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RESOURCE ALLOCATION PROBLEM UNDER SINGLE RESOURCE

ASSIGNMENT

Sakib A. Mondal1,∗

Abstract. We consider a NP-hard resource allocation problem of allocating a set of resources to
meet demands over a time period at the minimum cost. Each resource has a start time, finish time,
availability and cost. The objective of the problem is to assign resources to meet the demands so that
the overall cost is minimum. It is necessary that only one resource contributes to the demand of a slot.
This constraint will be referred to as single resource assignment (SRA) constraint. We would refer to
the problem as the S RA problem. So far, only 16-approximation to this problem is known. In this
paper, we propose an algorithm with approximation ratio of 12.

Mathematics Subject Classification. 68W25, 90B35, 68R01.

Received January 4, 2017. Accepted May 6, 2017.

1. Introduction

Energy sector is one of the most prominent industry today which is expected to grow enormously in future.
One of the challenging tasks in the sector is to produce cost efficient energy. A firm producing electric power may
have number of ways to generate power, namely from solar panels, wind mills, batteries and diesel generators.
Most of the large power generating firms would have fairly good idea about the power demand profile based on
past experiences. Cost of energy depends on the type of generating source. However quite often, it is optimal to
use only one type of generator due to additional huge cost of overburden to maintain two generators operating
simultaneously and feed their supplies efficiently. Therefore the goal of the power generator is to meet the
demand profile incurring minimum cost while using only one type of sources during each time slot. Motivated
by the problem of the power generator, we formulate the Single Resource Allocation (S RA) problem.

1.1. The S RA problem

The S RA problem involves allocation of single or multiple copies of resources from a set of resources to
complete a given set of jobs over a time horizon at minimum cost subject to the constraint that the demand of
a slot be met by only one resource. The S RA problem is a special case of the more general resource allocation
(RA) problem [6,11,12]. The RA problem can be formally described as follows:
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Figure 1. Illustration of S RA problem.

Given A set I = {i} of resources. Resource i has start time si, finish time fi, cost ci, and capacity hi. It is
said to be active over the interval [si, fi]. Multiple copies of each resource is available to the decision maker.
A time horizon partitioned into intervals 1 through T . Interval t has a resource demand of dt (without loss
of generality, dt is assumed to be integer)

Required To find a least cost use of resources to satisfy all the resource requirements over the time period such
that for each time slot only one resource contributes to the demand of the slot.

Note that for the S RA problem, there is an additional constraint in the primal formulation that the demand
for a time interval is met by just one of the resources. A feasible solution to the S RA problem is in the
form of a multi-set of S of resources. It finds application in several contexts such as CPU scheduling, routing,
manufacturing and cloud computing.

Consider a scenario for a power generating firm where there are 5 options to produce energy. Resource A
can be used to produce electricity at a rate of $10 per unit for the 4th to the 6th day. Resources B and C are
available from the 3rd to the 5th day and from the 5th to the 7th day respectively; both cost $15 per unit.
Resource E is active from the 2nd to the 4th day and costs $8 per unit. Resource D is the option for shorter
duration available only for the first 2 days. It costs $10 per unit. The resources have fixed durations. Figure 1
shows the demand profile over 7 days. On the right side of Figure 1, two feasible solutions are shown.

The S RA problem applies to many other real-life scenarios. For example, a cloud computing firm may
announce different options of computing slots of various durations and costs. The problem faced by an individual
user would be to meet his/her workload at minimum cost. Here the cloud computing firm may restrict individual
users to combine different options (offers) for each slot to improve its revenue. Hence the problem would have
SRA constraints. The framework is quite general and captures scenarios arising in domains such as workforce
management, cloud computing, energy management and distributed computing.
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The RA problem is a general version of the S RA problem where there is no SRA constraint. The version
of RA where a resource can be used at most once, it is called ZRA. We assume that no resource is active only
over a strict subset of another resource’s active period.

Sometimes, it may not be possible of the power generating firm to produce a feasible solution given the
resources. In such cases, a restricted variant considers the partial covering scenario, wherein the input also
specifies a number k and a feasible solution is only required to satisfy the demand for at least k time slots. In
workforce management setting, this corresponds to the concept of meeting service level agreements (SLAs) for
a significant fraction of times.

