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A STOCHASTIC PROGRAMMING APPROACH FOR SHELTER LOCATION
AND EVACUATION PLANNING

Vedat Bayram1 and Hande Yaman2,∗

Abstract. Shelter location and traffic allocation decisions are critical for an efficient evacuation plan.
In this study, we propose a scenario-based two-stage stochastic evacuation planning model that opti-
mally locates shelter sites and that assigns evacuees to nearest shelters and to shortest paths within
a tolerance degree to minimize the expected total evacuation time. Our model considers the uncer-
tainty in the evacuation demand and the disruption in the road network and shelter sites. We present
a case study for a potential earthquake in Istanbul. We compare the performance of the stochastic
programming solutions to solutions based on single scenarios and mean values.
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1. Introduction

The 2004 Indian Ocean tsunami killed more than 225,000 people and dislocated millions of them in countries
spread around the Ocean’s rim from Kenya to Indonesia. In 1999 hurricane Floyd (CNN [31]), and in 2005
hurricanes Katrina and Rita (TRB [96]) required millions of people to evacuate creating largest traffic jams
in the U.S. history. The 2010 Haiti earthquake measured 7.0 magnitude on the Richter scale. It caused a
massive level of destruction and imposed tremendous operational challenges on the humanitarian agencies and
governments. This resulted in a grim situation: three million affected people, 200,000 deaths, and more than
one million wounded (Caunhye et al. [24]). The triple disaster that hit the Tohoku region of Japan on 11 March
2011 triggered a massive human displacement: more than 400,000 people evacuated their homes as a gigantic
tsunami induced by a magnitude 9.0 earthquake engulfed the coastal areas, and the following nuclear accident
in Fukushima released a large amount of radioactive materials into the atmosphere (Hasegawa [49]).

Natural or man-made disasters such as hurricanes, earthquakes, floods, terrorist attacks impose a serious risk
on the humankind. Evacuation of the disaster region is the most predominantly used strategy to protect people
threatened by a disaster (Hobeika [50]). Traffic management during an evacuation is critical (Yao et al. [100])
since people’s lives are at stake and the unusual surge in traffic demand is generally far beyond the capacity of
the road network.

Clearly, the shelter locations affect the time to evacuate a disaster region. Shelters are safe places that
protect a population from possible damaging effects of a disaster. They also serve as facilities where evacuees
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are provided food, medical care and accommodation. FEMA [40], ARC [2], FEMA [41] and FEMA [43] provide
the basis for the design and construction of shelters against different types of disasters. Whether it is built as a
new shelter or as a retrofit construction, these preparations require time and need to be done before the disaster
takes place. For that reason, the decision of which shelters to open are often made before a disaster occurs.

Disasters are uncertain events: it is not easy to anticipate when and where they will occur and with how much
impact. As a result, evacuation planning must be done without exact or complete information. Related studies
and real-life practices show a significant uncertainty regarding the evacuation demand due to the unpredictability
of time, place and severeness of a disaster and human behavior as well as the changing roadway infrastructure as
a result of disaster impacts. When preparing for a disaster, it is very difficult to predict the evacuation demand
accurately. However, an accurate knowledge of threat and possible human responses to it is the first guideline
that preparedness planning should be based upon (Perry and Lindell [82]). Key studies in the literature (Baker
[4], Dash and Gladwin [36], Kim and Oh [57], Mawson [70], Murray−Tuite and Wolshon [74], Perry [81]) state
that evacuee behavior is affected by many factors that causes uncertainty in the evacuation demand. We refer
the reader to Bayram [7] for a detailed review of uncertainty in evacuation demand caused by human behavior.
Although the number of evacuees during Hurricane Rita from the Galvestan and Harris Counties was predicted
to be less than 700,000, the actual number turned out to be 1.8 million people (Lindell and Prater [65]). It is
also highly probable that the traffic network will be affected and lose capacity in case of a hurricane because
of flood. Road segments in the traffic network can be blocked by debris (Berktaş et al. [11], Çelik et al. [25],
FEMA [42]) generated after a hurricane (Luther [67]) or by debris caused by collapsed buildings or landslides
in an earthquake. They can also be damaged completely or partially in an earthquake, viaducts and bridges
may collapse or become unusable. The 1985 Mexico City earthquake wiped out approximately 70 percent of the
city’s central transportation network (Ardekani and Hobeika [3]). Likewise, the predetermined shelter sites can
be affected.

Our aim is to propose a scenario-based evacuation planning model that optimally locates shelter sites and
assigns evacuees to the nearest shelter sites and to shortest paths (shortest geographical distance, shortest free
flow travel time or shortest congested time) to those shelter sites within a given degree of tolerance to minimize
the expected total evacuation time. We focus on this objective rather than minimizing maximum latency as we
already impose constraints on the lengths of routes that can be used. We extend the study by Bayram et al. [8]
where it is assumed that all parameters are known with certainty.

As we discuss in Section 2, there is a rich literature regarding evacuation planning and management studies.
However, most of these studies employ deterministic approaches where only a single hazard scenario is con-
sidered, such as the most probabilistic one. On top of that, the number of studies that simultaneously and
strategically consider shelter location decisions along with the assignment of evacuees to shelters and to routes
is limited. None of these studies take into account the uncertainty in evacuation demand, the road network
structure and the shelters simultaneously. Further, majority of the existing studies in the literature employ
unrealistic traffic assignment approaches such as user equilibrium or system optimal. There are few studies
that consider congestion on the road network and that try to combine the requirements from a system optimal
approach of an evacuation management authority and the behaviors of the evacuees. Such studies are only able
to manage that through use of bi-level models which can generally be solved through heuristics.

Unlike these studies in the literature, our model considers the uncertainty about future realizations of the
evacuation demand, the disruption in the road network and degraded road capacities and disruption of the shelter
sites simultaneously. It is a two-stage stochastic nonlinear mixed integer programming model that compromises
the perspective of an evacuation planning/management authority and that of the evacuees. We solve practical
size problems exactly and in reasonable times by representing the nonlinear objective function with second order
cone programming.

Furthermore, we present a real world case study for evacuation planning of a potential major earthquake in
Istanbul, Turkey. In our case study the population at risk is evacuated against the possible impact of aftershocks
and the secondary disasters following the major earthquake.
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Finally, we carry out extensive numerical testing on the case study to assess the effectiveness of the stochastic
programming solutions comparing them with the results from wait and see solutions, where it is assumed that
one has perfect information for every possible scenario and mean value solutions in terms of robustness and
efficiency. We use criteria such as the expected total evacuation time, maximum regret, expected value of
perfect information, value of stochastic solution, and performance measures such as the total evacuation time,
maximum latency and percentage of evacuees reaching safety up to a specified time T , when both shelters
are uncapacitated and capacitated. Maximum regret is the maximum difference between the total evacuation
time of a given strategy in a scenario and minimum total evacuation time obtained in that scenario. Expected
value of perfect information is the difference between the expected total evacuation time obtained by solving
the deterministic problem for every scenario with perfect information and the optimal value obtained using the
stochastic optimization solution. And maximum latency is the travel time of the vehicle that stays in the road
network longest; it is also the time the evacuation network is cleared off vehicles as we assume that every vehicle
enters the network at the same time. We observe that stochastic programming provides robust and effective
solutions compared to models based on a single scenario and its superiority is emphasized when shelters are
capacitated.

The rest of the paper is organized as follows. In Section 2 we present a literature review on evacuation
planning focusing on stochastic location-allocation problems. In Section 3 we describe the problem and give a
two-stage stochastic nonlinear mixed integer programming formulation. We present the results of our case study
in Section 4 and conclude in Section 5.

2. Literature review

2.1. Traffic assignment models
We first review the traffic assignment models. These models differ mainly in their assumed driver behaviors.

The common models are the (Stochastic) User Equilibrium ((S)UE, also known as User Optimal), the System
Optimal (SO) and the Nearest Allocation (NA) models.

The SUE or UE approaches are not realistic to plan an evacuation during a disaster for the following reasons.
The SUE approach assumes that the evacuees choose shortest travel time path depending on their perception
of the travel time. The UE approach is a special case of the SUE approach when the variance of travel time
perception by the evacuees is zero. For both SUE and UE, the goal of the evacuees is to minimize their individual
travel times. The UE assumes that evacuees have full information on travel times on every possible route and
that they are able to find the optimal routes (Sheffi [87]). Since evacuees act selfishly to minimize their individual
travel times, the UE does not necessarily minimize the total evacuation time in the system. In addition, the
assumptions may not be valid in case of a disaster (Galindo and Batta [45]), since the traffic demand is unusual
and it is difficult for evacuees to choose the minimum latency routes using their past experiences (Pel et al. [79]).

