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AN INTRODUCTION TO THE TWIN SIGNED TOTAL k-DOMINATION
NUMBERS IN DIRECTED GRAPHS
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2 
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3

Abstract. Let D = (V, A) be a finite simple directed graph (shortly digraph), N−(v) and N+(v)
denote the set of in-neighbors and out-neighbors of a vertex v ∈ V , respectively. A function f :
V −→ {−1, 1} is called a twin signed total k-dominating function (TSTkDF) if

∑
u∈(N−(v))

f(u) ≥ k

and
∑

u∈(N+(v))

f(u) ≥ k for each vertex v ∈ V . The twin signed total k-domination number of D is

γ∗
stk(D) = min{ω(f) | f is a TSTkDF of D}, where ω(f) =

∑
v∈V f(v) is the weight of f . In this

paper, we initiate the study of twin signed total k-domination in digraphs and present different bounds
on γ∗

stk(D). In addition, we determine the twin signed total k-domination number of some classes of
digraphs. Our results are mostly extensions of well-known bounds of the twin signed total domination
numbers of directed graphs.
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1. Introduction

Throughout this paper, D is a finite simple directed graph (digraph) with vertex set V (D) and arc set A(D)
(briefly represented as V and A). An oriented graph is a digraph without directed cycles of length 2. For an
arc (u, v) of D, can be stated that v is an out-neighbor of u and u is an in-neighbor of v. N−(v) = N−

D (v) and
N+(v) = N+

D (v) stand for the set of in-neighbors and out-neighbors of a vertex v, respectively. The outdegree
of a vertex v and its indegree are d+

D(v) = |N+(v)| and d−D(v) = |N−(v)|, respectively. The minimum and
maximum indegrees and minimum and maximum outdegrees of D are denoted by δ−(D) = δ−, Δ−(D) = Δ−,
δ+(D) = δ+ and Δ+(D) = Δ+, respectively. A digraph D is called regular or r-regular if δ−(D) = δ+(D) =
Δ−(D) = Δ+(D) = r. For X ⊆ V (D) and v ∈ V (D), A(X, v) is the set of arcs from X to v. A(X, Y )
represents the set of arcs from a subset X to a subset Y . Beside, D−1 is used as a notation for the digraph
obtained from D by reversing the arcs of D. The complete digraph of order n, K∗

n, is a digraph D provided that
(u, v), (v, u) ∈ A(D) for any two distinct vertices u, v ∈ V (D). Let f : V (D) −→ R be a function. For S ⊆ V ,
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let f(S) =
∑

v∈S f(v). The weight of f is w(f) = f(V ). Notations and graph theory terminologies are based on
those presented in [14].

Suppose k ≥ 1 is an integer and D = (V, A) a finite simple digraph with δ−(D) ≥ k. A signed total
k-dominating function (abbreviated STkDF) of D defined in [11] is a function f : V → {−1, 1} such that
f(N−(v)) ≥ k for every v ∈ V . The signed total k-domination number for a directed graph D is

γstk(D) = min{ω(f) | f is a STkDF of D}.
A γstk(D)-function is a STkDF of D of weight γstk(D). This definition is analogous to that definition of the
signed k-domination number in digraphs introduced by Atapour et al. [4]. If k = 1, the signed total k-domination
number γstk(D) would be the usual signed total domination number γst(D), as introduced by Sheikholeslami [10].

Let k ≥ 1 be an integer and D be a digraph with min{δ−(D), δ+(D)} ≥ k. A signed total k-dominating
function of D which also is a signed total k-dominating function of D−1, i.e., f(N+(v)) ≥ k for every v ∈ V ,
is termed a twin signed total k-dominating function (briefly shown as TSTkDF) of D. The twin signed total k-
domination number for a digraph D is γ∗

stk(D) = min{ω(f) | f is a TSTkDF of D}. As min{δ−(D), δ+(D)} ≥ k
is a necessary assumption, when studying γ∗

stk(D), it is assumed that δ−(D) ≥ k and δ+(D) ≥ k. In the case
k = 1, the twin signed total k-domination number γ∗

stk(D) is the usual twin signed total domination number
γ∗

st(D), studied by Atapour et al. [1].
For any function f : V (D) → {−1, 1}, we define P = Pf = {v ∈ V | f(v) = 1} and M = Mf = {v ∈ V |

f(v) = −1}. Since every TSTkDF of D is a STkDF on both D and D−1, we have

max
{
γstk(D), γstk(D−1)

} ≤ γ∗
stk(D). (1)

Let G = (V, E) be a graph with vertex V (G) and edge set E(G) (briefly shown as V and E). For every
vertex v ∈ V , the open neighborhood of v, N(v), is the set {u ∈ V | uv ∈ E}. The degree of v in G is
deg(v) = degG(v) = |N(v)|. A function f : V → {−1, 1} is called a signed total dominating function (STDF)
of G if f(N(v)) ≥ 1 for every v ∈ V . The signed total domination number of G, denoted by γst(G), is the
minimum weight of a signed total dominating function on G. The signed total domination number of a graph
was introduced by Zelinka [15] and has been studied by several authors [8].

