THE SUPER EDGE CONNECTIVITY OF KRONECKER PRODUCT GRAPHS

Gülnaz Boruzanli Ekinci ${ }^{1, *}$ and Alpay Kirlangic ${ }^{1}$

Abstract

Let G_{1} and G_{2} be two graphs. The Kronecker product $G_{1} \times G_{2}$ has vertex set $V\left(G_{1} \times G_{2}\right)=$ $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \times G_{2}\right)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$. In this paper we determine the super edge-connectivity of $G \times K_{n}$ for $n \geq 3$. More precisely, for $n \geq 3$, if $\lambda^{\prime}(G)$ denotes the super edge-connectivity of G, then at least $\min \left\{n(n-1) \lambda^{\prime}(G), \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)\right.\right.$ $\left.\left.+\operatorname{deg}_{G}(y)\right\}(n-1)-2\right\}$ edges need to be removed from $G \times K_{n}$ to get a disconnected graph that contains no isolated vertices.

Mathematics Subject Classification. 05C40, 68M10, 68R10.
Received August 10, 2016. Accepted October 13, 2017.

1. Introduction

Let G be a finite and simple graph, where $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. If there is an edge $e=u v \in E(G)$, then u and v are adjacent vertices, while u and e are incident, as are v and e. For a vertex $u \in V(G)$, the neighborhood $N_{G}(u)$ is $\{v: u v \in E(G)\}$. The degree of a vertex u is the cardinality of $N_{G}(u)$, that is $\operatorname{deg}_{G}(u)=\left|N_{G}(u)\right|$. Let $\delta(G)$ be the minimum degree over all vertices of G. The degree of an edge e, denoted by $\xi_{G}(e)$, is $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)-2$, where $e=u v$. The complete graph and the star graph on n vertices are denoted by K_{n} and $K_{1, n-1}$, respectively. For two disjoint non-empty sets A and B of vertices of G, let $[A, B]$ denote the set of edges with one end-vertex in A and the other in B.

A graph G is connected if there is a path between any two vertices of G; otherwise G is disconnected. A connected subgraph of a graph G is a component of G if it is not a proper subgraph of a connected subgraph of G. For an arbitrary subset $S \subseteq E(G)$, we use $G-S$ to denote the graph obtained by removing all edges in S from G. For any connected graph G, if $G-S$ is disconnected, then S is an edge-cut. The edge-connectivity of a graph G, denoted by $\lambda(G)$, is the minimum cardinality of an edge-cut of G. A connected graph G is super edge-connected, or simply super- λ, if every edge-cut of size λ isolates a vertex. A graph G is maximally edge-connected if $\lambda(G)=\delta(G)$. Analogous definitions exist for vertex-connectivity denoted by $\kappa(G)$.

The edge-connectivity is an important measure of the fault tolerance of a network and gives the minimum cost to disrupt the network. It is known that the most reliable networks are those having the largest edgeconnectivity. Harary [12] generalized the notion of connectivity by imposing conditions on the components of $G-S$ and proposed the concept of conditional connectivity. The conditional connectivity of G with respect to some graph-theoretic property P is the smallest cardinality of a set S of edges (vertices), if such a set exists,

[^0]such that $G-S$ is disconnected and every remaining component has property Fiol et al. [10] introduced the super edge-connectivity. An edge-cut S is called a super edge-cut of G, if $G-S$ contains no isolated vertices. In general, super edge-cuts do not always exist. The super edge-connectivity $\lambda^{\prime}(G)$ is the minimum cardinality over all super edge-cuts, if any, that is,
$$
\lambda^{\prime}(G)=\min \{|S|: S \subseteq E(G) \text { is a super edge cut of } G\}
$$

If the super edge-connectivity does not exist, then we write $\lambda^{\prime}(G)=+\infty$. Esfahanian and Hakimi [9] showed that if G is neither $K_{1, n-1}$ nor K_{3}, then $\lambda^{\prime}(G)$ exists and satisfies $\lambda(G) \leq \lambda^{\prime}(G) \leq \xi(G)$, where $\xi(G)$ denotes the minimum edge-degree of G defined as $\xi(G)=\min _{e \in E(G)}\left\{\xi_{G}(e)\right\}$. It is easy to see that $\lambda^{\prime}(G)>\lambda(G)$ is a necessary and sufficient condition for G to be super $-\lambda$. For notation and terminology not defined here we follow West [21].