1.2. Related work

A variant of the RA problem uses packing constraints and is called the Unsplittable Flow (UF) problem. This
problem has been widely studied in the literature. The special case of uniform bandwidth has been considered
in [5]. where a constant factor approximation algorithm has been proposed. However, the general case of variable
bandwidth is considerably more difficult. Bansal et al. [4] presented a quasi-PTAS for the UF problem under the
restriction that all the capacities and demands are quasi-polynomial. Bonsma et al. [7] designed a polynomial
time (7 + ε)-approximation algorithm with a “no-bottleneck assumption”. Chekuri et al. [14] have proposed
a (2 + ε)-approximation algorithm. A (2 + ε)-approximation algorithm has been proposed in [3] for the UFP
on paths. Further, another constant factor approximation algorithm proposed in [1] works even without any
restriction on the capacity of the resources. The knapsack covering problem, which is a relaxation of the RA
problem, is known to be NP-hard but not in the strong sense. It admits FPTAS ([16,19]). There have been recent
efforts to consider alternate linear programming(LP)-based algorithms for the unbounded minimum knapsack
problem [8,9]. A primal dual based approach for the RA problem has been proposed by [12].

Solving the ZRA problem requires more complicated flow cover inequalities in order to derive constant factor
approximation. Chakrabarty et al. [10] have studied a more general version of the ZRA problem called column
restricted covering integer programs. Their framework yields a 40-approximation algorithm for the ZRA problem.
Korula (see [10]) as well as Chakravarthy et al. [13] have presented a 4-approximation algorithm for the ZRA.
Results of [5] imply a 4-approximation for column-restricted line cover problem. To the best of our knowledge,
resource allocation with SRA constraints has been considered in [13] only.

The S RA problem is a generalization of the covering version of the knapsack problem in which items may
be selected multiple times. and is thus NP-hard [18]. Chakravarthy et al. [13] obtained a primal-dual based 16-
approximation algorithm for the S RA problem. Our technique is a generalization of the primal-dual algorithm
of [13]. First, unlike [13] where time slots are considered in arbitrary order in deletion phase, we adjust the dual
variables in the reverse order of the first phase. Second, during the deletion phase, we not only subtract from
the primal variables, but also change the dual solution. In certain cases a dual variable is reduced to zero by
increasing the two neighboring variables by the same amount. This approach helps in improving approximation
ratio for any primal-dual based approximation approach, and has its own merit. The two generalizations make it
possible to improve the approximation ratio from 16 to 12. The primal-dual paradigm was originally developed
by Bar-Yehuda and Even [6] and Chvátal [15] for the weighted vertex cover and set cover problems. Of late, the
primal-dual algorithms have been widely used in designing approximation algorithms ([2, 17]).

1.3. Our results

The S RA problem is NP-hard. So far, only 16-approximation to this problem is known. In this paper we
propose a new combinatorial algorithm that improves the approximation ratio to 12. The algorithm is based
on primal dual paradigm where the dual variables are adjusted through an innovative scheme. Using this, we
could improve the approximation ratio of the partial covering version of the S RA from 16 to 12.
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2. Formulation of he S RA problem

In this section, we present the LP formulation for the problem and its dual. This will pave the way for devising
the primal-dual algorithm to be discussed subsequently.

Let A(t) denotes the set of resources that are active at time interval t. The decision variable xi in the primal
denotes the number of copies of resource i used in the solution, and hit = min{hi, dt}. An ILP formulation of
the RA problem is as given below.

Primal: Minimize
∑

i∈I cixi subject to
∑

i∈A(t) hitxi ≥ dt ,∀t and xi ∈ Z,∀i ∈ 1 . . . T . (2.1)

Dual: Maximize
∑

1≤t≤T ytdt subject to
∑

t:i∈A(t) hityt ≤ ci,∀i and ∀yt ≥ 0,∀t ∈ 1 . . . T . (2.2)

Note that for the S RA problem, there is an additional constraint in the primal formulation that the demand
for a time interval is met by just one of the resources. A feasible solution to the S RA problem is in the form
of a multi-set S of resources. Let fS(i) denote the number of times i is used in S. The multi-set S can cover
a time slot t, if there exists a resource i ∈ A(t) such that fS(i) × hit ≥ dt. The multi-set S is said to be a full
cover, if S covers all the time slots. The cost of the multi-set S is given by cost(S) =

∑
i fS(i)× ci. For a quick

reference, notations used in this paper have been summarized below.

Table 1. Problem classes and notations.

