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BICRITERIA SCHEDULING FOR DUE DATE ASSIGNMENT WITH TOTAL

WEIGHTED TARDINESS ∗

Hao Lin1, Cheng He1 and Yixun Lin2,∗

Abstract. In the due date assignment, the bicriteria scheduling models are motivated by the trade-
off between the due date assignment cost and a performance criterion of the scheduling system. The
bicriteria scheduling models related to the maximum tardiness and the weighted number of tardy jobs
have been studied in the literature. In this paper we consider a new model with criteria of the due date
assignment cost and the total weighted tardiness. The main results are polynomial-time algorithms for
the linear combination version, the constraint version, and the Pareto optimization version of bicriteria
scheduling.

Mathematics Subject Classification. 90B35, 90B50, 90C29.

Received July 4, 2016. Accepted October 5, 2017.

1. Introduction

The due date assignment problems have been studied extensively in the literature, where the main contri-
butions can be consulted in books [2, 3] and surveys [4, 6, 8]. The early research in this area focused on the
common due date assignment, in which a due date d common to all jobs is determined, so that the earliness and
the tardiness are minimized. This is generally related to the just-in-time (JIT) scheduling. Henceforth, many
generalized models with different restrictions on the due dates and with different objective functions were put
forward. For instance, the due dates are different, and the release dates may be also considered [5], the due dates
are dependent on the processing times [8], the processing times are controllable [15], or resource-dependent [13],
or positionally dependent [7]. Recently, the optimal restricted due date assignment was studied systematically
in [16].

In most of due date assignment models, there is a trade-off between the due date assignment cost and the
performance criterion of the scheduling system. In fact, the customers always demand that the quoted due dates
should be met; otherwise, considerable penalties will be applied. On the other hand, the manufacturer may want
to improve the system performance by optimizing a cost criterion related to the due dates. Generally speaking,
the smaller the due dates are, the lower for the assignment cost; while the greater the due dates are, the better
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for the performance criterion. Motivated by this kind of benefit balance, the bicriteria scheduling in due date
assignment comes up in connection with the recent trend of multicriteria scheduling (see [9, 17]).

According to the category of multicriteria optimization, there are three basic versions for a bicriteria problem
with criteria f1 and f2: (1) the linear combination version, that is, the single objective function is in the form
αf1 + βf2; (2) the constraint version, that is, minimizing f1 subject to f2 ≤ k or conversely; (3) the Pareto
optimization version, that is, to identify the set of all Pareto optimal solutions. These are in fact three related
optimization problems.

In particular, the bicriteria scheduling problem for due date assignment with weighted number of tardy jobs
in Shabtay and Steiner [12] and Koulamas [10] is to minimize

TC = α

n∑
j=1

dj +

n∑
j=1

wjUj ,

where dj and wj are the due date and the weight, respectively, of job j with 1 ≤ j ≤ n and Uj denotes the
tardiness indicator defined by Uj = 1 if Cj > dj and Uj = 0 otherwise (where Cj is the completion time of
job j). This is indeed the linear combination version of the bicriteria scheduling with criteria f1 =

∑n
j=1 dj

and f2 =
∑n
j=1 wjUj , where α is the combination coefficient. For this model, an O(n4) algorithm and an

O(n2) algorithm have been obtained in [10,12]. Furthermore, [11] studied the constraint version and the Pareto
optimization version of this bicriteria scheduling problem, for which the NP-hardness, polynomially solvable
cases and polynomial-time approximation scheme were presented.

Moreover, Shabtay et al. [14] studied the bicriteria scheduling with due date assignment cost F (d) =∑n
j=1 fj(dj) and maximum tardiness Tmax, where fj is a non-decreasing function for each j and Tmax =

max1≤j≤n Tj with Tj = max{0, Cj − dj}. The topic of this article contains the three versions as follows:

• The linear combination version: to minimize αF (d) + βTmax;
• The constraint version: to minimize Tmax subject to F (d) ≤ D or to minimize F (d) subject to Tmax ≤ T ;
• The Pareto optimization version: to identify the set of Pareto optimal solutions of two criteria F (d) and Tmax.

Herein, all these versions were shown to be NP-hard even on a single machine; and then polynomial-time
algorithms were established for a series of special cases (for example, every job has the same function fj or has
the same processing time pj). The approximation algorithms were also presented.

In addition to the weighted number of tardy jobs
∑
wjUj and the maximum tardiness Tmax mentioned above,

an important due date involving criterion is the total weighted tardiness
∑
wjTj . In this paper we study a new

model of single machine bicriteria scheduling problem by taking the total weighted tardiness
∑
wjTj as the

second criterion. In more detail, the two criteria are the due date assignment cost f1 =
∑n
j=1 ajdj , where aj > 0

stands for the cost of one-unit of dj , and the total weighted tardiness f2 =
∑n
j=1 wjTj . Our goal is to establish

polynomial-time algorithms for the three versions of bicriteria scheduling: the linear combination version, the
constraint version, and the Pareto optimization version respectively.

