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SOCIAL OPTIMIZATION IN M/M/1 QUEUE WITH WORKING VACATION

AND N-POLICY

Qing-qing Ma1,3,∗, Ji-hong Li2 and Wei-qi Liu2,4

Abstract. This paper deals with the N -policy M/M/1 queueing system with working vacations. Once
the system becomes empty, the server begins a working vacation and works at a lower service rate. The
server resumes regular service when there are N or more customers in the system. By solving the balance
equations, the stationary probability distribution and the mean queue length under observable and
unobservable cases are obtained. Based on the reward-cost structure and the theory of Markov process,
the social welfare function is constructed. Finally, the impact of several parameters and information
levels on the mean queue length and social welfare is illustrated via numerical examples, comparison
work shows that queues with working vacations(WV) and N -policy have advantage in controlling the
queue length and improving the social welfare.
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1. Introduction

During the last decades, many researchers have devoted their efforts to the study of queueing systems with
working vacations and(or) N -policy which are concerned with customer strategic behavior and social optimal
welfare. A feasibly way for the study on customer strategic behavior is to quantize the waiting cost and the
reward after service. The corresponding research can be found in Naor [20] and Edelson and Hildebrand [5]
where a simple M/M/1 queue with linear reward-cost structure was considered, and the equilibrium strategy
and optimal social strategy were obtained. From then on, most researchers study customer behavior with reward-
cost structure, see [6–8,17,23,30]. Decades later, Hassin and Haviv [9] summarized the main research results in
this area and opened more questions for further research.

Customer strategic behaviour and social optimal benefit in queuing systems with working vacations have been
studied extensively. Systems with working vacations have wide application in management of service systems.
In these systems, the server keeps on working with a lower service rate rather than completely stopping working
during a vacation period. Sevi and Finn [22] studied this working mechanism for the first time, they obtained
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the stationary distribution of system and the mean sojourn time of customers. Liu, Xu and Tian [16] gave
some results on the M/M/1 queue with working vacations. Doshi [3], Takagi [24] and Tian and Zhang [25]
provided an amount of excellent models on vacation queueing systems. Liu, Ma and Li [17] studied customer
equilibrium behavior in fully observable and almost observable M/M/1 and Geo/Geo/1 queueing systems with
single vacation. Based on the reward-cost structure, the equilibrium threshold strategies were obtained and
the stationary system behavior was analyzed. Zhang, Wang and Liu [30] investigated the customer strategic
behavior in a single server queueing system with working vacations under four cases with respect to different
information level. Along with the reward-cost structure, equilibrium threshold strategies and the corresponding
Nash equilibria for each case were derived. Kasim and Gupur [10] proved that the M/G/1 queuing model
with a single working vacation had a unique non-negative time-dependent solution and the time-dependent
solution strongly converged to its steady-state solution. For more researches on working vacation, one can refer
to [12–15,19].

N -policy is another vacation policy which is commonly used in flexible manufacturing systems, made-to-order
(MTO) systems and so on. With N -policy, the server begins a vacation when the system becomes empty and
resumes regular work whenever there are N(N > 1) or more customers in the systems. Due to the vacation
time of the server always being dependent on the number of customers in the system, N -policy systems have
an advantage in reducing the sojourn time of customers and increasing customer satisfaction. Queueing systems
with N -policy was pioneered by Yadin and Naor [28], then Kella [11] applied it to working vacation queues, he
or she laid the foundation of working vacation queue with N -policy. Guo and Hassin [6,7] studied the customer
equilibrium and optimal arrival rate in vacation queue under fully unobservable and almost observable cases, and
obtained the optimal threshold N to maximize the social welfare. Guo and Li [8] extended Guo and Hassin [6] to
the almost unobservable case, they also studied the customer equilibrium and optimal arrival rate, completing
the model constructed by Guo and Hassin [6]. The study of [6–8] assumed that the server completely stopped
working during vacation time, resumed to work as soon as there are N customers waiting in the queue. Sun,
Li and Cheng [23] studied the customer equilibrium and socially optimal balking strategies in single-server
Markovian queues with multiple vacations and N -policy under fully observable and fully unobservable cases.
Different from [6–8], Sun, Li and Cheng [23] assumed that the server was reactivated only in case that there were
at least N customers waiting in the queue after completing the vacation, otherwise, the server continued taking
another vacation. They obtained both customers equilibrium and optimal balking strategies. Other research on
M/M/1 queue with N -policy can be seen in [26, 29]. Wu, Tang and Yu [27] considered an M/G/1 repairable
queueing system with N -policy and single vacations, in which the system had an unreliable service station
and replaceable repair facility. They numerically determined the optimal threshold N for minimizing the cost
function. Liu, Ma and Li [18] analyzed the customer social equilibrium strategy in an M/M/1 queue with
working vacations and N -policy under the observable case where the arriving customers can observe the queue
length upon arrival. After that, to the authors’ knowledge, few researchers have discussed the case where the
server served the customers with a lower service rate in working vacation queue with N -policy.

