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MODELING FUZZY DATA ENVELOPMENT ANALYSIS UNDER ROBUST

INPUT AND OUTPUT DATA

Xuejie Bai1, Feng Zhang2,3,∗ and Yankui Liu2,3

Abstract. This paper offers a fuzzy optimization framework for data envelopment analysis (DEA)
to evaluate the relative efficiency of decision making units (DMUs) with parametric interval-valued
fuzzy variable-based inputs and outputs. The parametric interval-valued fuzzy variable-based inputs
and outputs is employed to capture the uncertainty of data on the basis of professional judgements
or empirical estimations. The DEA problem is formulated as fuzzy expectation model with credibility
constraints. When the inputs and outputs are mutually independent parametric interval-valued trian-
gular fuzzy variables, we investigate the parametric equivalent representations of expectation objective
function and chance constraints. In order to find the optimal solution of our DEA model, a domain
decomposition method is proposed. Finally, the numerical example on the sustainable supplier evalua-
tion and selection problem is provided to demonstrate the efficiency of the proposed DEA model and
domain decomposition method.
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1. Introduction

Data envelopment analysis, as an evaluation technology, was introduced by Charnes et al. [8] to measure
the relative efficiency of a set of homogeneous decision-making units in multiple inputs and outputs systems.
The original DEA model was called as DEA-CCR. Since its appearance, DEA has been developed quickly. In
addition to the CCR model, many DEA theoretical models were established in the literature such as BCC
model Banker et al. [4], FDH model Petersen [21], RAM model Cooper et al. [11], and SBM model Tone [25].
The advantages of DEA models include: (1) free of parameter estimation so that it minimizes the influence
of subjectivity; (2) free of selection for the input-output weights to attempt reaching the efficient frontier and
(3) simple operation. Therefore, DEA has been extensively used in the multifaceted applications. As shown in
Liu et al. [16], the top-five industries addressed are banking, health care, agriculture and farm, transportation,
and education. Furthermore, the applications that have the highest growth momentum recently are finance,
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as well as energy and environment. For example, Ignatius et al. [14] proposed a fuzzy DEA-based framework
to assess the environmental evaluation at different levels of certainty, and further presented energy efficiency
among 23 European Union member countries. More detailed discussion and in-depth review articles about the
development of DEA technology and its application, the interested reader can refer to Cooper et al. [9], Cook
and Seiford [10], Liu et al. [19], Azizi et al. [2], Liu et al. [17].

The traditional DEA methods require accurate measurement of both input and output parameters. In fact,
the observed values of the input and output data present in real-world problems are often imprecise Amirteimoori
and Emrouznejad [1]. To handle this situation, more and more researchers addressed the critical parameters by
using fuzzy theory Zadeh [40], Liu and Liu [18] to construct fuzzy DEA models to express relative efficiencies
of DMUs. For example, Sengupta [23] considered a fuzzy linear programming transformation to cope with DEA
models with fuzzy input and output data. Triantis and Girod [24] suggested a mathematical programming
approach to converting fuzzy input and output data into crisp data. Kao and Liu [15] employed the α-cut
approach and presented a transformation of a fuzzy DEA model into a family of crisp DEA models, while Guo
and Tanaka [22] advocated a method that changed a fuzzy DEA model to a bi-level linear programming model.
Wen and Li [26] proposed a credibility DEA model and a ranking method in fuzzy environment. Wen et al. [27]
discussed a technique for assessing the sensitivity of efficiency and inefficiency classification in DEA with fuzzy
data. Wang and Chin [28] introduced a fuzzy expected value approach for data envelopment analysis in which
fuzzy inputs and fuzzy outputs are first weighted, respectively, and used their expected values to measure the
optimistic and pessimistic efficiencies of DMUs. Zerafat Angiz et al. [29] offered the definition of “local α-level”
to develop a multi-objective linear DEA model to measure the efficiency of DMUs under uncertainty. Meng
[30] proposed a satisficing DEA model with credibility criterion, and solved it by integrating approximation
method, neural network and PSO algorithm. Based on hybrid simulated annealing algorithm, Feng et al. [31]
studied the input-oriented and the output-oriented fuzzy DEA models. Murena et al. [20] provided a generalized
fuzzy DEA model to improve numerous deficiencies of the fuzzy DEA. Dotoli et al. [12] offered a cross-efficiency
fuzzy DEA technique and then defuzzified the results to provide a ranking of the DMUs. Ghasemi et al. [32]
used the concept of expected value in generalized DEA model to realize the unification of fuzzy expected CCR,
fuzzy expected BCC, and fuzzy expected FDH models as well as to handle both symmetrical and asymmetrical
fuzzy numbers. Egilmez et al. [13] adopted a fuzzy DEA model coupled with an input-output-based life cycle
assessment approach to perform a sustainability performance assessment of food manufacturing sectors.

The majority of existing literature devotes to measuring the efficiency of DMUs under the consideration
of the fuzzy disturbance with fixed possibility distribution. However, some inputs and outputs in fuzzy DEA
might be affected by various factors of uncertainty and information granularity. It is acknowledged that type-2
fuzzy sets Zadeh [38] demonstrated their advantages of modeling better this kind of uncertain data or imprecise
information. Different from the set-based viewpoint, Liu and Liu [33] adopted a variable-based approach to depict
type-2 fuzzy phenomenon and presented the fuzzy possibility theory which is a generalization of the possibility
theory. Furthermore, four kinds of major reduction methods were defined in fuzzy possibility theory to reduce
the uncertainty embedded in the secondary possibility distributions. Qin et al. [34, 35] gave the mean value
reduction method by Choquet fuzzy integrals of regular fuzzy variables and the critical value reduction method
by Sugeno fuzzy integrals of regular fuzzy variables. Wu and Liu [37] defined the equivalent value reduction
method via classic Lebesgue-Stieltjes integrals of regular fuzzy variables. Bai and Liu [5,6] introduced the value-
at-risk (VaR) reduction method based on the VaRs of regular fuzzy variables. For the recent development and
other application of fuzzy possibility theory, we refer the reader to Bai [3], Bai and Liu [7] for detailed discussion.
The theoretical development mentioned above paves a way for many scholars to study data envelopment analysis
problem from a new perspective. Qin et al. [34, 35] built two classes of DEA models with type-2 fuzzy inputs
and outputs in place of the risk-neutral and risk-averse criteria, respectively. Zhou et al. [39] developed a multi-
objective DEA model in a setting of type-2 fuzzy modeling and employed it to evaluate and select the most
appropriate sustainable suppliers.

In real-world DEA problem, the inputs or outputs are not crisp or the secondary possibility distribution func-
tions for data are not clear, the parametric interval-valued fuzzy variables will be recommended. In fuzzy pos-
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sibility theory, the parametric interval-valued fuzzy variables were investigated, and lambda selection variables
were used to describe the corresponding interval-valued secondary possibility distributions Liu and Liu [36].
The notions about parametric interval-valued fuzzy variables and its lambda selection variables are helpful
to deal with various decision-making problems, especially when the distribution of uncertain parameters are
partially known. However, there is little research for modeling fuzzy DEA problem by virtue of interval type-2
fuzzy theory. This motivates us to consider how to evaluate the relative efficiency of DMUs in the case that
the inputs and outputs are estimated as the parametric interval-valued fuzzy variables. In this research we are
particularly interested in delivering a new type-2 fuzzy DEA model on the basis of parametric interval-valued
fuzzy variables and its lambda selection variables to characterize the uncertain inputs and outputs. This paper
intends to make the following contributions to the growing body of the DEA literature. First, an advanced tool
– parametric interval-valued fuzzy variable is introduced into the DEA model. Therefore, imprecise information
associated with the inputs and outputs of DEA can be well described. Second, a fuzzy expectation DEA model
is articulated in a framework of type-2 interval-valued fuzzy variables. Third, the numeric equivalent transfor-
mation of the objective function and credibility conditions for the proposed model are discussed in case that
the uncertain inputs and outputs are mutually independent interval-valued triangular fuzzy variables, which re-
duces computational complexity and makes our feasible domain decomposition procedure more understandable.
Finally, we provide an application example about sustainable supplier evaluation and selection to demonstrate
the effectiveness of the proposed optimization model.

The rest of this paper is organized as follows. Section 2 formulates a new class of fuzzy DEA model where
the inputs and outputs are characterized by lambda selection variables of parametric interval-valued fuzzy
variables. Section 3 focuses on the deterministic equivalent expressions to the expectation objective function
and credibility constraint conditions. Taking the structural characteristics of the equivalent optimization model,
a domain decomposition method is designed. To apply the proposed approach, we present an example of supplier
evaluation and selection in Section 4. Finally, Section 5 gives the conclusions and future researches.

2. Formulation of fuzzy data envelopment analysis model

In this section, we review the conventional DEA model established by [8] and elaborate on the development
of the parametric interval-valued fuzzy DEA model consequently.

DEA is a method for assessing the productive efficiency of DMUs which use the same type of resources
(inputs) to produce the same kind of goods or services (outputs). The classical CCR model was given as

max
u,v

vT y0

uTx0

s.t.
vT yi

uTxi
≤ 1, i = 1, 2, . . . , n (2.1)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where n is the number of DMUs; DMUi is the ith DMU, i = 1, 2, . . . , n; DMU0 is the target DMU; xi represents
the input column vector of DMUi; x0 represents the input column vector of DMU0; yi represents the output
column vector of DMUi; y0 represents the output column vector of DMU0; u ∈ <p is the weights of the input
column vector, and v ∈ <q is the weights of the output column vector.