The paper is organized as follows. In Section 2 we describe some basic notations and problem formulations. In
Section 3 we discuss the linear combination version. Section 4 is concerned with the constraint version. Section
5 is dedicated to the Pareto optimization version. Finally Section 6 contains a summary.

2. Preliminaries

To state more precisely, let us introduce some notations, following the textbooks [2, 3]. Let J1, J2, . . . , Jn be
n jobs with processing times p1, p2, . . . , pn and due dates d1, d2, . . . , dn respectively. For convenience, we may
denote the set of jobs by {1, 2, . . . , n}. A schedule of jobs to be processed on a single machine is defined as
a permutation π = (π(1), π(2), . . . , π(n)) of {1, 2, . . . , n}. For a schedule π, the completion time of job π(i) is
Cπ(i) =

∑i
j=1 pπ(j). Then the tardiness is Tπ(i) = max{0, Cπ(i) − dπ(i)}. Moreover, the tardiness indicator is

defined by Uπ(i) = 1 if Tπ(i) > 0 and Uπ(i) = 0 otherwise. In the environment of due date assignment, a feasible
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solution consists of a schedule π of jobs and an assignment d = (dπ(1), dπ(2), . . . , dπ(n)) of due dates. So this
feasible solution is denoted by σ = (π,d) and the objective function is denoted by f(σ) = f(π,d) for some
function f .

The single machine bicriteria scheduling models discussed in this paper are as follows.

• The linear combination version, denoted by 1||αf1 +βf2, is a single criterion problem with objective function

f(π,d) = α

n∑
i=1

aπ(i)dπ(i) + β

n∑
i=1

wπ(i)Tπ(i). (2.1)

• The constraint version, denoted by 1|f1 ≤ D|f2, is the following mathematical programming:

min
∑n
i=1 wπ(i)Tπ(i) (2.2)

s.t.
∑n
i=1 aπ(i)dπ(i) ≤ D (2.3)

dπ(i) ≥ 0, 1 ≤ i ≤ n. (2.4)

• The Pareto optimization version, denoted by 1||(f1, f2), is to determine the set of Pareto optimal solutions
of two criteria

∑n
i=1 aπ(i)dπ(i) and

∑n
i=1 wπ(i)Tπ(i).

For the last version, we may address some basic concepts of Pareto (or simultaneous) optimization (see [9, 17]
for details).

In a bicriteria optimization problem with performance criteria f1 and f2, a feasible solution σ is said to be
Pareto optimal if there is no feasible solution σ′ such that f1(σ′) ≤ f1(σ) and f2(σ′) ≤ f2(σ) where at least one
of the inequalities is strict.

In a single machine bicriteria scheduling problem with criteria f1 and f2, the simultaneous (Pareto) opti-
mization version 1||(f1, f2), is to identify the set of Pareto optimal solutions.

For a feasible solution σ, we may associate a point (f1(σ), f2(σ)) in R2. If σ is a Pareto optimal solution,
then we say that (f1(σ), f2(σ)) is a Pareto optimal point. However, a Pareto optimal point may correspond to
different Pareto optimal solutions σ having the same objective values f1(σ) and f2(σ) (they are equivalent).
When there is no confusion, we may say Pareto optimal solutions and Pareto optimal points interchangeably.
The set of the Pareto optimal points may be finite or infinite. In the latter case, a curve containing all Pareto
optimal points is called the trade-off curve or efficient frontier.

3. Linear combination version

We first consider the linear combination version of (2.1), denoted by 1||α
∑
ajdj + β

∑
wjTj . Without loss

of generalization, we may assume β = 1. So the problem is to minimize the following single objective function

f(π,d) = α

n∑
i=1

aπ(i)dπ(i) +

n∑
i=1

wπ(i)Tπ(i)

= α

n∑
i=1

aπ(i)dπ(i) +

n∑
i=1

wπ(i) max{0, Cπ(i) − dπ(i)}.

Lemma 3.1. For the problem 1||α
∑
ajdj +

∑
wjTj, there exists an optimal solution σ = (π,d) such that

dπ(i) ≤ Cπ(i) for 1 ≤ i ≤ n.

