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ALGEBRAIC MODELLING OF A TWO LEVEL SUPPLY CHAIN

WITH DEFECTIVE ITEMS
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Abstract. M. Khan and M.Y. Jaber, Optimal inventory cycle in a two-stage supply chain incorpo-
rating imperfect items from suppliers. Int. J. Oper. Res. 10 (2011) 442–457, have addressed a two
level supply chain of defective items. They compared three coordination mechanisms, i.e. cycle time;
K–multiplier cycle time; and 2K–multiplier cycle time. This paper proposes a simpler algebraic solu-
tion for the K–multiplier cycle time mechanism without the use of differential calculus. The two level
supply chain with defective items is illustrated with a numerical example. A sensitivity analysis is also
provided.
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1. Introduction

The economic order quantity (EOQ) inventory model celebrated its 100th anniversary in 2013. The EOQ
inventory model was proposed by Harris [16]. According to Cárdenas–Barrón et al. [11], Ford Whitman Harris
can be considered as the Founding Father of the Inventory Theory.

Inventory and supply chain management are two important issues that researchers are studying in a holistic
way recently. It is well known that the supply chain coordination is a centralized planning process that deals with
production lot sizing, production scheduling, shipment quantities and inventory allocation. In the centralized
production and replenishment decision policy, the global supply chain costs are optimized in an integrated
manner. Whereas in the decentralized production and replenishment decision policy, each member within the
supply chain considers optimizing their own costs individually. Several benefits of inventory coordination and
information sharing among the supply chain members have been listed in the literature, see for instance the
research works of Khan et al. [20] and Khan et al. [21].

Lately, the issue of inventory–distribution coordination in supply chain modeling has been dealt with in
several research works. Mainly, these works have concentrated on the integrated vendor–buyer inventory and
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the joint economic lot–sizing problems. On the other hand, other researchers have proposed that the inventory–
distribution coordination must be made by synchronizing the cycle time through all the supply chain stages.
Moreover, there exit inventory supply chain models where the coordination is reached by implementing the
integer multipliers mechanism. Here, the cycle time of a stage of the chain is an integer multiple of the cycle
time of the adjacent downstream stage (i.e. Khouja [22]).

Salameh and Jaber [25] introduced a new direction of research to inventory modeling by adding screening
process for defective items in an EOQ inventory model. Lately, this model has enjoyed a huge amount of interest
from researchers and practitioners. The reader is referred to Khan et al. [18] for a review of the models that
extend the work of Salameh and Jaber [25]. More recently, Sivashankari and Panayappan [34] considered defective
items and studied how storage cost at a vendor’s facility can be reduced by using two different production rates.
Conversely, Darwish et al. [14] demonstrated the benefits of coordination in a two level supply chain where a
fraction of vendor’s lots are defective. Jauhari [17] studied the deterioration in vendor’s production process in
a two level supply chain where lead time varies linearly with lot size. Ben–Daya et al. [1] optimized the timings
and quantities of inbound and outbound material in a three level supply chain. Cárdenas–Barrón et al. [7]
revisited the model of Ben–Daya et al. [1] and proposed an improved algorithm that results in lesser total cost
and lesser cycle time.

Kim and Sarkar [23] investigated the impact of investment to improve quality and reduce lead time in a
multistage imperfect production process. On the one hand, Sarkar [29] illustrated the coordination in a supply
chain with quantity discounts where the buyer uses a single setup multiple delivery strategy. On the other hand,
Sarkar and Saren [31] studied inspection policies for a production process that randomly shifts to an out–of–
control state. The reader may be referred to Cárdenas–Barrón et al. [9], Sarkar and Moon [28] and Tayyab and
Sarkar [35] for more on these models.

