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AN ANALYTICAL APPROACH FOR BEHAVIORAL PORTFOLIO MODEL
WITH TIME DISCOUNTING PREFERENCE ∗

Guang Yang1, Xinwang Liu1,∗∗, Jindong Qin2 and Ahmed Khan1

Abstract. This paper presents a behavioral portfolio selection model with time discounting preference.
Firstly, we discuss the portfolio selection problem and then modify this model based on cumulative
prospect theory (CPT) as well as considering investors’ time discounting preference in psychology.
Furthermore, an analytical solution with satisfying behavior is given for our proposed model, the
results show that when investors’ goals are very ambitious, they put a high proportion of their wealth
in long-term goals and adopt aggressive investment strategies with high leverage to reach short-term
goals and the overall investment strategy also displays high leverage. Finally, numerical analysis is
given and it is shown that investor who tends to future bias performs adequate confidence and patience
whereas investor with present bias is apt to the immediate interests.
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1. Introduction

Portfolio theory has become highly developed and has strong theoretical support, making it essential in
economics and finance. Markowitz [26] is considered the original work of portfolio theory, later, many researchers
modify and develop this theory and made great advancement in this field [7, 8, 13, 14, 27, 34, 35, 40]. Behavioral
portfolio theory (BPT) is an increasingly developing branch of portfolio theory, which is goal-based theory
introduced by Shefrin and Statman [37], Tversky and Kahneman [41] propose cumulative prospect theory(CPT),
which makes a solid foundation for BPT’s development.

There has been a growing research interest in incorporating CPT into portfolio selection. However, previous
studies overwhelmingly limited to the single-period setting with emphases on qualitative properties and empirical
experiments [4, 5, 15, 25]. Berkelaar et al. [6] propose a very specific two-piece power utility function based on
prospect theory in dynamic and continuous-time environment. Hamada et al. [18] provide a formal treatment of
risk measures based on distortion functions that are consistent with the work of [44] dual (non-expected utility)
theory of choice, and set out a general layout for portfolio optimisation in this non-expected utility framework
using the risk neutral computational approach. Jin and Zhou [22] formulate and study a general continuous-time
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behavioral portfolio selection model under Kahneman and Tversky’s (cumulative) prospect theory, featuring
S-shaped utility (value) functions and probability distortions.

Recently, He and Zhou [21] propose an analytical treatment of a single-period portfolio choice model featuring
a reference point in wealth, S-shaped utility (value) functions with loss aversion, and probability weighting under
CPT. Jin and Zhou [23] quantify the notion of greed, and explores its connection with leverage and potential
losses, in a continuous-time behavioral portfolio choice model under CPT. Rasonyi and Rodrigues [31] examine
an optimal investment problem in a continuous-time complete financial market with a finite horizon. However,
these studies have not considered investors’ time discounting preference or simply considering a constant/linear
time discounting, therefore they can not capture the difference of investors’ behaviors.

Time discounting is of interest to researchers in many areas of basic and applied psychology, including behavior
analysis [1, 12], consumer behavior [19, 38], health psychology [10, 11], and organizational psychology [32] etc.
There are many experimental studies on time preference [17,20,29,33,36].

Time discounting usually refers to present bias, which is the tendency of a decision-maker in intertemporal
choices that he overvalues and prefers an immediate-but-small reward to a delayed-but-large reward. Meanwhile,
Takeuchi [39] examines another type of time inconsistency that is future bias, subjects tend to postpone a reward
until the near future because of the reverse time inconsistency. Green and Myerson [16] and Takeuchi [39] show
that the estimated discounting factor would be too small if the estimation ignored the risk averseness of subjects.
Sayman and Onculer [33] and Takeuchi [39], independently, notice that an inverse S-curve time discount function
captures the time inconsistent preference. Huizen and Plantenga [42] examine the effects of time preferences
on job search behaviour and tests. Waegeman et al. [43] investigate how the neural correlates of delaying
gratification during a time discounting task are associated with individual differences in self-control ability.
Attema et al. [2] introduce a new method to measure the temporal discounting of money. Unlike preceding
methods, their method requires neither knowledge nor measurement of utility.

Motivated by the above literatures, we consider portfolio selection problem with investors’ time discounting
preference. Although there are various studies about the behavioral portfolio model and time discounting pref-
erence, however, few of them are combined with two sides, thus our work regarding the behavioral theory is
interesting and play an important role in explaining investors’ psychological and strategic changes. The purpose
of this study is to build portfolio choice model considering investors’ time discounting preference under CPT,
the main features of our study are concluded as follows:

(i) We construct behavioral portfolio model considering time discounting, behavioral portfolio theory is goal-
based theory, we further modify this theory with CPT. To find investors strategy change, we adopt general
time discounting functions to rebuild behavioral portfolio selection model.

(ii) Our proposed model is solved by martingale methods, we give close form solution for model with satisfying
behavior and related properties, the results show that investors with very ambitious goals put a high
proportion of their wealth in long-term goals, meanwhile they adopt aggressive investment strategies with
high leverage to reach short-term goals, the overall investment strategy also displays high leverage.

(iii) We give comparative analysis strategy change for six form of discounting functions and illustrate inter-
pretation in psychology, numerical results indicate that different investors have different time discounting
preferences. Specifically, investor with future bias performs adequate confidence and patience whereas
investor with present bias tends to the immediate interests.

The remainder of this paper is organized as follows. Section 2 introduces background about time discounting
and CPT. Section 3 proposes a model with time discounting preference for portfolio choice under CPT and
gives analytical results of our model. Section 4 gives the numerical analysis and interpretation. Section 5 draws
conclusions. In addition, all proofs of results are in appendix.

2. Preliminaries

Before our model is introduced, we firstly introduce related preliminaries about time discounting and CPT.



BEHAVIORAL PORTFOLIO MODEL WITH TIME DISCOUNTING 693

2.1. Related conception of time discounting

The following example is illustrated in order to understand the conceptions of the present bias and the future
bias. Suppose that there are two questions for choice.

Q1. Which of the following reward options do you prefer?
(1) $100 paid in 52 weeks.
(2) $110 paid in 53 weeks.
Q2. Which of the following reward options do you prefer?
(3) $100 paid today.
(4) $110 paid in a week.

Suppose that you exhibit present bias, that is, you prefer ($100 today) to ($110 in 1 week) in Q1 and ($110 in 53
weeks) to ($100 in 52 week) in Q2. ($100 today) is better than ($110 in 1 week), so you are not willing to wait
one week to get $110 instead of the immediate $100. The one week is too long. It follows that T ($100; $110) < 1.
Next, let $z denote the present value of ($100 in 52 week) and observe that T ($z; $100) = 52 by definition. It
follows that T ($z; $100) + T ($100; $110) < 53. Similarly, according to your choice in Q2, there must be α > 0
such that T ($z + α; $110) = 53 where $z + α is the present value of ($110 in 53 weeks). Consider T ($z; $110),
how long you are willing to wait to get $110 instead of receiving $z now. It should be longer than 53 weeks for
which you are willing to wait to get $110 instead of $z + α now. Thus, T ($z; $110) > 53. Altogether with the
inequality above, it follows that

T ($z; $100) + T ($100; $110) < T ($z; $110) (2.1)

which means that T is strictly submodular3.
For a non-parametric definition of present and future bias, Takeuchi [39] introduces an equivalent delay

function T on {(x, x′) ∈ R2
+|x 6 x′}. Suppose that a subject is indifferent between two options (x, 0) and

(x′, T ). It is denoted that T (x, x′) is the delay that makes these two options the same to a subject, and D(t) is
discounting function.