RA (Resource Allocation Problem) Problem of allocating single or multiple copies of resources from a set
of given resources to complete a given set of jobs over a time horizon
at minimum cost

SRA (Single Resource Assignment) Constraint that in each time slot only one resource can be used (in
multitude if required)

S RA (RA Problem with SRA constraint) Resource Allocation Problem with additional SRA constraint
ZRA (Zero One RA Problem) Resource Allocation Problem with the constraint that a resource can

be used at most once

t , index for time slot or time
interval (1 . . . T )

i , index for resources (from set
I)

A(t) , set of resources active at
time interval t

dt , demand at time slot t

si , start time of resource i

fi , finish time of resource i

ci , per unit cost of resource i

hi , capacity of resource i

hit , min{hi, dt}

xi, fA(i) , number of copies of resource i used
in the solution

H̃(i, t) , adjusted bundle height at t met by
the resource i (= xih(i, t))

A , primal solution after construction
phase

S′ , set resource in use after first for
loop of reverse delete phase

Bj , set of resources selected for band j
in a main time slot

B , final primal solution

2.1. An approximation Algorithm for the S RA problem

We reproduce working of the primal dual algorithm in [13] to make this article self-contained. The algorithm
operates in three phases. In the construction phase, a feasible SRA solution is constructed. The algorithm
considers the time slots in a greedy order (basically a time slot t with the highest demand is selected first).
The dual variable yt is increased to the maximum possible value until some dual constraint, say corresponding
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to an interval i, becomes tight. d dt

hit
e copies of i are added to the solution. All the time slots in the span of the

interval are marked as dead. In this case, t is a main time slot and i is the resource associated with t. These
steps are iterated till demands for all the slots are met.

Step 0. Initialization Set Dt = dt ∀t. Set yt = 0 ∀t.
Step 1. Forward For each time slot t ∈ {1, . . . , T} considered in non-increasing order of demands dt,

(1) If t is not dead,
(a) Increase yt to the maximum possible values while maintaining dual feasibility. Let i be the resource for

which the dual constraint becomes tight first.
(b) Set xi ← d dt

hit
e.

(c) Mark time slot t as “main slot associated with i”. Mark all other slots in the span of i as “dead”. (Main
time slot t and all other slots marked dead by i are associated with i.)

end if

end for
Let the SRA solution returned by the construction phase is A. For an interval i and a timeslot t, H̃(i, t) =

xih(i, t) denotes the adjusted bundle height at t met by the resource i(note xi = fA(i)). It is easy to see that

H̃ satisfies the following property (due to knapsack cover issue).

Lemma 2.1 [13]. Let i be any interval chosen in A and t be any main time slot within the span of i. Then, at

the end of the construction phase, H̃(i, t∗) ≤ 2dt.

In the deletion phase, certain redundant intervals are deleted from A to obtain a multi-set S′. The main time
slots are considered in an arbitrary order. Let t be a main time slot. The set of intervals active at t∗(A(t∗)) are
divided into a set of bands in a geometric fashion as follows. Let m = dlog 2dte. For 1 ≤ j ≤ m, define the band
Bj to be

Bj =

{
i ∈ A ∩A(t) :

2dt
2j

< H̃(i, t) ≤ 2dt
2j−1

}
·

For each band Bj , let i1 be the interval in Bj extending farthest to the left (i.e., having the minimum start-
time); similarly, let i2 be the interval in Bj extending farthest to the right (i.e., having the maximum end-time).
Only these two intervals are retained and all the other interval (bundles) of Bj are deleted from A. Let the
constructed multi-set be S′. Though S′ need not be a full cover, it has been established that S′ meets at least
half of the demand in SRA manner. Due to the fact that (i) the leftmost and rightmost interval within each
band are retained and (ii) geometric series of the bands, the following holds true.

Lemma 2.2 [13]. At the end of the deletion phase, for any time slot t, there exists an interval i′ ∈ S′ such that
i′ is active at t and fS′(i

′)hi′ ≥ dt

2 .

In the last phase called the doubling phase, solution S′ is converted into an SRA full cover B, by simply
doubling the number of copies of every resource in S′. A 16-approximation (2 factor each from geometric series,
knapsack cover, retaining both leftmost and rightmost intervals in each band and doubling) is obtained.

