ωjr → ωif → ωjs.
The number of the paths with this structure is (n− 2).

• For each f ∈ {1, 2, . . . , n} \ {{p, q} ∪ {r, s}}, there exists a path P6 defined in the following way:
P6 := ωip → ωjf → ωiq.

The number of the paths with this structure is (n−|{{p, q}∪{r, s}}|) = n−2, except when |{p, q}∪{r, s}| = 3,
in which case there exists a path P7 defined in the following way:

P7 := ωip → ωjs,
Thus the total number of paths with the structure P6 or P7 is (n− 2).

Note that the above paths are all edge–disjoint paths connecting a vertex of C1 and a vertex of C2. It follows
that

|S| ≥ (k − 1)(n− 2) + (`− 1)(n− 2) + (n− 2) + (k − 1) + (`− 1) + (n− 2)

= (n− 1)(degG(ui) + degG(uj))− 2

≥ min
xy∈E(G)

{degG(x) + degG(y)}(n− 1)− 2,

a contradiction.
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Case 2. Suppose that K
uj
n ⊂ C1 or K

uj
n ⊂ C2 for every vertex uj ∈ NG(ui). There is at least one Kn–layer

contained in C1, say Kua
n where ua ∈ NG(ui), otherwise ωip is an isolated vertex in the resulting graph. Using

a similar reasoning, let Kub
n ⊂ C2, where ub ∈ NG(ui).

Let NG(ui) = {ua (= uh1
), ub (= uh2

), uh3
. . . , uhk

}, where k = degG(ui). Consider the following paths in the
Kronecker product graph G×Kn.

• For each f ∈ {1, 2, . . . , n} \ {p}, there exists a path P1 defined in the following way:
P1 := ωip → ωbf

The number of paths with this structure is (n− 1).
• For each t ∈ {3, . . . , k}, there exists a path P2 defined in the following way:

P2 := ωip → ωhtq → ωif → ωhtp → ωiq,
where f ∈ {1, 2, . . . , n} \ {p, q}. The number of paths with this structure is (k − 2).

• For each t ∈ {3, . . . , k} and each f ∈ {1, 2, . . . , n} \ {p, q}, there exists a path P3 defined in the following
way:

P3 := ωip → ωhtf → ωiq

The number of paths with this structure is (k − 2)(n− 2).
• For each f ∈ {1, 2, . . . , n} \ {q}, there exists a path P4 defined in the following way:

P4 := ωaf → ωiq

The number of paths with this structure is (n− 1).
• For each g ∈ {1, 2, . . . , n} \ {p, q} and each f ∈ {1, 2, . . . , n}, where f 6= g, there exists a path P5 defined in

the following way:
P5 := ωaf → ωig → ωbf .

Since there are (n− 1) paths for each g ∈ {1, 2, . . . , n} \ {p, q}, the total number of paths with this structure
is (n− 2)(n− 1).

• If ua ∈ NG(ub), then for each f ∈ {2, . . . , n}, there exists a path P6 defined in the following way:
P6 := ωa1 → ωbf .

The number of paths with this structure is (n− 1).

Note that the paths above are all edge–disjoint paths connecting a vertex of C1 and a vertex of C2. If ua ∈
NG(ub), then it follows that

|S| ≥ (n− 1) + (k − 2) + (k − 2)(n− 2) + (n− 1) + (n− 2)(n− 1) + (n− 1)

= (n− 1)(degG(ui) + (n− 1))

≥ (n− 1)(degG(ua) + degG(ub))

≥ min
xy∈E(G)

{degG(x) + degG(y)}(n− 1)

> min
xy∈E(G)

{degG(x) + degG(y)}(n− 1)− 2,

a contradiction. If ua /∈ NG(ub), then we have degG(ua) ≤ n− 2. Considering the paths P1–P5, we have

|S| ≥ (n− 1) + (k − 2) + (k − 2)(n− 2) + (n− 1) + (n− 2)(n− 1)

= (n− 1)(degG(ui) + (n− 2))

≥ (n− 1)(degG(ui) + degG(ua))

≥ (n− 1) min
xy∈E(G)

{degG(x) + degG(y)}

> (n− 1) min
xy∈E(G)

{degG(x) + degG(y)} − 2,

a contradiction. �
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