The signed total k-dominating function of a graph G defined in [13] is a function f : V → {−1, 1} such that
f(N(v)) ≥ k for all v ∈ V (G). The signed total k-domination number of G, denoted by γstk(G), is the minimum
weight of a signed total k-dominating function on G.

In this paper, we initiate the study of twin signed total k-domination number in directed graphs and we
present some bounds on this parameter. For k = 1, some of our results are those recently presented in [1].

2. Basic properties of the twin signed total k-domination numbers

In this section, we study basic properties of the twin signed total k-domination number of digraphs. Obviously,
the function which assigns +1 to every vertex of D is a TSTkDF and so γ∗

stk(D) ≤ |V (D)|. The next proposition
provides conditions to establish the equality.

Proposition 2.1. Let D be a digraph of order n. Then γ∗
stk(D) = n if and only if every vertex has either an

out-neighbor with indegree at most k + 1 or an in-neighbor with outdegree at most k + 1.

Proof. The sufficiency is clear. Thus, we verify the necessity of the condition. Assume that γ∗
stk(D) = n. Suppose

to the contrary that there exists a vertex v ∈ V (D) such that d−(u) ≥ k+2 for each u ∈ N+(v) and d+(w) ≥ k+2
for each w ∈ N−(v). Define f : V (D) → {−1, 1} by f(v) = −1 and f(x) = 1 for x ∈ V (D) \ {v}. Obviously, f
is a TSTkDF of D of weight less than n, a contradiction. This completes the proof. �

Proposition 2.2 [11]. For any digraph D of order n ≥ 2, γstk(D) ≡ n (mod 2).

Observation 2.3. For any digraph D of order n ≥ 2, γ∗
stk(D) ≡ n (mod 2).
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Proof. Let f be a γ∗
stk(D)-function. Since n = |P |+ |M | and γ∗

stk(D) = |P |− |M |, we deduce that n−γ∗
stk(D) =

2|M | and hence γ∗
stk(D) ≡ n (mod 2). �

Corollary 2.4. For any digraph D of order n ≥ 2, γ∗
stk(D) ≡ γstk(D) (mod 2).

The next corollary is an immediate consequence of Proposition 2.1 and Observation 2.3.

Corollary 2.5. For any digraph D of order n ≥ 2 and δ+(D), δ−(D) ≥ k + 2, γ∗
stk(D) ≤ n − 2.

Remark 2.6. Let D be a digraph and j, k be two integers such that 1 ≤ j ≤ k. Since every TSTkDF of D is
also a TSTjDF of D, we have γ∗

stj(D) ≤ γ∗
stk(D).

A tournament is, in effect, a digraph D where for every pair u and v of distinct vertices, either (u, v) ∈ A(D)
or (v, u) ∈ A(D), but not both. Let n = 2r + 1 for some positive integer r. A circulant tournament CT(n)
with n vertices is a tournament with vertex set V (CT(n)) = {u0, u1, . . . , un−1} and arc set A(CT(n)) =
{(ui, ui+1), . . . , (ui, ui+r) | 0 ≤ i ≤ n − 1}, where the indices are taken modulo n. The proof of the next result
can be found in [11].

Proposition 2.7. Let r ≥ k ≥ 1 be integers and n = 2r + 1. Then

γstk(CT(n)) =

{
2k + 1 if r ≡ k (mod 2)

2k + 3 if r ≡ k + 1 (mod 2).

The next proposition shows that γ∗
stk(CT(n)) = γstk(CT(n)).

Proposition 2.8. Let r ≥ k ≥ 1 be integers and n = 2r + 1. Then γ∗
stk(CT(n)) = γstk(CT(n)).

Proof. By (1) and Proposition 2.7, we have

γ∗
stk(CT(n)) ≥

{
2k + 1 if r ≡ k (mod 2)

2k + 3 if r ≡ k + 1 (mod 2).

Let s = � r−k
2 	, V − = {u1, . . . , us, ur+1, . . . , ur+s} and V + = V (CT(n))−V −. For any vertex v ∈ V (CT(n)), we

have |N+(v)∩V −| ≤ s and |N−(v)∩V −| ≤ s. Let f : V (CT(n)) → {−1, 1} be a function assigning +1 to every
vertex v ∈ V + and −1 to every vertex v ∈ V −. Obviously, f(N−(v)) ≥ r − 2s ≥ k and f(N+(v)) ≥ r − 2s ≥ k
for each v ∈ V . Therefore f is a TSTkDF on CT(n) of weight 2k + 1 if r ≡ k (mod 2) and 2k + 3 when
r ≡ k + 1 (mod 2). Hence

γ∗
stk(CT(n)) ≤ ω(f) =

{
2k + 1 if r ≡ k (mod 2)

2k + 3 if r ≡ k + 1 (mod 2)

and the proof is complete. �

As we observed in (1), γ∗
stk(D) ≥ max{γstk(D), γstk(D−1)}. Now we show that the difference γ∗

stk(D) −
max{γstk(D), γstk(D−1)} can be arbitrarily large.