A common methodology in the above literature is to use differential calculus to optimize inventory systems.
However, several researchers have developed and proposed easier solution approaches for the sake of optimization;
for example Cárdenas–Barrón [3] and Wee and Chung [37]. Grubbström [15] was perhaps the first to propose the
use of the algebraic optimization method to derive the famous EOQ inventory model without backorders. Since
then, the algebraic method has received an extraordinary attention from several researchers around the world.
Cárdenas–Barrón [2] applied an algebraic method to derive the EPQ inventory model considering shortages
for the case where only one backlog cost is considered. Later, using the algebraic method Cárdenas–Barrón [3]
formulated and solved an n–stage–multi–customer supply chain inventory model for the simple equal cycle
time inventory coordination mechanism. Chung and Wee [13] developed an integrated three–stage inventory
system taking into account planned backorders. They formulated and optimized the three–stage inventory
system with four–decision–variables algebraically. Wee and Chung [37] also applied a simple algebraic method
to derive the economic lot size of an integrated production–inventory system. Chiu [12] also presented a simple
algebraic method to show that the optimal lot size and total production–inventory costs of an imperfect EMQ
inventory model can be obtained without derivatives. Cárdenas–Barrón [4] considered the problem of optimal
manufacturing batch size with rework process at a single–stage production system. He determined algebraically
the optimal solution for two different inventory policies and established the range of real values for proportion
of defective products for which there exists an optimal solution. Seliaman [33] revisited and extended the Chung
and Wee [13] model to include a fourth stage. It is worth mentioning that with the algebraic method, researchers
or practitioners, unexperienced with differential calculus, may also be capable to understand the optimization
procedure easily.

The acceptance of the algebraic method as an optimization tool lies in the fact that it involves basic knowl-
edge of mathematics. Cárdenas–Barrón [6] presented an in–depth literature review with regard to the use of
algebraic optimization methods in the inventory field. The reader may be referred to the models in Cárdenas–
Barrón [4], Cárdenas–Barrón [5], Cárdenas–Barrón et al. [7], Cárdenas–Barrón et al. [8] Cárdenas–Barrón et
al. [9], Cárdenas–Barrón et al. [10], Sarkar [26], Sarkar et al. [30], Seliaman [32], Teng et al. [36], for more on
these models with algebraic procedures. In comparison to the available literature, the contribution in this paper
has been highlighted in Table 1.
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Table 1. Contribution of the paper in comparison to other inventory models.

Author(s) Supply Single Multiple Defectives Backorders/ Algebraic

Chain Supplier Suppliers Shortages Approach

Ben–Daya et al. [1]
√ √ √

Cárdenas–Barrón [3]
√ √ √

Cárdenas–Barrón [4]
√ √

Cárdenas–Barrón et al. [7]
√ √ √ √

Cárdenas–Barrón et al. [8]
√ √ √

Cárdenas–Barrón et al. [9]
√ √ √ √

Cárdenas–Barrón et al. [10]
√ √ √ √

Chiu [12]
√ √ √

Chung and Wee [13]
√ √ √ √

Darwish et al. [14]
√ √

Jauhari [17]
√ √ √

Khan and Jaber [19]
√ √ √

Khan et al. [20]
√ √ √

Khan et al. [21]
√ √ √

Khouja [22]
√ √

Kim and Sarkar [23]
√ √

Papachristos and Konstantaras [24]
√

Salameh and Jaber [25]
√

Sarkar [26]
√ √ √

Sarkar et al. [27]
√ √

Sarkar and Moon [28]
√ √

Sarkar [29]
√ √ √ √ √

Sarkar et al. .[30]
√ √ √

Sarkar and Saren [31]
√

Seliaman [32]
√ √ √

Seliaman [33]
√ √ √ √

Sivashankari and Panayappan [34]
√

Tayyab and Sarkar [35]
√

Teng et al. [36]
√ √ √ √

Wee and Chung [37]
√ √ √ √

Khan et al. [38]
√ √ √

This Paper
√ √ √ √

In this paper, we consider the integer (K) multipliers inventory coordination mechanism in Khan and
Jaber [19] and develop an algebraic solution for a two level supply chain with defective items. The algebraic
optimization approach developed in this paper derives a simpler closed form solution for this type of supply
chain systems. This approach depends on completing the perfect squares in the cost function which simplifies
the solution procedures and avoids the need to establish optimality conditions needed in classical differential
calculus methods.