Evacuation management authority on the other hand considers the benefit of evacuees as a whole and aims
to evacuate everyone to safety as soon as possible by minimizing the total evacuation time. Such a traffic
assignment plan is called SO. In an SO solution, some travelers may be allocated to routes that are much longer
than the shortest ones they would take. Asking evacuees to accept such routes in a situation where they would
like to leave the risk zone and reach safety at a shelter as soon as possible may not be reasonable.

In the NA model, each evacuee uses a shortest path based on length (geographical distance) or free flow
travel time to reach the nearest shelter. This may be a reasonable approach since during an evacuation, the
information on path lengths or free flow travel times is more accessible to evacuees compared to actual travel
times. However, such a traffic assignment may lead to poor system performance.

Jahn et al. [55] define the notion of Constrained System Optimal (CSO), a traffic assignment model developed
for a route guidance system. This model honors the individual needs by imposing additional constraints to ensure
that drivers are assigned to “acceptable” paths only. They define the normal length of a path, as either its free
flow travel time, its traversal time in UE, i.e., the congested travel time or its geographic distance.
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2.2. Deterministic evacuation planning models

Despite the fact that evacuation planning is typically characterized by great uncertainties, the studies in the
literature (Alçada-Almeida et al. [1], Bayram et al. [8], Bish et al. [19], Bretschneider [20], Bretschneider and
Kimms [21], Chiu et al. [30], Coutinho−Rodrigues et al. [33], Cova and Johnson [34], Hamacher and Tjandra
[48], Kalafatas and Peeta [56], Kongsomsaksakul et al. [59], Sherali et al. [89], Sheu and Pan [90], Tüydeş [97],
Yamada [99]), mostly rely on deterministic models.

Bayram et al. [8] propose a deterministic CSO (DCSO) model that optimally locates shelters and that assigns
evacuees to the nearest shelters and to shortest paths (in terms of geographical distance, free flow travel time
or congested travel time) to those shelters -shortest and nearest within a given degree of tolerance- to minimize
the total evacuation time. The solution of their model evacuates the disaster region as quickly as possible, with
an efficient but “fair” assignment of evacuees to shelters and to routes. They observe that the SO solution may
have unacceptable levels of unfairness whereas the solution in which the evacuees travel to the nearest shelter
using a shortest path may result in substantial deterioration in the system performance. Even a small level of
tolerance on the side of the evacuees improves the system performance. Overall, they conclude that the location
and the number of shelters opened drastically affect the evacuation plan and for a carefully selected number of
shelters and tolerance level, an efficient yet fair evacuation plan can be achieved.

These models are deterministic models that adopt a hazard scenario such as worst-case or most probable
scenario to plan for locations of shelters and/or evacuation of the endangered population. Our study extends
the study by Bayram et al. [8] by incorporating uncertainty.

For a more detailed review of deterministic evacuation planning studies, we refer the reader to
Bayram et al. [8] and Bayram [7].

2.3. Uncertainty in facility location
The stochasticity regarding the demand, road capacities, facilities and other factors have been widely studied

in classical facility location literature and the location literature for disaster management. Frank [44], Cooper
[32], Louveaux [66], Laporte et al. [61], Chan et al. [26], Berman and Krass [13], Daskin et al. [37], Berman
and Wang [17], Chang et al. [27], Berman et al. [12], study the uncertainty in demand in classical facility
location problems and Belardo et al. [10], Psaraftis et al. [83], Wilhelm and Srinivasa [98], Barbarosoğlu and
Arda [6], Chang et al. [27], Balçık and Beamon [5], Rawls and Turnquist [84], Mete and Zabinsky [71], Duran
et al. [38] and Noyan [78] in disaster management.

Nel and Colbourn [75], Eiselt et al. [39] take into consideration the uncertainty regarding the disruption
and/or degradation of edges. Barbarosoğlu and Arda [6], Rawls and Turnquist [84], Günneç and Salman [47]
and Noyan [78] propose stochastic models employing similar uncertainty issues in humanitarian relief and
disaster management problems.

Mirchandani and Odoni [72], Mirchandani and Oudjit [73], Berman and Odoni [16], Ingolfsson et al. [54] work
on facility location networks using stochastic edge lengths or travel times. Mirchandani and Odoni [72] employ
a nonlinear utility function for the random edge length. Mete and Zabinsky [71] take into account this same
notion in their medical supply location and distribution model they develop for disaster management.

The effects of facility disruption has been studied to a large extent in the classical facility location literature
(Bundschuh et al. [22], Snyder and Daskin [91], Snyder et al. [93], Berman et al. [14], Snyder and Daskin
[92], Berman et al. [15], Cui et al. [35], Li and Ouyang [63], and Lim et al. [64], Huang et al. [51], Peng et al.
[80]) and in disaster management (Rawls and Turnquist [84], Noyan [78]).

To the best of our knowledge, the only study in location literature that takes into consideration the congestion
on the road segments is by Chang and Wang [28] for site selection of solid waste facilities.

2.4. Uncertainty in evacuation planning

As for the studies taking into account uncertainty in the evacuation literature, most focus on demand
uncertainty (Rui et al. [85], Yao et al. [100], Huibregtse et al. [52], Ng and Waller [77], Yazıcı and Özbay
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[101], Kulshrestha et al. [60]) and/or capacity (Shen et al. [88], Ng and Waller [77], Yazıcı and Özbay [101]). Shen
et al. [88] develop scenario-based, stochastic, bilevel models that minimize the maximum UE travel time among
all node shelter pairs by locating shelters at the upper level and assigning evacuees to shelters and routes in
a UE manner at the lower level. Their model is an α-reliable mean-excess regret model in the context of the
p-median problem Chen et al. [29] in which the distance between the demand nodes and the shelter sites as
well as the demand are taken as uncertain parameters. To solve this first model they present a genetic algo-
rithm based approach. The second model is proposed as a real time decision making tool for evacuations and
a simulation based approach that uses successive shortest path algorithm is developed to solve it. Stepanov
and Smith [94] suggest a multi-objective integer programming formulation for optimal route assignment that
employs an M/G/c/c state dependent queuing model to represent congestion and link travel times on links
using random arrival rates. Yao et al. [100] consider the evacuation on a network under demand uncertainty.
They model a deterministic LP model based on a modified CTM in which they introduce a measure called,
coefficient of threat level, which is an estimate of susceptibility of an area to disaster at a particular time and
by means of which they can capture the spatio-temporal priorities during evacuation. By focusing on this co-
efficient of threat level, they develop a robust optimization model. Huibregtse et al. [52] optimize evacuation
measures to increase the efficiency of an evacuation plan by considering uncertainty in demand, the behavior
of people and the hazard (location, time, and intensity). Ng and Waller [77] present an evacuation planning
model that considers demand and capacity uncertainty. They provide a framework that determines the amount
of demand inflation (evacuation demand exceeding the planned number) and supply deflation (degradations in
road capacities) necessary to ensure a user-specified reliability level. Yazıcı and Özbay [101] propose a SO DTA
formulation with probabilistic constraints that takes into account uncertainties in demand and roadway capaci-
ties. The model they propose is a CTM-based SO DTA formulation that uses chance constrained programming.
They assume that demand and capacity distributions follow discrete probability distributions. They analyze
the effects of probabilistic roadway capacities on clearance and average travel times, and the spatial shelter
utilization is discussed in terms of shelter management. Their model does not endogenously select the number
and location of shelter sites, rather they do sensitivity analysis. Kulshrestha et al. [60] develop a robust bi-level
model that considers demand uncertainty and minimizes the total cost to establish and operate shelters at the
upper level while assigning evacuees to shelters and routes in a UE manner at the lower level. They confine the
uncertain demand to an uncertainty set and determine the optimal locations and capacities of shelters from the
worst case scenario that can be realized from this set. Their model is formulated as a mathematical program
with complementarity constraints and is solved by an approximation-based cutting plane algorithm, for a total
of three (nominal, low and high) demand scenarios.

To the best of our knowledge, there is only a single study that consider the disruption in shelters in the
evacuation literature. Li et al. [62] propose a scenario based location model for identifying a set of shelter
locations that are robust for a range of hurricane events, by considering disruption in shelter sites. Their model
is a DTA-based stochastic bi-level programming model in which at the two-stage stochastic upper level, the
central authority selects the shelter sites for a particular scenario. The objective of the upper-level problem is to
minimize the weighted sum of the expected unmet shelter demand and the expected total network travel time. In
the lower level, evacuees choose their routes in a dynamic UE manner. They develop heuristic algorithms based
on Lagrangian relaxation and present a case study for the state of North Carolina for 33 hurricane scenarios.

These studies propose bi-level models which are hard to solve. To solve these problems, heuristic methodologies
are developed by Shen et al. [88] and Li et al. [62] and an approximation based methodology is employed
by Kulshrestha et al. [60]. Shen et al. [88] take into account only the uncertainty in capacity, Kulshrestha et al.
[60] only consider the uncertainty in demand, and Li et al. [62] only the uncertainty in shelter sites. They employ
a UE traffic assignment.