Theorem 2.9. For every positive integers k, t ≥ 1, there exists a digraph D such that

γ∗
stk(D) − max{γstk(D), γstk(D−1)} ≥ 2t.
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Proof. Let k, t ≥ 1 be integers. For 1 ≤ i ≤ 2t + 1, let Di be a circulant tournament of order 2k + 1 with vertex
set {ui

0 . . . ui
2k}. Further, let D be obtained from the disjoint union of Di’s, 1 ≤ i ≤ 2t + 1, by adding the set

{wi | 1 ≤ i ≤ 2t} of new vertices and the set

{(u2t+1
j , ui

j), (u
i+t
j , u2t+1

j ) | 0 ≤ j ≤ 2k, and 1 ≤ i ≤ t}

∪
{

(wi, ui
j), (u

i
j+k, wi) | 1 ≤ i ≤ 2t and 1 ≤ j ≤ k

}
of new arcs. Then the order of D is n = 4kt + 2k + 4t + 1. Obviously, D ∼= D−1 and so, γstk(D) = γstk(D−1).
By Proposition 2.1, γ∗

stk(D) = n. On the other hand, it can be verified that the function f : V (D) → {−1, 1}
defined by f(x) = −1, for x ∈ {wi | 1 ≤ i ≤ t} and f(x) = +1 for the remaining vertices, is a STkDF of D
and thus γstk(D) ≤ n − 2t. Hence, γ∗

stk(D) − max{γstk(D), γstk(D−1)} ≥ n − (n − 2t) = 2t, and the proof is
complete. �

Now we show that the twin signed total k-domination number of digraphs can be arbitrarily small. Recall
that a complete digraph of order n, K∗

n, is a digraph in which for every pair of distinct vertices u and v,
(u, v), (v, u) ∈ A(K∗

n).

Theorem 2.10. For any positive integers k, t ≥ 1, there exists a digraph D such that

γ∗
stk(D) ≤ 4kt − 4kt2 + 2t

Proof. Let k, t ≥ 1 be integers and let D be a digraph obtained from a complete digraph of order 2kt with
vertex set V (K∗

2kt) = {ui
1 . . . ui

2k | 1 ≤ i ≤ t} by adding the set {vi
j, w

i
j | 1 ≤ i ≤ t and 1 ≤ j ≤ 2kt − k − 1} of

new vertices and the set{
(ui

j, v
i
l ), (v

i
l , u

i
j+k), (wi

l , u
i
j), (u

i
j+k, wi

l ) | 1 ≤ i ≤ t, 1 ≤ j ≤ k and 1 ≤ l ≤ 2kt − k − 1
}

of new arcs. It can be observe that the function f : V (D) → {−1, 1} defined by f(x) = −1 for x ∈ {vi
j, w

i
j |

1 ≤ j ≤ 2kt − k − 1 and 1 ≤ i ≤ t}, and f(x) = +1 for all other vertices x, is a TSTkDF of D and so
γ∗

stk(D) ≤ w(f) = 2kt− 2t(2kt − k − 1) = 4kt− 4kt2 + 2t. �

Proposition 2.11. For any graph G of order n with δ(G) ≥ 2k, and for any orientation D of G, γst2k(G) ≤
γ∗

stk(D).

Proof. Let D be an orientation of G and let f be a γ∗
stk(D)-function. Since f(NG(v)) = f(N+

D (v)) + f(N−
D (v)),

f(N+
D (v)) ≥ k and f(N−

D (v)) ≥ k for each v ∈ V , we have f(NG(v)) ≥ 2k for each v ∈ V , and so f is a ST2kDF
of G. Therefore γst2k(G) ≤ ω(f) = γ∗

stk(D) as desired. �

3. Bounds on the twin signed total k-domination numbers

In this section we establish some bounds for γ∗
stk(D) in terms of the order, size, the maximum and minimum

indegree and outdegree of D.

Lemma 3.1. Let D be a digraph of order n and let f be a γ∗
stk(D)-function. Then

(1)
⌈

δ−+k
2

⌉
|M | ≤ |A(P, M)| ≤

⌊
Δ+−k

2

⌋
|P |.

(2)
⌈

δ++k
2

⌉
|M | ≤ |A(M, P )| ≤

⌊
Δ−−k

2

⌋
|P |.

(3) |A(P, P )| ≥ max{
⌈

δ−+k
2

⌉
|P |,

⌈
δ++k

2

⌉
|P |}.
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Proof.

(1) Let v ∈ M . Since f(N−(v)) ≥ k, we have |A(P, v)| ≥
⌈

d−(v)+k
2

⌉
≥

⌈
δ−+k

2

⌉
. It follows that |A(P, M)| ≥⌈

δ−+k
2

⌉
|M |. In addition, since f(N+(v)) ≥ k for v ∈ P , we have |A(v, M)| ≤

⌊
d+(v)−k

2

⌋
≤

⌊
Δ+−k

2

⌋
and so

|A(P, M)| ≤
⌊

Δ+−k
2

⌋
|P |. Combining the inequalities, we obtain (1).