Definition 2.1. T (x, x′) is an equivalent delay such that (x, 0) ∼ (x′, T (x, x′)).

Present and future biases, if any, are detected in the properties of this function T . Notice that, by transitivity,
D(T (x0, x1), x1) × D(T (x1, x2), x2) ≡ D(T (x0, x2), x2) holds regardless of the form of D and T . First, the
following definition is straightforward.

Definition 2.2 (Time consistency).
A subject is time consistent if T is modular4.

If T is modular, a subject will not exhibit time inconsistent preference reversal. For example, the standard
exponential discount function, D(t) = exp(−rt), implies that

T (x0, x1) + T (x1, x2) = T (x0, x2) (2.2)

Definition 2.3. (Present bias). A subject exhibits present bias if T is strictly submodular.

It is observed that hyperbolic discount functions imply T (x0, x1)+T (x1, x2) < T (x0, x2). In fact, when utility
function is continuous, this present bias is consistent with the decreasing impatience of [30].

3A function f : 2V → R is submodular if: f(A) + f(B) > f(A ∪ B) + f(A ∩ B) ∀A, B ∈ 2V . Similarly, f is supermodular if:
f(A) + f(B) 6 f(A ∪B) + f(A ∩B) ∀A, B ∈ 2V .

4A function f : 2V → R is modular if: f(A) + f(B) = f(A ∪B) + f(A ∩B) ∀A, B ∈ 2V .
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Table 1. Deneralized Weibull Function.

θ q D(t) Name of discounting function

0 q e−(kt)q Weibull discount function
0 1 e−kt Exponential discount function
1 q [1 + (kt)q]−1/q Log-logistic
1 1 (1 + kt)−1 Hyperbolic discount function

Definition 2.4 (Future bias). A subject exhibits future bias if T is strictly supermodular. Equivalently, a
subject exhibits increasing impatience if for any δ > 0, x2 > x1 > 0, (x1, t1) ∼ (x2, t2) implies (x2, t2 + δ) ∼
(x1, t1 + δ).

This paper particularly addresses the separability assumption between discounting and utility and the non-
linearity assumption on the utility function. Let (x, t) denote an option that will pay x at time t. Define the
discounted present value of the option V (x, t) as follows:

V (x, t) = D(t)u(x) (2.3)

where D(t) is the discount function and u(x) is the instantaneous utility of the reward. In fact, D depends not
only on t but also on the reward magnitude x, though the literature always assume that x and t are separable5.
We assume that x and t are separable consist with the literature in order to simplify our model.

As for Delay function form of D, the following form function proposed by Takeuchi [39] list as follow:

D(t) =
1

[1 + θ(kt)q]
1
θ

(2.4)

where θ ∈ (0, 1], k ∈ [0,∞) and q ∈ [0,∞). This D(t) called the generalized Weibull model, is a further-
generalized version of the generalized hyperbolic of (2.4). Note that, while the generalized hyperbolic form
represents only decreasing impatience (present bias), the generalized Weibull function can represent increasing
impatience (future bias) as well. This is the advantage of the generalized Weibull function.

In addition, consistent liminal discounting is presented in (2.5). The term “liminal” is derived from the Latin
limen, meaning a “threshold”. This term is explained that the decision maker’s discount rate will change at
some known point. At the time of making a decision, they are in the “in-between” stage. Their discount rate
will change, they know when, but it remains the same for the present. It is denoted this time of change as h,
for ‘horizon’. The period from now to h is the liminal period; h is the liminal point.

D(t) =

{
γt if t 6 h,
(γ/δ)cδt if t > h.

(2.5)

where with c ∈ [0, T ], δ, γ ∈ (0, 1). Liminal discounting preferences coincide with exponential discounting pref-
erences on large subsets of timed outcomes.

The most prominent alternative model of discounting (two parameter model discounting) is a generalized
form described by Myerson and Green [28]:

D(t) =
1

(1 + kts)
(2.6)

where s is a free parameter that may reflect individual differences in the scaling of delay and/or amount and and
k is a parameter that reflects the discounting rate. In the following subsection we introduce the basic conception
about prospect theory.

5In the literature, [3,39] are exceptions. Their non-parametric estimation do not assume that x and t are separable and are still
capable of eliciting time preference.
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2.2. Behavioral portfolio theory and cumulative prospect theory

In behavioral portfolio theory, investors divide their money into many mental account layers of a portfolio
pyramid corresponding to goals. A central feature in behavioral portfolio theory is the observation that investors
view their portfolios not as a whole, as prescribed by mean-variance portfolio theory, but as distinct mental
account layers in a pyramid of assets, where mental account layers are associated with particular goals and
where attitudes toward risk vary across layers.

Different from expected theory, CPT adopts an inverse S-shaped probability weighting a concave-shaped
utility function (UF) for gains and convex for losses, the distortion is typically such that low probabilities are
overestimated, the concrete form of utility function is as follow:

µ(x) =

{
xα if x > 0,

−λ(−x)β if x < 0.
(2.7)

where λ denotes loss aversion degree and α > 0, β > 0. CPT is the main extension form of the original prospect.
Consequently, CPT can be viewed as an extension to the expected utility theory with the following three

modifications [41]:

(i) Replacing equation (2.7) with (2.8) relative to the reference point. As shown in (2.8), the outcomes x are
converted into gains (∆x > 0) or losses (∆x < 0) relative to a reference point x0.

∆x = x− x0 (2.8)

(ii) Replacing the utility function with a value function to capture individual’s risk attitude. The S-shaped
value function, g(x) in (2.9). The parameter λ > 1 is called “loss-aversion” coefficient, indicating that
individuals are more sensitive to losses than gains.

g(x) =

{
(x− x0)α if x > x0,

−λ(x0 − x)β if x < x0.
(2.9)

(iii) Replacing cumulative probabilities with weighted cumulative probabilities.

Line with the discrete form value and weighting functions, the continuous form prospect value [4] of a decision
with stochastic outcomes x can be written as:

V =
∫ x0

−∞
g(x)d[w−(F (x))]−

∫ +∞

x0

g(x)d[w+(1− F (x))] (2.10)

where V is the prospect value and F (x) denotes the cumulative distribution function (CDF) of the associated
outcome x, and x0 is a referent point. Equation (2.10) is a straightforward generalization of the original discrete
formulation proposed by Tversky and Kahneman. Based on previous introduction, we present the following
behavioral portfolio choice model.