CCR model (2.1) is helpful to evaluate the efficiency of each DMU when the inputs and outputs data are
real numbers. However, uncertain information and imprecise data are highly involved in many practical DEA
models. As pointed out by Zhou et al. [39], it is more reasonable to treat some critical parameters as type-2
fuzzy variables because of the real difficulties of determining their numeric membership functions. With this
concern in mind, type-2 interval-valued fuzzy variables are incorporated into model (2.1). Thus, CCR model (2.1)
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is developed as follows:

max
u,v

vT η̃0

uT ξ̃0

s.t.
vT η̃i

uT ξ̃i
≤ 1, i = 1, . . . , n (2.2)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where ξ̃i represents the type-2 interval-valued fuzzy input column vector of DMUi; ξ̃0 represents the type-
2 interval-valued fuzzy input column vector of DMU0; η̃i represents the type-2 interval-valued fuzzy output
column vector of DMUi; η̃0 represents the type-2 interval-valued fuzzy output column vector of DMU0.

Since ξ̃i and η̃i, i = 1, 2, . . . , n, are type-2 interval-valued fuzzy variables, the objective function and constraint
conditions don’t have any specific mathematical meaning. In order to cope with this type-2 interval-valued fuzzy
DEA model, we formulate two design steps:

Step 1. Transform the type-2 fuzzy DEA model into a fuzzy DEA model. This step is elaborated in Section 2.1,
where the lambda selection method is employed.
Step 2. Take the expectation of fuzzy variable as the optimization objective and credibility of fuzzy event as
the constraint condition to formulate a DEA model (Sect. 2.2).

2.1. Lambda selection method

Type-2 fuzzy variables were proposed by Liu and Liu [33] as a conceptional extension of type-2 fuzzy sets.
Furthermore, Liu and Liu [36] defined the lower selection variable, upper selection variable and lambda selection
variable for handling interval-valued fuzzy variable with variable lower and upper possibility distributions. In
the following context, the parametric interval-valued triangular fuzzy variable and its λ selection variable will
be used.

Definition 2.1 Liu and Liu [36]. Let r1 < r2 < r3 be real numbers. Then a map ξ̃ is called a parametric
interval-valued triangular fuzzy variable if its secondary possibility distribution µ̃ξ̃(x) is the following subinterval[

x− r1
r2 − r1

− θl min

{
x− r1
r2 − r1

,
r2 − x
r2 − r1

}
,
x− r1
r2 − r1

+ θr min

{
x− r1
r2 − r1

,
r2 − x
r2 − r1

}]
for any x ∈ [r1, r2], and the next subinterval[

r3 − x
r3 − r2

− θl min

{
r3 − x
r3 − r2

,
r3 − x
r3 − r2

}
,
r3 − x
r3 − r2

+ θr min

{
r3 − x
r3 − r2

,
x− r2
r3 − r2

}]
for any x ∈ [r2, r3], where θl, θr ∈ [0, 1] are two parameters characterizing the degree of uncertainty that ξ̃ takes
the value x. We denote the parametric interval-valued triangular fuzzy variable ξ̃ with the above distribution
by [r̃1, r̃2, r̃3; θl, θr].

Definition 2.2. Liu and Liu [36] Assume that ξ̃ is a parametric interval-valued fuzzy variable with the sec-
ondary possibility distribution µ̃ξ(x) = [µξL(x; θl), µξU (x; θr)], where µξL(x; θl) is the lower parametric possibil-

ity distribution of the lower selection ξL of ξ̃, and µξU (x; θr) is the upper parametric possibility distribution of

the upper selection ξU of ξ̃. For any λ ∈ [0, 1], a fuzzy variable ξ is called a λ selection of ξ̃ provided that ξ is
characterized by the following parametric possibility distribution

µξ(x; θ, λ) = (1− λ)µξL(x; θl) + λµξU (x; θr), θ = (θl, θr).
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Table 1. List of notations for model (2.3).

Notations Implication
Fuzzy variables:

ξi the λ selection variable of ξ̃i, i = 1, 2, . . . , n;

ξ0 the λ selection variable of ξ̃0;
ηi the λ selection variable of η̃i, i = 1, 2, . . . , n;
η0 the λ selection variable of η̃0;

Decision variables:
u ∈ <p the weights of the input column vector ξi;
v ∈ <q the weights of the output column vector ηi.

Theorem 2.3. Let ξ̃ = [r̃1, r̃2, r̃3; θl, θr] be a parametric interval-valued triangular fuzzy variable. If we denote
θ = (θl, θr), then its λ selection fuzzy variable ξ has the following parametric possibility distribution

µξ(x; θ, λ) =



(1 + λθr − (1− λ)θl)
x− r1
r2 − r1

, if x ∈
[
r1,

r1 + r2
2

]
(1− λθr + (1− λ)θl)x+ (λθr − (1− λ)θl)r2 − r1

r2 − r1
, if x ∈

(
r1 + r2

2
, r2

]
(−1 + λθr − (1− λ)θl)x− (λθr − (1− λ)θl)r2 + r3

r3 − r2
, if x ∈

(
r2,

r2 + r3
2

]
(1 + λθr − (1− λ)θl)

r3 − x
r3 − r2

, if x ∈
(
r2 + r3

2
, r3

]
.

On the basis of Theorem 2.3, we put forward a following model with λ selection fuzzy variable:

max
u,v

vT η0

uT ξ0

s.t. vT ηi − uT ξi ≤ 0, i = 1, . . . , n (2.3)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where the notations are listed in Table 1.

2.2. Expectation DEA model with credibility constraints

Once lambda selection method has been completed, the parametric interval-valued fuzzy input ξ̃i and output
η̃i can be represented by their λ selection variables ξi and ηi. Model (2.3) is not well-defined since the meanings of
“max” in the objective as well as constraint conditions are not clear at all. In order to construct a specific model
with mathematical meaning, a revision of the modeling process is necessary. On the one hand, the expected
value operator of fuzzy variables, which was proposed by Liu and Liu [18], will be employed to formulate the
objective function. On the other hand, we adopt the idea of chance constrained programming and use the
credibility measure to address the constraint conditions. Thus, a fuzzy expectation DEA model with credibility
constraints can be given as follows:

max
u,v

V = E

[
vT η0

uT ξ0

]
s.t. Cr{vT ηi − uT ξi ≤ 0} ≥ αi, i = 1, . . . , n (2.4)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0.
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Model (2.4) wants to seek a optimal weight vector (u, v) with the maximum value of E[vT η0/u
T ξ0], while the

credibility of the fuzzy event {vT ηi − uT ξi ≤ 0} is satisfied at least αi.
In the traditional CCR model (2.1), the value of vT y0/u

Tx0 is used to measure the relative efficiency of
DMU0. DMU0 is efficient if and only if the optimal value is equal to 1 and there exists at least one optimal
solution (u∗, v∗) with u∗ > 0, v∗ > 0.

Due to the existed uncertainty, we give the definition of mean efficiency value as follows.

Definition 2.4. In the expectation DEA model (2.4), the value E[vT η0/u
T ξ0] is used to measure the mean

efficiency value of DMU0. DMU0 is efficient if and only if the optimal value V ∗ = E[vT η0/u
T ξ0] is the biggest

one among the objective values of all DMUs.

Remark 2.5. In order to show that Definition 2.4 generalizes the efficiency value of traditional CCR
model (2.1), we explain the reason as follows. Consider the case that αi = 1 (i = 1, 2, . . . , n). Namely,
vT ηi − uT ξi ≤ 0 holds almost surely. In this case, E[vT η0/u

T ξ0] = 1 is equivalent to Cr{vT η0/uT ξ0 = 1} = 1.
That is to say, the input fuzzy variable uT ξ0 is equal to the output fuzzy variable vT η0 almost sure. As a matter
of fact, it is very difficult to find such an efficient solution (u, v) for practical DEA model. When the input and
output parameters are the crisp numbers, it is evident to the equation Cr{vT η0/uT ξ0 = 1} = 1 holds. So, if the
input and output fuzzy variables reduce to the deterministic parameters, the mean efficiency value is that of
traditional CCR model.

3. Model analysis and solution method

3.1. Equivalent transformation

To solve model (2.4), it is essential to devote research effort to compute the expectations of fuzzy variables in
the objective and credibility of fuzzy event in the constraints. For convenience, some special cases are discussed,
where the inputs and outputs are characterized by parametric interval-valued triangular fuzzy variables, and
consequently the equivalent form to further simplify the objective and constraints in model (2.4) is deduced.
The related theorems are proposed as well. For the sake of presentation, all technical details and proofs in this
section are provided in Appendix A.

First of all, let us consider the analytical expression of objective function, i.e., E
[
(vT η0)/(uT ξ0)

]
.