(2) The proof is similar to the proof of (1).
(3) Let v ∈ P . Since f(N+(v)) ≥ k and f(N−(v)) ≥ k, we have

|A(v, P )| ≥
⌈

d+(v) + k

2

⌉
≥

⌈
δ+ + k

2

⌉
,

and

|A(P, v)| ≥
⌈

d−(v) + k

2

⌉
≥

⌈
δ− + k

2

⌉
·

Thus

|A(P, P )| ≥ max
{⌈

δ− + k

2

⌉
|P |,

⌈
δ+ + k

2

⌉
|P |

}
,

and the proof is complete. �

Theorem 3.2. Let D be a digraph of order n, minimum indegree δ−, minimum outdegree δ+, maximum indegree
Δ− and maximum outdegree Δ+. Then

γ∗
stk(D) ≥ max

⎧⎨
⎩

⌈
δ−+k

2

⌉
−

⌊
Δ+−k

2

⌋
⌈

δ−+k
2

⌉
+

⌊
Δ+−k

2

⌋n,

⌈
δ++k

2

⌉
−

⌊
Δ−−k

2

⌋
⌈

δ++k
2

⌉
+

⌊
Δ−−k

2

⌋n

⎫⎬
⎭ .

Proof. Let f be a minimum TSTkDF of D. Using Lemma 3.1 and replacing |M | and |P | by n−γ∗
stk(D)
2 and

n+γ∗
stk(D)
2 in (1) and (2), the desired inequality follows. �

The next corollary is a consequence of Theorem 3.2 and Proposition 2.1.

Corollary 3.3. If D is a r-regular digraph with r ≥ k, then γ∗
stk(D) ≥ (k + 1)n/r when r + k is odd and

γ∗
stk(D) ≥ kn/r when r + k is even. This bound is sharp for k-regular and (k + 1)-regular digraphs.

Next proposition gives an upper bound on twin signed total k-domination number.

Proposition 3.4. If D is a digraph of order n with δ+ ≥ δ− ≥ k + 2, then

γ∗
stk(D) ≤ n − 2

⌊
δ− − k

2

⌋

and

γ∗
stk(D) ≤ n − 2

⌊
δ+ − k

2

⌋
·

These bounds are sharp for K∗
n.
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Proof. Define t = � δ−−k
2 	. Let v ∈ V (D) be a vertex, and let {u1, u2, . . . , ut} be a set of t out-neighbors of v.

Define the function f : V (D) → {−1, 1} by f(x) = −1 for x ∈ {u1, u2, . . . , ut} and f(x) = +1 for all other
vertices x. Then

f(N−(x)) ≥ −t + (δ− − t) = δ− − 2t = δ− − 2
⌊

δ− − k

2

⌋
≥ k

and

f(N+(x)) ≥ −t + (δ+ − t) = δ+ − 2t ≥ δ− − 2
⌊

δ− − k

2

⌋
≥ k

for each vertex x ∈ V (D). Therefore f is a TSTkDF on D of weight 1 − t + (n − t − 1) = n − 2t and thus
γ∗

stk(D) ≤ n − 2t = n − 2� δ−−k
2 	.

Supposing t = � δ+−k
2 	, the proof of the first inequality leads to the second inequality.

Now we prove that γ∗
stk(K∗

n) = k + 2 when n + k − 1 is odd and γ∗
stk(K∗

n) = k + 1 when n + k − 1 is even.
Since K∗

n is a (n − 1)-regular digraph, Corollary 3.3 implies that

γ∗
stk(K∗

n) ≥
{

k + 1 if n + k − 1 is even
k + 2 if n + k − 1 is odd.

On the other hand, from the above inequalities we have γ∗
stk(K∗

n) ≤ n−2
⌊

n−1−k
2

⌋
. It follows that γ∗

stk(K∗
n) = k+1

when n + k − 1 is even and γ∗
stk(K∗

n) = k + 2 when n + k − 1 is odd. �

Proposition 3.5. If D is a digraph of order n and maximum indegree Δ−, then

γ∗
stk(D) ≥ 2

⌈
Δ− + k

2

⌉
− n.

Proof. Let u ∈ V (D) be a vertex of maximum indegree d−(u) = Δ−, and let f be a γ∗
stk(D)-function. Since

f(N−(u)) ≥ k, we deduce that |A(P, u)| ≥
⌈

Δ−+k
2

⌉
. It follows that

n + γ∗
stk(D)
2

= |P | ≥ |A(P, u)| ≥
⌈

Δ− + k

2

⌉
,

and this leads to the desired inequality. �

The condition f(N+(v)) ≥ k for each vertex v, yields analogously the next result.

Proposition 3.6. If D is a digraph of order n and maximum outdegree Δ+, then γ∗
stk(D) ≥ 2
Δ++k

2 � − n.

The associated digraph D(G) of a graph G is the digraph obtained when each edge e of G is replaced by
two oppositely oriented arcs with the same end vertices as e. Since N−

D(G)(v) = N+
D(G)(v) = NG(v) for each

v ∈ V (G) = V (D(G)), the following useful observation is valid.

Observation 3.7. If D(G) is the associated digraph of a graph G, then γ∗
stk(D(G)) = γstk(G).

Observation 3.7 has many interesting applications such as the following results.

Corollary 3.8 ([13]). Let G be a r-regular graph with r ≥ k. Then γstk(G) ≥ (k + 1)n/r when r + k is odd
and γstk(G) ≥ kn/r when r + k is even.