The remainder of this paper is organized as follows. Section 2 presents the description the two stage supply
chain model as presented in Khan and Jaber [19]. Section 3 describes the development of algebraic solution.
Section 4 solves a numerical example. Section 5 provides a sensitivity analysis. Finally, Section 6 gives some
concluding remarks and future research directions.
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2. Two level supply chain model development

Khan and Jaber [19] optimized the cost of a supplier–vendor supply chain. In this chain, the suppliers would
provide a known fraction of defectives in their supplies. To counter the impact of defective items, vendor institutes
a complete screening of all the lots provided by the suppliers. The authors optimized the supply quantity and
the number of supplies in each cycle by using three mechanisms. That is: (i) equal cycle time for suppliers and
vendor, (ii) Supplier’s cycle time is an integer multiplier of that of the vendor, and (iii) Supplier’s cycle time is
an integer power of two of that of the vendor. In this paper, a different approach for the optimization process
is taken for the second (integer K–multipliers) mechanism with an assumption that all the suppliers adopt the
same integer. The assumptions (Khan and Jaber [19]) are:

(1) The percentage of defective items is a continuous random variable with known probability density function.
(2) A 100% inspection of each lot is carried out.
(3) Demand occurs parallel to the inspection process and it is fulfilled by the items found to be perfect by the

inspection process.
(4) There are no shortages.

The following notation is used through this paper.

Parameters:

J = Number of suppliers (an integer number)..
Pv = Vendor’s production rate (units/time unit).
Dv = Vendor’s demand rate (units/time unit).
Ds = Supplier’s demand; i.e. Ds=Dvws (units/time unit).
γs = Percentage of defective items supplied by supplier s(%).
ds = Unit screening cost for the items provided by supplier s($/unit).
xs = Screening rate for vendor for items provided by supplier s(units/time unit).
Av = Vendor’s fixed ordering or setup cost ($/order or setup).
av,s = Vendor’s variable cost of ordering an item from supplier s($/unit).
As = Suppliers’ setup cost ($/setup).
hv1 = Vendor’s unit holding cost for raw materials ($/unit/time unit).
hv2 = Vendor’s unit holding cost for finished products ($/unit/time unit).
hs = Suppliers’ unit holding cost ($/unit/time unit).
Cvr = Vendor’s unit cost of the raw material ($/unit).
Cvf = Vendor’s unit cost of the finished product ($/unit).
tys = Inspection time for items of type y from supplier s (time unit).
Tp = Vendor’s cycle time for production (time unit).
Td = Vendor’s idle time in a cycle (time unit).
ns = Number of types of parts provided by supplier s (an integer number).
usy = Number of parts of type y from supplier s needed for a product (units).

ws = Number of items from supplier s, required for a product; ws =
y=ns∑
y=1

usy (units).

ys = Number of non–defective items supplied by supplier s; ys = Dvws (1− γs)(units).
z = Minimum number of products that can be manufactured in a production cycle;

here z = Min (Int (ys = Dvws (1− γs))) where s = 1, 2, 3, . . . , J (units).
ls = Number of unused non–defective items of type sin a cycle; ls = ys − zws (units).
Z1s = Inventory level of parts from supplier s at the end of inspection process (units).
Z2s = Inventory level of parts from supplier s after removing the defective items (units).
Bs = Products screening out; Bs = Z1s − Z2s(units).
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Decision variables:

K = Integer multiplier for the coordination mechanism (an integer number).
T = Vendor’s cycle time (time unit).

 

 

 

Tp 
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Figure 1. Inventory level for raw material and finished product.

The vendor’s inventory level of items obtained from one supplier and the finished products is depicted in
Figure 1 which is adopted from Khan and Jaber [19]. Because of the inspection process that runs for time t1s,
any incoming lot of raw items will be divided into two sub–lots. The first sub–lot represents the non–defective
items provided by suppliers: Dvws (1– γs). The second is defective sub–lot, Bs.

Since the inspection process is instituted at the rate of x, then the rate of delivering inspected non–defective
items supplied by supplier s is xs (1− γs). Based on the third assumption above, the rate of delivering non–
defective items by supplier s is more than vendor’s demand. This condition can be expressed as:

xs (1− γs) > Dvws

Papachristos and Konstantaras [24] pointed out that the above inequality is not meaningful without assuming
that the screening speed is always greater than or equal to the demand rate. Therefore, the following assumption
is also added:

xs > Dv

The inventory holding cost for the vendor consists of the carrying cost for the items as they are being assembled
into finished products during the production portion of the cycle; and the carrying cost of the finished products
during the non–production portion of the cycle. Therefore, the vendor’s cost of raw material for ordering, holding
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and screening as in Khan and Jaber [19] is