Theorem 3.1. Let ξj,0 and ηk,0 be the λ selection of the parametric interval-valued fuzzy inputs ξ̃j,0 =
[ξr1j,0, ξ

r2
j,0, ξ

r3
j,0; θl,j,0, θr,j,0] and outputs η̃k,0 = [ηr1k,0, η

r2
k,0, η

r3
k,0; θl,k,0, θr,k,0], j = 1, 2, . . . , p, k = 1, 2, . . . , q. Sup-

pose {ξ̃j,0} and {η̃k,0} are mutually independent, θr,j,0−θl,j,0 = θr,k,0−θl,k,0 = θr,0−θl,0, and λξj,0 = ληk,0 = λ.
Then the expectation objective function of model (2.4) is equivalent to

E

[
vT η0

uT ξ0

]
= E


q∑

k=1

vkηk,0

p∑
j=1

ujξj,0



=

q∑
k=1

(ηr2k,0 − η
r1
k,0)vk

2

p∑
j=1

(ξr2j,0 − ξ
r3
j,0)uj

+

p∑
j=1

ξr2j,0uj

q∑
k=1

ηr1k,0vk −
p∑
j=1

ξr3j,0uj

q∑
k=1

ηr2k,0vk

2

 p∑
j=1

(ξr2j,0 − ξ
r3
j,0)uj

2

×

(
2(λθr,0 − (1− λ)θl,0) ln

p∑
j=1

(ξr2j,0 + ξr3j,0)uj + (1− λθr,0 + (1− λ)θl,0) ln 2

p∑
j=1

ξr2j,0uj
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− (1 + λθr,0 − (1− λ)θl,0) ln 2

p∑
j=1

ξr3j,0uj

)
(3.1)

+

q∑
k=1

(ηr2k,0 − η
r3
k,0)vk

2

p∑
j=1

(ξr2j,0 − ξ
r1
j,0)uj

+

p∑
j=1

ξr2j,0uj

q∑
k=1

ηr3k,0vk −
p∑
j=1

ξr1j,0uj

q∑
k=1

ηr2k,0vk

2

 p∑
j=1

(ξr2j,0 − ξ
r1
j,0)uj

2

×

(
2(λθr,0 − (1− λ)θl,0) ln

p∑
j=1

(ξr1j,0 + ξr2j,0)uj − (1 + λθr,0 − (1− λ)θl,0) ln 2

p∑
j=1

ξr1j,0uj

+ (1− λθr,0 + (1− λ)θl,0) ln 2

p∑
j=1

ξr2j,0uj

)
.

In the following, let us deal with the analytical expressions of credibility constraint, i.e.,

Cr{vT ηi − uT ξi ≤ 0} ≥ αi, i = 1, . . . , n.

Theorem 3.2. Let ξj,i and ηk,i be the λ selection of the parametric interval-valued fuzzy inputs ξ̃j,i =
[ξr1j,i, ξ

r2
j,i, ξ

r3
j,i; θl,j,i, θr,j,i] and outputs η̃k,i = [ηr1k,i, η

r2
k,i, η

r3
k,i; θl,k,i, θr,k,i], j = 1, 2, . . . , p, k = 1, 2, . . . , q. Suppose

{ξ̃j,i} and {η̃k,i} are mutually independent, λξj,i = ληk,i = λ, and λθr,1,i− (1−λ)θl,1,i ≤ λθr,2,i− (1−λ)θl,2,i ≤
. . . ≤ λθr,q,i − (1− λ)θl,q,i ≤ λθr,1,i − (1− λ)θl,1,i ≤ λθr,2,i − (1− λ)θl,2,i ≤ . . . ≤ λθr,p,i − (1− λ)θl,p,i.

(i) If αi ∈ (0, (1 + λθr,1,i − (1− λ)θl,1,i)/4), then the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(1− 2αi + λθr,k,i − (1− λ)θl,k,i)η

r1
k,i + 2αiη

r2
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
2αiξ

r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

(ii) If there exists a k0, 1 ≤ k0 < q such that αi ∈ [(1 + λθr,k0,i − (1 − λ)θl,k0,i)/4, (1 + λθr,k0+1,i − (1 −
λ)θl,k0+1,i)/4), then the credibility constraint of model (2.4) is equivalent to

k0∑
k=1

vk
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i
q∑

k=k0+1

vk
(1− 2αi + λθr,k,i − (1− λ)θl,k,i)η

r1
k,i + 2αiη

r2
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
2αiξ

r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

(iii) If there exists a j0, 1 ≤ j0 < p such that αi ∈ [(1+λθr,j0,i−(1−λ)θl,j0,i)/4, (1+λθr,j0+1,i−(1−λ)θl,j0+1,i)/4),
then the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i
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−
j0∑
j=1

uj
(2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i + (1− 2αi)ξ

r3
j,i

1− λθr,j,i + (1− λ)θl,j,i

−
p∑

j=j0+1

uj
2αiξ

r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

(iv) If αi ∈ [(1 + λθr,p,i − (1− λ)θl,p,i)/4, 0.5), then the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i + (1− 2αi)ξ

r3
j,i

1− λθr,j,i + (1− λ)θl,j,i
≤ 0.

(v) If αi ∈ [0.5, (3− λθr,p,i + (1− λ)θl,p,i)/4), then the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(2− 2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i + (2αi − 1)ηr3k,i

1− λθr,k,i + (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − 1)ξr1j,i + (2− 2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i

1− λθr,j,i + (1− λ)θl,j,i
≤ 0.

(vi) If there exists a j0, 1 ≤ j0 < p such that αi ∈ [(3−λθr,j0+1,i+(1−λ)θl,j0+1,i)/4, (3−λθr,j0,i+(1−λ)θl,j0,i)/4),
then the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(2− 2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i + (2αi − 1)ηr3k,i

1− λθr,k,i + (1− λ)θl,k,i

−
j0∑
j=1

uj
(2αi − 1)ξr1j,i + (2− 2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i

1− λθr,j,i + (1− λ)θl,j,i

−
p∑

j=j0+1

uj
(2αi − 1 + λθr,j,i − (1− λ)θl,j,i)ξ

r1
j,i + (2− 2αi)ξ

r2
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

(vii) If there exists a k0, 1 ≤ k0 < q such that αi ∈ [(3 − λθr,k0+1,i + (1 − λ)θl,k0+1,i)/4, (3 − λθr,k0,i + (1 −
λ)θl,k0,i)/4), then the credibility constraint of model (2.4) is equivalent to

k0∑
k=1

vk
(2− 2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i + (2αi − 1)ηr3k,i

1− λθr,k,i + (1− λ)θl,k,i

+

q∑
k=k0+1

vk
(2− 2αi)η

r2
k,i + (2αi − 1 + λθr,k,i − (1− λ)θl,k,i)η

r3
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − 1 + λθr,j,i − (1− λ)θl,j,i)ξ

r1
j,i + (2− 2αi)ξ

r2
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

(viii) If αi ∈ [(3− λθr,1,i + (1− λ)θl,1,i)/4, 1], then the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(2− 2αi)η

r2
k,i + (2αi − 1 + λθr,k,i − (1− λ)θl,k,i)η

r3
k,i

1 + λθr,k,i − (1− λ)θl,k,i
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−
p∑
j=1

uj
(2αi − 1 + λθr,j,i − (1− λ)θl,j,i)ξ

r1
j,i + (2− 2αi)ξ

r2
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

3.2. Domain decomposition method

In what follows, assume that {ξ̃j,i} and {η̃k,i} are mutually independent, λξj,i = ληk,i = λ, and λθr,1,i − (1−
λ)θl,1,i ≤ λθr,2,i − (1 − λ)θl,2,i ≤ . . . ≤ λθr,q,i − (1 − λ)θl,q,i ≤ λθr,1,i − (1 − λ)θl,1,i ≤ λθr,2,i − (1 − λ)θl,2,i ≤
. . . ≤ λθr,p,i − (1 − λ)θl,p,i. Let A = {(j, k) | 0.5 ≤ αi < (3 − λθr,p,i + (1 − λ)θl,p,i)/4}, B = {(j, k) |
∃j0, 1 ≤ j0 < p, (3 − λθr,j0+1,i + (1 − λ)θl,j0+1,i)/4 ≤ αi < (3 − λθr,j0,i + (1 − λ)θl,j0,i)/4}, C = {(j, k) |
∃k0, 1 ≤ k0 < q, (3 − λθr,k0+1,i + (1 − λ)θl,k0+1,i)/4 ≤ αi < (3 − λθr,k0,i + (1 − λ)θl,k0,i)/4}, and D = {(j, k) |
(3− λθr,1,i + (1− λ)θl,1,i)/4 ≤ αi < 1}. According to Theorem 3.2, if αi > 0.5, then Cr{vT ηi − uT ξi ≤ 0} ≥ αi
is equivalent to

q∑
k=1

vk
(2− 2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i + (2αi − 1)ηr3k,i

1− λθr,k,i + (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − 1)ξr1j,i + (2− 2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i

1− λθr,j,i + (1− λ)θl,j,i
≤ 0, for (j, k) ∈ A,

or

q∑
k=1

vk
(2− 2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i + (2αi − 1)ηr3k,i

1− λθr,k,i + (1− λ)θl,k,i

−
j0∑
j=1

uj
(2αi − 1)ξr1j,i + (2− 2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i

1− λθr,j,i + (1− λ)θl,j,i

−
p∑

j=j0+1

uj
(2αi − 1 + λθr,j,i − (1− λ)θl,j,i)ξ

r1
j,i + (2− 2αi)ξ

r2
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0, for (j, k) ∈ B,

or

k0∑
k=1

vk
(2− 2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i + (2αi − 1)ηr3k,i

1− λθr,k,i + (1− λ)θl,k,i

+

q∑
k=k0+1

vk
(2− 2αi)η

r2
k,i + (2αi − 1 + λθr,k,i − (1− λ)θl,k,i)η

r3
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − 1 + λθr,j,i − (1− λ)θl,j,i)ξ

r1
j,i + (2− 2αi)ξ

r2
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0, for (j, k) ∈ C,

or

q∑
k=1

vk
(2− 2αi)η

r2
k,i + (2αi − 1 + λθr,k,i − (1− λ)θl,k,i)η

r3
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − 1 + λθr,j,i − (1− λ)θl,j,i)ξ

r1
j,i + (2− 2αi)ξ

r2
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0, for (j, k) ∈ D.