Proof. Let σ = (π,d) be an optimal solution with dπ(k) > Cπ(k) for some k. Then by letting d′π(k) = Cπ(k) and

d′π(i) = dπ(i) for i 6= k, we have

T (π,d′) =

n∑
i=1

wπ(i) max{0, Cπ(i) − d′π(i)} =

n∑
i=1

wπ(i) max{0, Cπ(i) − dπ(i)} = T (π,d).
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Moreover,
∑

1≤i≤n aπ(i)d
′
π(i) <

∑
1≤i≤n aπ(i)dπ(i). Hence f(π,d′) ≤ f(π,d) and thus σ′ = (π,d′) is also an

optimal solution. �

By this lemma, we may assume that dπ(i) ≤ Cπ(i) (1 ≤ i ≤ n) for any given schedule π. Thus the objective
function can be written as

f(π,d) = α

n∑
i=1

aπ(i)dπ(i) +

n∑
i=1

wπ(i) max{Cπ(i), dπ(i)} −
n∑
i=1

wπ(i)dπ(i)

=

n∑
i=1

wπ(i)Cπ(i) +

n∑
i=1

(αaπ(i) − wπ(i))dπ(i).

For minimizing the last summation of the above representation, the assignment of due dates can be obtained
by taking each dπ(i) with negative coefficient as large as possible, namely dπ(i) = Cπ(i), and setting dπ(i) = 0
for the others. Hence

dπ(i) =

{
Cπ(i), if αaπ(i) < wπ(i)
0, otherwise.

Thus we have

f(π,d) =

n∑
i=1

wπ(i)Cπ(i) +
∑

αaπ(i)<wπ(i)

(αaπ(i) − wπ(i))Cπ(i) =

n∑
i=1

w′π(i)Cπ(i), (3.1)

where w′π(i) = min{αaπ(i), wπ(i)}, 1 ≤ i ≤ n.

To summarize, the problem of minimizing f(π,d) is equivalent to the classical problem 1||
∑
wjCj with new

weights w′j . It is well known that this problem can be solved by the WSPT (the weighted shortest processing
time first) rule, that is, in the nondecreasing order of the ratios

pj
wj

(see [2, 3]). Thus, we have an algorithm of

Revised WSPT rule for solving problem 1||α
∑
ajdj +

∑
wjTj as follows.

Algorithm R-WSPT

(1) Let w′j = min{αaj , wj}, 1 ≤ j ≤ n.
(2) Determine the schedule π by the WSPT rule such that

pπ(1)

w′π(1)
≤
pπ(2)

w′π(2)
≤ . . . ≤

pπ(n)

w′π(n)
·

(3) Determine the due date assignment d by

dπ(i) =

{
Cπ(i), if αaπ(i) < wπ(i)

0, otherwise.

(4) Return the optimal solution σ = (π,d).

Theorem 3.2. Algorithm R-WSPT correctly solves the problem 1||α
∑
ajdj +

∑
wjTj in O(n log n) time.

Proof. The correctness of the algorithm is based on the representation of (3.1). As for the running time of the
algorithm, the new weights w′j can be computed in Step (1) in O(n) time. Step (2) for determining schedule π
by the WSPT rule runs in O(n log n) time. In Step (3), the due date assignment d can be computed in O(n)
time. So the overall complexity is O(n log n). �
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4. Constraint version

We next consider the constraint version 1|
∑
ajdj ≤ D|

∑
wjTj , namely problem (2.2)–(2.4). A solution

σ = (π,d) is said to be feasible if it satifies the constraint
∑

1≤i≤n aπ(i)dπ(i) ≤ D. An optimal solution is a
feasible solution that minimizes the objective function T (π,d) =

∑
1≤i≤n wπ(i)Tπ(i). As in Lemma 3.1, we have

the following observation.

Lemma 4.1. For problem 1|
∑
ajdj ≤ D|

∑
wjTj, there exists an optimal solution σ = (π,d) such that dπ(i) ≤

Cπ(i) for 1 ≤ i ≤ n.

So we may assume dπ(i) ≤ Cπ(i) (1 ≤ i ≤ n) for any given schedule π. Thus the objective function can be
written as

T (π,d) =

n∑
i=1

wπ(i) max{Cπ(i), dπ(i)} −
n∑
i=1

wπ(i)dπ(i) =

n∑
i=1

wπ(i)Cπ(i) −
n∑
i=1

wπ(i)dπ(i).

Furthermore, we can write dπ(i) = Cπ(i)xπ(i) with 0 ≤ xπ(i) ≤ 1 (1 ≤ i ≤ n) and the feasible solution is denoted
by σ = (π,x). Thus the objective function is represented as

T (π,x) =

n∑
i=1

wπ(i)Cπ(i) −
n∑
i=1

wπ(i)xπ(i)Cπ(i) =

n∑
i=1

wπ(i)(1− xπ(i))Cπ(i). (4.1)

When D = 0, and so all dj = xj = 0, the optimal solution can be obtained by sequencing the jobs in WSPT
order. We assume D > 0 in the sequel.