Our model differs from these models and contributes to the literature in that it is a single level model that
considers the uncertainty in demand, road network structure and the disruption in shelters simultaneously.
It includes the fairness considerations for evacuees. Unlike the solution methodologies employed in the above
mentioned studies, we employ an exact solution methodology to solve our problem.
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2.5. Our contribution
In this study, we propose a two-stage stochastic scenario-based evacuation planning model. Against this back-

ground, the contributions of our study are the following: We introduce a novel model that decides simultaneously
on the locations of shelters and the allocations of evacuees to shelters and routes under uncertainty. The model
incorporates evacuees’ preferences and fairness considerations by routing the evacuees on paths that are not
much longer than the shortest paths to the nearest shelters. Unlike the studies in the literature, the model aims
to achieve a compromise between evacuation planning authority and the evacuees.

Our study differs from the model by Bayram et al. [8] in that we use a stochastic programming approach,
and hence instead of planning the evacuation based on a single hazard scenario, our model considers a range of
hazard scenarios. To the best of our knowledge, our model is the first model in the evacuation literature that
considers the uncertainty in the evacuation demand, the disruption in the road network, degradation in road
capacities and disruption of the shelters simultaneously. This is important, since we are adopting a constrained
system optimal approach for the evacuation of the population, the evacuation problem we are dealing with
is NP-Hard and it gets harder as it is transformed from a solely assignment problem into a network design
problem, i.e., including shelter location decisions increases the complexity of an already NP-Hard problem. For
that reason, most of the evacuation models that consider the optimal selection of shelter sites and that also
take into account the congestion effect are bi-level models. On top of that, including uncertainty regarding the
shelters render the problem even harder.

Further, we investigate a case study with real data about a pending earthquake in Istanbul, Turkey. We report
the results of the case study and show that the solution of our stochastic model leads to a significant decrease in
the total evacuation time compared to the deterministic and mean value solutions, and planning according to
a single scenario can lead to very poor performance. We also analyze the impact of having capacitated shelters
on performance measures.

3. Problem description and model formulation

We base our work on the DCSO model by Bayram et al. [8] and introduce a two-stage stochastic CSO model,
that we refer to as SCSO. We develop our model as an “expected value model”, which is the predominant
approach in the stochastic programming literature (Sen [86]).

Our model decides on the number and locations of p shelters and the assignment of evacuees to shelters and
routes so that the region is evacuated as quickly as possible. The problem is defined on a directed network
G = (N,A), where N is the set of nodes and A is the set of arcs (road segments) in the network.

We define the travel time spent on a given road segment as a positive and monotonically increasing function
of traffic flow, since an increase in traffic volume will normally decrease the travel speed due to congestion and
hence increase the travel time along the road segment.

Bureau of Public Roads (BPR) function is a convex, nondecreasing and differentiable function that expresses
the relationship between travel time (or speed) and the volume of traffic on a road segment:

t(x) = t0
(

1 + α
(x
c

)β)
where t(x) is the travel time at which assigned volume x can travel on the road segment, c is the practical
capacity (maximum flow rate) and t0 is the base travel time or free flow travel time at zero volume. The
parameters α ≥ 0 and β ≥ 0 are the tuning parameters defined in accordance with the road characteristics
and they are taken as 0.15 and 4 by the U.S. Department of Commerce Bureau of Public Roads, respectively
(TAM [95]). α is a parameter that specifies the ratio of free-flow travel time to the travel time at capacity.
Parameter β determines the steepness of the function, i.e., it specifies how rapidly travel time increases from
the free-flow travel time. Among the evacuation planning literature, the studies that employ BPR function to
represent the speed-flow relationship in a given road segment (Sherali et al. [89], Kongsomsaksakul et al. [59], Li
et al. [62], Ng and Waller [77]) all use the same α and β parameters, i.e., α = 0.15, β = 4. For the reasons
discussed above we also have employed the same values for these parameters.
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Each arc a is associated with a convex travel time function (BPR function) ta. O is defined as the set of
origin (demand) nodes from where the evacuees at risk are to be evacuated and F as the set of destination
nodes (potential shelter sites) where evacuees reach to safety, O and F being disjoint subsets of N . The number
p is a predetermined parameter that restricts the number of shelter sites that can be opened due to budgetary
and/or management issues.

When dealing with uncertainty it is important to consider what happens before (first-stage) and after (second-
stage) the uncertainty is revealed (Birge and Louveaux [18]). Considering the evacuation problem in the frame-
work of two-stage stochastic programming, the first stage is about where to locate the shelters before a disaster
takes place, and given the location of shelters and realization of the evacuation demand and the disruption in
the infrastructure, the second stage assigns evacuees to shelters and to routes.

We define Ω as the set of disaster scenarios and denote with p(ω) the probability that disaster scenario
ω ∈ Ω occurs. We define F (ω) ⊆ F as the set of potential shelter sites that are not disrupted in scenario ω ∈ Ω.
Likewise, A(ω) ⊆ A is the set of arcs (road segments) that are not disrupted in scenario ω ∈ Ω. The binary
variable ys is 1 if a shelter site is opened at node s ∈ F , 0 otherwise. Let Prs(ω) be the set of alternative paths
for the origin-destination pair (r, s), in scenario ω ∈ Ω. The amount of demand at origin r ∈ O, wr(ω), is the
number of passenger vehicles that will be evacuated in scenario ω ∈ Ω.

We model the tolerance of evacuees using parameter λ. An evacuee can be persuaded to take a path whose
length is at most (1 + λ) times the length of a shortest path to the closest shelter in a given scenario. The
set of acceptable paths from origin r to destination s of tolerance level λ in a given scenario ω ∈ Ω is defined
as: Pλrs(ω) = {π ∈ Prs(ω) : dπ ≤ (1 + λ)d∗rs(ω)}, where dπ is the length of path π and d∗rs(ω) is the length of
a shortest path from r to s in scenario ω ∈ Ω. This set is computed using an algorithm developed by Byers
and Waterman [23]. The algorithm by Byers and Waterman [23] combines the depth-first search with stacking
techniques of theoretical computer science and principles from dynamic programming to list all near-optimal
solutions.

In our model, we also use the following decision variables: vπ(ω) is the fraction of origin r’s demand that
uses path π ∈ Pλrs(ω) from origin r ∈ O to destination s ∈ F (ω) in scenario ω ∈ Ω and xa(ω) is the amount of
traffic, i.e., the number of vehicles on arc a ∈ A(ω) in scenario ω ∈ Ω.

SCSO is formulated as follows:

min
∑
ω∈Ω

p(ω)
∑

a∈A(ω)

t0a

(
1 + α

(
xa(ω)
ca(ω)

)β)
xa(ω) (3.1)

s.t.
∑
s∈F

ys ≤ p, (3.2)∑
s∈F (ω)

∑
π∈Pλrs(ω)

vπ(ω) = 1 ∀r ∈ O,ω ∈ Ω, (3.3)

∑
π∈Pλrs(ω)

vπ(ω) ≤ ys ∀r ∈ O,ω ∈ Ω, s ∈ F (ω), (3.4)

∑
s∈F (ω)

∑
π∈Pλrs(ω):dπ>(1+λ)d∗ri(ω)

vπ(ω) + yi ≤ 1 ∀r ∈ O,ω ∈ Ω, i ∈ F (ω), (3.5)

xa(ω) =
∑
r∈O

∑
s∈F (ω)

∑
π∈Pλrs(ω):a∈π

wr(ω)vπ(ω) ∀ω ∈ Ω, a ∈ A(ω), (3.6)

vπ(ω) ≥ 0 ∀ω ∈ Ω, π ∈
⋃

r∈O,s∈F (ω)

Pλrs(ω), (3.7)

ys ∈ {0, 1} ∀s ∈ F. (3.8)
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Objective function (3.1) is equal to the expected total evacuation time. Constraint (3.2) limits the number
of shelter sites open to a pre-specified number p. Constraints (3.3) ensure that all demand is evacuated in each
scenario. Constraints (3.4) forbid assigning demand to non-open shelter sites for each scenario. Constraints (3.5)
ensure that if the shelter at site i is open and functioning in scenario ω, then the demand at origin node r cannot
be routed on any path whose length is longer than (1 + λ)d∗ri(ω). Let ir be the shelter that is open and that is
closest to origin r. Due to constraints (3.5), the demand at node r cannot be routed on a path whose length is
more than (1 + λ)d∗rir (ω). As ir is the closest shelter to r and d∗rir (ω) is the length of a shortest path from r to
ir in scenario ω, these constraints forbid the use of paths whose lengths are longer than (1 +λ) times the length
of the shortest path. Constraints (3.5) for open shelters i other than ir are dominated by constraints (3.5) for
shelter ir. As we do not know, which shelters are open, we need to include these constraints for all possible
shelters. Finally, constraints (3.6) compute the traffic on every arc in each scenario and constraints (3.7) and (3.8)
are variable restrictions.