For simplicity, we denote the functions on the left hand sides of these inequalities as G1(u, v; θ, α, λ),
G2(u, v; θ, α, λ), G3(u, v; θ, α, λ) and G4(u, v; θ, α, λ), respectively, where θ = (θl, θr).
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Based on Theorem 3.1, we can observe that if the inputs and outputs are described by mutually independent
parametric interval-valued triangular fuzzy variables, θr,j,0 − θl,j,0 = θr,k,0 − θl,k,0 = θr,0 − θl,0, and λξj,0 =
ληk,0 = λ, then the model (2.4) is equivalent to the following four parametric programming sub-models

max
u,v

f0(u, v; θ, λ)

s.t. G1(u, v; θ, α, λ) ≤ 0, i = 1, . . . , n, (j, k) ∈ A (3.2)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0;
max
u,v

f0(u, v; θ, λ)

s.t. G2(u, v; θ, α, λ) ≤ 0, i = 1, . . . , n, (j, k) ∈ B (3.3)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0;

max
u,v

f0(u, v; θ, λ)

s.t. G3(u, v; θ, α, λ) ≤ 0, i = 1, . . . , n, (j, k) ∈ C (3.4)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0;

and

max
u,v

f0(u, v; θ, λ)

s.t. G4(u, v; θ, α, λ) ≤ 0, i = 1, . . . , n, (j, k) ∈ D (3.5)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where f0(u, v; θ, λ) is determined by equation (3.1).
On the basis of Theorems 3.1 and 3.2, we have decomposed the original model (2.4) into four sub-

models (3.2)–(3.5). As a result, the feasible region of model (2.4) is decomposed into four disjoint subregions ac-
cording to the values of parameter αi. The four subregions are just the feasible regions of sub-models (3.2)–(3.5).
From this observation, we know that the global optimal solution of model (2.4) can be obtained by solving sub-
models (3.2)–(3.5). The four sub-models (3.2)–(3.5) are the nonlinear parametric programming that can be
solved by using conventional optimization algorithms when the parameters vary in their domains. As an ex-
ample, for any given values of the parameters α, λ and θ, we can make use of LINGO software to solve it.
Since we do not know in advance which subregion the global optimal solution locates in, we have to solve all
sub-models to find four local optimal solutions of model (2.4). By comparing the objective values of the obtained
local optimal solutions, we can find the global optimal solution. This solution procedure is called as the domain
decomposition method.

Given the values of model parameters θ, α and λ, the solution process described in the above statement can
be summarized as follows.

Step 1. Solve sub-models (3.2)–(3.5) by LINGO software, and denote the obtained local optimal solutions as
(u, v)I , I = 1, 2, 3, 4.

Step 2. Compute objective value VI(u, v; θ, α, λ) at local optimal solution (u, v)I for I = 1, 2, 3, 4, and find the
global maximum expected value by the following formula

V (u, v; θ, α, λ) = max
1≤I≤4

VI(u, v; θ, α, λ).

Step 3. Return (u, v) as the global optimal solution of model (2.4) with the maximum value V (u, v; θ, α, λ).
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Table 2. The parametric interval-valued triangular fuzzy inputs for five suppliers.

Supplieri TC FC EC SC

i = 1 [2̃.6, 3̃.0, 3̃.3; θl, θr] [3̃.7, 3̃.9, 4̃.0; θl, θr] [3̃.8, 4̃.0, 4̃.2; θl, θr] [3̃.3, 3̃.7, 4̃.3; θl, θr]

i = 2 [1̃.1, 1̃.5, 1̃.7; θl, θr] [1̃.8, 2̃.0, 2̃.1; θl, θr] [2̃.0, 2̃.3, 2̃.5; θl, θr] [1̃.8, 2̃.0, 2̃.1; θl, θr]

i = 3 [2̃.3, 2̃.4, 2̃.5; θl, θr] [3̃.0, 3̃.2, 3̃.5; θl, θr] [2̃.4, 2̃.7, 2̃.9; θl, θr] [2̃.7, 2̃.8, 3̃.0; θl, θr]

i = 4 [1̃.6, 1̃.8, 1̃.9; θl, θr] [2̃.2, 2̃.3, 2̃.5; θl, θr] [2̃.7, 2̃.8, 3̃.0; θl, θr] [3̃.3, 3̃.4, 3̃.6; θl, θr]

i = 5 [3̃.4, 3̃.5, 3̃.7; θl, θr] [2̃.2, 2̃.5, 2̃.8; θl, θr] [3̃.8, 4̃.0, 4̃.2; θl, θr] [3̃.9, 4̃.1, 4̃.3; θl, θr]

Table 3. The parametric interval-valued triangular fuzzy outputs for five suppliers.

Supplieri NOT NB PQ SR

i = 1 [5̃.4, 5̃.5, 5̃.7; θl, θr] [5̃.2, 5̃.3, 5̃.5; θl, θr] [6̃.0, 6̃.2, 6̃.4; θl, θr] [4̃.8, 5̃.0, 5̃.5; θl, θr]

i = 2 [4̃.0, 4̃.2, 4̃.3; θl, θr] [4̃.2, 4̃.4, 4̃.7; θl, θr] [5̃.0, 5̃.1, 5̃.3; θl, θr] [3̃.1, 3̃.3, 3̃.4; θl, θr]

i = 3 [4̃.2, 4̃.5, 4̃.7; θl, θr] [4̃.0, 4̃.1, 4̃.3; θl, θr] [5̃.3, 5̃.5, 5̃.6; θl, θr] [3̃.0, 3̃.3, 3̃.5; θl, θr]

i = 4 [4̃.1, 4̃.3, 4̃.4; θl, θr] [3̃.8, 4̃.0, 4̃.2; θl, θr] [5̃.2, 5̃.3, 5̃.5; θl, θr] [3̃.5, 3̃.7, 3̃.9; θl, θr]

i = 5 [5̃.5, 5̃.8, 6̃.0; θl, θr] [5̃.1, 5̃.5, 5̃.8; θl, θr] [6̃.6, 6̃.7, 6̃.9; θl, θr] [5̃.0, 5̃.4, 5̃.7; θl, θr]

4. One numerical example

In this section, we consider a sustainable supplier evaluation and selection example to demonstrate the
performance of fuzzy DEA with robust inputs and outputs.

4.1. Problem description

Sustainable supplier evaluation and selection plays an important role in establishing an effective supply chain
management, and has received more and more consideration from corporate and academic over the past decade.
In order to evaluate the supplier’s sustainability, it is necessary to choose some representative selection criteria.
Based on the existing research, the typical used selection criteria include the economic, environmental and social
criteria, which are usually the cardinal inputs. Specifically, the economic criteria are composed of technology
capability (TC) and financial capability (FC). The environmental criteria mainly takes environmental cost (EC)
into consideration. The social criteria is the cost of work safety and labor health (SC). Generally, there are four
output criteria involved in supplier evaluation and selection. They contain the number of shipments to arrive
on time (NOT), the number of bills received from suppliers without errors (NB), product quality (PQ) and
supplier reputation (SR), which reflect the suppliers’ ability to some extent. If the supplier’s ability is stronger,
the more we are willing to choose it. With these inputs and outputs, the decision makers can quantify the
performance when selecting sustainable suppliers. Nevertheless, because of the uncertainty of decision making
process, we explicitly introduce the parametric interval-valued fuzzy variables to capture the inaccuracy of
inputs and outputs on the basis of empirical estimates. Tables 2 and 3 provide the inputs and outputs for five
suppliers. Furthermore, suppose that α1 = . . . = α5 = α in this system. Now there is an enterprise with the
need of choosing the optimal supplier. The enterprise wishes to evaluate 5 candidates involved in the assessment
and choose the most sustainable raw materials suppliers.

4.2. Computational results

When model parameters are set to (θl, θr) = (0.5, 0.5), λ = 0.78 and α = 0.95, we can find that A = B =
C = ∅ and all the (j, k)s belong to set D. According to the domain decomposition method, DEA model (2.4)
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Table 4. Evaluating results of each supplier with (θl, θr) = (0.5, 0.5) and λ = 0.78 under α = 0.95.

Supplieri Optimal solution (u; v) MEV

i = 1 (0.0000,0.0000,1.5781,0.0000;0.0000,0.0000,0.0000,0.9413) 0.7601990

i = 2 (0.0000,7335.7,0.0000,2593.5;4200.1,0.0000,0.0000,0.0000) 0.8981914

i = 3 (0.0000,0.0000,4.8972,0.0000;2.3086,0.0000,0.0000,0.0000) 0.7935827

i = 4 (3.0490,5.6678,0.0000,0.0000;0.0000,0.0000,0.0000,4.0504) 0.8086242

i = 5 (0.0000,3.6838,6.9882,0.0000;0.0000,0.0000,0.0000,6.1402) 0.8907104

of the supplier selection system can be built as follows

max
u,v

f0(u1, u2, u3, u4, v1, v2, v3, v4)

s.t. gi(u1, u2, u3, u4, v1, v2, v3, v4) ≤ 0, i = 1, . . . , 5 (4.1)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where the objective function for each supplier, i = 1, . . . , 5, is modeled as the target supplier, denoted as
supplier0. The analytical expressions for the objective functions and constraint conditions in model (4.1) are
found in Appendix B.