3. Behavioral portfolio model with time discounting preference

In this section, we firstly introduce the formation behavioral portfolio model with time discounting, then our
proposed dynamic model is transformed into two static subproblems. Since no explicit expression of solution,
finally we further discuss the optimal solution of our model with the special case(satisfying behavior).
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3.1. The formation of behavioral portfolio model considering time discounting preference

In this paper, we assume a continuous-time financial market following [24]. There are n+1 assets at time t for
k = 0, . . . , n, the investor possesses n different investment goals at n planing horizons, which can be characterized
by target payoffs W j , the clients wants to obtain at time Tj , for j = 1, . . . , n. At time t she allocates a fraction
wj(t) of her wealth W (t) to goal j and chooses goal-specific portfolios λj(t) = (λ1

j (t), . . . , λ
n
j (t))′, where λkj (t) is

the fraction of wealth Wj(t) = wj(t)W (t) allocated to the asset k at time t. We put W0 = W (0) and w0
j = wj(0).

The wealth dynamics for goal j is given as follows (see [24]):

dWj(t) = r(t)Wj(t)dt+ (µ(t)− 1r(t))′λj(t)Wj(t)dt+ σ(t)′λj(t)Wj(t)dB(t),Wj(0) = w0
jW0. (3.1)

The value function for goal j corresponds to the cumulative prospect theory value function

Vj(W ;W j) =
∫ Wj

−∞
vj(x−W j)dπ−j (FW (x))−

∫ ∞
W j

vj(x−W j)dπ+
j (1− FW (x)) (3.2)

where vj(x) is a piecewise-power value function:

vj(x) =

{
β+
j x

αj if x > 0,

−β−j (−x)αj if x < 0.
(3.3)

and π+
j , π

−
j are non-decreasing, continuous probability weighting functions from [0, 1] into [0, 1] with π±(p) = p

for p = 0, 1, π±j (p) > p for p small and π±j (p) < p for p large. Furthermore, β−j > β
+
j > 0 and αj ∈ (0, 1). FW (x)

denotes the cumulative distribution function of the random payoff W .
We use a slightly different the value function in extant literature compared with [41], the difference details

are got in [6] and axiomatic foundation of preferences with satisfying behavior can be covered in [9].
Given time discounting preferences as described in the previous subsection, the investor determines at each

time t how to optimally split wealth among the different investment goals and, additionally, how to optimally
invest the wealth amounts allocated to the different investment goals. She solves the following decision problem:

max
λ1(t),...,λn(t)

n∑
j=1

D(Tj)Vj(Wj(Tj),W j)

s.t.


dWj(t) = r(t)Wj(t)dt+ (µ(t)− 1r(t))′λj(t)Wj(t)dt+ σ(t)′,∑n
j=1Wj(0) = W0,

Wj(t) > 0, t ∈ [0, Tj ], j = 1, 2, . . . , n.

(3.4)

D(T ) is the discounting function and characterizes the investor’s time preferences.
To keep analytical tractability, we assume no probability weighting, i.e., π±j (p) = p for all j = 1, 2, . . . n and

p ∈ [0, 1]. This is a common assumption in behavioral finance. For the discussion and the results in this paper
probability weighting is not crucial.

We apply martingale methods and rewrite the dynamic decision problem (3.4) as a static one:

max
W1(T1),...,Wn(Tn)

w0
1,...,w

0
n

n∑
j=1

D(Tj)E[vj(Wj(Tj)−W j)]

s.t.


E[ξ(Tj)Wj(Tj)] 6 ξ0w0

jW0,∑n
j=1 w

0
j 6 1,

Wj(t) > 0, w0
j > 0, j = 1, . . . , n.

(3.5)
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The vector w0 = (w0
1, . . . , w

0
n)′ corresponds to the wealth’s shares at time t = 0. At time t = 0 the investor

decides how to split wealth among the n investment goals. Consequently, she allocates Wj(0) = w0
jW0 to goal j,

which corresponds to the budget constraint for this goal. Initial wealth shares and the corresponding goal-specific
terminal wealths determine the investor’s global value she obtains from the n different investment goals.

We solve problem (3.4) in two stage. First, for a given vector of initial wealth shares w0 = (w0
1, . . . , w

0
n)′, we

solve for each investment goal j the following goal-specific problem:

max
Wj(Tj)

E
[
vj(Wj(Tj)−W j)

]

s.t.

{
E[ξ(Tj)Wj(Tj)] 6 ξ0w0

jW0,

Wj(Tj) > 0,
(3.6)

Second, given optimal terminal wealths W ∗j (Tj) for all goals as function of w0, we find the optimal vector of
shares w∗0 that maximizes the investor’s value functions:

max
w0

1,...,w
0
n

n∑
j=1

D(Tj)E
[
vj(W ∗j (Tj)−W j)

]

s.t.

{∑n
j=1 w

0
j 6 1,

w0
j > 0, j = 1, . . . , n.

(3.7)

3.2. The optimal solution for problem (15) and its related properties

The following theorem gives the solution to problem (3.6):

Theorem 3.1 [6]. Let w0 = (w1
0, . . . , w

n
0 )′ be a vector of initial wealth shares, then for j = 1, . . . , n the optimal

terminal wealth for investment goal j is given by:

W ∗j (Tj) =

W j +

(
yjξ(Tj)
β+
j α

) 1
αj−1

, if ξj(Tj) < ξ∗j (yj),

0. if ξj(Tj) > ξ∗j (yj).

(3.8)

where ξ∗j (yj) solves fj(ξ∗j (yj), yj) = 0 and yj > 0 satisfies E[ξ(Tj)Wj(Tj)] = ξ0w
j
0W0, the function fj is defined

as follow:

fj(x, y) =
1− αj
αj

(
1
yx

) αj
1−αj

(β+
j αj)

1
1−αj −W jyx+ β−j W

αj
j (3.9)

where x, y > 0.

Proof. See Appendix 1. �

Optimal terminal wealths W ∗j (Tj) present the following characteristic. In good states of the world at time
Tj(ξ(Tj) < ξ∗j (yj)) the investor is able to reach her investment goal W j . In this case there is a strictly positive

surplus (yjξ(Tj)/(β+
j α))

1
αj−1 which increases as ξj(Tj) becomes smaller. By contrast, in bad states of the world

at time Tj(ξ(Tj) < ξ∗j (yj)) the investor fails to reach her goal and her terminal wealth is zero. The probability
of beating the investment goal corresponds to the probability that ξ(Tj) < ξ∗j (yj).
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In order to derive optimal initial wealth shares w∗0 , we need to understand how W ∗j (Tj) depends on w0.
For sake of simplicity, we drop the index j in our discussion below, since the results apply to all investment
goals. When it is not confusing we denote by w0 the wealth share allocated to one specific investment goal. The
following Lemma provides an explicit characterization of ξ∗(y).

Lemma 3.2. Let x, y > 0 and f : R2
+ → R be defined as in equation (3.9), then for y > 0, f(x, y) = 0 possesses

a unique solution ξ∗(y) = a
y where a > 0 solves:

1− α
α

a
−α
1−α (β+α)

1
1−α − aW + β−W

α
= 0. (3.10)

Proof. See Appendix 2. �

We impose additional conditions on the dynamics of the stochastic discount factor ξt. We assume that the
interest rate process r, the drift process µ and the volatility matrix are constant. Let m = −(r + ( 1

2 )‖κ‖2) and
s2 = ‖κ‖2. Then ξ(T ) is log-normally distributed with parameters mT = mT and sT = s

√
T . Under these

conditions (see [24]), we can easily determine the probability of reaching an investment goal at the time horizon
T , which corresponds to Φ((log(ξ∗(y)−mT )/sT )). We also obtain an explicit characterization of the parameter
y which satisfies the budget constraint for W ∗(T ) in Theorem 1.