Previous studies have made great contributions to the Queueing Theory. However, to the best of our knowl-
edge, there is no previous research dealing with the social optimization of queueing systems with working
vacations and N -policy. Considering the difficulties in solving the M/G/1 working vacation queueing models,
we consider an M/M/1 model first. The M/G/1 queue with working vacations and N -policy will be discussed
in a separate paper. Our model is characterized as follows: In an M/M/1 queue, when the system becomes
empty, the server begins a working vacation; once there are N(N > 1) customers in the system, the server
return to normal service period after completing current service. It’s obvious that when the vacation service
rate is 0, it becomes the model discussed in Guo and Hassin [23, 26, 29]; When N = 1, it becomes a classical
queue. Queueing systems with such mechanisms could be extensively applied in management. An example using
a machine assembling system can be illustrated as follows: when the facility finishes all the jobs in line and the
line becomes empty, a working vacation begins. During the working vacation the facility keeps working but only
at a fraction of its full capacity. Thus, when a new job arrives the facility handles the job with a lower service
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rate. Once there are N jobs in the system the facility comes back to work immediately and serves jobs with the
normal service rate. For more application examples, one can refer to [5, 24,25].

In many studies, the explicit expression of the results always cannot be reached, so graphs is always used
to analyze the results, see [17, 19, 30]. Besides graphs, PSO(Particle Swarm Optimization) algorithm proposed
by [1, 2, 4, 21] is a way to solve optimization problems with no explicit expression. Yang and Wu [29] succeed
in solving the optimization problem with PSO algorithm. In this paper, it is arduous task to develop the
corresponding explicit expression of λ, N and R when the social welfare is optimized, due to the fact that the
expressions of stationary probability and mean queue length are rather complex. If the explicit expressions of
the optimized λ, N and R is needed, one can adopt PSO algorithm as well.

The rest of this paper is organized as follows. In Section 1, we describe the queueing model and the reward-cost
structure; In Section 2, the mean queue length and social welfare for observable case is analyzed; In Section 3, the
mean queue length and social welfare for unobservable case is analyzed; Finally, in Section 4, some conclusions
are given.

2. Model description

Consider a single server M/M/1 queue with infinite waiting room, in which customers arrive according to a
Poisson process of rate λ, the service order is FCFS(first-come first-served). The service times are independent
and exponentially distributed with parameter µ1(µ0). Different from previous N -policy, the server begins a
working vacation once the system becomes empty. Customers who arrive during the vacation period are served
with a lower service rate µ0 which is also i.i.d and λ < µ1 holds.The server returns to normal service period after
completing current service when there are N or more customers in the system. Unless otherwise stated, N > 1.

Let (n, s) be the system state, where n is the number of the customers and s is the server state. Define

s =

{
0, If the service rate is µ0 upon arrival

1, If the service rate is µ1 upon arrival
(2.1)

The process(n, s) is a two-dimensional embedded Markov chain with the state space:

Ω =
{

(0, 0)
}⋃{

(k, j), k ≥ 1, j = 0, 1
}
.

To model customer behavior, assume that every customer receives a reward of R units for completing service,
and pays a sojourn cost of C units per time unit when in the system (i.e., the waiting time plus the service
time). Let U be the expected customer net benefit, we have

U = R− CE[W ]

Where E[W ] is the expected sojourn time. Customers choose to join the system if U is non-negative; balk
otherwise. Customers are risk neutral and their decisions are irrevocable, meaning that reneging of entering
customers are not allowed.