DCSO is a special case of the SCSO model in which |Ω| = 1 and Bayram et al. [8] show that DCSO is NP-hard
even when α = 0 and G is bipartite. We also note that our model generalizes the classical facility location model
in that the arc costs of our model are nonlinear, we assign the customers (evacuees) to facilities (shelters) and to
paths to those facilities. Our model also generalizes the SO and NA traffic assignment approaches. When λ = 0
we have the NA model. When λ = ∞, we obtain a model for the SO traffic assignment and hence generalize
the model given in Sherali et al. [89].

The shelter location decisions y are first-stage (design) variables and are taken in the presence of uncertainty
about future realizations. In the second stage, the uncertainty is revealed and recourse decisions v are taken.
However, while making the first-stage shelter location decisions, their effect on the second stage assignment
decisions and total evacuation time is taken into account. The future effects of shelter location decisions is
measured by taking the expectation of the recourse function on possible scenarios. Because y is a binary
variable, our model has a 0−1 first stage problem. In addition, since the objective function of the second stage
is nonlinear, the model has a nonlinear second stage problem.

We reformulate the SCSO as a second order conic mixed integer programming model as done in Bayram
et al. [8]. Consider an inequality of the form,

r2
l ≤ s1s2 . . . s2l for r, s1, s2, . . . , s2l ≥ 0. (3.9)

An equivalent representation of the inequality (3.9) can be achieved by usingO(2l) variables andO(2l) hyperbolic
inequalities of the form

u2 ≤ v1v2, u, v1, v2 ≥ 0, (3.10)

as shown by Nemirovski and Tal [76]. Then each hyperbolic inequality can easily be transformed into a second-
order cone inequality

‖2u, v1 − v2‖ ≤ v1 + v2. (3.11)

We first define auxiliary variables µa(ω) for each a ∈ A(ω), ω ∈ Ω and move the nonlinearity from the
objective function to the constraints. The objective function of the SCSO model becomes:

∑
ω∈Ω

p(ω)
∑

a∈A(ω)

(
t0axa(ω) +

t0aα

ca(ω)β
µa(ω)

)

and we add the constraints xa(ω)β+1 ≤ µa(ω) for all ω ∈ Ω, a ∈ A(ω).
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We take β = 4 and represent xa(ω)5 ≤ µa(ω) with

xa(ω)2 ≤ θa(ω)ha(ω), (3.12)
θa(ω)2 ≤ ua(ω)xa(ω), (3.13)
ua(ω)2 ≤ µa(ω)xa(ω), (3.14)
ha(ω) = 1, θa(ω), ua(ω), xa(ω), µa(ω) ≥ 0. (3.15)

These hyperbolic inequalities can be represented with second order conic inequalities presented below:

‖2xa(ω), θa(ω)− ha‖ ≤ θa(ω) + ha, (3.16)
‖2θa(ω), ua(ω)− xa(ω)‖ ≤ ua(ω) + xa(ω), (3.17)
‖2ua(ω), µa(ω)− xa(ω)‖ ≤ µa(ω) + xa(ω), (3.18)
θa(ω) ≥ 0, ha = 1, ua(ω) ≥ 0, xa(ω) ≥ 0, µa(ω) ≥ 0. (3.19)

The resulting model is solved using an off-the-shelf solver.

4. An illustrative case study: evacuation of istanbul city after a potential
Earthquake

4.1. Risk of aftershocks and secondary disasters

A study by Marano et al. [69] presents a quantitative and geospatial description of global losses due to
earthquake-induced secondary disasters, including landslide, liquefaction, tsunami and fire, for events that took
place through 1968-2008. Marano et al. [69] state in their study that 21.5% of fatal earthquakes have deaths
due to secondary causes. In this study, Turkey is shown among the countries where tsunamis, landslides, and
fires have been observed as secondary disasters following a major earthquake.

The 1999 Marmara (Turkey) earthquake that devastated the cities of Sakarya, Izmit and Yalova initiated
the efforts for earthquake preparedness and response planning for a potential major earthquake in Istanbul.
The Istanbul Metropolitan Municipality (IMM) started a disaster prevention and mitigation study that was
conducted in collaboration with the Japan International Cooperation Agency (JICA) IMM-JICA [53]. Following
the potential major earthquake in Istanbul, aftershocks as observed during the 1999 Marmara earthquake
and different secondary disasters such as landslides, floods, fires and possibly tsunamis can impact different
geographical areas of Istanbul city and can cause further fatalities. In the technical report by IMM and JICA it
is stated that there does not exist an emergency evacuation system in Istanbul, Turkey and that it is imperative
that a community evacuation system be established in order to mitigate and minimize human casualties due to
second or third aftershocks and secondary disasters following the earthquake. For that reason, the case study
we present here assumes an emergency evacuation in the sense that we are evacuating people to protect them
from the impact of aftershocks and the secondary disasters.

4.2. Scenario and data preparation

In coordination with scientific institutions and researchers, IMM-JICA study determines four scenarios for
the earthquake, scenarios A, B, C and D. Scenario A is referred to as the most probable scenario and scenario
C as the worst case scenario. We consider 12 scenarios that correspond to different severeness of the disaster. In
the IMM-JICA report, the evacuation demand specific to each origin node is only given for scenario A in detail,
and the information for other scenarios is not disclosed. For that reason, our base (nominal) scenario is scenario
A. By taking into account the length of the fault line that is predicted to be affected and the magnitude of the
earthquake in scenarios B, C and D compared to those of Scenario A, we specify the values of arc and shelter
disruption probabilities for risk zones and the evacuation demand at each origin node for these scenarios. We
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generate three different scenarios for each of the original scenarios A, B, C and D in the report, which adds up
to 12 scenarios in total. Generally, scenarios 2, 6, and 10 represent more destructive earthquake scenarios.

No probability values regarding the scenarios are given in the report. Scenarios 0, 4 and 8 represent the
original scenario A in our 12-scenario setting. We randomly assign probabilities to each of the 12 scenarios in
such a way that the sum of the probabilities for scenarios 0, 4 and 8, which is the probability of scenario A, is
highest and the probabilities related to 12 scenarios add up to 1.

The magnitude of the earthquake is expected to be 7.5, 7.4, 7.7, and 6.9 and the length of the fault line that
is expected to be broken is 119, 108, 174, and 37 km.s long for scenarios scenarios A, B, C and D respectively.
In the report by IMM-JICA [53], it is stated that 1.3 million citizens will require shelters in accordance with
the most probable scenario. A similar number for evacuation demand is given by Kırıkçı [58]. The evacuation
demand for other scenarios are not explicitly stated in the report by IMM-JICA. As the length of the fault line
that is expected to be broken and the expected magnitute of an earthquake increase, the expected damages
incurred and the expected evacuation demand will increase. By taking into account the length of the fault line
that is predicted to be affected and the magnitude of the earthquake in scenarios B, C and D compared to those
of scenario A, we specify the evacuation demand at each origin node for these scenarios.

The report also includes a seismic microzonation that divides the city into smaller disaster regions with
respect to a spatial risk analysis that takes into account their seismic characteristics and damage patterns in
different scenarios. Peak Ground Acceleration (PGA) is a measure of how hard the earth shakes in a given
geographic area. Five different risk zones are determined for scenarios A, B, C, and D in accordance with the
PGA distributions. Damage probabilities specific to road segments, bridges and viaducts in each risk zone are
determined and potential damage to the road network, infrastructure and buildings are calculated in accordance
with the PGA distribution, as well. By taking into account the length of the fault line that is predicted to be
affected and the magnitude of the earthquake in scenarios B, C and D compared to those of scenario A, we
specify the values of arc and shelter disruption probabilities for risk zones in each of these scenarios. We assign
the highest probability of disruption to risk zone 1, the risk zone closest to the fault line, and the lowest one to
risk zone 5. We assign a higher probability of disruption to scenarios 2, 6 and 10 related to the original worst
case scenario C.

We classify the arcs and potential shelter sites of the original network into sets in accordance with which risk
zone they are located in. For a particular scenario, we randomly determine if an arc (road segment) is disrupted
by considering the risk zone it is located in and the probability of disruption assigned to this zone. If the arc
is disrupted, we again randomly specify how much of its original capacity is degraded in multiples of a single
lane capacity. For instance, if a road segment with three lanes having a capacity of 6,000 vehicles per hour is
disrupted, it may be degraded to a capacity of 4,000, 2,000 or 0 vehicles per hour.