Lemma 3.3. Let W ∗(T ) be the optimal wealth from Theorem 1, then y > 0 solves

E[ξ(T )W (T )] = ξ0w0W0 (3.11)

if and only if y > 0 solves g(y) = w0 where:

g(y) = bΦ

(
log(a/y)−mT − s2T

sT

)
+ cy

1
α−1Φ

(
log(a/y)−mT − α

α−1s
2
T

sT

)
(3.12)

The constant a > 0 solves equation (3.10) from Lemma 1, and

b =
W

ξ0W0
exp(−rT ), c =

1
ξ0W0

(β+α)
1

1−α exp
(
αmT

α− 1
+

1
2

α2s2T
(α− 1)2

)
·

Proof. See Appendix 3. �

The function h is strictly decreasing. Therefore y decreases as the initial share allocated to one investment goal
increases. Consequently, ξ∗ becomes larger, i.e., the probability of reaching the investment goal is higher as more
wealth is allocated to that investment goal. Moreover, for y and β− fix, h(y) strictly increases as β+ increases,
i.e., as loss aversion decreases. Consequently, y decreases with loss aversion, i.e., as loss aversion increases
the probability of reaching the investment goal increases, but the surplus becomes smaller. The probability of
reaching the investment goal is therefore maximal when β+ = 0, which implies satisfying behavior.

When h(y) = w0 possesses a solution, then it is unique since h is strictly decreasing. For β+ > 0, h(y) = w0

possesses a solution for all w0. However, for β+ = 0, h(y) = w0 cannot be solved for w0 > b since h(y) ∈ [0, b]
for all y > 0. For the case β+ = 0 we will impose some further conditions on b when we solve for the vector of
wealth share (w0

1, . . . , w
0
n)′. If β+ = 0 and w0 6 b we obtain an explicit solution for y as function of w0:

Corollary 3.4. Let g be as given by equation (3.10). Let β+ = 0 and w0 < b,then g(y) = w0 if and only if

y = a exp(−sTΦ−1(w0/b)−mT − s2T ), (3.13)

where

b =
W

ξ0W0
exp(−rT ).
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Proof. See Appendix 4. �

Note that for β+ = 0, the optimal terminal wealth W ∗(T ) does not depend on β−. Indeed, β− only enters into
ξ∗(y) through the constant a. However, since ξ∗(y) = a/y we have ξ∗(y) = exp(sTΦ−1(w0/b) +mT + s2T ), which
is independent from a. More generally, the following results holds:

Corollary 3.5. The optimal terminal optimal wealth W ∗(T ) depends on β+ and β−, only through the ratio
β+/β−,i.e., the degree of loss aversion.

Proof. See Appendix 5. �

The following Lemma gives an explicit characterization of the optimal utility level E[W ∗(T )] as function of y:

Lemma 3.6. We have E[W ∗(T )] = k(y) where

k(y) = WΦ

(
log(a/y)−mT − s2T

sT

)
+ dy

1
α−1Φ

(
log(a/y)−mT + s2T

sT

)
(3.14)

and d = (β+α)
1

1−α exp( mTα−1+ 1
2

s2T
(α−1)2 ). The function k(·) is continuous, strictly decreasing and limy→∞ k(y) = 0.

Proof. See Appendix 6. �

We now rewrite problem (3.7) as follows. Optimal wealths W1(T1), . . . ,Wn(Tn) are given by Theorem 1 where
yj = h−1(w0

j ) for j = 1, 2, . . . , n and w0 = (w0
1, . . . w

0
n)′ solves

max
w0

1,...,w
0
n

n∑
j=1

D(Tj)kj(h−1
j (w0

j ))

s.t.

{∑n
j=1 w

0
j = 1,

w0
j > 0, j = 1, . . . , n.

(3.15)

In general, Problem (3.15) must be solved numerically, since no explicit expression for h−1
j is available. The

following section we concentrate on discussing a special case where solutions to problem (3.15) can be derived
analytically. Before discussing, we report here optimal wealths and optimal strategies for all investment goals
and at any time t ∈ [0, Tj ].

3.3. The analytical solution for the case with satisfying behavior

We now consider investors who display satisfying behavior, i.e., β+
j = 0 for all j. In this case Problem (3.15)

is analytically tractable since we have an explicit expression for h−1
j . As discussed before, satisfying behavior

describes investors who are only concerned about reaching their investment goals, while a surplus above their
target wealth does not deliver any additional value to them. In our opinion this is the typical case when
investment goals have been clearly specified.

when β+
j = 0 for all j, we can prove the following theorem:

Theorem 3.7. Let β+
j = 0 for all j. Let bj = W j exp(−rTj)/(ξ0W0) and assume that Σn

j=1bj > 1, then

w∗0j =

bjΦ
(
− 1
sj

log
(

ν

ξ0W0

)
− 1
sj

(
− logD(Tj , j)− rTj + 1

2s
2
Tj

))
if ν > 0,

bj . else.
(3.16)

where ν solves Σn
j=1w

∗0
j = 1.
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Proof. See Appendix 7. �

The condition Σn
j=1bj > 1 is equivalent to Σn

j=1W j exp(−rTj) > W0, i.e., the discounted value of all target
wealths must be larger than or equal to the initial wealth. If the discounted value of all target wealths is strictly
larger than the initial wealth(Σn

j=1bj > 1) then we have ν > 0 and the investor invests some of her wealth
into the risky assets. Therefore, in this case, the volatility of the market price of risk s and the inter-temporal
discount function D(Tj) enter into the expression for wealth shares w∗0j . If Σn

j=1W j exp(−rTj) = W0, then ν 6 0
and the investor can reach all investment goals with probability one by simply putting all her wealth into the
risk-free asset. Therefore, in this case, w∗0j simply corresponds to bj , that is the ratio between the discounted
value of the target wealth for goal j and the initial wealth.

The ratio bj can be interpreted as a measures of how ambitious an investment goal is relative to the initial
wealth. Obviously, we expect investors with satisfying behavior to put a higher proportion of their wealth into
goals with a higher discounted target wealth. Indeed, as we discussed above, if the initial wealth is high enough,
then using the risk-free strategy will ensure that all investment goals will reached with probability one, and
investors put a higher proportion of their wealth into goals with higher bj . However, when Σn

j=1bj > 1, the risk-
free strategy causes investors to fails some of their investment goals for sure. Therefore in this case investors
might prefer having some risky assets into their portfolios and optimal wealth shares will then deviate from bj .
We also point out that when the risk-free strategy fails, then wealth shares w∗0j are strictly smaller than bj
for all investment goals. This means that investors decrease the proportion of wealth put into goal j relative
to bj for all investment goals, i.e., instead of using the risk-free strategy form some goals and risky strategies
for others, they prefer to invests into risky strategies for all investment goals. This is due to their risk-seeking
behavior, which is implied by CPT preferences.