With the calculation of LINGO software, the evaluating results of each supplier are reported in Table 4. The
mean efficiency value of every supplier is listed in the column labeled “MEV”. The results show supplier2 has
the biggest mean efficiency value 0.8981914, followed by supplier5 and supplier4, which shows that supplier2 is
the most efficient supplier.

In order to identify parameters’ influence on evaluating results, the optimal mean efficiency values are calcu-
lated by adjusting independently the values of parameters (θl, θr) and λ.

Case I. The influence of parameter θ

When fixing the parameters α and λ and changing the value of parameter (θl, θr), the computational results
are displayed in Table 5. From the evaluating results in Table 5, it is obvious that for each supplier the efficiency
values change as θl and θr vary between 0 and 1. Moreover, the efficiency values increase while the differences
of θr − θl decrease.

Case II. The influence of parameter λ

When fixing the parameters α and (θl, θr) and changing the value of parameter λ, the corresponding com-
putational results are displayed in Table 6. For each supplier, the mean efficiency values gradually decrease
with respect to the values of λ in the interval [0,1]. The computational results demonstrate the advantages of
parametric interval-valued fuzzy variables and lambda selection method in assessing the supplier performance.

4.3. Comparative studies

In order to demonstrate the advantage of using parametric interval-valued fuzzy inputs and outputs, we
compare it with both the deterministic DEA method and type-1 fuzzy DEA method. In the deterministic DEA
model, the inputs and outputs are the crisp numbers. In the fuzzy DEA model, the inputs and outputs are
triangular fuzzy variables with fixed possibility distributions.

Case I. Optimal supplier selection decision under deterministic data

We first solve DEA model with deterministic input and output data. For the sake of comparison, the deter-
ministic input and output data in Table 7 are the mean values of triangular fuzzy variables collected in Tables 9
and 10.
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Table 5. Evaluating results of each supplier with different (θl, θr) under α = 0.95 and λ = 0.5.

(θl, θr) Supplieri Optimal solution (u; v) MEV

(0.2, 0.8) i = 1 (0.0000,0.0000,1.5787,0.0000;0.0000,0.0000,0.0000,0.9415) 0.7601711

i = 2 (0,0.324E+15,0,0.4819E+14;0.7315E+14,0,0.6844E+14,776.2209) 0.8974317

i = 3 (0.0000,0.0000,4.9040,0.0000;2.3114,0.0000,0.0000,0.0000) 0.7935049

i = 4 (3.0454,5.6630,0.0000,0.0000;0.0000,0.0000,0.0000,4.0457) 0.8084473

i = 5 (0.0000,3.6996,7.0142,0.0000;0.0000,0.0000,0.0000,6.1629) 0.8905694

(0.4, 0.7) i = 1 (0.0000,0.0000,1.5746,0.0000;0.0000,0.0000,0.0000,0.9408) 0.7605170

i = 2 (0.0000,6812.211,0.0000,2514.977;3950.116,0.0000,0.0000,0.0000) 0.8986081

i = 3 (0.0000,0.0000,4.8551,0.0000;2.2923,0.0000,0.0000,0.0000) 0.7942259

i = 4 (4636.6,8595.9,0.0000,0.0000;0.0000,0.0000,0.0000,6158.0) 0.8099296

i = 5 (0.0000,3.5575,6.7770,0.0000;0.0000,0.0000,0.0000,5.9553) 0.8917459

(0.6, 0.5) i = 1 (0.0000,0.0000,1.5697,0.0000;0.0000,0.0000,0.0000,0.9408) 0.7616389

i = 2 (0.0000,24506.19,0.0000,6496.42;13161.84,0.0000,0.0000,0.0000) 0.8998124

i = 3 (0.0000,0.0000,4.8019,0.0000;2.2743,0.0000,0.0000,0.0000) 0.7958554

i = 4 (4633.002,8541.693,0.0000,0.0000;0.0000,0.0000,0.0000,6150.291) 0.8126613

i = 5 (0.0000,3.2699,6.2839,0.0000;0.0000,0.0000,0.0000,5.5233) 0.8938884

(0.8, 0.2) i = 1 (0.0000,0.0000,1.5586,0.0000;0.0000,0.0000,0.0000,0.9404) 0.7650168

i = 2 (0,0.1615E+15,0,0.3566E+14;0.8411E+14,0,1485.97,972.5537) 0.9030760

i = 3 (0.0000,0.0000,4.7674,0.0000;2.2724,0.0000,0.0000,0.0000) 0.7998895

i = 4 (4607.841,8398.31,0.0000,0.0000;0.0000,0.0000,0.0000,6110.628) 0.8183420

i = 5 (0.0000,2.7143,5.3116,0.0000;0.0000,0.0000,0.0000,4.6709) 0.8982800

Based on Charnes−Cooper transformation,

t =
1

uTx0
, ω = tu, µ = tv

the CCR model (2.1) is converted to the equivalent linear programming. In this situation, we obtain the supplier2
and supplier5 are the most efficient suppliers, and the optimal solution is provided in Table 8.

In the first comparative study, the enterprise decision maker prefers to solving deterministic optimization
model, then he may replace all uncertain parameters in the data envelope analysis problem with their mean
values. This method isn’t acceptable when the optimal solution is sensitive to the distributions of uncertain
parameters. Therefore, the decision maker cannot ignore the uncertain factors to model the DEA problem.
Case II. Optimal supplier selection decision under fixed possibility distributions

We next solve our DEA model when the input and output data are fuzzy parameters with fixed possibility
distributions, which are collected in Tables 9 and 10.

In the case of θl = θr = 0, the parametric interval-valued fuzzy inputs and outputs degenerate to their
corresponding type-1 fuzzy variable, and model (4.1) is transformed into credibility constrained fuzzy supplier
selection model. If model parameter α is set to 0.95, the evaluating results of each supplier are reported in
Table 11. As Table 11 shown, the supplier2 is the most efficient supplier with biggest efficiency value 0.8994293.

For the sake of comparison, the optimal solution of each supplier is called the nominal solution for fuzzy sup-
plier selection problem under fixed possibility distributions. That is to say, the nominal solution of each supplier
is given in Table 11. In comparison with computational results in Table 4, there exist many changes with respect
to the optimal solution. It is shown that the nominal solutions are not optimal under (θl, θr) = (0.5, 0.5), λ = 0.78
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Table 6. Evaluating results of each supplier with different λ under α = 0.95 and (θl, θr) =
(0.5, 0.5).

λ Supplieri Optimal solution (u; v) MEV

0 i = 1 (0.0000,0.0000,20.361,0.0000;0.0000,0.0000,0.0000,12.4095) 0.7713665

i = 2 (0.0000,9176.6,0.0000,3197.4;5319.6,0.0000,0.0000,0.0000) 0.9089306

i = 3 (0.0000,0.0000,4.7974,0.0000;2.3090,0.0000,0.0000,0.0000) 0.8068014

i = 4 (4553.8,8154.5,0.0000,0.0000;0.0000,0.0000,0.0000,6028.9) 0.8270942

i = 5 (0.0000,2.0888,4.2039,0.0000;0.0000,0.0000,0.0000,3.6992) 0.9049476

0.2 i = 1 (0.0000,0.0000,1.5586,0.0000;0.0000,0.0000,0.0000,0.9404) 0.7650168

i = 2 (0,0.1615E+15,0,0.3566E+14;0.8411E+14,0,1485.970,972.5537) 0.9030760

i = 3 (0.0000,0.0000,4.7674,0.0000;2.2724,0.0000,0.0000,0.0000) 0.7998895

i = 4 (4607.841,8398.310,0.0000,0.0000;0.0000,0.0000,0.0000,6110.628) 0.8183420

i = 5 (0.0000,2.7143,5.3116,0.0000;0.0000,0.0000,0.0000,4.6709) 0.8982800

0.6 i = 1 (0.0000,0.0000,1.5736,0.0000;0.0000,0.0000,0.0000,0.9408) 0.7607138

i = 2 (0.0000,197243.2,0.0000,44840.28;102577.7,0.0000,0.0000,0.0000) 0.8988347

i = 3 (0.0000,0.0000,4.8403,0.0000;2.2868,0.0000,0.0000,0.0000) 0.7945487

i = 4 (4636.563,8585.586,0.0000,0.0000;0.0000,0.0000,0.0000,6157.339) 0.8105168

i = 5 (0.0000,3.4970,6.6743,0.0000;0.0000,0.0000,0.0000,5.8653) 0.8922088

1.0 i = 1 (0.0000,0.0000,1032.714,0.0000;0.0000,0.0000,0.0000,614.7593) 0.7601277

i = 2 (0.0000,3948.027,0.0000,1770.002;2415.068,0.0000,0.0000,0.0000) 0.8979021

i = 3 (0.0000,0.0000,4.9783,0.0000;2.3423,0.0000,0.0000,0.0000) 0.7929664

i = 4 (3.0121,5.6186,0.0000,0.0000;0.0000,0.0000,0.0000,4.0025) 0.8069476

i = 5 (0.0000,3.8138,7.1956,0.0000;0.0000,0.0000,0.0000,6.3215) 0.8893641

Table 7. The deterministic inputs and outputs for five suppliers.