Lemma 2.3 [13]. For any main time slot t,
∑

i∈A(t∗) hit∗fB(i) ≤ 16dt∗

3. An improved approximation Algorithm for the S RA problem

We will use the construction phase of [13] to generate a feasible primal solution for the S RA problem.
However, we modify the deletion phase. We refer to this second phase as Reverse Delete phase.

During the construction phase for the example in Figure 1, the following are the values to dual variables
corresponding to the main time slots: y5 = 10, y3 = 5, y7 = 5, y1 = 10. The associated multi-set of resources
used are: {6A, 5B, 5C, 2D}. The constructed solution is as shown in the upper right section of Figure 1.
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Before we present the modified reverse delete phase, we need a few routines. Routine left-estimate estimates
the maximum possible decrease of yt for a time slot t without violating dual feasibility for the resources to the left
of t. Besides the maximum allowable change of yt, it also returns rl (the constraining resource which is blocker
for further decrease of yt), T (a chain of main-time slots towards left of t) and J (the associated tight resources).

Routine: Left-estimate(time slot t, associated resource i, adjustment quantity δ)

(1) T = φ, J = φ. Assume yt to be 0. f = True. curt = t

(2) While there is a main timeslot (say, tb with the associated resource ja) to the left of curt and jb is active
at curt and dual constraint for jb is not tight (select rightmost tb in case there are multiple candidates)

(a) Pre-append tb to T , jb to J .
(b) If f = True

(i) Assume ytb = ytb + yt
(ii) If Dual feasibility is violated for any resource active over tb

(A) Let δ be the minimum amount of violation. Let rl be the rightmost minimum violating resource.
(B) Return [yt − δ, rl, T, J ]

(c) Else
(i) Assume ytb = ytb − yt

(d) curt = tb
(e) f = f̄

(3) end while

Routine right-estimate estimates maximum possible decrease of yt for a time slot t without violating dual
feasibility for the resources to the right of t. Besides the maximum allowable change of yt, it also returns the
constraining resource rr which is blocker for further decrease of yt, T (a chain of main-time slots towards right
of t) and J (the associated tight resources).

Routine: Right-estimate(time slot t, associated resource i)

(1) T = φ, J = φ. Assume yt to be 0. f = True. curt = t

(2) While there is a main timeslot (say ta with the associated resource ja) to the right of curt and jb is active
at curt and dual constraint for ja is not tight (select leftmost ta in case there are multiple candidates)

(a) Post-append ta to T , ja to J .
(b) If f = True

(i) Assume yta = yta + yt
(ii) If Dual feasibility is violated for any resource active over ta

(A) Let δ be the minimum amount of violation. Let rr be the leftmost minimum violating resource.
(B) Return [yt − δ, rr, T, J ]

(c) Else
(i) Assume yta = yta − yt

(d) curt = ta
(e) f = f̄

(3) end while

Routine adjust-dual-left is used to adjust the dual variables without violating dual feasibility of any resources
to the left of t. It uses the maximum possible decrease in the yt value as well as the chains of main-time slots
and the associated tight resources (J) as input.
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Routine: Adjust-dual-left(time slot t, associated resource i,δ, TL, JL)

(1) f = True.
(2) While TL is not empty

(a) If f = True
(i) Remove the last element of TL. Let this element be curt.
(ii) Increment ycurt by δ

(b) Else
(i) Decrement ycurt by δ

(c) f = f̄
(3) end while

Routine adjust-dual-right is used to adjust the dual variables without violating dual feasibility of any resources
to the right of t. It uses the maximum possible decrease in the yt value as well as the chains of main-time slots
and the associated tight resources (J) as input.

Routine: Adjust-dual-right( time slot t, associated resource i, δ, TL, JL)

(1) f = True.
(2) While TL is not empty

(a) If f = True
(i) Remove the first element of TL. Let this element be curt.
(ii) Increment ycurt by δ

(b) Else
(i) Decrement ycurt by δ

(c) f = f̄
(3) end while

Routines adjust-primal-left and adjust-primal-right are two important routines. These routines are designed
to maintain primal complementary conditions and primal feasibility of the solution. Again left and right
variants are used to adjust the values of primal and dual values for the jobs to the left of t and to the right
of t respectively. In these routines, first(L) and last(L) indicate the first and the last element respectively of
a list L. Next(j, L) and prev(j, L) are used to obtain the next and the previous element of j respectively from L.