Cvr = Dv

J∑
s=1

avsws +

J∑
s=1

[
hv1

{
(DvwsT − ls) (1− γs)

2
+
γs (DvwsT − ls)2

Txs
+ ls

}
+
ds (DvwsT − ls)

T

]

and vendor’s total cost for the product is given by

Cvf =
Av

T
+
T

2
hv2Dv

(
1− Dv

Pv

)
So, vendor’s total cost is as follow

TCv = Dv

J∑
s=1

avsws +

J∑
s=1

[
hv1

{
(DvwsT − ls) (1− γs)

2
+
γs (DvwsT − ls)2

Txs
+ ls

}
+
ds (DvwsT − ls)

T

]

+
Av

T
+
T

2
hv2Dv

(
1− Dv

Pv

)
The supplier’s inventory in vendor’s non–production time drops in steps and then the total cost is

TCs =
1

T

J∑
s=1

As

K
+ +

T

2

J∑
s=1

(K − 1)hsDs

Consequently, the total cost of the supply chain in Khan and Jaber [19] is

TC =
Av

T
+

1

T

J∑
s=1

As

K
+Dv

J∑
s=1

avsws +
T

2
hv2Dv

(
1− Dv

Pv

)
+
T

2

J∑
s=1

(K − 1)hsDs

+

J∑
s=1

[
hv1

{
(DvwsT − ls) (1− γs)

2
+
γs (DvwsT − ls)2

Txs
+ ls

}
+
ds (DvwsT − ls)

T

]
(2.1)

3. Algebraic optimization

Notice that suppliers share the same integer multiplier K. Now, equation (2.1) can be expressed as

TC =
1

T

J∑
s=1

As

K
+
Av

T
+Dv

J∑
s=1

avsws

+

J∑
s=1

[
hv1

{
T (1− γs)Dvws

2
− ls (1− γs)

2
+
γs
(
D2

vw
2
sT

2 − 2DvwsT ls + l2s
)

Txs
+ ls

}
+
ds (DvwsT − ls)

T

]

+
T

2
hv2Dv

(
1− Dv

Pv

)
+
T

2

J∑
s=1

(K − 1)hsDs (3.1)
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which can be further rewritten as

TC =
1

T

J∑
s=1

As

K
+
Av

T
+Dv

J∑
s=1

avsws

+

J∑
s=1

[
hv1

{
T (1− γs)Dvws

2
− ls (1− γs)

2
+
TγsD

2
vw

2
s

xs
− 2Dvγswsls

xs
+
γsl

2
s

Txs
+ ls

}
+ dsDvws −

dsls
T

]

+
T

2
hv2Dv

(
1− Dv

Pv

)
+
T

2

J∑
s=1

(K − 1)hsDs (3.2)

Now, grouping similar terms (with regard to T and 1/T )

TC =
1

T

J∑
s=1

As

K
+
Av

T
+
hv1
T

J∑
s=1

γsl
2
s

xs
− 1

T

J∑
s=1

dsls

+ T

J∑
s=1

hv1 (1− γs)Dvws

2
+ T

J∑
s=1

hv1γsD
2
vw

2
s

xs
+
T

2
hv2Dv

(
1− Dv

Pv

)
+
T

2

J∑
s=1

(K − 1)hsDs

+Dv

J∑
s=1

avsws +

J∑
s=1

dsDvws + hv1

J∑
s=1

ls − hv1
J∑

s=1

2Dvγswsls
xs

−
J∑

s=1

hv1ls (1− γs)
2

(3.3)

Again we can rewrite the total cost as

TC =
1

T

(
J∑

s=1

As

K
+Av + hv1

J∑
s=1

γsl
2
s

xs
−

J∑
s=1

dsls

)

+ T

{
J∑

s=1

hv1 (1− γs)Dvws

2
+

J∑
s=1

hv1γsD
2
vw

2
s

xs
+

1

2
hv2Dv

(
1− Dv

Pv

)
+

1

2

J∑
s=1

(K − 1)hsDs

}

+Dv

J∑
s=1

avsws +

J∑
s=1

dsDvws + hv1

J∑
s=1

ls − hv1
J∑

s=1

2Dvγswsls
xs

−
J∑

s=1

hv1ls (1− γs)
2

(3.4)

which can be represented in a compact form as:

TC =
W

T
+ TY +X (3.5)

where

Y =

J∑
s=1

hv1 (1− γs)Dvws

2
+

J∑
s=1

hv1γsD
2
vw

2
s

xs
+

1

2
hv2Dv

(
1− Dv

Pv

)
+

1

2

J∑
s=1

(K − 1)hsDs

W =

J∑
s=1

As

K
+Av + hv1

J∑
s=1

γsl
2
s

xs
−

J∑
s=1

dsls

X = Dv

J∑
s=1

avsws +

J∑
s=1

dsDvws + hv1

J∑
s=1

ls − hv1
J∑

s=1

2Dvγswsls
xs

−
J∑

s=1

hv1ls (1− γs)
2
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Now, using the simple algebraic steps proposed by Cárdenas–Barrón [3]. By factorizing the term 1
T and complet-

ing the perfect square then the annual total cost for the entire supply chain in equation (3.5) can be expressed as

TC =
1

T

(
T 2Y − 2T

√
YW +W + 2T

√
YW

)
+X (3.6)

It is important to remark that X is a constant and it does not depend on any of the decision variables.
Factorizing the perfect squared trinomial in a squared binomial one obtains:

TC =
1

T

(
T
√
Y −

√
W
)2

+ 2
√
YW +X (3.7)

It should be noted that equation (3.7) reaches its minimum with respect to T when setting(
T
√
Y −

√
W
)2

= 0

Hence, the optimal basic cycle time T ∗ is

T ∗ =

√
W

Y
(3.8)

which reduces to the same cycle length as in Khan and Jaber [19].
The corresponding minimum cost is given by

TC = 2
√
YW +X (3.9)

Now, it is required to derive the optimal value of the integer multiplier K and we will do as follow. Considering
the terms Y and W again

Y =

J∑
s=1

hv1 (1− γs)Dvws

2
+

J∑
s=1

hv1γsD
2
vw

2
s

xs
+

1

2
hv2Dv

(
1− Dv

Pv

)
+

1

2

J∑
s=1

(K − 1)hsDs

W =

J∑
s=1

As

K
+Av + hv1

J∑
s=1

γsl
2
s

xs
−

J∑
s=1

dsls

Where Y can be rewritten as

Y =
hv1
2

J∑
s=1

(1− γs)Dvws + hv1

J∑
s=1

γsD
2
vw

2
s

xs
+

1

2
hv2Dv

(
1− Dv

Pv

)
− 1

2

J∑
s=1

hsDs +
K

2

J∑
s=1

hsDs

Let it be represented as
Y = Kα+ β (3.10)

with

α =
1

2

J∑
s=1

hsDs

β =
hv1
2

J∑
s=1

(1− γs)Dvws + hv1

J∑
s=1

γsD
2
vw

2
s

xs
+

1

2
hv2Dv

(
1− Dv

Pv

)
− 1

2

J∑
s=1

hsDs

Similarly W can be expressed as

W =
δ

K
+ ϕ (3.11)
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Where

δ =

J∑
s=1

As

ϕ = Av + hv1

J∑
s=1

γsl
2
s

xs
−

J∑
s=1

dsls

Now, substituting both Y and W into equation (3.9) one gets

TC = 2

{
(Kα+ β)

(
δ

K
+ ϕ

)} 1
2

+X

or

TC = 2

{
1

K

(
K
√
αϕ−

√
βδ
)2

+
(√

αδ +
√
βϕ
)2} 1

2

+X

One can easily see that this reaches its minimum when letting:

K
√
αϕ−

√
βδ = 0

Hence, the optimal value of integer multiplier is derived as

K∗ =

√
βδ

αϕ
(3.12)

Since the value of K is a positive integer, the following condition must be satisfied:

K∗ (K∗ − 1) 6 (K∗)
2 6 K∗ (K∗ + 1)

Now, one can substitute K∗ from equation (3.12) into equation (3.8) to find the optimal basic cycle time T∗.
Also, substituting K∗ and T∗ into equation (3.9) derives the optimal annual total cost in a closed form.