In the next sections the mean queue length and social welfare of customers will be studied based on the
information they have upon arrival.

3. Customer strategies for observable case

In this section, we shall deal with the observable case where the arriving customers are informed of the queue
length upon arrival. We use (n, s) to describe the system sate, the state space is:

{(0, 0), (1, 0), . . . , (N − 1, 0), (1, 1), (2, 1), . . . , (N, 1), (N + 1, 1), . . . , (ne, 1)}

Where ne is the maximum number of customers in the system at state 1. Figure 1 illustrates the dynamics of
queueing system in the observable case.
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Figure 1. Transition rate diagram for the observable model.

Lemma 3.1. The equilibrium threshold strategy of customer ne is given by

ne =

⌊
Rµ1

C

⌋
To avoid the degenerate case(the state space consist of only one state (0,0)), we assume that ne ≥ N always

holds.

3.1. The stationary distribution and the mean queue length

The system stationary distribution and the derivation of the expected number of customers are detailed
below.

Lemma 3.2. In the observable M/M/1 queue with working vacations and N -policy where the arriving customers
know the number of customers in the system, the stationary distribution is given as follows:

Pob(k, 0) =
ρk0 − ρN0
ρN0 (1− ρ0)

µ1

µ0
Pob(1, 1), k = 0, 1, 2, . . . , N − 1

Pob(k, 1) =
1− ρk1
1− ρ1

Pob(1, 1), k = 1, 2, . . . , N

Pob(N + k, 1) =
ρk1(1− ρN1 )

1− ρ1
Pob(1, 1), k = 0, 1, 2, . . . , ne −N

Where

Pob(1, 1) =

[
1− (N + 1)ρN0 +NρN+1

0

ρN0 (1− ρ0)2
µ1

µ0
+
N −Nρ1 − ρne−N+1

1 + ρne+1
1

(1− ρ1)2

]−1
Proof. The system stationary distribution is obtained through solving the following balance equations:

µ1Pob(1, 1) + µ0Pob(1, 0) = λPob(0, 0) (3.1)

(λ+ µ1)Pob(1, 1) = µ1Pob(2, 1) (3.2)

(µ0 + λ)Pob(k, 0) = λPob(k − 1, 0) + µ0Pob(k + 1, 0), k = 1, 2, . . . , N − 2 (3.3)

λPob(N − 2, 0) = (µ0 + λ)Pob(N − 1, 0) (3.4)

λPob(N − 1, 0) + λPob(N − 1, 1) + µ1Pob(N + 1, 1) = (λ+ µ1)Pob(N, 1) (3.5)
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λPob(k − 1, 1) + µ1Pob(k + 1, 1) = (λ+ µ1)Pob(k, 1), k = 2, 3, . . . , N − 1 (3.6)

(λ+ µ1)Pob(N + k, 1) = λPob(N + k − 1, 1) + µ1Pob(N + k + 1, 1), k = 1, 2, . . . , ne −N (3.7)

Donate ρ1 = λ
µ1

,ρ0 = λ
µ0

.

From (3.3), the probabilities Pob(k, 0), k = 1, 2, . . . , N − 1 are the solutions of the following homogeneous
linear difference equation:

µ0xn+1 − (µ0 + λ)xn + λxn−1 = 0, n = 1, 2, . . . , N − 2 (3.8)

The corresponding characteristic equation of (3.8) is

µ0x
2 − (µ0 + λ)x+ λ = 0

which has two roots: 1 and ρ0(6= 1). So the general solution of (3.8), donated by xhomn , is xhomn = A1ρ
n
0 + A2,

where A1 and A2 are the coefficients to be determined. From (3.3), we know

Pob(N − 1, 0) = A1ρ
N−1
0 +A2 (3.9)

and
Pob(0, 0) = A1 +A2 (3.10)

From (3.1), (3.4), (3.9) and (3.10), the following equations are obtained:{
µ1Pob(1, 1) + µ0(A1ρ0 +A2) = λ(A1 +A2)