Lemma 4.2. There exists an optimal solution σ = (π,x) such that:

(a) there is at most one job with 0 < xj < 1;
(b) if the jobs are indexed in the order that w1

a1
≤ w2

a2
≤ . . . ≤ wn

an
, then the set of jobs with xj > 0 is

{k, k + 1, . . . , n} for some k.

Proof. According to equation (4.1), for an optimal schedule π (where Cπ(i) are known), the problem for deter-
mining x is the following Linear Programming:

max z(π,x) =
∑n
i=1 wπ(i)Cπ(i)xπ(i) (4.2)

s.t.
∑n
i=1 aπ(i)Cπ(i)xπ(i) ≤ D (4.3)

0 ≤ xπ(i) ≤ 1, 1 ≤ i ≤ n. (4.4)

In this LP, there exists an optimal solution x which is a basic feasible solution, that is a vertex of the polytope
of feasible region. By the constraints (4.3)−(4.4), we can see that each basic feasible solution x has some
components with xj = 1, some components with xj = 0, and at most one component with 0 < xj < 1
corresponding to the equality of (4.3).

Suppose that σ = (π,x) is optimal. Let S = {j : xj > 0} and S̄ = {j : xj = 0}. To show (b), it suffices to
prove that wi

ai
≤ wj

aj
for any i ∈ S̄ and j ∈ S. Assume, to the contrary, that wi

ai
>

wj
aj

for some i ∈ S̄ and j ∈ S.

Then we define a new solution σ′ = (π,x′) by setting

x′j = xj − ε, x′i = xi +
ajCj
aiCi

ε,

where ε > 0 is sufficiently small, Cj is the completion time of job j for 1 ≤ j ≤ n under the schedule π, and
x′h = xh for h 6= i, j. Then we have

aiCix
′
i + ajCjx

′
j = aiCixi + ajCjxj ,
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and thus x′ satisfies the constraint (4.3). However, the increment of the objective function is

z(π,x′)− z(π,x) = wiCix
′
i + wjCjx

′
j − wiCixi − wjCjxj

= wiCi(x
′
i − xi) + wjCj(x

′
j − xj) = wiCi

ajCj
aiCi

ε− wjCjε = ajCjε

(
wi
ai
− wj
aj

)
> 0.

Hence z(π,x′) > z(π,x), contradicting the optimality of σ = (π,x). �

By this lemma, we can find optimal solutions from among those satisfying (a)−(b). Now suppose that the jobs
are indexed in the order that

w1

a1
≤ w2

a2
≤ . . . ≤ wn

an
· (4.5)

For a given schedule π, we can determine the completion time Cj(π) of job j with respect to π (1 ≤ j ≤ n) by

Cj(π) :=
∑

π−1(i)≤π−1(j)

pi, 1 ≤ j ≤ n. (4.6)

Then the LP (4.2)–(4.4) for x can be written as

max z(π,x) =
∑n
j=1 wjCj(π)xj (4.7)

s.t.
∑n
j=1 ajCj(π)xj ≤ D (4.8)

0 ≤ xj ≤ 1, 1 ≤ j ≤ n. (4.9)

This LP is a Fractional Knapsack Problem which has the following simple property.

Lemma 4.3. Suppose that the jobs are indexed by the order of (4.5) and

k := max

j ∈ {1, 2, . . . , n} :

n∑
i=j

aiCi(π) ≥ D

 .

Then an optimal solution of the fractional knapsack problem (4.7)–(4.9) can be obtained by setting xj = 1 for
k + 1 ≤ j ≤ n, xk = δ, xi = 0 for 1 ≤ i ≤ k − 1, where

δ :=
D −

∑n
i=k+1 aiCi(π)

akCk(π)
·

Proof. See text books of LP or use the method of proving (b) in Lemma 4.2. �

To state more precisely, the LP (4.7)–(4.9) can be solved by the following procedure.

Procedure LP

(1) For a given schedule π, compute the completion time Cj(π) of job j (1 ≤ j ≤ n) by (4.6). Set j := n.

(2) While D > 0 do: If ajCj(π) < D, then set xj := 1, D := D − ajCj(π) and j := j − 1. If ajCj(π) ≥ D,
then set xj := D

ajCj(π)
= δ and D := D − ajCj(π)xj = 0.

(3) Let k := j. Return the solution x by xj = 1 for k + 1 ≤ j ≤ n, xk = δ, xi = 0 for 1 ≤ i ≤ k − 1.
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In this procedure, we may call the job k the bordering job, which is the only possibility for 0 < xk < 1. In
traditional theory of LP, the variable xk here is the basic variable corresponding to the inequality (4.3) or (4.8).