Given any two graphs and the Cartesian product of their vertex sets, four standard graph products are the Cartesian product, the Kronecker product, the strong product and the lexicographic product. The Kronecker product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} is the graph having $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \times G_{2}\right)=$ $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$.

The Kronecker product of graphs has been investigated in areas such as graph colorings, graph recognition and decomposition, graph embeddings, matching theory and graph stability (see, for example, $[1,4]$, and the references therein). This product has generated a lot of interest mainly due to its various applications. For instance, it is used in complex networks to generate realistic networks [14], in multiprocessor systems to model the concurrency [13], and in automata theory [11]. Moreover, it is known that every graph is an induced subgraph of a suitable Kronecker product of complete graphs [16].

The connectivity of Kronecker products of two connected graphs has been investigated by Miller [15] and Weichsel [20]. Brešar an Špacapan [5] obtained some bounds on the vertex-connectivity and edge-connectivity of the Kronecker product of graphs with some exceptions. Wang and Xue [18] and Wang and Wu [19] independently showed that $\kappa\left(G \times K_{n}\right)=\min \{n \kappa(G),(n-1) \delta(G)\}$ for $n \geq 3$ for any graph G. Wang et al. [17] proved that $G \times K_{n}(n \geq 3)$ is super $-\kappa$ for any maximally connected graph, except when $n=3$ and $G=K_{m, m}$ for $m \geq 1$. Zhou [22] proved that $G \times K_{n}$ is not super $-\kappa$ if and only if either $\kappa\left(G \times K_{n}\right)=n \kappa(G)$ or $G \times K_{n} \cong K_{\ell, \ell} \times K_{3}(\ell>0)$, where $n \geq 3$. The authors [3] established the super-connectivity and the $h-$ extraconnectivity of the graphs $K_{m, r} \times K_{n}$ and $K_{m} \times K_{n}$, where $K_{m, r}$ is the complete bipartite graph. Recently, the authors [2] determined the super-connectivity of $G \times K_{n}$, for any connected graph G satisfying some given conditions.

Cao et al. [6] obtained the following result for the edge-connectivity of the Kronecker product of a graph and a complete graph.

Theorem 1.1 [6]. For any graph G and $n \geq 3, \lambda\left(G \times K_{n}\right)=\min \{n(n-1) \lambda(G),(n-1) \delta(G)\}$.
The Kronecker product of a maximally edge-connected graph G and a complete graph K_{n}, for $n \geq 3$, was shown to be super edge connected by Cao and Vumar [7]. It is thus natural to ask what is the super edge-connectivity of the Kronecker product of a maximally edge-connected graph G and a complete graph K_{n}. Moreover, Harary [12] enquired about the value of the conditional connectivity of $G_{1} \circ G_{2}$ in terms of the conditional connectivities of G_{1} and G_{2}, where \circ is any binary operation on graphs. Motivated by the above, in this paper we establish the super edge-connectivity of $G \times K_{n}$ for any graph G.

2. MAIN RESULT

We follow the notation used in [17]. For a graph G and a complete graph $K_{n}(n \geq 3)$, we let $V(G)=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. A vertex $\left(u_{i}, v_{j}\right)$ is abbreviated as $\omega_{i j}$, where $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, n\}$. For any vertex $u_{i} \in V(G)$, we let $K_{n}^{u_{i}}=\left\{\left(u_{i}, v_{j}\right) \in V(G) \times V\left(K_{n}\right): v_{j} \in V\left(K_{n}\right)\right\}$ and
call it the K_{n}-layer of $G \times K_{n}$ with respect to u_{i}. For all $i \in\{1,2, \ldots, m\}$, the set $K_{n}^{u_{i}}=\left\{\omega_{i 1}, \omega_{i 2}, \ldots, \omega_{i n}\right\}$ is an independent set in $G \times K_{n}$.