ρ0(A1ρ
N−2
0 +A2) = (1 + ρ0)(A1ρ

N−1
0 +A2),

(3.11)

which yields A1 =
1

ρN0 (1− ρ0)
µ1

µ0
Pob(1, 1),

A2 = −A1ρ
N
0 ,

(3.12)

Thus
Pob(k, 0) = A1ρ

k
0 +A2, k = 0, 1, . . . , N − 1 (3.13)

where A1 and A2 are given in (3.12).
Then we consider the probabilities Pob(k, 1), k = 1, 2, . . . , N − 1 and Pob(N + k, 1), k = 1, 2, . . . , ne −N .
It follows (3.6) that

Pob(k + 1, 1)− Pob(k, 1) = ρk−11 (Pob(2, 1)− Pob(1, 1)), k = 2, 3, . . . , N − 1 (3.14)

Taking (3.2) into consideration, we have:

Pob(k + 1, 1)− Pob(k, 1) = ρk1Pob(1, 1), k = 2, 3, . . . , N − 1 (3.15)

Thus we have:

Pob(k, 1) =
1− ρk1
1− ρ1

Pob(1, 1), k = 3, . . . , N (3.16)

Because k = 1, 2 also holds for (3.16), then:

Pob(k, 1) =
1− ρk1
1− ρ1

Pob(1, 1), k = 1, 2, . . . , N (3.17)
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Solve the remaining equations in the same way, we have:

Pob(N + k, 1) =
ρk1(1− ρN1 )

1− ρ1
Pob(1, 1), k = 1, 2, . . . , ne −N (3.18)

Besides, k = 0 holds for (3.18).
Now, all the stationary state probabilities in terms of Pob(1, 1) are obtained. The remaining probability

Pob(1, 1) can be found by the normalization condition

N−1∑
k=0

Pob(k, 0) +

N−1∑
k=1

Pob(k, 1) +

ne−N∑
k=0

Pob(N + k, 1) = 1

Pob(1, 1) is shown below:

Pob(1, 1) =

[
1− (N + 1)ρN0 +NρN+1

0

ρN0 (1− ρ0)2
µ1

µ0
+
N −Nρ1 − ρne−N+1

1 + ρne+1
1

(1− ρ1)2

]−1
(3.19)

Lemma 3.3. In the observable M/M/1 queue with working vacations and N -policy where the arriving customers
know the number of customers in the system, the mean sojourn time of customer E[Wob] and the mean queue
length Lob is given below:

According to Little’s Law, we have:

E[Wob] =
Lob

λ(1− Pob(ne, 1))
(3.20)

Where Pob(ne, 1) is the probability that the queue is at its maximum size, and λ(1− Pob(ne, 1)) is the efficient

arrival rate of customer, Pob(ne, 1) =
ρne−N
1 (1− ρN1 )

1− ρ1
Pob(1, 1).

Lob =

N−1∑
k=1

k(Pob(k, 0) + Pob(k, 1)) +

ne−N∑
k=0

(N + k)Pob(N + k, 1)

=

N−1∑
k=1

k

(
ρk0 − ρN0
ρN0 (1− ρ0)

µ1

µ0
Pob(1, 1) +

1− ρk1
1− ρ1

Pob(1, 1)

)
+

ne−N∑
k=0

(N + k)
ρk1(1− ρN1 )

1− ρ1
Pob(1, 1)

=
1

ρN0 (1− ρ0)

µ1

µ0
Pob(1, 1)

(
ρ0

1−NρN−10 + (N − 1)ρN0
(1− ρ0)2

− N(N − 1)

2
ρN0

)

+
1

1− ρ1
Pob(1, 1)

(
N(N − 1)

2
− ρ1

1−NρN−11 + (N − 1)ρN1
(1− ρ1)2

)

+
1− ρN1
1− ρ1

Pob(1, 1)

(
N

1− ρne−N+1
1

1− ρ1
+ ρ1

1− (ne −N + 1)ρne−N
1 + (ne −N)ρne−N+1

1

(1− ρ1)2

)
(3.21)

Lemma 3.4. In the observable M/M/1 queue with working vacations and N -policy where the arriving customers
know the number of customers in the system, the social welfare per time unit SWob is given below:

SWob = (R− CE[Wob])λ(1− Pob(ne, 1))) = Rλ(1− Pob(ne, 1))− CLob
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Figure 2. Mean queue length Lob and social welfare SWob for observable queues with N -policy
and queues with working vacations and N -policy (µ0 = 1.5, µ1 = 2, C = 1.5, N = 6, R = 20).