The Disaster Coordination Center (DCC - AKOM in Turkish) specified 49 potential shelter sites in Istanbul to
serve as safe facilities to provide the evacuees with food, accommodation and medical care Kırıkçı [58]. The main
criteria used in determining potential shelter sites are accessibility by at least two alternative routes, proximity
to major highways, and availability of land (Görmez et al. [46]). Likewise, in accordance with which risk zone
a shelter site is located in and the probability assigned to that risk zone, a shelter site may get disrupted in
which case it will no longer be able to serve the evacuees. We assign smaller disruption probabilities for shelters
as they are fortified structures against earthquakes.

We generated our instances using the data from the IMM-JICA study and DCC. As the European and
Anatolian sides of Istanbul are connected by three bridges, we assume that the population living on each side
will be evacuated to shelters on their own side. We use the roads given in the IMM-JICA report together
with some other smaller capacity roads. We assume that the free flow travel time in a degraded (not totally
disrupted) road segment is the same as the one in the original network. Each vehicle is assumed to carry four
passengers on the average. Figure 1 illustrates the road network structure, the potential shelter sites and the
demand points that we use in our study (the district of Silivri with one demand point and one shelter site is
out of the boundaries of Istanbul European Road Network Map).
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Figure 1. Istanbul European and Anatolian road networks, potential shelter sites and demand
points.

Table 1. Istanbul European instances.

Probability Total Road
Scenario | N | | A | Total Demand | F | of Scenario Network Capacity

ON 80 238 272,900 32 1,246,000

0 80 221 245,322 28 0.1461 1,098,000
1 80 228 219,960 30 0.0754 1,128,000
2 80 219 328,832 26 0.0436 1,074,000
3 80 213 133,161 28 0.0872 1,022,000
4 80 211 245,642 31 0.145 1,066,000
5 80 220 224,481 30 0.0439 1,072,000
6 80 223 325,988 29 0.0255 1,094,000
7 80 218 136,819 29 0.0834 1,068,000
8 80 221 245,622 30 0.1152 1,082,000
9 80 217 218,378 30 0.0897 1,080,000
10 80 223 327,002 25 0.0669 1,068,000
11 80 224 133,883 28 0.0782 1,094,000

We used the geographical distances as arc lengths in our analysis. Clearly, using geographical distances
instead of real travel times as the normal length of a path in modeling evacuees’ choices may result in a
congested system. However, as pointed out earlier, assuming that the evacuees have full information on travel
times on every possible route is not realistic. Instead, one may try to estimate the congested travel times. Our
model permits the use of these estimates as normal lengths.

In Tables 1 and 2, we present the properties of our instances. ON is the original network when the road network
and the shelters are not disrupted and the demand in ON is the demand of scenario A in IMM-JICA report.
And rest of the instances in those tables are scenarios 0 through 11 with the remaining number of arcs, shelters
and total road network capacity after the evacuation network is disrupted. We perform our computational tests
on a personal computer with a 2.4 GHz Intel i7-3630QM CPU and 16 GB of RAM using Java ILOG CPLEX
version 12.5.1.

4.3. Quality of stochastic programming solutions

If it were possible to wait until all the uncertainties are revealed and solve the evacuation problem with perfect
information in hand for each scenario, this would be called a wait and see solution (WSS) Madansky [68]. On the
other hand, one could solve the stochastic problem by replacing all the random parameters with their means,
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Table 2. Istanbul Anatolian instances.

Probability Total Road
Scenario | N | | A | Total Demand | F | of Scenario Network Capacity

ON 50 146 83,133 17 748,000

0 50 137 74,965 16 0.1461 666,000
1 50 135 63,263 17 0.0754 668,000
2 50 135 101,482 15 0.0436 676,000
3 50 133 41,920 15 0.0872 646,000
4 50 137 75,586 17 0.145 690,000
5 50 140 66,203 17 0.0439 676,000
6 50 136 103,708 17 0.0255 688,000
7 50 140 41,599 13 0.0834 700,000
8 50 136 75,299 16 0.1152 678,000
9 50 143 66,451 16 0.0897 724,000
10 50 136 97,111 13 0.0669 644,000
11 50 131 39,559 17 0.0782 642,000

this solution is called the mean value solution (MVS). Expected value of perfect information (EVPI) is the
difference between the expected total evacuation times of wait and see solution and the stochastic programming
solution and value of stochastic solution (VSS) is the difference between the expected total evacuation times
of the stochastic programming and mean value solutions. Expected value of perfect information measures the
value of knowing the future with certainty, while value of stochastic solution assesses the value of knowing and
using distributions of future outcomes (Birge and Louveaux [18]).

To measure the expected value of perfect information and value of stochastic solution, we solve our evacuation
problem first by considering a specific scenario, i.e., employ the wait and see solution. We also solve the
evacuation problem by taking the mean of the stochastic parameters in each scenario, which results in the mean
value solution. Given the shelter locations from the wait and see solution and the mean value solution for a
specific scenario, we solve our problem for each scenario and obtain the total evacuation times in these scenarios
separately for both of these solution strategies. We adopt an approach that includes only the shelter location
decisions from wait and see solution and mean value solution to solve the model for each scenario in order to
compute expected value of perfect information and value of stochastic solution, and show the quality of our
stochastic programming solution.

For the mean value solution, the demand for each origin is taken as the mean of the demand values at these
origins in all possible scenarios. For the number of potential shelter sites, |F |, we take a shelter as disrupted if it
is disrupted in two or more scenarios. As for the road segments, if a road segment is disrupted in three or more
scenarios it is removed from the graph of mean value scenario, and if this is not the case we take the average
of the arc capacities over all possible scenarios to find the capacity of the road segment as a multiple of lanes.
This results in having 9 disrupted shelters and 23 disrupted road segments for Istanbul European network and
4 disrupted shelters and 7 disrupted road segments for Istanbul Anatolian network.

4.4. Uncapacitated Shelters

In our first experiment, we investigate the effect of the number of shelters p and the tolerance level λ on the
total evacuation time and the difficulty of the problem when shelters are uncapacitated. We compute the set of
feasible paths of tolerance degree λ by using the algorithm by [23]. In Table 3, we report the results of the SCSO
model for the Istanbul European and Anatolian instances for different values of p and λ. For each instance,
we report the number of shelters opened (#os), the optimal expected total evacuation time and the solution
time in seconds. All instances are solved to optimality and the longest computation time is a little more than
one hour. As we increase the level of tolerance the number of feasible paths that the evacuees can be assigned
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Table 3. Results for the Istanbul European and Anatolian instances

Istanbul European Istanbul Anatolian

λ p #os Exp. Tot. Evac. Time Solution Time p #os Exp. Tot. Evac. Time Solution Time

10 10 25,448,247 300.60 5 5 78,850 72.46

20 20 25,160,535 163.35 10 10 56,621 36.61

0 25 20 25,135,322 199.10 13 12 56,592 29.11

30 20 25,135,322 166.04 15 12 56,574 26.53

32 20 25,135,322 215.57 17 12 56,574 27.86

10 10 10,293,567 2471.33 5 5 42,366 97.67

20 20 10,167,674 880.59 10 10 32,306 47.48

0.1 25 20 10,160,242 934.62 13 13 32,212 41.93

30 20 10,160,242 1304.19 15 13 32,202 40.69

32 20 10,160,242 755.29 17 13 32,202 39.01

10 10 6,432,920 3048.37 5 5 40,913 119.37

20 20 6,390,771 2,344.98 10 10 32,318 54.62

0.15 25 20 6,385,797 2682.86 13 13 32,218 47.10

30 20 6,385,797 3634.32 15 13 32,193 46.41

32 20 6,385,797 3522.80 17 13 32,193 42.54

increases. And due to this reason, we observe that the expected total evacuation time decreases drastically as
the tolerance parameter λ increases for both networks. However, an increase in the number of feasible paths
means an increase in the number of variables in the model. For that reason, the solution times deteriorates
as the tolerance level increases. We observe that, in general, the solution times decrease with increasing p and
increase with increasing λ.

We note here that at most 20 and 13 shelters are opened in Istanbul European and Anatolian instances,
respectively, even when p is larger. As also noted in Bayram et al. [8], it is not necessarily beneficial to open
more shelters as this may cause some road segments to be extremely congested.

For the case when shelters are uncapacitated, we compare the quality of 15 different solution strategies,
named as 0, 1,. . . ,11, ON, MVS, S. Among these, 0, 1,. . . ,11 are the optimal solutions corresponding to the
original scenarios, ON represents the solution obtained from using the original undisrupted network with the
original demand from scenario A in IMM-JICA report, and MVS and S represents the mean value solution
and stochastic programming solution, respectively. The regret of a solution in a given scenario is the difference
between the total evacuation time for that solution in that scenario and the minimum total evacuation time for
that scenario. The maximum regret for a solution is the maximum of its regrets over all scenarios.