The question now is how investors decide to split their wealth among investment goals when the risk-free
strategy fails. In other words, on which goals do investors take more risk and put less wealth if we also account
for how ambitious an investment goal is? In order to take into consideration the importance of one investment
goal relative to the others, we consider the ratio w∗0j /bj , which only depends on the characteristics of the market
and the time horizon. We therefore analyze how the ratio w∗0j /bj changes as function of the time horizon. The
results are reported in the following corollary:

Corollary 3.8. Let ν > 0 such that Σn
j=1w

∗0
j = 1 and w∗0j is given in Theorem 3.7, assume the equation

logD(Tj) + rTj − 1
2s

2
Tj

= 0 exists solution T ∗j then

w∗0j
bj

= Φ

(
− 1
sj

log
(

ν

ξ0W0

)
− 1
sj

(
− logD(Tj)− rTj +

1
2
s2Tj

))
(3.17)

and following holds:

(i) If logD(Tj) + rTj − 1
2s

2
Tj
< 0, then the ratio w∗0j /bj is maximal for Tj = T ∗j , increasing for Tj < T ∗j and

decreasing for Tj > T ∗j with limTj→∞ w∗0j /bj = 0.
(ii) If logD(Tj) + rTj − 1

2s
2
Tj
> 0,then the ratio w∗0j /bj is minimal for Tj = T ∗j , strictly increasing for Tj > T ∗j

with limTj→∞ w∗0j /bj = 1 and strictly decreasing for Tj < T ∗j .
(iii) If logD(Tj)+rTj− 1

2s
2
Tj

= 0, then the ratio w∗0j /bj is strictly increasing for all Tj if log( ν
ξ0W0

) > 0, strictly
decreasing for all Tj if log( ν

ξ0W0
) < 0 and constant if log( ν

ξ0W0
) = 0.

(iv) Moreover, if limTj→0 logD(Tj) = 0, then

lim
Tj→0

w∗0j
bj

=


1 if ν < W0,

0.5 if ν = W0,

0 if ν > W0.

(3.18)
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Proof. See Appendix 8. �

We define the wealth ratio WR0 = W0/Σ
n
j=1W j exp(−rTj) as the ratio between the initial wealth and the

discounted value of all target payoffs. Before we discuss Corollary 3, we briefly present here how WR0 is linked
to ν. First, we notice that 1/WR0 = Σn

j=1bj . Therefore, when WR0 = 1 then also Σn
j=1bj = 1, and all investment

goals can be reached with probability one by simply adopting the risk-free strategy for all goals. When WR0

is smaller than 1, then Σn
j=1bj is larger than 1 and optimal wealth shares differ from bj . If WR0 is very small,

then ν must be very large in order to have Σn
j=1w

∗0
j = 1. Indeed, w∗0j strictly decreases with ν and a large ν

is required in order to satisfies Σn
j=1w

∗0
j = 1 when Σn

j=1bj is much larger than 1. On the other hand, when
WR0 is slightly smaller than 1, then Σn

j=1bj is slightly higher than 1 and a small ν > 0 is sufficient to have
Σn
j=1w

∗0
j = 1. Therefore, whether ν > 0 is large or small depends on how ambitious the investments goals are

relative to the initial wealth, i.e., on whether the wealth ratio WR0 is very small or near to 1. We now use this
observation to discuss Corollary 3.

The quantity r − log(D(Tj))/Tj − 1
2s

2 can be written as −[−(r + (1
2 )s2) + log(Tj)/Tj + s2], where −(r +

( 1
2 )s2) is the growth rate of the pricing kernel, s2 its volatility, and D(T ) is the discount function. Therefore,
r − log(D(Tj))/Tj − 1

2s
2 is negative (positive), when the pricing kernel displays small (high) absolute growth

rate, high (low) volatility, and, additionally, the inter-temporal discount factor is high (small). When these
conditions hold, long-term investing appears less (more) attractive. The results in Corollary 3 are consistent
with this observation, as will become clear from the following discussion.

Let us first consider the case r − log(D(Tj))/Tj − 1
2s

2 < 0, i.e., long-term investing is less attractive. When
the wealth ratio WR0 is small enough such that ν is larger than W0, then log(ν/(ξ0W0)) is strictly positive
and an intermediate horizon T̂j exists where the corresponding ratio w0

j/bj is maximal, while it decreases as
the horizon increases. Note that T̂j can be large when WR0 is very small, i.e., when the initial wealth is very
small relative to the discounted sum of target wealths the ratio w0

j/bj is maximal for a long term goals. On the
other hand, when WR0 is slightly smaller than 1 such that ν is smaller than W0, then log(ν/(ξ0W0)) is strictly
negative and the ratio w0

j/bj strictly decreases with the time horizon. This means that in this case w0
j/bj is

maximal for very short-term goals, while it is small for long-term goals. Summarizing, when long-term investing
is less attractive, investors put a higher proportion of their wealth (after accounting for how important the goal
is) to long-term goals when the initial wealth is very small relative to the current value of target payoffs (goals
are too ambitious), while they put a higher proportion of their wealth into short-term goals when goals are not
too ambitious.

Let us now consider the case r − log(D(Tj))/Tj − 1
2s

2 > 0, i.e., long-term investing is more attractive. If
WR0 is small enough such that ν > W0 and log(ν/(ξ0W0)) is strictly positive, then T ∗j is negative, i.e., the
ratio w0

j/bj strictly increases with Tj . It is therefore maximal for very long-term goals. On the other hand,
when WR0 is slightly smaller than 1 such that ν is smaller than W0 and log(ν/(ξ0W0)) is negative, then T ∗j is
positive. Therefore, there exists an intermediate horizon T ∗j where the ratio w∗0j /bj is minimal, while it strictly
increases for Tj > T ∗j . Moreover, when ν < W0, the ratio is also maximal equals to 1 at Tj = 0. Summarizing,
when long-term investing is more attractive, the ratio w∗0j /bj is maximal for very long-term goals and, when
goals are not too ambitious, also for very short-term investment goals.

How does the investment strategy just discussed impact the probability of reaching the investment goals?
The answer to this question is given in the following corollary:

Corollary 3.9. Let ν > 0 such that Σn
j=1w

∗0
j = 1 and w∗0j is given in Theorem 2, assume that the equation

logD(Tj) + rTj − 1
2s

2
Tj

= 0 exists unique solution T ∗j then

Pj(W ∗j >W j) = Φ

(
− 1
sj

log
(

ν

ξ0W0

)
− 1
sj

(
− logD(Tj)− rTj +

1
2
s2Tj

))
(3.19)
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and following holds:

(i) If logD(Tj) + rTj − 1
2s

2
Tj
< 0, then Pj(Tj) is maximal for Tj = T ∗j , increasing for Tj < T ∗j and decreasing

for Tj > T ∗j with limTj→∞ w∗0j /bj = 0.
(ii) If logD(Tj) + rTj − 1

2s
2
Tj
> 0, then Pj(Tj) is minimal for Tj = T ∗j , strictly increasing for Tj > T ∗j with

limTj→∞ w∗0j /bj = 1 and strictly decreasing for Tj < T ∗j .
(iii) If logD(Tj)+rTj− 1

2s
2
Tj

= 0, then Pj(Tj) is strictly increasing for all Tj if log( ν
ξ0W0

) > 0, strictly decreasing
for all Tj if log( ν

ξ0W0
) < 0 and constant if log( ν

ξ0W0
) = 0.