3.2. Numerical simulation for mean queue length and social welfare

In this section, the impact of λ, N and R on the mean queue length Lob and social welfare SWob will be
graphically presented. What’s more, comparison work is carried out to show which mechanism, queues with
N -policy or queues with working vacations and N -policy, is better in controlling the mean queue length and
improving the social welfare.

Figure 2 shows that the mean queue length Lob increases with λ, the social welfare SWob first increases and
then decreases with λ in queues with working vacations and N -policy. With λ increasing, more customers join
the system per time unit, the queue length become larger, the mean queue length increases. Once there are N
customers in the system, the server resumes to normal work period, there will be more customers completing
service per time unit, the social welfare increases. However, as λ keeps increasing, there will be congestion in
the system, customers will suffer longer queue length and more waiting cost, which has a negative effect on the
social welfare, social welfare decreases.
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Figure 3. Mean queue length Lob and social welfare SWob for observable queues with N -policy
and queues with working vacations and N -policy (µ0 = 1.5, µ1 = 2, λ = 1.7, C = 1.5, R = 20).
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Figure 4. Mean queue length Lob and social welfare SWob for observable queues with N -
policy and queues with working vacations and N -policy (µ0 = 1.5, µ1 = 2, λ = 1.7, C = 1.5,
N = 6.)
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Figure 5. Transition rate diagram for the unobservable model.

Figure 3 shows that the mean queue length Lob increases with N , the social welfare SWob decreases with
N in queues with working vacations and N -policy. Because with a larger threshold N , it’s difficult for the
server returning to normal work period, there will be more customers served with the vacation service rate µ0,
customers who join the queue suffer longer waiting delay and the queue length grows larger, then the mean
queue length becomes greater. Longer waiting delay causes more waiting cost of customers, thus the social
welfare decreases with N .

Figure 4 shows that both the mean queue length Lob and the social welfare SWob increase with R. With a
larger R, customers receive higher reward after service. Social welfare SWob, as the sum of customers benefit,
increases with R.

On the other hand, we can see that in Figures 2−4, the mean queue length for queues with N -policy is always
larger than that for queues with working vacations and N -policy, the social welfare for queues with working
vacations and N -policy is always greater than that for queues with N -policy. Because in queues with N -policy,
the server doesn’t serve customers in vacation period, customers suffer a longer waiting time and a greater
waiting cost; while in queues with working vacations and N -policy, customers can be served with a lower service
rate during vacation period.

4. Customer strategies for unobservable case

We now turn our interest to the unobservable case where the arriving customers have no information of the
queue length upon arrival. The transition rate diagram is shown in Figure 5.
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4.1. Analysis of the expected sojourn time and the mean queue length

Let pun(n, i), (i = 0, 1, n = i, i + 1, i + 2, . . .) be the stationary distribution of the unobservable model. The
following Lemmas hold.

Lemma 4.1. In the unobservable M/M/1 queue with working vacations and N -policy where the arriving cus-
tomers have no information of the queue length upon arrival, the system stationary distribution is given as
follows:

Pun(k, 0) =
ρk0 − ρN0
ρN0 (1− ρ0)

µ1

µ0
Pun(1, 1), k = 0, 1, 2, . . . , N − 1

Pun(k, 1) =
1− ρk1
1− ρ1

Pun(1, 1), k = 1, 2, . . . , N

Pun(N + k, 1) =
ρk1(1− ρN1 )

1− ρ1
Pun(1, 1), k = 0, 1, 2, . . .