In Table 4, we present the total evacuation times for all 15 solutions and 12 scenarios, as well as the expectation
of the total evacuation times. We take λ = 0.1 and p = 32 for the European network and λ = 0.2 and p = 17
for the Anatolian network. Table 5 gives the wait and see solution, expected value of perfect information and
value of stochastic solution for both networks. Finally, in Table 6, we present the regrets of the solutions in all
12 scenarios and the maximum regrets.

It is clearly seen that, the stochastic programming solution provides a much better evacuation planning
compared to ON solution. With the stochastic programming solutions, we obtain about 7 and 2 times better
results with respect to expectation, compared to the ON solutions for Istanbul European and Istanbul Anatolian
networks, respectively. With respect to maximum regret, the results are more striking. Stochastic Programming
Solution has almost 70 and 7 times better maximum regret values for Istanbul European and Istanbul Anatolian
networks, respectively.

For both Istanbul European and Anatolian networks, the stochastic programming solution performs best in
terms of the expected total evacuation time and in terms of the maximum regret. When we use the stochastic
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Table 5. WSS, EVPI, VSS.

Istanbul European Istanbul Anatolian

WSS 7,896,033 20,197
EVPI 2,264,314 8106
VSS 186,293,296 85,097

programming solution, on the average, a vehicle spends about 10 hours more and 7 minutes more to reach its
shelter, compared to what it would have spent if we had perfect information about the disaster for Istanbul
European and Anatolian networks, respectively. If we look at a specific scenario, say, if we assume we have perfect
information for scenario 10 in Istanbul Anatolian network and if we locate the shelters and make evacuation
plans accordingly, and if indeed this scenario realizes, an evacuee will reach a safe shelter about at the same
time he/she reaches safety in the stochastic programming solution. The value of stochastic solution is very high,
especially for the Istanbul European network. Indeed, the ratio of the expected total evacuation time for the
mean value solution to the one of the stochastic programming solution is 19.3 and 4.0 for Istanbul European
and Anatolian networks, respectively. We also observe that planning according to a single scenario can lead to
very poor performance. For Istanbul European network, if we plan according to scenario 10, the expected total
evacuation time is about 20 times higher than the expected total evacuation time for the stochastic programming
solution.

We also investigate the performance of the solutions for different values of tolerance levels. We report in
Table 7 the total evacuation time versus λ for both networks when p = 32 and p = 17, respectively for
scenario 10. We observe that the total evacuation time for the stochastic programming solution is almost as
good as solution 10 for scenario 10. We notice that ON solution tends to give better solutions for small λ values
compared to mean value solution. Neither ON nor MVS solution is able provide a better total evacuation time
compared to stochastic programming solution. The solutions ON and MVS provide are about 3.1 and 33.2
times and 13.2 and 2.4 times worse than that of stochastic programming solution when λ = 0 and λ = 0.15,
respectively. For Istanbul Anatolian network these numbers are about 8 and 2.5 when λ = 0.1 and 2.6 and 7.7
when λ = 0.2.

Finally, we use the performance measures “maximum latency (or maximum experienced travel time)”, and
“percentage of evacuees reaching safety up to a specified time T” to evaluate the performance of our solutions.
Table 8 illustrates the maximum latency incurred by the evacuees for scenario 10 of Istanbul Anatolian network,
for different tolerance levels, when p = 17. After solution 10, which is the optimal for the realized scenario, the
stochastic programming solution has the least maximum latency, many times better than that of any other
solution. For some λ values the maximum latency incurred in stochastic programming solution is the same as
that of solution 10. In terms of maximum latency, stochastic programming solution provides 4.4 times and 14.6
times better solutions than those of the ON and mean value solutions, respectively. Figure 2 also depicts the
percentage of evacuees reaching safety across time for different strategies, for scenario 10 of Istanbul Anatolian
instance, when p = 17 and λ = 0.2 and for scenario 0 of Istanbul European instance, when p = 32 and λ = 0.15.
Since realized scenario is 10, solution 10 evacuates 100% of the population in less than six hours. While the
stochastic programming solution evacuates almost everyone to safety within the same time as solution 10,
the original network solution ON and the mean value solution MVS, can only evacuate 85% and 69% of the
population within the same time. Solution strategy 7 starts really poorly in the beginning but then evacuates
everyone within almost the same times as solution strategy 10 and stochastic programming solution. With
stochastic programming solution, almost 90% of evacuees reach safe shelters in less than 5 hours and it takes a
little bit more than 5 hours to reach shelters only for less than 10% of the evacuees and everyone is evacuated
to safe shelters in less than 6 hours. The situation is similar for the Istanbul European instance. Stochastic
programming solution beats the ON and mean value solutions and most of the other solution strategies. With
stochastic programming solution more than 70% of evacuees reach safety in less than 6.5 hours and only less
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Table 7. Total Evacuation Time for various levels of tolerance for scenario 10.

λ Istanbul European

0 1 2 3 4 5 6 7

0 2,175,259,598 998,806,214 10,728,808,279 10,728,822,320 998,822,735 2,175,259,598 2,175,322,600 2,175,259,598

0.1 2,175,269,495 2,178,326,729 5,036,314,169 5,036,376,277 998,767,044 2,175,245,104 2,175,257,308 2,175,245,104

0.15 2,175,269,190 2,175,198,536 5,036,312,908 2,175,249,906 753,716,960 2,175,269,190 2,175,255,531 2,175,245,104

8 9 10 11 ON MVS S

0 2,175,265,854 753,696,271 323,291,760 998,743,086 1,002,780,099 10,728,776,770 323,365,972

0.1 2,178,326,729 2,175,198,104 113,203,246 998,729,233 999,528,680 180,651,595 124,211,377

0.15 2,175,198,890 753,632,213 74,770,390 753,679,132 999,527,218 181,278,134 75,875,383

Istanbul Anatolian

0 1 2 3 4 5 6 7

0 1,585,374 2,679,390 660,747 1,241,800 811,153 1,585,374 660,747 1,645,442

0.1 501,214 589,880 1,577,623 501,214 500,721 1,583,700 1,588,090 292,361

0.2 500,602 503,132 1,490,450 1,489,162 500,265 503,831 503,041 291,919

8 9 10 11 ON MVS S

0 1,585,370 2,420,442 547,125 817,167 661,202 1,577,324 547,212

0.1 501,214 589,880 197,047 501,931 1,588,809 500,814 197,260

0.2 1,489,162 501,065 193,259 499,907 504,208 1,489,162 193,354

Table 8. Maximum Latency for various levels of tolerance for scenario 10, Istanbul Anatolian.

λ 0 1 2 3 4 5 6 7 8 9 10 11 ON MVS S

0 76.01 99.46 21.95 73.44 21.95 76.01 21.95 76.01 76.01 76.01 14.12 21.95 21.96 76.01 14.12
0.05 76.01 24.77 76.01 73.44 73.44 76.01 76.01 76.01 73.44 76.01 5.18 73.44 76.03 73.44 5.18
0.1 21.95 21.95 76.01 21.95 21.95 76.01 76.01 5.16 21.95 21.95 5.13 21.95 76.03 21.95 5.16
0.15 21.95 73.53 73.53 73.53 21.95 21.95 73.53 73.53 73.53 73.53 5.13 21.95 73.54 73.53 5.17
0.2 21.95 21.95 73.53 73.53 21.95 21.95 21.95 5.13 73.53 21.95 5.03 21.95 21.96 73.53 5.03

Table 9. Maximum Latency for various levels of tolerance across different scenarios for stochas-
tic programming solution, Istanbul Anatolian.

Scen 0 1 2 3

λ Max Min Ave Max Min Ave Max Min Ave Max Min Ave

0 0.513 0.019 0.194 4.093 0.019 0.871 1.919 0.022 0.590 1.111 0.023 0.225
0.1 0.513 0.018 0.194 4.093 0.018 0.870 1.919 0.022 0.588 0.631 0.023 0.149
0.2 0.513 0.018 0.140 4.093 0.018 0.834 1.919 0.022 0.588 0.631 0.023 0.149

Scen 4 5 6 7

λ Max Min Ave Max Min Ave Max Min Ave Max Min Ave

0 0.454 0.019 0.152 0.360 0.018 0.157 4.968 0.021 1.445 0.093 0.018 0.057
0.1 0.454 0.018 0.150 0.360 0.018 0.156 4.968 0.018 1.444 0.093 0.018 0.057
0.2 0.454 0.018 0.150 0.360 0.018 0.126 1.851 0.018 0.488 0.088 0.018 0.051

Scen 8 9 10 11

λ Max Min Ave Max Min Ave Max Min Ave Max Min Ave

0 0.639 0.019 0.266 0.423 0.018 0.186 14.123 0.024 5.635 0.615 0.018 0.228
0.1 0.639 0.018 0.266 0.423 0.018 0.156 5.162 0.024 2.031 0.146 0.018 0.078
0.2 0.639 0.018 0.266 0.423 0.018 0.124 5.028 0.024 1.991 0.140 0.018 0.061

than 7% of the population is evacuated to shelters in more than 15 hours. Everyone is evacuated to safety in
less than 16 hours. In Table 9, we report the maximum, minimum and average latency values for various levels
of tolerance across different scenarios for stochastic programming solution. For all of the instances, the ratio
of the maximum latency to the average latency is less than 5, and for majority of the instances this ratio is
between 2 and 3. This is due to our fairness considerations as we do not assign the evacuees to paths that are
much longer that the shortest one they would take.
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Figure 2. The percentage of evacuees reaching safety across time for different strategies.