Supplieri TC FC EC SC NOT NB PQ SR

i = 1 2.975 3.875 4.000 3.750 5.525 5.325 6.200 5.075

i = 2 1.450 1.975 2.275 1.975 4.175 4.425 5.125 3.275

i = 3 2.400 3.225 2.675 2.825 4.475 4.125 5.475 3.275

i = 4 1.775 2.325 2.825 3.425 4.275 4.000 5.325 3.700

i = 5 3.525 2.500 4.000 4.100 5.775 5.475 6.725 5.375

Table 8. Evaluating results of each supplier with deterministic data.

Supplieri Optimal solution (ω;µ) Efficiency value

i = 1 (0.0000,0.0000,0.2500,0.0000;0.0000,0.0000,0.0000,0.1737) 0.8813454

i = 2 (0.0000,0.0000,0.0000,0.5063;0.0000,0.0000,0.1951,0.0000) 1.0000000

i = 3 (0.0000,0.0000,0.3738,0.0000;0.2037,0.0000,0.0000,0.0000) 0.9115787

i = 4 (0.1863,0.2878,0.0000,0.0000;0.0000,0.0000,0.0000,0.2561) 0.9475302

i = 5 (0.0000,0.3638,0.0000,0.0221;0.0000,0.0000,0.1487,0.0000) 1.0000000
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Table 9. The triangular fuzzy inputs for five suppliers.

Supplieri TC FC EC SC

i = 1 (2.6, 3.0, 3.3) (3.7, 3.9, 4.0) (3.8, 4.0, 4.2) (3.3, 3.7, 4.3)

i = 2 (1.1, 1.5, 1.7) (1.8, 2.0, 2.1) (2.0, 2.3, 2.5) (1.8, 2.0, 2.1)

i = 3 (2.3, 2.4, 2.5) (3.0, 3.2, 3.5) (2.4, 2.7, 2.9) (2.7, 2.8, 3.0)

i = 4 (1.6, 1.8, 1.9) (2.2, 2.3, 2.5) (2.7, 2.8, 3.0) (3.3, 3.4, 3.6)

i = 5 (3.4, 3.5, 3.7) (2.2, 2.5, 2.8) (3.8, 4.0, 4.2) (3.9, 4.1, 4.3)

Table 10. The triangular fuzzy outputs for five suppliers.

Supplieri NOT NB PQ SR

i = 1 (5.4, 5.5, 5.7) (5.2, 5.3, 5.5) (6.0, 6.2, 6.4) (4.8, 5.0, 5.5)

i = 2 (4.0, 4.2, 4.3) (4.2, 4.4, 4.7) (5.0, 5.1, 5.3) (3.1, 3.3, 3.4)

i = 3 (4.2, 4.5, 4.7) (4.0, 4.1, 4.3) (5.3, 5.5, 5.6) (3.0, 3.3, 3.5)

i = 4 (4.1, 4.3, 4.4) (3.8, 4.0, 4.2) (5.2, 5.3, 5.5) (3.5, 3.7, 3.9)

i = 5 (5.5, 5.8, 6.0) (5.1, 5.5, 5.8) (6.6, 6.7, 6.9) (5.0, 5.4, 5.7)

Table 11. Evaluating results of each supplier with triangular fuzzy data under α = 0.95.

Supplieri Optimal solution (u; v) MEV

i = 1 (0.0000,0.0000,1.5711,0.0000;0.0000,0.0000,0.0000,0.9408) 0.7612663

i = 2 (0,0.5021E+15,0,0.1114E+15;0.2603E+15,0,912.7652,484.8061) 0.8994293

i = 3 (0.0000,0.0000,4.8136,0.0000;2.2778,0.0000,0.0000,0.0000) 0.7953549

i = 4 (4634.868,8558.811,0.0000,0.0000;0.0000,0.0000,0.0000,6153.624) 0.8118730

i = 5 (0.0000,3.3537,6.4285,0.0000;0.0000,0.0000,0.0000,5.6501) 0.8932728

and α = 0.95. To analyze further the influences on the nominal optimal solution under different values of theta
and lambda, we compare the nominal solution with the computational results in Tables 5 and 6. From Tables 5
and 6, we observe that the input weights and output weights vary greatly for each supplier when parameters
θl, θr and λ take different values. Not only that, but the corresponding efficiency value also has the positive
or negative deviations comparing with that of the nominal solution. This implies that the nominal solution no
longer is optimal.

In the second comparative study, an accurate possibilistic description of the fuzzy inputs and outputs is
assumed available in the form of fixed possibility distributions. If the possibility distributions cannot be deter-
mined accurately in the modeling process, then the optimal supplier evaluation may be invalid, necessitating
other techniques. Thus, the proposed fuzzy DEA under robust input and output data paves an effective way for
enterprise decision maker.

5. Conclusions and future studies

In this study we considered the data envelopment analysis problem in a fuzzy decision system. The innovation
contents include the following three aspects:

• A fuzzy expectation data envelopment analysis model with credibility constraints is built, in which uncertain
inputs and outputs are characterized by parametric interval-valued triangular fuzzy variables. The variable
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possibility distributions are obtained by using the lambda selection method to fuzzy inputs and outputs,
and controlled by two types of parameters.

• Some basic properties of presented model are discussed (Thms. 3.1 and 3.2). Theoretically, the analytical
expressions of the expected value objective and credibility constraints are obtained, which transform the
original fuzzy model into its equivalent parametric nonlinear programming.

• A practice-oriented example of supplier evaluation and selection is performed to verify the effectiveness of
the proposed fuzzy DEA model for illustration purpose. The computational results and comparative study
verify that our solution method works well and provides acceptable solution, which assists decision makers
to make proper decisions.

Future research might address the following topics. First, as far as the expectation objective function incurred
from DEA is concerned, our current model assumes a risk-neural decision maker. An extension of the model to
the case of risk-averse decision maker is possible. Second, the current model considers the efficiency as a single
objective function, a multi-objective optimization model that accounts for both efficiency and effectiveness
objectives may be helpful in practice. Third, the extension of the parametric interval-valued fuzzy variable and
lambda selection methodology lies in other optimization problems such as transportation problem, emergency
supplies prepositioning, facility location, and assignment problem.

Appendix A. Proofs of main results

Proof of Theorem 2. Since ξj,0 and ηk,0 are the λ selection of the parametric interval-valued fuzzy variables
ξ̃j,0 = [ξr1j,0, ξ

r2
j,0, ξ

r3
j,0; θl,j,0, θr,j,0] and η̃k,0 = [ηr1k,0, η

r2
k,0, η

r3
k,0; θl,k,0, θr,k,0], based on Theorem 2.3, their parametric

possibility distributions are

µξj,0(x; θ, λ) =
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for j = 1, 2, . . . , p, and

µηk,0(x; θ, λ) =
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for k = 1, 2, . . . , q.
Let ξ =

∑p
j=1 ujξj,0 and η =

∑q
k=1 vkηk,0. Then
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=
1

2

∫ 1

0

(∑q
k=1 vkηk,0,sup(α)∑p
j=1 ujξj,0,inf(α)

+

∑q
k=1 vkηk,0,inf(α)∑p
j=1 ujξj,0,sup(α)

)
dα

=
1

2

∫ 1

0

(M1 +M2)dα.

Note that µξj,0((ξr1j,0 + ξr2j,0)/2) = µηk,0((ηr2k,0 + ηr3k,0)/2) = (1 + λθr,0 − (1 − λ)θl,0)/2 for each j and k. When
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Hence, combining equations (A.1)–(A.4) together, it is obvious to obtain the result. The proof of the theorem
is complete. �

Proof of Theorem 3. We only prove assertions (i)–(iv), and assertions (v)–(viii) can be proved similarly.
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Since ηk,i is the λ selection of interval-valued fuzzy variable η̃k,i = [ηr1k,i, η
r2
k,i, η

r3
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Theorem 2.3, its parametric possibility distribution is
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r2
j,i,−ξ

r1
j,i; θl,j,i, θr,j,i]. Similarly, the para-

metric possibility distribution of the λ selection −ξj,i can be derived.
Denote δ = vT ηi − uT ξi. If αi < 0.5, then we have

Cr
{
vT ηi − uT ξi ≤ 0

}
= Cr {δ ≤ 0} =

1

2

(
1 + sup

x≤0
νδ(x; θ, λ)− sup

x>0
νδ(x; θ, λ)

)
=

1

2
sup
x≤0

νδ(x; θ, λ).

Thus the credibility constraint of model (2.4) is equivalent to supx≤0 νδ(x; θ, λ) ≥ 2αi. If we denote

δinf(α) = inf

{
s | sup

x≤0
νδ(x; θ, λ) ≥ α

}
for α ∈ (0, 1], then δinf(2αi) ≤ 0.

Since {ξ̃j,i} and {η̃k,i} are mutually independent, then

δinf(2αi) = (vT ηi − uT ξi)inf(2αi)

=

 q∑
k=1

vkηk,i −
p∑
j=1

ujξj,i


inf

(2αi)

=

q∑
k=1

vkηk,i,inf(2αi) +

p∑
j=1

uj(−ξj,i)inf(2αi) ≤ 0.