On the other hand, suppose that the bordering job k is given. Then we can write

xk =
1

akCk(π)
(D −

n∑
j=k+1

ajCj(π)xj) (4.10)

from the constraint (4.8), where xj = 1 for k+ 1 ≤ j ≤ n and 0 < xk ≤ 1. In order to eliminate this constraint,
we substitute (4.10) into the objective function (4.1) so that

T (π,x) =

k∑
i=1

wiCi(π)− wkCk(π)xk

=

k∑
i=1

wiCi(π)− wk
ak

(D −
n∑

j=k+1

ajCj(π))

=

n∑
j=1

w′jCj(π)− wk
ak
D, (4.11)

where

w′j =


wj , for 1 ≤ j ≤ k
wkaj
ak

, for k + 1 ≤ j ≤ n.
(4.12)

Lemma 4.4. Suppose that x is obtained by Procedure LP for a given schedule π and k is the bordering job in
this procedure. Let w′j (1 ≤ j ≤ n) be the new weights defined by (4.12). Then the solution σ = (π,x) is optimal
if and only if π is in the WSPT order with respect to the new weights w′j, that is,

pπ(1)

w′π(1)
≤
pπ(2)

w′π(2)
≤ . . . ≤

pπ(n)

w′π(n)
·

Proof. Suppose that σ = (π,x) is optimal. Then we can obtain a bordering job k by Procedure LP for π. By
the above analysis, the objective function (4.1) is equivalent to (4.11). In the latter, wk

ak
D is a constant. So the

problem is reduced to minimizing
∑n
j=1 w

′
jCj(π), which is independent of the assignment x. It is well known

that a schedule π is optimal for the problem 1||
∑
wjCj if and only if it is in the WSPT order. Therefore, π

must be in the WSPT order with respect to the new weights w′j .

Conversely, suppose that π is in the WSPT order with respect to the new weights w′j . For the bordering
job k, we have the basic variable representation (4.10), and so the objective function is equivalent to (4.11).
Hence minimizing T (π,x) is equivalent to minimizing

∑n
j=1 w

′
jCj(π). It is known that the schedule π in the

WSPT order with respect to w′j is optimal for
∑n
j=1 w

′
jCj(π). Therefore, σ = (π,x) is optimal for T (π,x). This

completes the proof. �
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As a result, in order to find an optimal solution, it suffices to look for a bordering job k such that the induced
schedule π satisfies the condition of Lemma 4.4. We may call this k a valid bordering job. In the following
algorithm, we use binary search to find this k in the range 1 ≤ k ≤ n. During the search process, let l and u
denote the lower and upper bounds.

Algorithm LP-WSPT

(0) Let l := 1 and u := n.
(1) If l = u, then k = l is the valid bordering job. Go to Step (5).
(2) Let k := b 12 (l + u)c. Compute the new weights w′j (1 ≤ j ≤ n) by (4.12). Construct a schedule π in the

WSPT order with respect to the weights w′j .
(3) Run Procedure LP for the schedule π. Let k∗ be the bordering job produced by this procedure. If k∗ = k,

then k is the valid bordering job. Go to Step (5)
(4) If k < k∗, then set l := k + 1. If k∗ < k, then set u := k − 1. Go to Step (1).
(5) Return the optimal solution σ = (π,x) by the valid bordering job.

Theorem 4.5. Algorithm LP-WSPT correctly solves the problem 1|
∑
ajdj ≤ D|

∑
wjTj in O(n(log n)2) time.

Proof. By Lemma 4.4, if we can find a valid bordering job k, then σ = (π,x) is an optimal solution, where π is
constructed in Step (2) and x = (0, . . . , 0, xk, 1, . . . , 1) is the assignment determined by the bordering job k. As
the algorithm is a binary search, we need only show that the valid bordering job k is contained in the search
range [l, u]. This is true at the beginning when l = 1 and u = n. In Step (3), if k∗ = k, then k is a valid bordering
job and we are done. If k < k∗, then

D −
n∑

j=k+1

ajCj(π) ≤ D −
n∑

j=k∗+1

ajCj(π)− ak∗Ck∗(π)xk∗ = 0.

Thus the job k is impossible to be the bordering job of π (and of course not valid). For k′ < k, let π′ be the
schedule constructed in Step (2) for k′. We show below that the job k′ cannot be the bordering job of π′ either.
By the new weight formula (4.12), we have the new weights corresponding to k as

w1, . . . , wk′ , wk′+1, . . . , wk,
wkak+1

ak
,
wkak+2

ak
, . . . ,

wkan
ak

,

and the new weights corresponding to k′ as

w1, . . . , wk′ ,
wk′ak′+1

ak′
, . . . ,

wk′ak
ak′

,
wk′ak+1

ak′
,
wk′ak+2

ak′
, . . . ,

wk′an
ak′

·

Since wk′
ak′
≤ wk

ak
, we have

wk′aj
ak′

≤ wkaj
ak

for any j with k + 1 ≤ j ≤ n. Especially, the order of these jobs

k + 1, k + 2, . . . , n in π is the same as that in π′, because the ratios
pj
w′j

are multiplied by a constant. Moreover,

with regard to the orders between the jobs k + 1 ≤ j ≤ n and the others, we have the following observations:

• For any two jobs l and j with 1 ≤ l ≤ k′, k + 1 ≤ j ≤ n, if job l is scheduled before job j in π, namely,
pl
wl
≤ ak

wk
· pjaj , then pl

wl
≤ ak

wk
· pjaj ≤

ak′
wk′
· pjaj . Hence job l is also scheduled before job j in π′.