Proof. Let D(G) be the associated digraph of G. Then D(G) is a r-regular digraph of order n = n(D(G)). Since
γstk(G) = γ∗

stk(D(G)), the result follows from Corollary 3.3 and Observation 3.7. �
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Proposition 3.9. If G is a graph of order n and maximum degree Δ, then γstk(G) ≥ 2
⌈

Δ+k
2

⌉− n.

Proof. Since Δ(G) = Δ−(D(G)) and n = n(D(G)), it follows from Proposition 3.5 and Observation 3.7 that

γstk(G) = γ∗
stk(D(G)) ≥ 2

⌈
Δ− + k

2

⌉
− n = 2

⌈
Δ + k

2

⌉
− n. �

The next known corollary is a consequence of Theorem 3.2 and Observation 3.7.

Corollary 3.10 [12]. Let G be a graph of order n, minimum degree δ and maximum degree Δ. Then

γstk(G) ≥
⌈

δ+k
2

⌉− ⌊
Δ−k

2

⌋⌈
δ+k
2

⌉
+

⌊
Δ−k

2

⌋n.

Since ⌈
δ+k
2

⌉− ⌊
Δ−k

2

⌋⌈
δ+k
2

⌉
+

⌊
Δ−k

2

⌋n ≥ δ + 2k − Δ

δ + Δ
n,

Corollary 3.10 implies the following known bound.

Corollary 3.11 [11]. If G is a graph of order n, minimum degree δ and maximum degree Δ, then

γstk(G) ≥ δ + 2k − Δ

δ + Δ
n.

Theorem 3.12. For any digraph D of order n, size m, minimum indegree δ− and minimum outdegree δ+,

γ∗
stk(D) ≥

n(2
⌈

δ++k
2

⌉
+

⌈
δ−+k

2

⌉
) − 2m⌈

δ−+k
2

⌉ ·

and

γ∗
stk(D) ≥

n(2
⌈

δ−+k
2

⌉
+

⌈
δ++k

2

⌉
) − 2m⌈

δ++k
2

⌉ ·

Proof. Let f be a γ∗
stk(D)-function. By Lemma 3.1, we have

m ≥ |A(M, P )| + |A(P, M)| + |A(P, P )|

≥
⌈

δ− + k

2

⌉
|M | +

⌈
δ+ + k

2

⌉
|M | +

⌈
δ+ + k

2

⌉
|P |

=
⌈

δ+ + k

2

⌉
n +

⌈
δ− + k

2

⌉(
n − γ∗

stk(D)
2

)
·

This leads to the first inequality. Using |A(P, P )| ≥
⌈

δ−+k
2

⌉
|P |, we obtain the second inequality as follows

m ≥ |A(M, P )| + |A(P, M)| + |A(P, P )|

≥
⌈

δ− + k

2

⌉
|M | +

⌈
δ+ + k

2

⌉
|M | +

⌈
δ− + k

2

⌉
|P |

=
⌈

δ− + k

2

⌉
n +

⌈
δ+ + k

2

⌉(
n − γ∗

stk(D)
2

)
·

This completes the proof. �
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Theorem 3.13. Suppose that D is a digraph of order n, maximum indegree Δ− and maximum outdegree Δ+.
Then

γ∗
stk(D) ≥

2k −
⌊

Δ−−k
2

⌋
−

⌊
Δ+−k

2

⌋
2k +

⌊
Δ−−k

2

⌋
+

⌊
Δ+−k

2

⌋n.

Proof. Let f be a γ∗
stk(D)-function and let v ∈ M . Since f(N+(v)) ≥ k and f(N−(v)) ≥ k, we have |A(v, P )| ≥ k

and |A(P, v)| ≥ k and thus |A(M, P )| + |A(P, M)| ≥ 2k|M |. It follows from Lemma 3.1 (Parts 1, 2) that

|P |
(⌊

Δ− − k

2

⌋
+

⌊
Δ+ − k

2

⌋)
≥ 2k|M |. (2)

Replacing |M | and |P | by n−γ∗
stk(D)
2 and n+γ∗

stk(D)
2 in (2), the desired bound is obtained. �

Theorem 3.14. For any digraph D of order n and size m,

γ∗
stk(D) ≥ 2n − m

k
·

This bound is sharp for digraphs obtained in the proof of Theorem 2.10.

Proof. Let f be a γ∗
stk(D)-function. Following the proof of Theorem 3.13, |A(P, M)| ≥ k|M | and |A(M, P )| ≥

k|M |. If x ∈ P , then it follows from f(N+(x)) ≥ k that |A(x, P )| ≥ |A(x, M)| + k, indicating that

|A(P, P )| ≥ |A(P, M)| + k|P | ≥ k|M | + k(n − |M |) = kn.

Hence
m ≥ |A(M, P )| + |A(P, M)| + |A(P, P )|

≥ k|M | + k|M | + kn

= 2k|M |+ kn

Since n = |P | + |M |, we deduce that γ∗
stk(D) = |P | − |M | = n − 2|M | ≥ 2n − m

k . �
Corollary 3.15 ([13]). If G is a graph of order n and size m, then

γstk(G) ≥ 2n− 2m

k
·

Proof. Let D(G) be the associated digraph of G. Since m(D(G)) = 2m(G), it follows from Observation 3.7 and
Theorem 3.14 that

γstk(G) = γ∗
stk(D(G)) ≥ 2n(D(G)) − m(D(G))

k
= 2n(G) − 2m(G)

k
= 2n − 2m

k
· �

Theorem 3.16. Let D be a digraph of order n. Then

γ∗
stk(D) ≥ 2

⌈
1 +

√
4kn + 1
2

⌉
− n.