Lemma 2.1. For any graph G,

$$
\lambda^{\prime}\left(G \times K_{n}\right) \leq \min \left\{n(n-1) \lambda^{\prime}(G), \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2\right\},
$$

where $n \geq 3$.
Proof. Consider a minimum super edge-cut $T \subset E(G)$ of the graph G. The resulting graph $G-T$ has exactly two components each having more than one vertex, say X_{1} and X_{2}. Let $Y_{1}=V\left(X_{1}\right) \times V\left(K_{n}\right)$ and $Y_{2}=$ $V\left(X_{2}\right) \times V\left(K_{n}\right)$. Since the subgraphs of $G \times K_{n}$ induced by Y_{1} and Y_{2} are both connected and do not contain an isolated vertex, the edge set $\left[Y_{1}, Y_{2}\right]$ forms a super edge-cut of the graph $G \times K_{n}$. Thus,

$$
\lambda^{\prime}\left(G \times K_{n}\right) \leq\left|\left[Y_{1}, Y_{2}\right]\right|=n(n-1) \lambda^{\prime}(G) .
$$

On the other hand, since $\xi\left(G \times K_{n}\right)=\min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2$ and $\lambda^{\prime}\left(G \times K_{n}\right) \leq \xi\left(G \times K_{n}\right)$, the result follows.

Lemma 2.2. For any connected graph G, let $S \subset E\left(G \times K_{n}\right)$ be a super edge-cut of $G \times K_{n}$ and let $C_{1}, C_{2}, \ldots C_{r}$ be the components of $\left(G \times K_{n}\right)-S$, where $r \geq 2$. For every vertex $u_{i} \in V(G)$, if there exists a component C_{f}, for $f \in\{1,2, \ldots, r\}$, such that $K_{n}^{u_{i}} \subseteq C_{f}$, then $|S| \geq n(n-1) \lambda^{\prime}(G)$.

Proof. Suppose that one of the components, say C_{1}, of $\left(G \times K_{n}\right)-S$ contains only one intact K_{n}-layer. Since $K_{n}^{u_{i}}$ is an independent set in $G \times K_{n}$ for any $u_{i} \in V(G)$, the component C_{1} is composed of isolated vertices, a contradiction. Thus, every component of $\left(G \times K_{n}\right)-S$ contains at least two intact K_{n}-layers. This implies that the set of vertices of G corresponding to the first index of the vertices of each component has two or more vertices. The super edge-connectivity of $G, \lambda^{\prime}(G)$, gives the minimum number of edges that need to be removed from G to get a disconnected graph that contains no isolated vertex, that is, the minimum number of adjacent vertices in G which are in different components when the edges of a super edge-cut of G are removed. Hence, there are at least $\lambda^{\prime}(G)$ pairs of vertices such that $K_{n}^{u_{i}} \subseteq C_{t}$ and $K_{n}^{u_{j}} \subseteq C_{k}$, where $t \neq k$ and $u_{i} u_{j} \in E(G)$. The result follows since $\left|\left[K_{n}^{u_{i}}, K_{n}^{u_{j}}\right]\right|=n(n-1)$ for any edge $u_{i} u_{j} \in E(G)$.