4. Numerical example

In this section a numerical example of a two–stage supply chain is solved. This example is taken from Khan
and Jaber [19] and its data is shown in Table 2. The parameters in this example satisfy the following two
conditions necessary to avoid shortages:

(1) xs (1− γs) > Dvws

(2) xs > Dv

By applying the developed solution procedure one obtains the optimal cycle time length of 0.146 for the
vendor. The optimal integer multiplier for the two suppliers is given as 10. Hence, the optimal cycle length at
the suppliers’ stage is 1.460. Finally, the total cost under this solution is $ 7142.09. For the same example and
under the equal cycle coordination time mechanism, the optimal basic cycle time is 0.42 years, and the total
cost is TC = $ 10326.38. As shown in Table 3, using the integer multipliers coordination mechanism will make
about 30.84% costs saving for the entire supply chain as compared to the traditional equal cycle coordination
time mechanism.
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Table 2. Data for the example in appropriate units according to notation.

Av A1 A2 av1 av2 h1 h2 u1 u2 ds Dv Pv

200 800 800 1 1 0.5 1 1 1 0.1 1000 3000

hv1 hv2 γ1 γ2 xs
2 25 0.07 0.08 175 200

Table 3. The example results with comparison to the equal cycle coordination time mechanism.

T K Suppliers’ cost Vendor’s cost Entire Chain cost

Equal time cycle 0.420 – 3807.03 6519.35 10326.38

Integer multipliers 0.146 10 2081.70 5060.39 7142.09

Saving – – 1725.33 1458.96 3184.29

Saving% – – 45.32 22.38 30.84

Table 4. Effects of the screening rate on the on the optimal solution and associated costs.

%Saving over Saving over Total Vendor Screening Suppliers K T xs

the equal cycle the equal cycle cost cost cost cost

35.99 4014.98 7142.094 3939.31 193.13 3202.783 10 0.145598 175 200

35.99 4015.00 7142.107 3939.33 193.13 3202.781 10 0.145597 166 440

35.99 4015.02 7142.121 3939.34 193.13 3202.778 10 0.145597 157 680

35.99 4015.05 7142.136 3939.36 193.13 3202.775 10 0.145597 148 920

35.99 4015.08 7142.154 3939.38 193.13 3202.772 10 0.145596 140 160

35.99 4015.11 7142.174 3939.41 193.13 3202.769 10 0.145595 131 400

35.99 4015.15 7142.197 3939.43 193.13 3202.764 10 0.145595 122 640

35.99 4015.19 7142.224 3939.46 193.13 3202.76 10 0.145594 113 880

35.99 4015.38 7142.335 3939.60 193.13 3202.74 10 0.145591 87 600

35.99 4015.47 7142.389 3939.66 193.13 3202.73 10 0.145589 78 840

35.99 4015.58 7142.456 3939.74 193.13 3202.718 10 0.145587 70 080

5. Sensitivity analysis

Sensitivity analysis is conducted to examine the impact of changing some of the inventory model parameters
on the optimal solution and its associated costs. Effects of changing the screening rate on the model results
and the cost saving from using integer multipliers mechanism over the equal time cycle mechanism are shown
in Table 4. It is observed that a variation in the range of (70 080–175 200) has no drastic impact on the optimal
solution or the gained cost saving over the equal time cycle mechanism. Table 5 shows the impact of changing
the percentage of defective items provided by suppliers on the optimal solution and associated costs. It can
observed that increasing the percentage of defective items increases the cycle time at the suppliers stage by
increasing the integer multiplier. In turns, the total cost at the suppliers also increases. Additionally, the gained
cost saving over the equal time cycle mechanism increases also.

Table 6 shows how the optimal solution responds to changes in the setup costs at the suppliers and inventory
holding costs and setup costs at the vendor. It can be observed that increasing Av decreases the cost saving over
the equal time cycle mechanism. However, increase of As will increase this cost saving. In addition, increasing
inventory holding costs at the vendor will also increase the cost saving over the equal time cycle mechanism.
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Table 5. Effects of percentage of defective items supplied by suppliers on the optimal solution
and associated costs.