(iv) Moreover, if limTj→0 logD(Tj) = 0, then

lim
Tj→0

Pj(Tj) =


1 if ν < W0,

0.5 if ν = W0,

0 if ν > W0.

(3.20)

Proof. See Appendix 9. �

The quantity r − log(D(Tj))/Tj − 1
2s

2 can be written as −[−(r + ( 1
2 )s2) + log(Tj)/Tj + s2], Thus

r − log(D(Tj))/Tj − 1
2s

2 is negative (positive) when the absolute growth rate of the pricing kernel is small
(high) and the inter-temporal discount factor is high (small). If the absolute growth rate of the pricing kernel is
small, bad states of the world are more likely to occur. Therefore, the probability to reach an investment goal
decreases, especially for long-term goals. On the other hand, if the absolute growth rate of the pricing kernel
is large, good states of the world are more likely to occur and the probability to reach an investment goal is
higher, especially for long-term goals. Finally, we also see that when the initial wealth is high enough, (very)
short-term goals will be reached almost surely. This is due to the fact that for very short horizons wealth shares
almost corresponds to bj (the risk-free strategy), as reported in Corollary 3.

4. Numerical analysis

To illustrate the implications of the behavioral model presented in the previous section, we first make some
discussion about the role of loss aversion parameter and then we take a simple example to show the optimal
investment strategy for an investor with cumulative prospect theory preferences and satisfying behavior.

4.1. Optimal investment strategy with numerical simulation

We assume that the investor has three investment gaols at different time horizons. We assume that Wj =
$50 000 exp(rTj) for j = 1, 2, 3 where T1 = 1 year (short-term), T2 = 5 years (medium term) and T3 = 20 years
(long-term), i.e., all investment goals have the same discounted value equal to $50 000. Under this assumption,
bj in Theorem 3.7 is identical for all investment goals and thus wealth shares are not affected by the how
ambitious an investment goal is relative to the others.

We specify the investor’s preferences assuming β−j = 2.25 and αj = 0.88 for all j = 1, 2, 3 and D(t) =
exp(−rt), whileβ+

j is not and will determine the degree of loss aversion βj = β−j /β
+
j . In our numerical examples

we further assume that there is one risky asset, that is the market portfolio, with drift µ and volatility σ. The
Sharpe ratio corresponds to κ = (µ− r)/σ, where r is the risk-free rate of return.

When β+
j 6= 0 and the degree of loss aversion βj = β−j /β

+
j is in the range of 2−4 for all j, as calibrated

by Tversky and Kahneman [41] (but also if it is much larger), we see that the investor optimally puts almost
all her wealth in the long-term goal. This happens also if the degree of loss aversion is much higher for the
short-term goal than for the long-term goal. This is because for cumulative prospect theory investors long-term
investing is very attractive. Figure 1 displays optimal wealth shares as function of β+

j , under the assumption
that β−j = 2.25 for all j. For β+

j in the range from 0.6 to 1, which implies a degree of loss aversion from 2.25 to
3.75, almost all wealth is invested in the long-term goal. It follows that in case that the degree of loss aversion
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Figure 1. Optimal wealth shares change with βj .
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Figure 2. Proportion in risky asset changes with βj .

is in the range 2−4, the overall investment strategy almost corresponds to the long-term investment strategy,
as shown in Figure 2.

Figures 1 and 2 display that optimal wealth shares at time t = 0 as function of the of β+
j and optimal

proportion of risky assets at time t = 0 as function β+
j respectively when the investor has three investment

goals with same discounted value at time t = 0(i .e.,Wj exp(rTj) = $50 000 for all j) at horizons 1 year (blue
solid line), 5 years (dashed line) and 20 years (dotted line). Investor’s preferences are characterized by β−j = 2.25
and αj = 0.88 for j = 1, 2, 3. We set r = 0.03, σ = 0.2 and κ = 0.2.

A numerical example based on real data from G7 counties Stock Exchange Market will be given to illustrate
the validity of our proposed model. Assume that an investor wants to choose 7 risky assets for his investment,
and he could reallocate his wealth at the beginning of each period. He intends to make a eight-period investment
with initial wealth W0 = $10 000, loss aversion degree βj = 2.25, αj = 0.88. Original data come from the weekly
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Figure 3. Trend of stock market in G7 countries from 2003 to 2017.

Table 2. Parameters of stock market data in G7 countries.

Country µ(Mean) σ(S.D) max min Sample
US 2914.74 1136.12 5614.79 1320.91 2003.01-2017.01
UK 3095.09 534.14 4476.87 1929.75 2003.01-2017.01
Italy 24378.08 8433.53 43755.00 12874.00 2003.01-2017.01

Germany 6858.69 2334.09 11966.17 2423.87 2003.01-2017.01
France 3017.84 594.81 4354.42 1762.24 2003.01-2017.01
Japan 1180.69 309.52 1774.88 719.40 2003.01-2017.01

Canada 12006.26 2291.04 15625.73 6343.29 2003.01-2017.01

Table 3. The optimal investment strategies using our model.

Code G*621 G*597 G*658 G*657 G*596 G*578 G*622 Stock code
Time US UK Italy Germany France Japan Canada Terminal wealth

2003.01 0.1944 0.1997 0.2349 0.1820 0.0678 0.0159 0.3501 $10000.00
2005.01 0.2243 0.1819 0.0693 0.1723 0.0259 0.2372 0.0991 $21397.20
2007.01 0.2449 0.0668 0.1993 0.2261 0.0642 0.0316 0.1671 $33514.38
2009.01 0.2366 0.1636 0.0312 0.0160 0.0967 0.1396 0.3163 $43689.94
2011.01 0.1576 0.1336 0.1135 0.1981 0.0547 0.0766 0.2365 $52610.34
2013.01 0.1777 0.0205 0.0749 0.0278 0.2714 0.2409 0.1868 $66404.49
2015.01 0.2215 0.2451 0.0057 0.1699 0.0702 0.0127 0.2749 $76766.66
2017.01 0.1864 0.2253 0.2100 0.0831 0.0745 0.0567 0.1640 $87537.47

where G*621 represents G002703621.

closing prices of the 7 risky assets from Jan. 2003 to Jan. 2017, the trend of market stock in G7 countries
are shown in Figure 3 and the parameters of stock market data are listed in Table 2. We set 2 years as an
observation to handle these historical data. Using our analytical results, the optimal strategies of investment
can be obtained as shown in Table 3. From Table 3, we can find that the terminal wealth becomes larger as
time increases, which implies that optimal strategy has a great impact on the portfolio selection. If the investor
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Figure 4. Optimal ratio change with discounting function when q = 2, ν < W0.

is not satisfied with any of the obtained investment strategy, he/she can reset the parameter values of his/her
preferences. In a word, all the results above suggest that different solutions reflect investors’ different investment
intention.