Theorem 2.3. For any graph G, and $n \geq 3$

$$
\lambda^{\prime}\left(G \times K_{n}\right)=\min \left\{n(n-1) \lambda^{\prime}(G), \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2\right\} .
$$

Proof. From Lemma 2.1, we have

$$
\lambda^{\prime}\left(G \times K_{n}\right) \leq \min \left\{n(n-1) \lambda^{\prime}(G), \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2\right\},
$$

where $n \geq 3$. In order to prove the theorem, it is enough to show that $\lambda^{\prime}(G) \geq \min \{n(n-$ 1) $\left.\lambda^{\prime}(G), \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2\right\}$. Suppose, to the contrary, that S is a minimum super edge-cut of $G \times K_{n}$ such that $|S|<n(n-1) \lambda^{\prime}(G)$ and $|S|<\min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2$. The resulting graph $\left(G \times K_{n}\right)-S$ has exactly two components C_{1} and C_{2} each having at least two vertices.

If each K_{n}-layer of $G \times K_{n}$ is contained in one of the two components, then by Lemma 2.2 , we get $|S| \geq$ $n(n-1) \lambda^{\prime}(G)$, a contradiction. Thus there is at least one K_{n}-layer $K_{n}^{u_{i}}$, where $u_{i} \in V(G)$, which has vertices in both C_{1} and C_{2}, that is $K_{n}^{u_{i}} \cap C_{1} \neq \emptyset$ and $K_{n}^{u_{i}} \cap C_{2} \neq \emptyset$. Without loss of generality, assume that $\omega_{i p} \in K_{n}^{u_{i}} \cap C_{1}$ and $\omega_{i q} \in K_{n}^{u_{i}} \cap C_{2}$, where $p \neq q$ and $v_{p}, v_{q} \in V\left(K_{n}\right)$. Since S is a super edge-cut, the vertex $\omega_{i p}$ is not an isolated vertex in C_{1}. Thus, $N_{G \times K_{n}}\left(\omega_{i p}\right) \cap C_{1} \neq \emptyset$. Similarly, $N_{G \times K_{n}}\left(\omega_{i q}\right) \cap C_{2} \neq \emptyset$.

Harary [12] stated that for any graph theoretical property P and a graph containing two disjoint subgraphs F and H having the property P, Dirac's form [8] of Menger's theorem says that the minimum number of edges which separate F and H equals the maximum number of edge disjoint paths between F and H. Using this statement, $|S|$ is not less than the maximum number of edge-disjoint paths connecting the vertices of C_{1} and C_{2}. We consider the following two cases:
(1) There is a vertex $u_{j} \in N_{G}\left(u_{i}\right)$ such that the layer $K_{n}^{u_{j}}$ has vertices in both C_{1} and C_{2},
(2) For each $u_{j} \in N_{G}\left(u_{i}\right)$, the layer $K_{n}^{u_{j}}$ is contained completely in either C_{1} or C_{2}.

Case 1. Suppose that there is a vertex $u_{j} \in N_{G}\left(u_{i}\right)$, such that $K_{n}^{u_{j}} \cap C_{1} \neq \emptyset$ and $K_{n}^{u_{j}} \cap C_{2} \neq \emptyset$. If the vertices $\omega_{j p}$ and $\omega_{j q}$ are in different components, then we let $\omega_{j r}$ be the one in $K_{n}^{u_{j}} \cap C_{1}$ and $\omega_{j s}$ be the one in $K_{n}^{u_{j}} \cap C_{2}$, that is, $\omega_{j r} \in\left\{\omega_{j p}, \omega_{j q}\right\} \cap C_{1}$ and $\omega_{j s} \in\left\{\omega_{j p}, \omega_{j q}\right\} \cap C_{2}$. If both of the vertices $\omega_{j p}$ and $\omega_{j q}$ are in the same component, say $\left\{\omega_{j p}, \omega_{j q}\right\} \subseteq C_{1}$, then without loss of generality we let $\omega_{j r}$ be the vertex $\omega_{j p}$ and let $\omega_{j s} \in K_{n}^{u_{j}} \cap C_{2}$ such that $s \notin\{p, q\}$.