Proof. Let f be a γ∗
stk(D)-function. In view of the proof of Theorem 3.14, |A(P, P )| ≥ kn. On the other hand,

|A(P, P )| ≤ |P |(|P | − 1). It follows that |P |(|P | − 1) ≥ kn and thus |P |2 − |P | − kn ≥ 0, which implies that

|P | ≥ 1 +
√

4kn + 1
2

,

and thus we obtain

γ∗
stk(D) = 2|P | − n ≥ 2

⌈
1 +

√
4kn + 1
2

⌉
− n· �
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Theorem 3.17. Let D be a bipartite digraph of order n. Then

γ∗
stk(D) ≥ 2

⌈√
2kn

⌉
− n.

Proof. Let f be a γ∗
stk(D)-function. In view of the proof of Theorem 3.14, |A(P, P )| ≥ kn. On the other hand,

|A(P, P )| ≤ |P |2/2. It follows that |P |2/2 ≥ kn and so |P | ≥ √
2kn and thus

γ∗
stk(D) = 2|P | − n ≥ 2

⌈√
2kn

⌉
− n. �

The next well-Known result is obtained through Theorems 3.16, 3.17 and Observation 3.7.

Corollary 3.18 ([13]). If G is a graph of order n, then γstk(G) ≥ √
4kn + 1 + 1 − n.

If G is a bipartite graph of order n, then γstk(G) ≥ 2
√

2kn − n.

Note that our proof of Corollary 3.18 is shorter than that proposed by Wang [13]. In addition, Wang [13]
has provided examples with equality in the two inequalities of Corollary 3.18. The associated digraphs for these
examples indicate that the bounds in Theorems 3.16 and 3.17 are sharp.

The underlying graph of a digraph D, G(D), is the graph obtained by replacing each arc (u, v) of D by the
edge uv.

Theorem 3.19. Let D be a digraph of order n and let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of the
underling graph G(D) of D. If s is the smallest positive integer where

∑s
i=1 di −

∑n
i=s+1 di ≥ 2kn, then

γ∗
stk(D) ≥ 2s − n.

Furthermore, this bound is sharp.

Proof. Let f be a γ∗
stk(D)-function and p = |P |. Since f(N+

D (v)) ≥ k and f(N−
D (v)) ≥ k for each v ∈ V (D), we

have
kn ≤ ∑

v∈V f(N+
D(v))

=
∑

v∈V d−D(v)f(v)

=
∑

v∈P d−D(v) −∑
v∈M d−D(v)

and
kn ≤ ∑

v∈V f(N−
D (v))

=
∑

v∈V d+
D(v)f(v)

=
∑

v∈P d+
D(v) −∑

v∈M d+
D(v)

Summing the above inequalities, we have

2kn ≤ ∑
v∈P (d+

D(v) + d−D(v)) −∑
v∈M (d+

D(v) + d−D(v))

=
∑

v∈P degG(v) −∑
v∈M degG(v)

≤ ∑p
i=1 di −

∑n
i=p+1 di.

Consequently, 2kn ≤ ∑p
i=1 di −

∑n
i=p+1 di. By the assumption on s, we must have p ≥ s. This implies that

γ∗
stk(D) = 2p − n ≥ 2s − n.
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In order to prove the sharpness, suppose that t ≥ 3 is an integer and D is obtained from the union of k
directed cycles Cs

t := (vs
1, . . . , v

s
t ), 1 ≤ s ≤ k, by adding the set

{uj
1, . . . , u

j
t | 1 ≤ j ≤ k + 1}

of new vertices and the set

{(uj
i , v

s
i ), (v

s
i+1, u

j
i ) | 1 ≤ i ≤ t, 1 ≤ s ≤ k, 1 ≤ j ≤ k + 1}

of new arcs, where the arithmetic operations are taken modulo t and t + 1 represents 1. Then the order of D is
n = 2kt + t and the degree sequence of the underlying graph of D is 2k + 4, . . . , 2k + 4︸ ︷︷ ︸

kt

, 2k, . . . , 2k︸ ︷︷ ︸
kt+t

and

2kt∑
i=1

di −
n∑

2kt+1

di = (2k + 4)(kt) + 2k(kt) − 2kt = 4k2t + 2kt = 2kn.

It follows that s = 2kt is the smallest positive integer such that
∑s

i=1 di −
∑n

i=s+1 di ≥ 2kn and so γ∗
stk(D) ≥

2kt − t. Now define f : V (D) → {−1, 1} with f(x) = −1 for x ∈ {u1
1, . . . , u

1
t} and f(x) = +1 for all other

vertices x. Clearly, f is a TSTkDF of D and ω(f) = 2kt − t. This completes the proof. �

The special case k = 1 of Theorems 3.2, 3.12, 3.13, 3.14 and 3.19 was recently proved in [1].