4.2. Investors’ strategies change with different discounting functions

Recall afore mentioned section, we derive the optimal investment strategy for an investor with cumulative
prospect theory preferences and satisfying behavior. However, it is difficult to capture effects of investors’
strategies with discounting function, therefore in this subsection, we mainly focus on how investors’ strategies
change with different discounting functions. Firstly, we select the following six different discounting functions:
Weibull discounting, Exponential discounting, Two parameter model discounting, Hyperbolic discounting, Log-
logistic discounting, Liminal discounting. Since the underlying six discounting functions can be expressed by
previous section, we highlight the changes of their strategies, therefore illustrative analysis is given in Figures 4, 5
and 6.

(1) Investor strategies’ changes from Figure 4. Figure 4 displays fluctuation of investors’ optimal wealth ratio
with time, in which preferences can be described by six discounting functions when fix parameters q = 2, ν <
W0. As shown in Figure 4, the investors with liminal discounting preference hold the highest wealth ratio at
the beginning. There is a sharp increase until a known point (about t = 5), then the ratio almost tends to 1.
The wealth ratio of investors with exponential discounting rank second, the difference between the investors
with liminal discounting and investors with exponential discounting is that the former ratio increases slowly
at early stage and they are both approximately constant in the end. The notable point is that investors
with hyperbolic discounting and exponential discounting preference almost make no difference and they rank
third. The most interesting phenomenon appears that two curves with two parameter model discounting and
Weibull discounting intersect, before they intersect, the ratio of two parameter model discounting is higher
than Weibull discounting, but in reverse after intersection. Finally investor’s wealth ratio with log-logistic
discounting is the lowest. Except for hyperbolic discounting and exponential discounting, they all are future
biased.

(2) Investor strategies’ changes from Figures 5 and 6. Figures 5 and 6 describe the optimal wealth ratio change
with six discounting functions when q = 1, ν < W0 and q = 0.5, ν < W0 respectively. The clearly noticeable
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Figure 5. Optimal ratio change with discounting function when q = 1, ν < W0.
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difference between Figures 4 and 5 is that when q = 1 the function of exponential discounting is the same as
Weibull discounting, therefore the two curves coincide the same. As shown in Figure 6, the optimal wealth
ratio of investor with Log-logistic discounting function is almost zero, they don’t invest in risky assets,
liminal discounting investors continue to maintain leading advantages, investors with Weibull discounting
rank second. If q = 1 and θ = 0, discounting function imply time consistency and constant impatience.
Investors with discounting function with q = 0.5 tend to present biased, they put more weight on present
payment, investors with constant impatience are indifferent toward changes of strategies.

(3) Psychological accounts for future bias. There are potential interpretations and psychological accounts for
future bias, which include the unreliability of own future memory and the notion of extended present. First,
a subject may anticipate that she is going to forget about a delayed reward. Suppose that she thinks her



BEHAVIORAL PORTFOLIO MODEL WITH TIME DISCOUNTING 707

short-term memory is most likely to fade after several weeks, i.e., the hazard rate of the memory loss is
increasing in time during those weeks and decreasing thereafter. Assume that she is a little skeptical about
the plausibility of the future payment but she still thinks the future payment will be delivered as long
as she remembers it, by reclaiming it. Then, the revealed time preference results in the inverse S-shaped
time discount function. It is left for further research to control this psychological factor. Secondly, but most
importantly, future bias observations suggest that the present is not a single point on the time line but, it
extends into the immediate future. It is also observed that the inverse S-shaped time discount function fits
to this concept of the extended present.

In summary, from previous discussion, we conclude that when investors’ only objective is to reach their goals
and all payoffs above the reference point are considered as fully satisfactory, then any payoff (even if large)
in scenarios where goals will be reached do not compensate investors for failing the reference point in other
scenarios. In addition, investor with different discounting preferences make difference. In particular, investor
who tends to future bias performs adequate confidence and patience while investor with present bias is apt to
the immediate interests.

5. Conclusions

In this paper we apply CPT to obtain a time discounting preference portfolio selection model, where investors
possess different investment goals at different time horizons. Our model assumes that investors mentally orga-
nize each investment goal as a separate account and derive optimal investment strategies for each investment
goal, ignoring covariance between goal-specific portfolios. We derived optimal wealth shares allocated to each
investment goal and optimal investment strategies, when investors additionally display the satisfying behavior,
i.e., fully satisfied when they reach their investment goals.

Based on previous presentation, we can conclude our contributions as follows:

(i) Investors mainly invest too reach short-term goals when they are not too ambitious. However, when investors
are with very ambitious goals, they mainly invest to reach long-term goals and adopt aggressive investment
strategies for their short-term goals. In this case, the overall investment strategy displays a high leverage.
Therefore, our model explains high leverage ratios for investors, who have high incentive to reach ambitious
short-term investment goals.

(ii) When investors’ only objective is to reach their goals and all payoffs above the reference point are consid-
ered as fully satisfactory, then any payoff (even if large) in scenarios where goals will be reached do not
compensate investors for failing the reference point in other scenarios. In addition, investor with different
discounting preferences make difference.

(iii) We also consider different types preference of investors’ changes towards investment strategies, including
present bias and future bias, in particular, investor with present bias is apt to immediate interests, most
importantly, we give other interpretations and psychological accounts for investors with future bias, which
include the unreliability of own future memory and the notion of extended present.

Appendix A. Proofs

A.1. Proof of Theorem 1

See [6]. We additionally point out that fj(x, y) is a continuous, strictly decreasing function. For each y > 0
fix, we have limx→0 fj(x, y) = +∞ and limx→∞ fj(x, y) = −∞. So for each y > 0 we find a unique x such that
fj(x, y) = 0. For y > 0 fix, we denote by ξ∗j (y) the solution to fj(x, y) = 0.



708 G. YANG ET AL.

A.2. Proof of Lemma 1

Assume that ξ∗j (y) = a/yb for some a, b ∈ R. We have:

f(ξ∗j (y), y) =
1− α
α

(
yb

ax

)
(β+α)1/(1−α) −Wyay−b + β−W

α

=
1− α
α

a−α/(1−α)y(b−1)α/(1−α)(β+α)α/(1−α) − αWy1−b + β−W
α
.

(A.1)

This expression is constant if and only if b = 1. In this case we have:

f(ξ∗j (y), y) =
1− α
α

a−α/(1−α)(β+α)α/(1−α) − αW + β−W
α

(A.2)

and thus f(ξ∗j (y), y) = 0 if and only if

1− α
α

a−α/(1−α)(β+α)α/(1−α) − αW + β−W
α

= 0. (A.3)

We still have to show that a > 0 and is unique. Note that

1− α
α

a−α/(1−α)(β+α)α/(1−α) − αW + β−W
α

= f(a, 1) (A.4)

and f(a, 1) is strictly decreasing, lima→0 f(a, 1) = 1 and lima→∞ f(a, 1) = −∞. So, f(a, 1) = 0 possesses a
unique solution a > 0 and the statement in the Lemma follows.