Note that µηk,i((η
r1
k,i + ηr2k,i)/2) = (1 + λθr,k,i − (1 − λ)θl,k,i)/2. If 0 < 2αi < (1 + λθr,k,i − (1 − λ)θl,k,i)/2,

i.e., αi ∈ (0, (1 + λθr,k,i − (1− λ)θl,k,i)/4), then ηk,i,inf(2αi) is the solution of the following equation

(1 + λθr,k,i − (1− λ)θl,k,i)
x− ηr1k,i
ηr2k,i − η

r1
k,i

− 2αi = 0.

Solving the above equation, we have

ηk,i,inf(2αi) =
(1− 2αi + λθr,k,i − (1− λ)θl,k,i)η

r1
k,i + 2αiη

r2
k,i

1 + λθr,k,i − (1− λ)θl,k,i
·

On the other hand, if 1 > 2αi ≥ (1 +λθr,k,i− (1−λ)θl,k,i)/2, i.e., βki ∈ [(1 +λθr,k,i− (1−λ)θl,k,i)/4, 0.5), then
ηk,i,inf(2αi) is the solution of the following equation

(1− λθr,k,i + (1− λ)θl,k,i)x+ (λθr,k,i − (1− λ)θl,k,i)η
r2
k,i − η

r1
k,i

ηr2k,i − η
r1
k,i

− 2αi = 0.
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Solving the above equation, we have

ηk,i,inf(2αi) =
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i
·

Similarly, we have

(−ξj,i)inf(2αi) =


−

2αiξ
r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
, if αi ∈ (0, (1 + λθr,j,i − (1− λ)θl,j,i)/4)

−
(2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i + (1− 2αi)ξ

r3
j,i

1− λθr,j,i + (1− λ)θl,j,i
, if αi ∈ [(1 + λθr,j,i − (1− λ)θl,j,i)/4, 0.5).

Noting that λξj,i = ληk,i = λ, and λθr,1,i− (1−λ)θl,1,i ≤ λθr,2,i− (1−λ)θl,2,i ≤ . . . ≤ λθr,q,i− (1−λ)θl,q,i ≤
λθr,1,i − (1− λ)θl,1,i ≤ λθr,2,i − (1− λ)θl,2,i ≤ . . . λθr,p,i − (1− λ)θl,p,i, then the following results hold.

If 0 < 2αi < (1 + λθr,1,i − (1 − λ)θl,1,i)/2, then 2αi < (1 + λθr,k,i − (1 − λ)θl,k,i)/2 for k = 1, 2, . . . , q, and
2αi < (1 + λθr,j,i − (1− λ)θl,j,i)/2 for j = 1, 2, . . . , p. Therefore, if αi ∈ (0, (1 + λθr,1,i − (1− λ)θl,1,i)/4), then
the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(1− 2αi + λθr,k,i − (1− λ)θl,k,i)η

r1
k,i + 2αiη

r2
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
2αiξ

r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

If there exists a k0, 1 ≤ k0 < q such that (1 + λθr,k0,i − (1 − λ)θl,k0,i)/2 ≤ 2αi < (1 + λθr,k0+1,i − (1 −
λ)θl,k0+1,i)/2, i.e., αi ∈ [(1 +λθr,k0,i− (1−λ)θl,k0,i)/4, (1 +λθr,k0+1,i− (1−λ)θl,k0+1,i)/4), then the credibility
constraint of model (2.4) is equivalent to

k0∑
k=1

vk
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i
q∑

k=k0+1

vk
(1− 2αi + λθr,k,i − (1− λ)θl,k,i)η

r1
k,i + 2αiη

r2
k,i

1 + λθr,k,i − (1− λ)θl,k,i

−
p∑
j=1

uj
2αiξ

r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.

If there exists a j0, 1 ≤ j0 < p such that (1+λθr,j0,i−(1−λ)θl,j0,i)/2 ≤ 2αi < (1+λθr,j0+1,i−(1−λ)θl,j0+1,i)/2,
i.e., αi ∈ [(1 + λθr,j0,i − (1− λ)θl,j0,i)/4, (1 + λθr,j0+1,i − (1− λ)θl,j0+1,i)/4), then the credibility constraint of
model (2.4) is equivalent to

q∑
k=1

vk
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i

−
j0∑
j=1

uj
(2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i + (1− 2αi)ξ

r3
j,i

1− λθr,j,i + (1− λ)θl,j,i

−
p∑

j=j0+1

uj
2αiξ

r2
j,i + (1− 2αi + λθr,j,i − (1− λ)θl,j,i)ξ

r3
j,i

1 + λθr,j,i − (1− λ)θl,j,i
≤ 0.
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If (1 + λθr,p,i − (1 − λ)θl,p,i)/ ≤ 2αi < 1, then (1 + λθr,k,i − (1 − λ)θl,k,i)/2 < 2αi for k = 1, 2, . . . , q, and
(1 + λθr,j,i− (1− λ)θl,j,i)/2 < 2αi for j = 1, 2, . . . , p. Therefore, if αi ∈ [(1 + λθr,p,i− (1− λ)θl,p,i)/4, 0.5), then
the credibility constraint of model (2.4) is equivalent to

q∑
k=1

vk
(1− 2αi)η

r1
k,i + (2αi − λθr,k,i + (1− λ)θl,k,i)η

r2
k,i

1− λθr,k,i + (1− λ)θl,k,i

−
p∑
j=1

uj
(2αi − λθr,j,i + (1− λ)θl,j,i)ξ

r2
j,i + (1− 2αi)ξ

r3
j,i

1− λθr,j,i + (1− λ)θl,j,i
≤ 0.

The proof of assertions (i)–(iv) is complete. �

Appendix B. Analytical expressions for numerical example

On the one hand, the objective functions in model (4.1) are represented by

f1 =− v1 + v2 + 2v3 + 2v4
2(3u1 + u2 + 2u3 + 6u4)

− 2v1 + 2v2 + 2v3 + 5v4
2(4u1 + 2u2 + 2u3 + 4u4)

+
1

2(3u1 + u2 + 2u3 + 6u4)2
((54v1 + 52v2 + 60v3 + 48v4)(30u1 + 39u2 + 40u3 + 37u4)

− (55v1 + 53v2 + 62v3 + 50v4)(33u1 + 40u2 + 42u3 + 43u4))

× (2(λθr,0 − (1− λ)θl,0) ln(6.3u1 + 7.9u2 + 8.2u3 + 8.0u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(3.0u1 + 3.9u2 + 4.0u3 + 3.7u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(3.3u1 + 4.0u2 + 4.2u3 + 4.3u4))

+
1

2(4u1 + 2u2 + 2u3 + 4u4)2
((57v1 + 55v2 + 64v3 + 55v4)(30u1 + 39u2 + 40u3 + 37u4)

− (55v1 + 53v2 + 62v3 + 50v4)(26u1 + 37u2 + 38u3 + 33u4))

× (2(λθr,0 − (1− λ)θl,0) ln(5.6u1 + 7.6u2 + 7.8u3 + 7.0u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(2.6u1 + 3.7u2 + 3.8u3 + 3.3u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(3.0u1 + 3.9u2 + 4.0u3 + 3.7u4)),

f2 =− 2v1 + 2v2 + v3 + 2v4
2(2u1 + u2 + 2u3 + u4)

− v1 + 3v2 + 2v3 + v4
2(4u1 + 2u2 + 3u3 + 2u4)

+
1

2(2u1 + u2 + 2u3 + u4)2
((40v1 + 42v2 + 50v3 + 31v4)(15u1 + 20u2 + 23u3 + 20u4)

− (42v1 + 44v2 + 51v3 + 33v4)(17u1 + 21u2 + 25u3 + 21u4))

× (2(λθr,0 − (1− λ)θl,0) ln(3.2u1 + 4.1u2 + 4.8u3 + 4.1u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(1.5u1 + 2.0u2 + 2.3u3 + 2.0u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(1.7u1 + 2.1u2 + 2.5u3 + 2.1u4))

+
1

2(4u1 + 2u2 + 3u3 + 2u4)2
((43v1 + 47v2 + 53v3 + 34v4)(15u1 + 20u2 + 23u3 + 20u4)

− (42v1 + 44v2 + 51v3 + 33v4)(11u1 + 18u2 + 20u3 + 18u4))

× (2(λθr,0 − (1− λ)θl,0) ln(2.6u1 + 3.8u2 + 4.3u3 + 3.8u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(1.1u1 + 1.8u2 + 2.0u3 + 1.8u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(1.5u1 + 2.0u2 + 2.3u3 + 2.0u4)),



640 X. BAI ET AL.

f3 =− 3v1 + v2 + 2v3 + 3v4
2(u1 + 3u2 + 2u3 + 2u4)

− 2v1 + 2v2 + v3 + 2v4
2(u1 + 2u2 + 3u3 + u4)

+
1

2(u1 + 3u2 + 2u3 + 2u4)2
((42v1 + 40v2 + 53v3 + 30v4)(24u1 + 32u2 + 27u3 + 28u4)

− (45v1 + 41v2 + 55v3 + 33v4)(25u1 + 35u2 + 29u3 + 30u4))

× (2(λθr,0 − (1− λ)θl,0) ln(4.9u1 + 6.7u2 + 5.6u3 + 5.8u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(2.4u1 + 3.2u2 + 2.7u3 + 2.8u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(2.5u1 + 3.5u2 + 2.9u3 + 3.0u4))

+
1

2(u1 + 2u2 + 3u3 + u4)2
((47v1 + 43v2 + 56v3 + 35v4)(24u1 + 32u2 + 27u3 + 28u4)