• For any two jobs l and j with k′ + 1 ≤ l ≤ k, k + 1 ≤ j ≤ n, if job l is scheduled before job j in π, namely,
pl
wl
≤ ak

wk
· pjaj , then by wk

ak
≥ wl

al
, it holds that

pj
aj
≥ pl

wl
· wkak ≥

pl
al

. Thus job l is also scheduled before job j

in π′.

By the orders of π and π′ mentioned above, we conclude that Cj(π) ≤ Cj(π′) for k + 1 ≤ j ≤ n. Then

n∑
j=k′+1

ajCj(π
′) >

n∑
j=k+1

ajCj(π
′) ≥

n∑
j=k+1

ajCj(π) ≥ D.
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Thus the job k′ cannot be the bordering job of π′. Therefore, all jobs k′ ≤ k should be eliminated from the
search range by setting l := k + 1.

Likewise, if k > k∗, then

D −
n∑
j=k

ajCj(π) > D −
n∑

j=k∗+1

ajCj(π)− ak∗Ck∗(π)xk∗ = 0.

Thus the job k cannot be the bordering job of π. Furthermore, it can be shown that the job k′ > k cannot be
the bordering job of π′ either (by the same argument as above). So we can eliminate all jobs k′ ≥ k from the
search range by setting u := k − 1.

For the running time of the algorithm, the computation for each k is called a stage. As we know, binary search
has log n stages. In each stage, the main computation is included in Steps (2)−(3). In Step (2), computing the
new weighs and constructing the schedule in WSPT order can be completed in O(n log n) time. In Step (3),
Procedure LP can be carried out in O(n) time. The remaining computations also take O(n) time. Therefore,
the overall complexity is O(n(log n)2). �

5. Pareto optimization version

We proceed to consider the simultaneous optimization problem 1||(f1, f2) where f1 =
∑
ajdj , f2 =

∑
wjTj .

The main theme is to apply the constraint version 1|
∑
ajdj ≤ D|

∑
wjTj . We suppose the jobs are indexed in

the order that w1

a1
≤ w2

a2
≤ . . . ≤ wn

an
. Then the constraint version is

min
∑n
j=1 wj(1− xj)Cj(π)

s.t.
∑n
j=1 ajCj(π)xj ≤ D

0 ≤ xj ≤ 1, 1 ≤ j ≤ n,

where π is an unknown schedule, dj = Cj(π)xj , and D ≥ 0 is a parameter. We denote this problem by CV(D).

By Algorithm LP-WSPT in the previous section, an optimal solution of problem CV(D) is σ = (π,d) where
π is a schedule in the WSPT order with the new weights defined in (4.12) and d is in the form

d = (0, . . . , 0, Ck(π)δ, Ck+1(π), . . . , Cn(π)),

where k is the bordering job (1 ≤ k ≤ n) and D = akCk(π)δ +
∑n
j=k+1 ajCj(π).

Lemma 5.1. For any given D, the optimal solution σ = (π,d) of problem CV(D) produces a Pareto optimal
solution for the bicriteria scheduling problem 1||(f1(σ), f2(σ)).

Proof. If σ = (π,d) is not a Pareto optimal solution, then there exists another solution σ′ = (π′,d′) such that∑
1≤j≤n ajd

′
j ≤

∑
1≤j≤n ajdj and

∑
1≤j≤n wjT

′
j ≤

∑
1≤j≤n wjTj where at least one of the inequalities is strict.

We distinguish two cases as follows.

(i)
∑

1≤j≤n ajd
′
j ≤

∑
1≤j≤n ajdj ≤ D and

∑
1≤j≤n wjT

′
j <

∑
1≤j≤n wjTj . This contradicts that σ = (π,d) is

an optimal solution of problem CV(D).