A.3. Proof of Lemma 2

From Theorem 1, it follows:

E[ξ(T )W ∗(T )] = E

[
Wξ(T )1ξ(T )6ξ∗(y) +

(
y

β+α

) 1
α−1

ξ(T )
α

1−α1ξ(T )6ξ∗(y)

]

= WE[ξ(T )1ξ(T )6ξ∗(y)] +
(

y

β+α

) 1
α−1

E
[
ξ(T )

α
1−α1ξ(T )6ξ∗(y)

]
. (A.5)

Since ξ(T ) is log-normally distributed with parameters mT = mT and sT = s
√
T , then

E[ξ(T )1ξ(T )6ξ∗(y)] = exp(mT +
1
2
s2T )Φ

(
log(ξ∗(y))−mT − s2T

sT

)
(A.6)

Moreover, ξ(T )α/(α−1) is also log-normally distributed with parameters αmT /(α−1) and αsT /(1−α). It follows

E[ξ(T )1ξ(T )6ξ∗(y)] = exp
(
αmT

α− 1
+

1
2

α2s2T
(α− 1)2

)
Φ

(
log(ξ∗(y))−mT − s2T

sT

)
(A.7)

Let b = W
ξ0W0

exp(mT + 1
2s

2
T ) and c = 1

ξ0W0
(β+α)

1
1−α exp(αmTα−1 + 1

2
α2s2T

(α−1)2 ) then

E[ξ(T )W ∗(T )]
ξ0W0

= bΦ

(
log(a/y)−mT − s2T

sT

)
+ cy

1
α−1Φ

(
log(a/y)−mT − α

α−1s
2
T

sT

)
(A.8)

Now let

g(y) = bΦ

(
log(a/y)−mT − s2T

sT

)
+ cy

1
α−1Φ

 log(a/y)−mT− α
α−1 s

2
T

1−α
sT

 (A.9)
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then

E[ξ(T )W ∗(T )] = ξ0w0W0 ⇐⇒ g(y) = w0. (A.10)

Putting ξ(y) = a/y from Lemma 1, the statement in the Lemma follows.

A.4. Proof of Corollary 1

Follows directly from equation (3.12) when β+ = 0.

A.5. Proof of Corollary 2

Let a and y be solutions to equation (3.10) and g(y) = w0, respectively, given parameters β+ and β−. Let
β̃+ = uβ+ and β̃− = uβ−, while the other parameters are fix. Denote by ã and ỹ the solutions to equation (3.10)
and g(y) = w0, respectively, given parameters β̃+ and β̃−. It can be easily shown that ã = ua and ỹ = uy.
Therefore, ξ∗(ỹ) = ã/ỹ = a/y = ξ∗(y). Moreover, since the surplus in the good scenario depends on the ratio
y/β+, it is also independent from u.

A.6. Proof of Lemma 3

From Theorem 1, it follows:

E[W ∗(T )] = E

[
Wξ(T )1ξ(T )6ξ∗(y) +

(
y

β+α

) 1
α−1

ξ(T )
α

1−α1ξ(T )6ξ∗(y)

]

= WP[ξ(T ) 6 ξ∗(y)] +
(

y

β+α

) 1
α−1

E
[
ξ(T )

α
1−α1ξ(T )6ξ∗(y)

]
.

(A.11)

Since ξ(T ) is log-normally distributed with parameters mT = mT and sT = s
√
T , then

P[ξ(T ) 6 ξ∗(y)] = Φ

(
log(ξ∗(y))−mT

sT

)
· (A.12)

Moreover, ξ(T )α/(α−1) is also log-normally distributed with parameters mT /(α− 1) and sT /(1− α). It follows

E
[
ξ(T )

1
1−α1ξ(T )6ξ∗(y)

]
= exp

(
mT

α− 1
+

1
2

s2T
(1− α)2

)
Φ

 log(ξ∗(y))−mT − s2T
1−α

sT

 · (A.13)

Let d = (β+α)
1

1−α exp
(
mT
α−1 + 1

2
s2T

(1−α)2

)
then

E(W ∗(T )) = WΦ

(
log(ξ∗(y))−mT

sT

)
+ dy

1
α−1Φ

 log(ξ∗(y))−mT − s2T
1−α

sT

 · (A.14)

We define

k(y) = WΦ

(
log(a/y)−mT − s2T

sT

)
+ dy

1
α−1Φ

(
log(a/y)−mT + s2T

sT

)
· (A.15)
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A.7. Proof of Theorem 2

When β+
j = 0, we know from Corollary 1 that yj = aj exp(−sTjΦ−1(w0

j/bj)−mTj − s2Tj ) solves gj(y) = w0
j .

We put yj into kj and obtain

fj(w0
j ) = kj(h−1

j (w0
j )) = W jΦ(Φ−1(w0

j/bj) + sTj ). (A.16)

The function fj is strictly increasing and strictly concave with

f(w0
j )

w0
j

=
W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ). (A.17)

The Karush-Kuhn-Tucker conditions for the convex optimization Problem (3.5) with the additional constraint
w0
j 6 bj for all j are as follows:

ηj1 > 0, ηj2 > 0, w0
j > 0 (A.18)

ηj1w
0
j = 0, ηj2(w0

j − bj) = 0 (A.19)

n∑
j=1

w0
j = 1 (A.20)

−D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj )− η
j
1 + ηj2 + ν = 0 (A.21)

From equations (A.18) and (A.21) we obtain:

ηj1 = ν − D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ) + ηj2 > 0. (A.22)

We multiply ηj1 with w0
j and obtain:

w0
j

(
ν − D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ) + ηj2

)
= 0. (A.23)

Using that ηj2(w0
j − bj) = 0 we can solve the latter equation for ηj2 and we obtain:

ηj2 = −
w0
j

bj

(
ν − D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ) + ηj2

)
> 0 (A.24)

which implies

ν 6
D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ). (A.25)

since w0
j > 0. Finally, using ηj2(w0

j − bj) = 0 we have

−
w0
j

bj
(w0

j − bj)
(
ν − D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ) + ηj2

)
= 0. (A.26)

If ν > 0, then w0
j < bj . Indeed, if w0

j = bj and ν > 0 then condition (A.27) is violated. Moreover, since w0
j < bj ,

then η2
j = 0 by the second Slater’s condition in (A.19). Therefore, w0

j > 0, else condition (A.22) is violated. It
follows from equation (A.26) that w0

j must solve

ν − D(Tj)W j

bj
exp(−sTjΦ−1(w0

j/bj)− (1/2)s2Tj ) = 0 (A.27)
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and after some re-arrangements we obtain

w0
j = bjΦ

(
− 1
sj

log
(

ν

ξ0W0

)
− 1
sj

(
− logD(Tj)− rTj +

1
2
s2Tj

))
· (A.28)

If ν < 0, then ηj2 > 0 else condition (A.22) is violated since the inequality

ν − D(Tj)W j

bj
exp

(
−sTjΦ−1(w0

j/bj)− (1/2)s2Tj
)
< 0 (A.29)

holds for all w0
j ∈ [0, bj ]. Therefore, w0

j = bj by the second Slater’s condition in (A.19). If ν = 0 and w0
j 6= bj

then w0
j = 0 by equation (A.26). However, when w0

j = 0 then equation (A.22) is violated. Thus, also in this
case we must have w0

j = bj .

A.8. Proof of Corollary 3

Straightforward implication of Theorem 2.

A.9. Proof of Corollary 4

Follow directly from Theorem 2, Theorem 1 and Corollary 1.
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