%Saving over Saving over Total Vendor Screening Suppliers K T γs

the equal cycle the equal cycle cost cost cost cost

36.13 4055.081 7169.647 3962.58 151.43 3207.069 10 0.144 0.01

36.10 4048.414 7165.539 3959.19 158.44 3206.344 10 0.144 0.02

36.08 4041.739 7161.237 3955.61 165.43 3205.624 10 0.145 0.03

36.05 4035.059 7156.742 3951.83 172.39 3204.907 10 0.145 0.04

36.03 4028.372 7152.053 3947.86 179.33 3204.195 10 0.145 0.05

35.96 4008.276 7136.824 3934.74 200.00 3202.084 10 0.146 0.08

37.10 4138.369 7015.771 3605.60 185.27 3410.168 11 0.136 0.10

40.29 4503.661 6673.091 2987.40 141.56 3685.686 12 0.120 0.15

44.21 4951.485 6247.89 1652.50 69.50 4595.393 16 0.092 0.20

Table 6. Effect of holding and setup costs on the optimal solution and associated costs.

%Saving Saving Total cost Vendor cost Screening cost Suppliers cost K T Parameter

38.60 4258.362 6773.512 3160.70 191.92 3612.81 12 0.124 150

Av

38.03 4205.547 6851.508 3431.43 192.38 3420.077 11 0.131 160

37.49 4155.058 6927.108 3518.24 192.50 3408.869 11 0.133 170

36.95 4104.444 7002.761 3779.75 192.93 3223.007 10 0.141 180

36.46 4059.248 7072.926 3860.37 193.03 3212.56 10 0.144 190

35.99 4014.98 7142.094 3939.31 193.13 3202.783 10 0.146 200

35.52 3971.6 7210.304 4016.68 193.23 3193.629 10 0.148 210

35.06 3929.069 7277.597 4092.54 193.32 3185.057 10 0.150 220

34.21 3850.85 7405.137 4406.51 193.77 2998.63 9 0.160 240

33.81 3813.462 7467.084 4476.38 193.84 2990.708 9 0.162 250

34.23 3643.404 7001.724 4187.64 193.24 2814.081 9 0.148 700

As

35.14 3831.944 7072.926 3983.48 193.03 3089.447 10 0.144 750

35.57 3924.241 7107.632 3961.14 193.08 3146.491 10 0.145 775

35.99 4014.98 7142.094 3939.31 193.13 3202.783 10 0.146 800

36.38 4104.23 7176.316 3917.97 193.18 3258.35 10 0.147 825

36.76 4192.056 7210.304 3897.09 193.23 3313.218 10 0.148 850

37.13 4278.518 7244.063 3876.65 193.27 3367.411 10 0.149 875

37.50 4365.702 7275.567 3668.69 193.02 3606.882 11 0.143 900

37.86 4451.271 7307.211 3645.25 193.06 3661.96 11 0.144 925

38.20 4535.613 7338.66 3622.25 193.10 3716.409 11 0.145 950

35.99 4014.98 7142.094 3939.31 193.13 3202.783 10 0.146 2

hv1

37.48 4442.374 7409.651 4085.37 192.47 3324.281 11 0.133 4

38.78 4849.491 7656.968 4221.37 191.84 3435.598 12 0.123 6

39.90 5238.091 7888.391 4349.40 191.24 3538.988 13 0.114 8

40.90 5610.297 8106.552 4617.42 190.91 3489.134 13 0.110 10

32.42 3252.497 6779.725 3539.51 193.94 3240.214 9 0.165 18

hv2

33.57 3480.956 6888.384 3719.65 193.79 3168.737 9 0.161 20

34.59 3698.589 6994.576 3885.89 193.65 3108.687 9 0.158 22

35.55 3911.823 7093.32 3862.48 193.20 3230.838 10 0.147 24

36.40 4116.09 7190.39 4013.72 193.06 3176.668 10 0.144 26
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6. Conclusions

This paper contributes to the supply chain modeling literature proposing an algebraic approach to determine
the cycle length and integer multiplier in the coordination scheme of a two level supply chain model given by
Khan and Jaber [19]. This approach is more convenient for students and practitioners who are not familiar
with differential calculus. The developed solution method is illustrated by solving a numerical example. The
sensitivity analysis indicates that increasing the percentage of defective items increases the cycle time at the
suppliers’ stage by increasing the integer multiplier. In turns, the total cost at the suppliers also increases. This
results agree with the results reported by Khan et al. [38]. The proposed model can be extended in a number of
ways. example, one could use this approach to optimize a multiple tier supply chain. The possibility of shortages
could also be explored in the suggested inventory model considering the portion of defective items as random
variable. Besides, the impact of errors in screening can also be studied, using the same approach.
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