(ii)
∑

1≤j≤n ajd
′
j <

∑
1≤j≤n ajdj ≤ D and

∑
1≤j≤n wjT

′
j =

∑
1≤j≤n wjTj . Let D∗ =

∑
1≤j≤n ajd

′
j and let σ∗ =

(π∗,d∗) be the optimal solution of problem CV(D∗). Then T (π∗,d∗) ≤ T (π′,d′), namely
∑

1≤j≤n wjT
∗
j ≤∑

1≤j≤n wjT
′
j . Besides, in performing Algorithm LP-WSPT for D∗, let k∗ be the bordering job and x∗j the

corresponding variables. On the other hand, let k̃ be the the bordering job in Procedure LP for D and the
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given schedule π∗. Then we obtain a feasible solution (π∗, d̃) by this bordering job k̃. Since D∗ < D, it
follows that k∗ ≥ k̃ and x∗k∗ < xk̃ if k∗ = k̃. Hence

T (π∗, d̃) =

k̃∑
i=1

wiCi(π
∗)− wk̃Ck̃(π∗)xk̃ <

k∗∑
i=1

wiCi(π
∗)− wk∗Ck∗(π∗)x∗k∗ = T (π∗,d∗).

Therefore,
∑

1≤j≤n wj T̃j <
∑

1≤j≤n wjT
∗
j ≤

∑
1≤j≤n wjT

′
j =

∑
1≤j≤n wjTj , contradicting the optimality

of σ = (π,d). This completes the proof. �

Lemma 5.2. Any Pareto optimal point of bicriteria scheduling problem 1||(f1(σ), f2(σ)) can be generated by
an optimal solution of problem CV(D).

Proof. Suppose that σ0 = (π0,d0) is a Pareto optimal solution of 1||(f1(σ), f2(σ)). Let D0 =
∑

1≤j≤n ajd
0
j .

Then σ0 is an optimal solution of problem CV(D0) by the definition of Pareto optimality of σ0. Let σ = (π,d)
be the optimal solution of problem CV(D0) produced by Algorithm LP-WSPT. Then T (π0,d0) = T (π,d) and∑

1≤j≤n ajd
0
j = D0 =

∑
1≤j≤n ajdj by the consequence of Algorithm LP-WSPT. This gives f1(σ0) = f1(σ)

and f2(σ0) = f2(σ). Thus the Pareto optimal point (f1(σ0), f2(σ0)) = (f1(σ), f2(σ)) can be generated by the
optimal solution of Algorithm LP-WSPT with respect to CV(D0). �

By these lemmas, we conclude that all Pareto optimal solutions can be obtained by solving the problems
CV(D) for different D. When D = 0, we have the first Pareto optimal point (0,

∑n
i=1 wπ(i)Cπ(i)), where π is

a schedule in the WSPT order. As D increases, there are infinite Pareto optimal points which constitute a
trade-off curve of piecewise linear function. We will see that this piecewise linear function has at most n linear
segments, each of which corresponds to a bordering job k.

For each bordering job k with 1 ≤ k ≤ n, let π(k) be the schedule produced by Algorithm LP-WSPT, that is,
in the WSPT order with the new weights defined in (4.12). Meanwhile, the due date assignments for different δ
(0 ≤ δ ≤ 1) are

d(k)(δ) = (0, . . . , 0, Ck(π(k))δ, Ck+1(π(k)), . . . , Cn(π(k))). (5.1)

Then the criterion for due date cost is

f1(π(k),d(k)(δ)) =

n∑
j=1

ajdj = akCk(π(k))δ +

n∑
j=k+1

ajCj(π
(k)), (5.2)

which is a linear function on δ with 0 ≤ δ ≤ 1. Accordingly, the criterion for the total weighted tardiness is

f2(π(k),d(k)(δ)) = T (π(k),d(k)(δ)) =

k∑
i=1

wiCi(π
(k))− wkCk(π(k))δ, (5.3)

which is a linear function on δ with 0 ≤ δ ≤ 1. This amounts to solving the constraint problem CV(D) with
D = akCk(π(k))δ +

∑n
j=k+1 ajCj(π

(k)).
To summarize, we have an algorithm for constructing the trade-off curve of problem 1||(

∑
ajdj ,

∑
wjTj) as

follows.

Algorithm PRT-OPT

(1) Re-index the jobs such that
w1

a1
≤ w2

a2
≤ . . . ≤ wn

an
·

Let k := n.
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(2) For the bordering job k, construct the schedule π(k) in the WSPT order with the new weights defined
in (4.12), and construct the assignment d(k)(δ) by (5.1).

(3) Compute f1(π(k),d(k)(δ)) by (5.2) and compute f2(π(k),d(k)(δ)) by (5.3).
(4) Return the linear segments of Stage k:

(f1(π(k),d(k)(δ)), f2(π(k),d(k)(δ))), 0 ≤ δ ≤ 1.

If k = 1, then stop; otherwise set k := k − 1 and go to Step (2).

Theorem 5.3. Algorithm PRT-OPT correctly solves the problem 1||(
∑
ajdj ,

∑
wjTj) by determining the trade-

off curve in O(n2 log n) time.