− (45v1 + 41v2 + 55v3 + 33v4)(23u1 + 30u2 + 24u3 + 27u4))

× (2(λθr,0 − (1− λ)θl,0) ln(4.7u1 + 6.2u2 + 5.1u3 + 5.5u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(2.3u1 + 3.0u2 + 2.4u3 + 2.7u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(2.4u1 + 3.2u2 + 2.7u3 + 2.8u4)),

f4 =− 2v1 + 2v2 + v3 + 2v4
2(u1 + 2u2 + 2u3 + 2u4)

− v1 + 2v2 + 2v3 + 2v4
2(2u1 + u2 + u3 + u4)

+
1

2(u1 + 2u2 + 2u3 + 2u4)2
((41v1 + 38v2 + 52v3 + 35v4)(18u1 + 23u2 + 28u3 + 34u4)

− (43v1 + 40v2 + 53v3 + 37v4)(19u1 + 25u2 + 30u3 + 36u4))

× (2(λθr,0 − (1− λ)θl,0) ln(3.7u1 + 4.8u2 + 5.8u3 + 7.0u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(1.8u1 + 2.3u2 + 2.8u3 + 3.4u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(1.9u1 + 2.5u2 + 3.0u3 + 3.6u4))

+
1

2(2u1 + u2 + u3 + u4)2
((44v1 + 42v2 + 55v3 + 39v4)(18u1 + 23u2 + 28u3 + 34u4)

− (43v1 + 40v2 + 53v3 + 37v4)(16u1 + 22u2 + 27u3 + 33u4))

× (2(λθr,0 − (1− λ)θl,0) ln(3.4u1 + 4.5u2 + 5.5u3 + 6.7u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(1.6u1 + 2.2u2 + 2.7u3 + 3.3u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(1.8u1 + 2.3u2 + 2.8u3 + 3.4u4)),

f5 =− 3v1 + 4v2 + v3 + 4v4
2(2u1 + 3u2 + 2u3 + 2u4)

− 2v1 + 3v2 + 2v3 + 3v4
2(u1 + 3u2 + 2u3 + 2u4)

+
1

2(2u1 + 3u2 + 2u3 + 2u4)2
((55v1 + 51v2 + 66v3 + 50v4)(35u1 + 25u2 + 40u3 + 41u4)

− (58v1 + 55v2 + 67v3 + 54v4)(37u1 + 28u2 + 42u3 + 43u4))

× (2(λθr,0 − (1− λ)θl,0) ln(7.2u1 + 5.3u2 + 8.2u3 + 8.4u4)

+ (1− λθr,0 + (1− λ)θl,0) ln 2(3.5u1 + 2.5u2 + 4.0u3 + 4.1u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(3.7u1 + 2.8u2 + 4.2u3 + 4.3u4))

+
1

2(u1 + 3u2 + 2u3 + 2u4)2
((60v1 + 58v2 + 69v3 + 57v4)(35u1 + 25u2 + 40u3 + 41u4)

− (58v1 + 55v2 + 67v3 + 54v4)(34u1 + 22u2 + 38u3 + 39u4))

× (2(λθr,0 − (1− λ)θl,0) ln(6.9u1 + 4.7u2 + 7.8u3 + 8.0u4)

− (1 + λθr,0 − (1− λ)θl,0) ln 2(3.4u1 + 2.2u2 + 3.8u3 + 3.9u4)
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+ (1− λθr,0 + (1− λ)θl,0) ln 2(3.5u1 + 2.5u2 + 4.0u3 + 4.1u4)).

On the other hand, the constraint conditions in model (4.1) are given by

g1 =− 2.6(2α− 1 + λθr − (1− λ)θl) + 3.0(2− 2α)

1 + λθr − (1− λ)θl
u1 −

3.7(2α− 1 + λθr − (1− λ)θl) + 3.9(2− 2α)

1 + λθr − (1− λ)θl
u2

− 3.8(2α− 1 + λθr − (1− λ)θl) + 4.0(2− 2α)

1 + λθr − (1− λ)θl
u3 −

3.3(2α− 1 + λθr − (1− λ)θl) + 3.7(2− 2α)

1 + λθr − (1− λ)θl
u4

+
5.7(2α− 1 + λθr − (1− λ)θl) + 5.5(2− 2α)

1 + λθr − (1− λ)θl
v1 +

5.5(2α− 1 + λθr − (1− λ)θl) + 5.3(2− 2α)

1 + λθr − (1− λ)θl
v2

+
6.4(2α− 1 + λθr − (1− λ)θl) + 6.2(2− 2α)

1 + λθr − (1− λ)θl
v3 +

5.5(2α− 1 + λθr − (1− λ)θl) + 5.0(2− 2α)

1 + λθr − (1− λ)θl
v4,

g2 =− 1.1(2α− 1 + λθr − (1− λ)θl) + 1.5(2− 2α)

1 + λθr − (1− λ)θl
u1 −

1.8(2α− 1 + λθr − (1− λ)θl) + 2.0(2− 2α)

1 + λθr − (1− λ)θl
u2

− 2(2α− 1 + λθr − (1− λ)θl) + 2.3(2− 2α)

1 + λθr − (1− λ)θl
u3 −

1.8(4(2α− 1 + λθr − (1− λ)θl) + 2(2− 2α)

1 + λθr − (1− λ)θl
u4

+
4.3(2α− 1 + λθr − (1− λ)θl) + 4.2(2− 2α)

1 + λθr − (1− λ)θl
v1 +

4.7(2α− 1 + λθr − (1− λ)θl) + 4.4(2− 2α)

1 + λθr − (1− λ)θl
v2

+
5.3(2α− 1 + λθr − (1− λ)θl) + 5.1(2− 2α)

1 + λθr − (1− λ)θl
v3 +

3.4(2α− 1 + λθr − (1− λ)θl) + 3.3(2− 2α)

1 + λθr − (1− λ)θl
v4,

g3 =− 2.3(2α− 1 + λθr − (1− λ)θl) + 2.4(2− 2α)

1 + λθr − (1− λ)θl
u1 −

3.0(2α− 1 + λθr − (1− λ)θl) + 3.2(2− 2α)

1 + λθr − (1− λ)θl
u2

− 2.4(2α− 1 + λθr − (1− λ)θl) + 2.7(2− 2α)

1 + λθr − (1− λ)θl
u3 −

2.7(2α− 1 + λθr − (1− λ)θl) + 2.8(2− 2α)

1 + λθr − (1− λ)θl
u4

+
4.7(2α− 1 + λθr − (1− λ)θl) + 4.5(2− 2α)

1 + λθr − (1− λ)θl
v1 +

4.3(2α− 1 + λθr − (1− λ)θl) + 4.1(2− 2α)

1 + λθr − (1− λ)θl
v2

+
5.6(2α− 1 + λθr − (1− λ)θl) + 5.5(2− 2α)

1 + λθr − (1− λ)θl
v3 +

3.5(2α− 1 + λθr − (1− λ)θl) + 3.3(2− 2α)

1 + λθr − (1− λ)θl
v4,

g4 =− 1.6(2α− 1 + λθr − (1− λ)θl) + 1.8(2− 2α)

1 + λθr − (1− λ)θl
u1 −

2.2(2α− 1 + λθr − (1− λ)θl) + 2.3(2− 2α)

1 + λθr − (1− λ)θl
u2

− 2.7(2α− 1 + λθr − (1− λ)θl) + 2.8(2− 2α)

1 + λθr − (1− λ)θl
u3 −

3.3(2α− 1 + λθr − (1− λ)θl) + 3.4(2− 2α)

1 + λθr − (1− λ)θl
u4

+
4.4(2α− 1 + λθr − (1− λ)θl) + 4.3(2− 2α)

1 + λθr − (1− λ)θl
v1 +

4.2(2α− 1 + λθr − (1− λ)θl) + 4.0(2− 2α)

1 + λθr − (1− λ)θl
v2

+
5.5(2α− 1 + λθr − (1− λ)θl) + 5.3(2− 2α)

1 + λθr − (1− λ)θl
v3 +

3.9(2α− 1 + λθr − (1− λ)θl) + 3.7(2− 2α)

1 + λθr − (1− λ)θl
v4,

g5 =− 3.4(2α− 1 + λθr − (1− λ)θl) + 3.5(2− 2α)

1 + λθr − (1− λ)θl
u1 −

2.2(2α− 1 + λθr − (1− λ)θl) + 2.5(2− 2α)

1 + λθr − (1− λ)θl
u2

− 3.8(2α− 1 + λθr − (1− λ)θl) + 4.0(2− 2α)

1 + λθr − (1− λ)θl
u3 −

3.9(2α− 1 + λθr − (1− λ)θl) + 4.1(2− 2α)

1 + λθr − (1− λ)θl
u4
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+
6.0(2α− 1 + λθr − (1− λ)θl) + 5.8(2− 2α)

1 + λθr − (1− λ)θl
v1 +

5.8(2α− 1 + λθr − (1− λ)θl) + 5.5(2− 2α)

1 + λθr − (1− λ)θl
v2

+
6.9(2α− 1 + λθr − (1− λ)θl) + 6.7(2− 2α)

1 + λθr − (1− λ)θl
v3 +

5.7(2α− 1 + λθr − (1− λ)θl) + 5.4(2− 2α)

1 + λθr − (1− λ)θl
v4.
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