Let $N_{G}\left(u_{i}\right)=\left\{u_{j}\left(=u_{h_{1}}\right), u_{h_{2}}, \ldots, u_{h_{k}}\right\}$ and $N_{G}\left(u_{j}\right)=\left\{u_{i}\left(=u_{g_{1}}\right), u_{g_{2}}, \ldots, u_{g_{\ell}}\right\}$, where $k=\operatorname{deg}_{G}\left(u_{i}\right)$ and $\ell=\operatorname{deg}_{G}\left(u_{j}\right)$. Consider the following paths in the Kronecker product graph $G \times K_{n}$.

- For each $t \in\{2, \ldots, k\}$ and each $f \in\{1,2, \ldots, n\} \backslash\{p, q\}$, there exists a path P_{1} defined in the following way:

$$
P_{1}:=\omega_{i p} \rightarrow \omega_{h_{t} f} \rightarrow \omega_{i q} .
$$

The number of the paths with this structure is $(k-1)(n-2)$.

- For each $t \in\{2, \ldots, \ell\}$ and each $f \in\{1,2, \ldots, n\} \backslash\{r, s\}$, there exists a path P_{2} defined in the following way:

$$
P_{2}:=\omega_{j r} \rightarrow \omega_{g_{t} f} \rightarrow \omega_{j s}
$$

The number of the paths with this structure is $(\ell-1)(n-2)$.

- For each $t \in\{2, \ldots, k\}$, there exists a path P_{3} defined in the following way:

$$
P_{3}:=\omega_{i p} \rightarrow \omega_{h_{t} q} \rightarrow \omega_{i f} \rightarrow \omega_{h_{t} p} \rightarrow \omega_{i q},
$$

where $f \in\{1,2, \ldots, n\} \backslash\{p, q\}$. The number of the paths with this structure is $(k-1)$.

- For each $t \in\{2, \ldots, \ell\}$, there exists a path P_{4} defined in the following way:

$$
P_{4}:=\omega_{j r} \rightarrow \omega_{g_{t} s} \rightarrow \omega_{j f} \rightarrow \omega_{g_{t} r} \rightarrow \omega_{j s}
$$

where $f \in\{1,2, \ldots, n\} \backslash\{r, s\}$. The number of the paths with this structure is $(\ell-1)$.

- For each $f \in\{1,2, \ldots, n\} \backslash\{r, s\}$, there exists a path P_{5} defined in the following way:

$$
P_{5}:=\omega_{j r} \rightarrow \omega_{i f} \rightarrow \omega_{j s}
$$

The number of the paths with this structure is $(n-2)$.

- For each $f \in\{1,2, \ldots, n\} \backslash\{\{p, q\} \cup\{r, s\}\}$, there exists a path P_{6} defined in the following way:

$$
P_{6}:=\omega_{i p} \rightarrow \omega_{j f} \rightarrow \omega_{i q}
$$

The number of the paths with this structure is $(n-|\{\{p, q\} \cup\{r, s\}\}|)=n-2$, except when $|\{p, q\} \cup\{r, s\}|=3$, in which case there exists a path P_{7} defined in the following way:

$$
P_{7}:=\omega_{i p} \rightarrow \omega_{j s}
$$

Thus the total number of paths with the structure P_{6} or P_{7} is $(n-2)$.
Note that the above paths are all edge-disjoint paths connecting a vertex of C_{1} and a vertex of C_{2}. It follows that

$$
\begin{aligned}
|S| & \geq(k-1)(n-2)+(\ell-1)(n-2)+(n-2)+(k-1)+(\ell-1)+(n-2) \\
& =(n-1)\left(\operatorname{deg}_{G}\left(u_{i}\right)+\operatorname{deg}_{G}\left(u_{j}\right)\right)-2 \\
& \geq \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2,
\end{aligned}
$$

a contradiction.

Case 2. Suppose that $K_{n}^{u_{j}} \subset C_{1}$ or $K_{n}^{u_{j}} \subset C_{2}$ for every vertex $u_{j} \in N_{G}\left(u_{i}\right)$. There is at least one K_{n}-layer contained in C_{1}, say $K_{n}^{u_{a}}$ where $u_{a} \in N_{G}\left(u_{i}\right)$, otherwise $\omega_{i p}$ is an isolated vertex in the resulting graph. Using a similar reasoning, let $K_{n}^{u_{b}} \subset C_{2}$, where $u_{b} \in N_{G}\left(u_{i}\right)$.