Table 10. Shelter utilization, Istanbul Anatolian.

Shelters

Scenario 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1785 0 0 4718 1630 15,621 14,983 D 0 12,334 0 8,517 10,316 543 278 0 4241

1 1496 0 0 4688 1495 11,965 12,032 2,647 0 10,380 0 7572 6458 342 276 0 3912

2 2386 0 D 9258 0 20,264 20,968 3997 0 17,382 0 20,706 D 1048 352 0 5122

3 825 0 0 D 3154 8306 8811 7811 0 D 0 0 9816 0 168 0 3031

4 1414 394 0 4744 1839 14,798 15,532 3084 0 11,936 0 3847 12,862 523 277 0 4337

5 1733 0 0 4738 738 13,568 12,956 2878 0 11,204 0 7434 6309 395 253 0 3997

6 2512 0 0 5459 3280 21,039 20,908 4037 0 17,221 0 11,970 10,260 1523 385 0 5115

7 905 0 D 2980 D 8919 7547 D D 7126 0 5259 5930 0 159 0 2775

8 1755 0 0 4767 1898 14,597 15,110 2986 0 12645 0 0 16,710 321 269 0 4242

9 1533 0 0 5659 4484 D 21,921 2563 0 11,711 0 7587 6442 300 234 0 4017

10 D 2512 0 D 8286 28,213 D 8888 0 0 0 D 36,628 7095 342 0 5149

11 951 0 0 3926 0 7891 1895 5742 0 6194 0 3732 4432 2247 174 0 2376

Max 2512 2512 0 9258 8286 28,213 21,921 8888 0 17,382 0 20,706 36,628 7095 385 0 5149

Min 825 0 0 2980 0 7891 1895 2563 0 0 0 0 4432 0 159 0 2376

Ave 1572 242 0 5094 2437 15,016 13,878 4463 0 10,739 0 6966 11,469 1195 264 0 4026

In Table 10, we report the utilization numbers of the shelters for Istanbul Anatolian instance with p = 17 and
λ = 0.2 for stochastic programming solution across different scenarios. We also report the maximum, minimum
and the average utilization numbers. The utilization number reported in the table is the number of vehicles.
Among the 17 potential shelters, i.e., shelters numbered 14 through 30, only 13 are selected to be opened in the
optimal solution. The four shelters that are not opened in the optimal solution, i.e., the shelters 16, 22, 24, and
29 can be seen in table, as the utilization numbers in the column under them are all zero. D represents a shelter
being disrupted in a specific scenario. As we do not restrict the number of evacuees a shelter can accommodate
in the uncapacitated model, we assume that in an optimal solution the opened shelters should be able to hold a
capacity of at least as much as the number of evacuees assigned to them. Hence, to be on the safe side with the
uncapacitated model, one should prepare shelters with capacities as much as the maximum utilization numbers.
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Table 11. Results for the Istanbul European and Anatolian instances when shelters are ca-
pacitated.

Istanbul European Istanbul Anatolian

λ p #os Exp. Tot. Evac. Time Sol. Time λ p #os Exp. Tot. Evac. Time Sol. Time

0.05 0.1

10 10 111,695 40.42
20 20 22,033,781 111.84 13 10 111,686 44.64
25 20 22,013,994 111.35 15 10 111,686 44.96
32 20 22,013,994 107.43 17 10 111,686 42.55

0.1 0.15

10 10 99,754 59.06
20 20 11,600,146 213.45 13 10 99,720 52.22
25 20 11,579,937 224.95 15 10 99,720 52.23
32 20 11,579,937 203.18 17 10 99,720 52.18

0.15 0.2

10 10 87,968 47.60
20 20 8,948,507 825.94 13 13 45,490 41.80
25 20 8,939,547 500.99 15 13 45,490 43.33
32 20 8,939,547 652.65 17 13 45,490 43.91

4.5. Capacitated Shelters

In our SCSO model, we assume that the shelters have unlimited capacity and that their capacity can be
planned according to the allocated demands. In this section, we analyze how fixed capacities affect the quality
of stochastic solution.

We add the capacity constraints
∑
r∈O

∑
π∈Pλrs(ω) wr(ω)vπ(ω) ≤ Ksys, ∀ω ∈ Ω, s ∈ F (ω) where Ks is the

capacity of shelter s. We refer to the resulting model as “stochastic constrained system optimal model with
capacitated shelters” and abbreviate it with SCSO-CS. We take shelter capacities as used in Kırıkçı [58]. In
Table 11, we present the results for the Istanbul European and Anatolian Instances when shelters are capacitated.
With original capacities, the problem is infeasible for both Istanbul European and Istanbul Anatolian networks
for all λ values up to 0.2. We increase the capacities of some of the shelters so that the problem becomes
feasible for some λ values. With the updated capacities, the problem is feasible for Istanbul European network
for λ ≥ 0.05 and for Istanbul Anatolian network for λ ≥ 0.1.

For the case when shelters are capacitated, we compare the quality of 14 different solutions, named as 0,
1,. . . 11, MVS, S, with 0, 1,. . . 11 being the optimal solutions corresponding to the original scenarios, MVS and
S representing the mean value solution and stochastic programming solution, respectively.

In Table 12, we present the total evacuation times for all 14 solutions and 12 scenarios, as well as the
expectation of the total evacuation times, when shelters are capacitated. We take λ = 0.1 and p = 32 for the
Istanbul European network and λ = 0.2 and p = 17 for the Istanbul Anatolian network. Table 13 gives the
wait and see solution, expected value of perfect information and value of stochastic solution for both networks.
Finally, in Table 14, we present the regrets of the solutions in all 12 scenarios and the maximum regrets over
all scenarios.

For both Istanbul European and Anatolian networks, there is no single solution other than the stochastic
programming solution that is feasible over all possible scenarios, when shelters are capacitated. In Tables 12
and 14, “∞” basically means that the proposed solution is not feasible for that specific scenario. For that reason
the stochastic programming solution is superior compared to all other solutions.

When we use the stochastic programming solution, on the average, a vehicle spends about 7 hours more and
a little bit more than 11 minutes more to reach its shelter, compared to what it would have spent if we had
perfect information about the disaster for Istanbul European and Anatolian networks, respectively. If we look
at a specific scenario, say, if we assume we have perfect information about scenario 10, a possible worst case
scenario, and if we locate the shelters and make evacuation plans accordingly, and if indeed this scenario realizes,
an evacuee will reach a safe shelter at the same time he/she reaches safety in accordance with the stochastic
programming solution, in Istanbul European network.
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Table 13. WSS, EVPI, VSS for the capacitated shelters case.

Istanbul European Istanbul Anatolian

WSS 9,947,393 35,952
EVPI 1,658,300 13,546
VSS ∞ ∞

Figure 3. The percentage of evacuees reaching safety across time for different strategies when
shelters are capacitated.

For both Istanbul European and Anatolian networks the value of stochastic solution is infinite. We also
observe that planning according to a single scenario leads to much worse performance compared to the case
when shelters are uncapacitated. Whichever scenario is chosen for evacuation planning purposes, the solution
becomes infeasible for some scenarios in both Istanbul European and Anatolian networks. For that reason the
maximum regret is infinite for all other solutions except that of the stochastic programming solution for both
Istanbul European and Anatolian networks.

Figure 3 depicts the percentage of evacuees reaching safety across time for different strategies, for scenario 7
of Istanbul Anatolian instance, when p = 17 and λ = 0.2 and for scenario 11 of Istanbul European instance when
p = 32 and λ = 0.1. For the Istanbul European instance, stochastic programming solution is the second best
strategy after strategy 11 in scenario 11. Everyone is evacuated to safety in less than 3 hours with stochastic
programming solution. Only a little bit more than 20 % of evacuees incur a latency of more than 2.8 hours.
The mean value solution is not promising compared to the efficiency of the stochastic programming solution.
The situation is similar for the Istanbul Anatolian instance. Stochastic programming solution turns out to be
an efficient solution in this scenario, as well. With stochastic programming solution almost 90% of evacuees
reach safety in less than 1.2 hours and only less than 5% of the population incurs a latency of more than 1.4
hours. Everyone is evacuated to safety in less than 1.6 hours. As the mean value solution is not feasible in this
scenario, it is not in the graph. Table 15 illustrates the maximum latency incurred by the evacuees for different
solution strategies across scenarios for Istanbul Anatolian network, when p = 17 and λ = 0.2. The stochastic
programming solution has relatively a good maximum latency in most of the scenarios. For some scenarios the
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Table 15. Maximum Latency when shelters are capacitated, Istanbul Anatolian, λ = 0.2 and
p = 17.