4. Twin signed total k-domination in oriented graphs

Suppose that G is the complete graph K2k+3 with vertex set {v1, . . . , v2k+3}. Let D1 be an
orientation of G such that D1 � CT (2k + 3) and D2 be an orientation of G obtained from
CT (2k + 1) with vertex set {v1, . . . , v2k+1} by adding new vertices v2k+2 and v2k+3 and the set
{(v2k+2, vi), (vj , v2k+2), (v2k+3, vj), (vi, v2k+3), (v2k+2, v2k+3) | 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ 2k + 1}. It is easy to
see that γ∗

stk(D1) = 2k + 3 and γ∗
stk(D2) = 2k + 1. Thus two distinct orientations of a graph can have distinct

twin signed total k-domination numbers. Motivated by this observation, we define lower orientable twin signed
total k-domination number dom∗

stk(G) and upper orientable twin signed total k-domination number Dom∗
stk(G)

of a graph G with δ(G) ≥ 2k as follows:

dom∗
stk(G) = min{γ∗

stk(D) | D is an orientation of G with δ−(D) ≥ k and δ+(D) ≥ k},

and
Dom∗

stk(G) = max{γ∗
stk(D) | D is an orientation of G with δ−(D) ≥ k and δ+(D) ≥ k}.

Corresponding concepts have been defined and studied for orientable domination (out-domination) [7], twin
domination number [6], twin signed domination number [3], twin signed total domination number [1], twin
minus domination number [2] and twin signed Roman domination number [5].

The next proposition shows that every graph G with δ(G) ≥ 2k, has an orientation D such that
δ−(D), δ+(D) ≥ k and so the above definitions are well-defined.

Proposition 4.1. for integer k ≥ 1, every graph G with δ(G) ≥ 2k, has an orientation D such that
δ−(D), δ+(D) ≥ k.

Proof. Since δ(G) ≥ 2k ≥ 2, G contains a cycle. Let G1 = G and C1 be a cycle in G. Assume that G2 =
G1 − E(C1) and let C2 be a cycle in G2. We proceed this procedure to obtain a graph Gt such that every
nontrivial component of G is a tree. Consider an orientation of G such that every cycle Ci, 1 ≤ i ≤ t, be a
directed cycle and every nontrivial component of Gt be a directed tree such that |d+(v) − d−(v)| ≤ 1 for every
vertex v. Hence we obtain an orientation D of G such that δ−(D), δ+(D) ≥ k. �
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The next corollary is an immediate consequence of Proposition 2.11.

Corollary 4.2. For integer k ≥ 1 and for any graph G of order n with δ(G) ≥ 2k, γst2k(G) ≤ dom∗
stk(G).

The lower orientable twin signed total k-domination numbers of several classes of graphs including complete
graphs and complete bipartite graphs are determined here. The next propositions are useful in our results.

Proposition 4.3 [13]. For n > k, γstk(Kn) =

{
k + 2 if n ≡ k (mod 2)

k + 1 if n ≡ k + 1 (mod 2).

Proposition 4.4 [9]. For m, n ≥ k, γstk(Km,n) =

⎧⎪⎪⎨
⎪⎪⎩

2k if m ≡ n ≡ k (mod 2)

2k + 1 if m ≡ k + 1 n ≡ k (mod 2)

2k + 2 if m ≡ n ≡ k + 1 (mod 2).

The next corollaries are immediate consequences of Corollary 4.2 and Propositions 4.3 and 4.4.

Corollary 4.5. For k ≥ 1 and n ≥ 2k + 1,

dom∗
stk(Kn) ≥

{
2k + 1 if n is odd
2k + 2 if n is even.

Corollary 4.6. for m, n ≥ 2k,

dom∗
stk(Km,n) ≥

⎧⎪⎨
⎪⎩

4k if n and m are both even

4k + 1 if n and m have different parity

4k + 2 if n and m are both odd .

Theorem 4.7. For k ≥ 1 and n ≥ 2k + 1,

dom∗
stk(Kn) =

{
2k + 1 if n is odd

2k + 2 if n is even.

Proof. Let

V (Kn) =
{
ui, vi, wj | 1 ≤ i ≤

⌈n

2

⌉
− (k + 1) and 1 ≤ j ≤ n −

(
2
⌈n

2

⌉
− 2k − 2

)}
.

First let n is odd. Let D be an orientation of Kn such that

A(D) = {(ut, ul), (ut, vl), (vt, vl), (vr, us) | 1 ≤ t < l ≤ ⌈
n
2

⌉− (k + 1), 1 ≤ r ≤ s ≤ ⌈
n
2

⌉− (k + 1)}

∪{
(ui, wj), (vi, wj), (wt, ui), (wt, vi) | 1 ≤ i ≤ ⌈

n
2

⌉− (k + 1), 1 ≤ j ≤ k + 1, k + 2 ≤ t ≤ 2k + 1
}

∪{(wt, wt+1), . . . , (wt, wt+k) | 1 ≤ t ≤ 2k + 1} ,

Where the arithmetic operations are taken modulo 2k + 1 and 2k + 1 represents 0.
Let now n be even. Let D be an orientation of Kn such that

A(D) = {(ut, ul), (ut, vl), (vt, vl), (vr, us) | 1 ≤ t < l ≤ ⌈
n
2

⌉− (k + 1), 1 ≤ r ≤ s ≤ ⌈
n
2

⌉− (k + 1)}

∪{(ui, wj), (vi, wj), (wt, ui), (wt, vi) | 1 ≤ i ≤ ⌈
n
2

⌉− (k + 1), 1 ≤ j ≤ k + 1, k + 2 ≤ t ≤ 2k + 2}

∪ {(wt, wt+1), . . . , (wt, wt+k), (w2k+2, wj), (wj+k, w2k+2), (w2k+2, w2k+1) | 1 ≤ t ≤ 2k + 1, 1 ≤ j ≤ k} .