Let $N_{G}\left(u_{i}\right)=\left\{u_{a}\left(=u_{h_{1}}\right), u_{b}\left(=u_{h_{2}}\right), u_{h_{3}} \ldots, u_{h_{k}}\right\}$, where $k=\operatorname{deg}_{G}\left(u_{i}\right)$. Consider the following paths in the Kronecker product graph $G \times K_{n}$.

- For each $f \in\{1,2, \ldots, n\} \backslash\{p\}$, there exists a path P_{1} defined in the following way:

$$
P_{1}:=\omega_{i p} \rightarrow \omega_{b f}
$$

The number of paths with this structure is $(n-1)$.

- For each $t \in\{3, \ldots, k\}$, there exists a path P_{2} defined in the following way:

$$
P_{2}:=\omega_{i p} \rightarrow \omega_{h_{t} q} \rightarrow \omega_{i f} \rightarrow \omega_{h_{t} p} \rightarrow \omega_{i q},
$$

where $f \in\{1,2, \ldots, n\} \backslash\{p, q\}$. The number of paths with this structure is $(k-2)$.

- For each $t \in\{3, \ldots, k\}$ and each $f \in\{1,2, \ldots, n\} \backslash\{p, q\}$, there exists a path P_{3} defined in the following way:

$$
P_{3}:=\omega_{i p} \rightarrow \omega_{h_{t} f} \rightarrow \omega_{i q}
$$

The number of paths with this structure is $(k-2)(n-2)$.

- For each $f \in\{1,2, \ldots, n\} \backslash\{q\}$, there exists a path P_{4} defined in the following way:

$$
P_{4}:=\omega_{a f} \rightarrow \omega_{i q}
$$

The number of paths with this structure is $(n-1)$.

- For each $g \in\{1,2, \ldots, n\} \backslash\{p, q\}$ and each $f \in\{1,2, \ldots, n\}$, where $f \neq g$, there exists a path P_{5} defined in the following way:

$$
P_{5}:=\omega_{a f} \rightarrow \omega_{i g} \rightarrow \omega_{b f} .
$$

Since there are ($n-1$) paths for each $g \in\{1,2, \ldots, n\} \backslash\{p, q\}$, the total number of paths with this structure is $(n-2)(n-1)$.

- If $u_{a} \in N_{G}\left(u_{b}\right)$, then for each $f \in\{2, \ldots, n\}$, there exists a path P_{6} defined in the following way:

$$
P_{6}:=\omega_{a 1} \rightarrow \omega_{b f} .
$$

The number of paths with this structure is $(n-1)$.
Note that the paths above are all edge-disjoint paths connecting a vertex of C_{1} and a vertex of C_{2}. If $u_{a} \in$ $N_{G}\left(u_{b}\right)$, then it follows that

$$
\begin{aligned}
|S| & \geq(n-1)+(k-2)+(k-2)(n-2)+(n-1)+(n-2)(n-1)+(n-1) \\
& =(n-1)\left(\operatorname{deg}_{G}\left(u_{i}\right)+(n-1)\right) \\
& \geq(n-1)\left(\operatorname{deg}_{G}\left(u_{a}\right)+\operatorname{deg}_{G}\left(u_{b}\right)\right) \\
& \geq \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1) \\
& >\min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}(n-1)-2,
\end{aligned}
$$

a contradiction. If $u_{a} \notin N_{G}\left(u_{b}\right)$, then we have $\operatorname{deg}_{G}\left(u_{a}\right) \leq n-2$. Considering the paths $P_{1}-P_{5}$, we have

$$
\begin{aligned}
|S| & \geq(n-1)+(k-2)+(k-2)(n-2)+(n-1)+(n-2)(n-1) \\
& =(n-1)\left(\operatorname{deg}_{G}\left(u_{i}\right)+(n-2)\right) \\
& \geq(n-1)\left(\operatorname{deg}_{G}\left(u_{i}\right)+\operatorname{deg}_{G}\left(u_{a}\right)\right) \\
& \geq(n-1) \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\} \\
& >(n-1) \min _{x y \in E(G)}\left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)\right\}-2,
\end{aligned}
$$

a contradiction.