Where

Pun(1, 1) =

[
1− (N + 1)ρN0 +NρN+1

0

ρN0 (1− ρ0)2
µ1

µ0
+

N

1− ρ1

]−1

Proof. The system stationary distribution is obtained through solving the following balance equations:

µ1Pun(1, 1) + µ0Pun(1, 0) = λPun(0, 0) (4.1)

(λ+ µ1)Pun(1, 1) = µ1Pun(2, 1) (4.2)

(µ0 + λ)Pun(k, 0) = λPun(k − 1, 0) + µ0Pun(k + 1, 0), k = 1, 2, . . . , N − 2 (4.3)

λPun(N − 2, 0) = (µ0 + λ)Pun(N − 1, 0) (4.4)

λPun(N − 1, 0) + λPun(N − 1, 1) + µ1Pun(N + 1, 1) = (λ+ µ1)Pun(N, 1) (4.5)

λPun(k − 1, 1) + µ1Pun(k + 1, 1) = (λ+ µ1)Pun(k, 1), k = 2, 3, . . . , N − 1 (4.6)

(λ+ µ1)Pun(N + k, 1) = λPun(N + k − 1, 1) + µ1Pun(N + k + 1, 1), k = 1, 2, . . . (4.7)

Define ρ1 = λ
µ1

,ρ0 = λ
µ0

.
Solve the equations in the same way as in the observable case, Lemma 4.1 is reached. Using the normalization

condition
N−1∑
k=0

Pun(k, 0) +

N−1∑
k=1

Pun(k, 1) +

+∞∑
k=0

Pun(N + k, 1) = 1

Pun(1, 1) is given below:

Pun(1, 1) =

[
1− (N + 1)ρN0 +NρN+1

0

ρN0 (1− ρ0)2
µ1

µ0
+

N

1− ρ1

]−1
(4.8)

�
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Figure 6. Mean queue length Lun and social welfare SWun for unobservable queues with
N -policy and queues with working vacations and N -policy(µ0 = 1.5, µ1 = 2, C = 1.5, R = 20).

1 2 3 4 5 6 7 8
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

 N

M
ea

n 
Q

ue
ue

 L
en

gt
h

L
un

 for queues with WV and N−policy

L
un

 for queues with N−policy

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

 N

S
oc

ia
l W

el
fa

re

SW
un

 for queues with WV and N−policy

SW
un

 for queues with N−policy

Figure 7. Mean queue length Lun and social welfare SWun for unobservable queues with
N -policy and queues with working vacations and N -policy(µ0 = 1.5, µ1 = 2, λ = 1.7, C = 1.5,
R = 20).

Lemma 4.2. In the unobservable M/M/1 queue with working vacations and N -policy where the arriving cus-
tomers have no information of the queue length upon arrival, the mean sojourn time of customer E[Wun] and
the mean queue length Lun is given below:

According to Little’s Law,

E[Wun] =
Lun
λ

(4.9)
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Figure 8. Mean queue length Lun and social welfare SWun for unobservable queues with
N -policy and queues with working vacations and N -policy(µ0 = 1.5, µ1 = 2, λ = 1.7, C = 1.5,
N = 6).

The mean queue length is:

Lun =

N−1∑
k=1

kPun(k, 0) +

N∑
k=1

kPun(k, 1) +

+∞∑
k=1

(N + k)Pun(N + k, 1)

=
1

ρN0 (1− ρ0)

µ1

µ0
Pun(1, 1)

[
ρ0

1−NρN−10 +NρN0 − ρN0
(1− ρ0)2

− N(N − 1)

2
ρN0

]

+
1

1− ρ1
Pun(1, 1)

[
N(N − 1)

2
− ρ1

1−NρN−11 +NρN1 − ρN1
(1− ρ1)2

]
+

1− ρN1
1− ρ1

Pun(1, 1)

(
N

1− ρ1
+

ρ1
(1− ρ1)2

)

=
1

ρN0 (1− ρ0)

µ1

µ0

[
ρ0

1−NρN−10 +NρN0 − ρN0
(1− ρ0)2

− N(N − 1)

2
ρN0

]
Pun(1, 1)

+
1

1− ρ1
(
N(N + 1)

2
+

Nρ1
1− ρ1

)Pun(1, 1) (4.10)

Lemma 4.3. In the unobservable M/M/1 queue with working vacations and N -policy where the arriving cus-
tomers have no information of the queue length upon arrival, the social welfare per time unit SWun is given
below:

SWun = (R− CE[Wun])λ = Rλ− CLun

4.2. Numerical simulation for mean queue length and social welfare

In this section, the effect of N , R and λ on the mean queue length Lun and social welfare SWun will
be graphically presented. What’s more, comparison work is carried out to show which mechanism, N -policy or
working vacations and N -policy, is better in controlling the mean queue length and improving the social welfare.
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Figure 9. Mean queue length and social welfare for observable and unobservable queues with
working vacations and N -policy (µ0 = 1.5, µ1 = 2, C = 1.5, N = 6, R = 20).
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Figure 10. Mean queue length and social welfare for observable and unobservable queues
with working vacations and N -policy (µ0 = 1.5, µ1 = 2, λ = 1.7, C = 1.5, R = 20).

Figure 6 shows that the mean queue length Lun increases with λ, the social welfare SWun first increases
then decreases with λ in queues with working vacations and N -policy. With λ increasing, more customers join
the system per time unit, the queue length become larger, the mean queue length increases. Once there are N
customers in the system, the server resumes to normal work period, there will be more customers completing
service per time unit, the social welfare increases. However, as λ keeps increasing, there will be congestion in
the system, customers will suffer longer queue length and more waiting cost, which has a negative effect on the
social welfare, social welfare decreases.

Figure 7 shows that the mean queue length Lun increases with N , the social welfare SWun decreases with N in
queues with working vacations and N -policy. Because with a lager N , it’s more difficult for the server returning
to normal service period, there will be more customers served with the vacation service rate µ0, customers
who join the queue suffer longer waiting time and longer queue length, the mean queue length becomes larger.
Longer waiting delay causes more waiting cost of customers, thus the social welfare decreases with N .

Figure 8 shows that the mean queue length Lun remains fixed with R and equation (4.10) demonstrates
this, the social welfare SWun increases with R in queues with working vacations and N -policy. Because
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Figure 11. Mean queue length and social welfare for observable and unobservable queues
with working vacations and N -policy (µ0 = 1.5, µ1 = 2, λ = 1.7, C = 1.5, N = 6).

with a larger R, customers receive higher reward after service. Social welfare SWun, as the sum of customer
benefit, increases with R necessarily.

On the other hand, Figures 6−8 show that the mean queue length for queues with N -policy is always larger
than that for queues with working vacations and N -policy except in the left of Figure 6, the social welfare for
queues with working vacations and N -policy is always greater than that for queues with N -policy. Because in
queues with N -policy, the server doesn’t serve customers in vacation period, customers suffer a longer waiting
time and a greater waiting cost; while in queues with working vacations and N -policy, customers can be served
with a lower service rate during vacation period.

4.3. Numerical simulation for observable case and unobservable case

Figures 9−11 focus on comparing the mean queue length and the social welfare for observable case and
unobservable case in queues with working vacations and N -policy. Figure 9 shows that when λ is small, the mean
queue length and the social welfare are the same in observable case and unobservable case; when λ keeps
increasing, Lob is smaller than Lun and SWob is greater than SWun, which means that the observable case is
better in decreasing the mean queue length and improving the social welfare. Figure 10 show that when N is
small, Lob is smaller than Lun and SWob is greater than SWun; As N keeps increasing, Lob is greater than Lun
and SWob is smaller than SWun. Figure 11 shows that Lob is smaller than Lun and SWob is greater than SWun.
We can make the summary that when N is small, the observable case has an advantage in avoiding congestion
and improving the social welfare; otherwise, the unobservable case is better.

5. Conclusion

In this paper, the customer social welfare in a single server queue with working vacations and N -policy under
observable and unobservable cases is analyzed. Comparison work shows that queues with working vacations
and N -policy lead to smaller mean queue length and larger social welfare than queues with N -policy. The
main reason is that the arriving customers who decide to join a queue with working vacations and N -policy
can be served during vacation period. A risk neutral customer prefers to join a queue with working vacations
and N -policy. However, from the perspective of agent managers, running a server during vacation period will
lead to extra cost in maintaining it. The future work could take both customer and manager’s strategies
into consideration. What’s more, we give some advice from a managerial point of view on how to choose the
information level through the numerical results.
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