Where the arithmetic operations are taken modulo 2k + 1 and 2k + 1 represents 0.
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It is easy to see that the function f : V (D) → {−1, +1} defined by f(x) = −1 for x ∈ {ui | 1 ≤ i ≤⌈
n
2

⌉− (k + 1)} and f(x) = +1 otherwise, is a TSTkDF of D of weight 2k + 1 when n is odd and 2k + 2 when n
is even. This implies that

dom∗
stk(Kn) ≤ ω(f) =

{
2k + 1 if n is odd

2k + 2 if n is even.

Now the result follows from Corollary 4.5. �

Theorem 4.8. For m, n ≥ 2k,

dom∗
stk(Km,n) =

⎧⎪⎨
⎪⎩

4k if n and m are both even

4k + 1 if n and m have different parity

4k + 2 if n and m are both odd .

Proof. Let V1 = {u1, . . . , um} and V2 = {v1, . . . , vn} be the partite sets of Km,n. First as-
sume that m and n are both even. Let D be an orientation of Km,n such that A(D) =
{(ui, vj), (ul, vj), (vj , ur), (vt, ui)(ui, vs), (ul, vt), (vs, ul), (vt, ur), (ur, vs) | 2k + 1 ≤ i ≤ m, 2k + 1 ≤ j ≤ n, 1 ≤
l, t ≤ k, k + 1 ≤ r, s ≤ 2k}. It is easy to verify that the function f : V (G) → {−1, +1} defined by f(x) = −1
for x ∈ {u2k+1, . . . , u m+2k

2
} ∪ {v2k+1, . . . , vn+2k

2
} and f(x) = +1 otherwise, is a TSTkDF of D of weight 4k and

so dom∗
stk(Km,n) ≤ 4k.

Now let m and n have different parity. Assume that m is even and n is odd. Let D be an orientation of Km,n

such that

A(D) = {(ui, vj), (ul, vj), (vj , ur), (vt, ui), (ui, vs), (ul, vt)(vs, ul), (vt, ur), (ur, vs) |
2k + 1 ≤ i ≤ m, 2k + 2 ≤ j ≤ n, 1 ≤ l, t ≤ k, k + 1 ≤ r ≤ 2k, k + 1 ≤ s ≤ 2k + 1}.

Define f(x) = −1 for x ∈ {u2k+1, . . . , u m+2k
2

} ∪ {v2k+2, . . . , vn+2k+1
2

} and f(x) = +1 otherwise. It is easy to
verify that f is a TSTkDF of D of weight 4k + 1 and so dom∗

stk(Km,n) ≤ 4k + 1.
Finally assume that m and n are both odd. Let D be an orientation of Km,n such that

A(D) = {(ui, vj), (ul, vj), (vj , ur), (vt, ui), (ui, vs), (ul, vt)(vs, ul), (vt, ur),

(ur, vs) | 2k + 2 ≤ i ≤ m, 2k + 2 ≤ j ≤ n, 1 ≤ l, t ≤ k, k + 1 ≤ r, s ≤ 2k + 1}.
Define f(x) = −1 for x ∈ {u2k+2, . . . , u m+2k+1

2
} ∪ {v2k+2, . . . , vn+2k+1

2
} and f(x) = +1 otherwise. It is easy to

verify that f is a TSTkDF of D of weight 4k + 2 and so dom∗
stk(Km,n) ≤ 4k + 2.

Now, the result follows from Corollary 4.6. �

The special case k = 1 of Theorems 4.7 and 4.8 was recently proved in [1]. Theorems 4.7 and 4.8 also show that
dom∗

stk(Kn) = γst2k(Kn) and dom∗
stk(Km,n) = γst2k(Km,n).

5. Conclusion

In this paper, we initiate the study of twin signed total k-domination numbers in digraphs and we present
some bounds on this parameter which some of them are sharp. We observe that γstk(D) ≤ γ∗

stk(D) for all
digraphs and γst2k(G) ≤ dom∗

stk(G) for all graphs. Also, we observe that the equality γstk(D) = γ∗
stk(D) is valid

for circulant tournaments and γst2k(G) = dom∗
stk(G) for complete graphs and complete bipartite graphs. The

problem of finding other classes of graphs and digraphs achieving the equalities is under investigation.
Also, we introduce the lower and upper orientable twin signed total k-domination numbers of graphs.

It might be worthwhile to find Dom∗
stk(G) for some classes of graphs and find conditions to the equality

Dom∗
stk(G) = |V (G)|.
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