References

[1] N. Alon and E. Lubetzky, Independent sets in tensor graph powers. J. Graph Theory 54 (2007) 73-87.
[2] G. Boruzanlı Ekinci and A. Kırlangıç, The super connectivity of kronecker product graphs (2016).
[3] G. Boruzanlı Ekinci and A. Kırlangıç, Super connectivity of kronecker product of complete bipartite graphs and complete graphs. Discrete Math. 339 (2016) 1950-1953.
[4] B. Bresar, W. Imrich, S. Klavzar and B. Zmazek, Hypercubes as direct products. SIAM J. Discrete Math. 18 (2005) $778-786$.
[5] B. Brešar and S. Špacapan, On the connectivity of the direct product of graphs. Austral. J. Combin. 41 (2008) 45-56.
[6] X.L. Cao, Š. Brglez, S. Špacapan and E. Vumar, On edge connectivity of direct products of graphs. Inf. Proc. Lett. 111 (2011) 899-902.
[7] X.L. Cao and E. Vumar, Super edge connectivity of kronecker products of graphs. Inter. J. Found. Comput. Sci. 25 (2014) 59-65.
[8] G. Dirac, Généralisations du théoréme de menger. C. R. Acad. Sci. 250 (1960) 4252-4253.
[9] A.-H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph. Inf. Proc. Lett. 27 (1988) 195-199.
[10] M. Angel Fiol, J. Fabrega and M. Escudero, Short paths and connectivity in graphs and digraphs. Ars Combinatoria 29 (1990) 17-31.
[11] S.A. Ghozati, A finite automata approach to modeling the cross product of interconnection networks. Math. Comput. Model. 30 (1999) 185-200.
[12] F. Harary, Conditional connectivity. Networks 13 (1983) 347-357.
[13] R.H. Lammprey and B.H. Barnes, Products of graphs and applications. Model. Simul. 5 (1974) 1119-1123.
[14] J. Leskovec, D. Chakrabarti, J. Kleinberg, Ch. Faloutsos and Z. Ghahramani, Kronecker graphs: An approach to modeling networks. J. Machine Learn. Res. 11 (2010) 985-1042.
[15] D.J. Miller, The categorical product of graphs. Canadian J. Math. 20 (1968) 1511-1521.
[16] J. Nešetřil, Representations of graphs by means of products and their complexity. In Math. Found. Comput. Sci. Springer (1981) 94-102.
[17] H. Wang, E. Shan and W. Wang, On the super connectivity of Kronecker products of graphs. Inf. Proc. Lett. 112 (2012) 402-405.
[18] W. Wang and N.N. Xue, Connectivity of direct products of graphs. Ars Combinatoria 100 (2011) $107-111$.
[19] Y. Wang and B. Wu, Proof of a conjecture on connectivity of kronecker product of graphs. Discrete Math. 311 (2011) 2563-2565.
[20] P.M. Weichsel, The kronecker product of graphs. Proc. Amer. Math. Soc. 13 (1962) 47-52.
[21] D. Brent West, Introduction to graph theory, volume 2. Prentice hall Upper Saddle River (2001).
[22] J.-X. Zhou, Super connectivity of direct product of graphs. Ars Math. Contemporanea 8 (2015) 235-244.

[^0]: Keywords. Connectivity, Super connectivity, super edge connectivity, Kronecker product, fault tolerance.
 1 Department of Mathematics, Ege University Bornova, Izmir 35100, Turkey.

 * Corresponding author:gulnaz.boruzanli@ege.edu.tr