Proof. By Lemmas 5.1 and 5.2, the trade-off curve containing all Pareto optimal points can be constructed by
the solutions of the problems CV(D) for all possible D ≥ 0. For this purpose, Algorithm PRT-OPT produces
all these solutions σ(k) = (π(k),d(k)(δ)) (0 ≤ δ ≤ 1) for 1 ≤ k ≤ n.

We next analysis the running time of the algorithm. In Step (1), we define the initial schedule in O(n log n)
time. The algorithm consists of n stages, each of which (Stage k) includes Steps (2)−(4). In Step (2), we construct
the schedule π(k) in O(n log n) time and construct the assignment d(k)(δ) in O(n) time. In Steps (3)−(4), com-
puting f1(π(k),d(k)(δ)) and f2(π(k),d(k)(δ)) can be completed in O(n) time. Therefore, the overall complexity
of n stages is O(n2 log n). �

6. Concluding remarks

Multicriteria and Multiagent scheduling [1,17] is an active area in modern scheduling theory. It is meaningful
to combine the due date assignment with this area. The bicriteria scheduling of due date assignment has two
objective functions, one is the due date cost, another is a due date involving criterion in scheduling system. For
the second criterion,

∑
wjUj (the weighted number of tardy jobs), Tmax (the maximum tardiness) and

∑
wjTj

(the total weighted tardiness) have been investigated. More second criteria, such as the earliness and tardiness,
should be further studied.

In the foregoing discussion, we only consider that the due date cost is a linear function
∑n
j=1 ajdj . Similar

to [14], the due date cost may have more complicated form, such as
∑n
j=1 fj(dj). We believe that the problems

would be changed to be NP-hard for this generalized cost. Also, it is worthwhile to study the case where some
constraints are imposed to the due dates.

Acknowledgements. The authors would like to thank the referees for their helpful comments on improving the presentation
of the paper.
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[2] J. B lazewicz, K. Ecker, G. Schmidt and J. Wȩglarz, Scheduling in Computer and Manufacturing Systems. Springer-Verlag,
Berlin (1993).

[3] P. Brucker, Scheduling Algorithms 3rd Edition. Springer-Verlag, Berlin (2001).

[4] T.C.E. Cheng and M.C. Gupta, Survey of scheduling research involving due date determination decisions. Eur. J. Operat.
Res. 38 (1989) 156–166.

[5] V. Gordan and W. Kubiak, Single machine scheduling with release and due date assignment to minimize the weighted number
of late jobs. Infor. Proc. Lett. 68 (1998) 153–159.

[6] V. Gordan, J.M. Proth and C. Chu, A survey of the state-of-the-art of common due date assignment and scheduling research.
Eur. J. Oper. Res. 139 (2002) 1–25.

[7] V. Gordan and V. Strusevich, Single machine scheduling and due date assignment with positionally dependent processing
times. Eur. J. Oper. Res. 198 (2009) 57–62.

[8] V. Gordan, V. Strusevich and A. Polgui, Scheduling with due date assignment under special conditions on job processing. J.
Scheduling 15 (2012) 447–456.



370 H. LIN ET AL.

[9] H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res. 167 (2005) 592–623.

[10] C. Koulamas, A faster algorithm for a due date assignment problem with tardy jobs. Oper. Res. Lett. 38 (2010) 127–128.

[11] H. Lin and C. He, On the bicriteria scheduling of due date assignment and weighted number of tardy jobs. Chinese. J. Eng.
Math. 34 (2017) 73–84.

[12] D. Shabtay and G. Steiner, Two due date assignment problems in scheduling a single machine. Oper. Res. Lett. 34 (2006)
683–691.

[13] D. Shabtay and G. Steiner, The single-machine earliness-tardiness scheduling problem with due date assignment and resource-
dependent processing times. Ann. Oper. Res. 159 (2008) 25–40.

[14] D. Shabtay, G. Steiner and L. Yedidsion, Bicriteria problems to minimize maximum tardiness and due date assignment cost
in various scheduling enviroments. Discrete Appl. Math. 158 (2010) 1090–1103.

[15] D. Shabtay and G. Steiner, A bicriteria approach to minimize the total weighted number of tardy jobs with convex controllable
processing times and assignable due dates. J. Scheduling 14 (2011) 455–469.

[16] D. Shabtay, Optimal restricted due date assignment in scheduling. Eur. J. Oper. Res. 252 (2016) 79–89.

[17] V. T’kindt and J.-C. Billaut, Multicriteria Scheduling: Theory, Models and Algorithms, 2nd Edition. Springer-Verlag, Berlin
(2006).


	Introduction 
	Preliminaries
	Linear combination version
	Constraint version
	Pareto optimization version
	Concluding remarks
	References