Scen 0 1 2 3 4 5 6 7 8 9 10 11

Solution

0 0.20 4.10 ∞ 0.21 ∞ 0.25 ∞ 0.14 ∞ ∞ ∞ 0.16
1 1.51 0.97 ∞ 0.34 1.40 1.08 ∞ 0.78 1.74 0.70 ∞ 0.46
2 0.68 4.10 2.22 0.63 0.73 0.36 2.04 0.15 0.56 0.42 ∞ 0.19
3 ∞ 4.10 ∞ 0.15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.71
4 0.51 4.10 ∞ 0.63 0.45 0.36 ∞ 0.09 0.64 ∞ ∞ 0.11
5 0.20 4.10 ∞ 0.21 ∞ 0.25 ∞ 0.14 ∞ ∞ ∞ 0.16
6 0.24 4.10 ∞ 0.25 1.04 0.25 0.64 0.14 0.64 0.59 22.18 0.17
7 ∞ 4.10 ∞ ∞ ∞ 0.36 ∞ 0.09 ∞ ∞ ∞ 0.16
8 ∞ 4.10 ∞ 0.15 ∞ ∞ ∞ ∞ 0.63 ∞ ∞ 0.36
9 6.07 1.50 ∞ 0.63 0.73 0.36 1.85 0.15 0.64 0.42 ∞ 0.15
10 0.53 ∞ ∞ 0.63 ∞ ∞ ∞ 0.20 ∞ ∞ 22.18 0.14
11 0.51 4.10 ∞ ∞ ∞ 0.36 ∞ 0.12 ∞ ∞ ∞ 0.11

MVS ∞ 4.09 ∞ 0.15 ∞ ∞ ∞ ∞ 0.62 ∞ ∞ 0.36
S 0.68 4.09 2.22 0.63 0.73 0.36 8.87 0.14 0.64 0.42 22.16 0.14

Table 16. Shelter Utilization when shelters are capacitated, Istanbul Anatolian.

Shelters

Scenario 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1785 0 0 4712 1636 30,000 0 D 0 12,938 3013 0 15,820 0 278 0 4784

1 1496 0 0 4692 1491 19,990 0 6477 0 10,380 177 0 14,030 0 276 0 4254

2 2386 0 D 9673 6913 27,657 0 8769 0 17,925 21,639 0 D 0 352 0 6170

3 825 0 0 D 6687 9949 0 10,000 0 D 1447 0 9816 0 168 0 3031

4 1413 395 0 6462 4390 14,798 0 10,000 0 13,199 3084 0 16,709 0 277 0 4860

5 1732 0 0 7816 6549 17,633 0 1654 0 11,204 1224 0 13,743 0 253 0 4392

6 2512 0 0 11,514 9330 25,978 0 6473 0 17,221 1427 0 22,230 0 385 0 6638

7 905 0 D 4918 D 14,528 0 D D 7126 1790 0 9399 0 159 0 2775

8 1755 0 0 4918 0 14,528 0 0 0 7126 1790 0 9399 0 159 0 2775

9 1533 0 0 10,920 8820 D 0 10,000 0 11,711 1028 0 14,029 0 234 3860 4317

10 D 463 2049 D 8286 28,867 D 10,001 0 0 15,684 D 25,000 0 342 0 6,421

11 951 0 0 4,698 1123 7891 0 7557 0 6624 2 0 8164 0 174 0 2376

Max 2512 463 2049 11,514 9,330 30,000 0 10,001 0 17,925 21,639 0 25,000 0 385 3860 6638

Min 825 0 0 4692 0 7891 0 0 0 0 2 0 8164 0 159 0 2376

Ave 1572 71 205 7032 5021 19,256 0 7093 0 10,496 4359 0 14,394 0 255 322 4399

maximum latency incurred in stochastic programming solution is the same as that of the solution strategy that
considers the related scenario. Stochastic programming solution provides better results than those of the mean
value solution, as the mean value solution is not feasible for many scenarios. The infeasibility of other solution
strategies in many scenarios, shows the superiority of the stochastic programming solution.

In Table 16, we report the utilization numbers of the shelters for Istanbul Anatolian instance with p = 17 and
λ = 0.2 for stochastic programming solution across different scenarios, when shelters are capacitated. We also
report the maximum, minimum and the average utilization numbers. Among the 17 potential shelters, only 13
are selected to be opened in the optimal solution. The four shelters that are not opened in the optimal solution,
are shelters 20, 22, 25, and 27. Because of the restrictions on the shelter capacities, the evacuees are distributed
more evenly between shelters compared to the uncapacitated case, at the cost of an increase in total evacuation
time.

5. Conclusion

Evacuation planning is done in the presence of uncertainty without exact or complete information. Due to the
fact that the place, the time and the scale of a disaster can not be easily predicted, it is very difficult to estimate



802 V. BAYRAM AND H. YAMAN

the evacuation demand accurately. Similarly, road capacities and shelter sites may be affected (degraded or
disrupted), but the questions of “which ones” and “how much” are difficult to answer.

In this study, we first proposed a novel model that captures this stochasticity in evacuation planning by taking
account of the uncertainty in demand, road capacities and availability of shelters. Following the methodology
proposed by Bayram et al. [8], we showed that our problem can be solved exactly by using second order cone
programming in small CPU times.

Then we presented a real world case study for a pending Istanbul earthquake where evacuation decisions
are made to save people from the impact of aftershocks and/or secondary disasters. In our case study, we
observed that planning in accordance with a single scenario such as the worst case scenario or most probable
scenario, or solving the problem with mean value approach do not produce effective solutions and that using
stochastic programming can lead to significant improvements. The improvement ranges from 2 to 33 and 4 to
15 fold in total evacuation time and maximum latency respectively, depending on the tolerance level used. We
observed that stochastic programming solution results in significantly better maximum regret values ranging
from 7 to 70 times compared to deterministic solutions, when shelters are uncapacitated. We showed that if the
fairness considerations are applied using geographical distances rather than travel times, contrary to common
managerial belief it is not necessarily more beneficial to open more shelters as this may cause congestion on the
road network. We also showed as a managerial rule of thumb that for the case when shelters are uncapacitated,
evacuation planning authority should take into account maximum utilization numbers of shelters to determine
shelter capacities. The solutions provided by stochastic programming approach is robust across the range of
scenarios in terms of the high percentages of the population evacuated within a certain time limit. Depending
on the realized scenario, the tolerance level used and the decision on the number of shelters to open, stochastic
programming solution is able evacuate around 90 % of the evacuees within 5 hours and everyone is evacuated
to safety within 6 hours for the Istanbul Anatolian instances. The results for Istanbul European instances are
as significant as those of Istanbul Anatolian instances.

We further observed that when shelters are capacitated, the superiority of stochastic programming solution
is emphasized, as planning in accordance with a single scenario or mean value approach will possibly generate
infeasible solutions for some scenarios, unlike in stochastic programming solution.

In this study, we were able to solve the stochastic programs in small CPU times as the number of scenarios
was small. In a follow up study (Bayram and Yaman [9]), we work on decomposition approaches to solve the
problem with large number of scenarios.

Specifying which routes are going play a major role during an evacuation is a question emergency evacuation
planners are trying to answer. It is important that these routes are large enough to serve a demand surge during
an evacuation and that they survive the destructive impact of a disaster. For that reason expanding and/or
strengthening these routes subject to a budget would contribute to the effectiveness of an evacuation plan. As
a continuation of our study we aim to incorporate capacity expansion and/or retrofit decisions in the first stage
and analyse the trade off between the expansion/retrofit decisions and the total evacuation time.

In our model the uncertainty is caused by nature. Another interesting extension would be a game theoretic
approach, where there is an attacker (a terrorist organization using a chemical/biological bomb) whose aim is to
give the defender maximum possible harm by delaying the evacuation as much as possible by attacking critical
road segments or bridges and shelter sites subject to a limited budget. Defender on the other hand, tries to
minimize this effect by selecting the shelter locations and assigning the evacuees to these shelters and to routes
that reach them in such a way that the total evacuation time is minimized.

Acknowledgements. This research is supported by TUBITAK grant no. 213M434. The research of the second author is
supported by the Turkish Academy of Sciences.
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