Routine: Adjust-primal-left(time slot t, associated resource i, δ, rl, TL, JL)

(1) While TL is not empty
(a) Let curj = first(JL). jl = rl, jr = next(curj , JL), curt = first(TL), tr = next(curj , TL).
(b) If curj is not required to meet demand of any dead slot where jl and jr are not active

(i) Set xcurj = 0. Mark curj as inactive. Remove curj from S′.
(ii) Set xjl to meet the demand for the slot curt. Mark jl as the active resource associated with the slot

curt.
(iii) Adjust xjr to meet the demand for the slot tr. Add jr to S′.

(c) else If curj is required to meet the demand of any dead slot tu (where both jl and jr are not active)
(i) Mark tu as the main slot with the associated resource curj . Adjust xcurj to meet the demand for

the slot tu. Add curj to S′.
(ii) Set xjl to meet the remnant demand for the slot curt. Mark jl as the active resource associated

with the slot curt. Add jl to S′.
(iii) If there is remnant non-zero demand for the slot tr
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(A) Adjust xjr to meet the remnant demand for the slot tr. Add jr to S′.
(iv) else If tr = t

(A) Set ytu = yt, set yt to zero
(v) end if

(d) end if
(e) Remove the first two elements from each of TL and JL.

(2) end while

Routine: Adjust-primal-right(tme slot t, associated resource i, δ, rr, TR, JR)

(1) While TR is not empty
(a) Let curj = last(JR). jr = rr, jl = prev(curj , JR), curt = last(TR), tl = prev(curj , TR).
(b) If curj is not required to meet demand of any dead slot where jl and jr are not active

(i) Set xcurj = 0. Mark curj as inactive. Remove curj from S′.
(ii) Set xjr to meet the demand for the slot curt. Mark jr as the active resource associated with the

slot curt.
(iii) Adjust xjl to meet the demand for the slot tl. Add jl to S′.

(c) else If curj is required to meet the demand of any dead slot tu (where both jl and jr are not active)
(i) Mark tu as the main slot with the associated resource curj . Adjust xcurj to meet the demand for

the slot tu. Add curj to S′.
(ii) Set xjr to meet the remnant demand for the slot curt. Mark jr as the active resource associated

with the slot curt. Add jr to S′.
(iii) If there is remnant non-zero demand for the slot tl

(A) Adjust xjl to meet the remnant demand for the slot tl. Add jl to S′.
(iv) else If tl = t

(A) Set ytu = yt, set yt to zero.
(v) end if

(d) end if
(e) Remove the last two elements from each of TR and JR.

(2) end while

We are now ready to present the modified reverse delete phase.

(1) [ Step 2: Reverse Delete]
(2) S′ = φ.
(3) For each main time slot t ∈ {1, . . . , T} considered in the reverse of the order they were considered in the

forward phase,
(a) Let i be the resource associated with t. Let Bj = {i ∈ A ∩ A(t) : 2dt

2j < H̃(i, t) ≤ 2dt

2j−1 }, 1 ≤ j ≤ m =
dlog 2dte.

(b) For j = 1, . . . ,m do
(i) Let i1 be the interval in Bj extending farthest to the left (i.e., having the minimum start-time);

similarly, let i2 be the interval in Bj extending farthest to the right (i.e., having the maximum
end-time). Only these two intervals from Bj are added to S′. Set xr = 0 for all other r ∈ Bj .

(c) end for
(4) end for
(5) For each main time slot t ∈ {1, . . . , T} considered in the reverse of the order they were considered in the

forward phase,
(a) Let i be the resource associated with t.
(b) If i 6∈ S′
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(i) Let tl and tr be the main time slots (different from t) closest to t on the left and the right respectively
such that the associated resources jl and jr are active at t and xjl , xjr > 0

(ii) [δL, rl, TL, JL] =Left-estimate(t)
(iii) [δR, rr, TR, JR] =Right-estimate(t)
(iv) ym = min{δR, δL}
(v) Adjust-dual-left(ym, TL, JL)
(vi) Adjust-dual-right(ym, TR, JR)
(vii) yt = yt − ym.

(viii) If ym > 0
(A) mark t as borrowed and main.
(B) Adjust-primal-left(ym, TL, JL)
(C) Adjust-primal-right(ym, TR, JR)

(ix) end if
(c) end if

(6) end for

With reference to the running example, B1 = {D}, {B}, {B,C} and {C} for the main time slots 1, 3, 5 and 7
respectively after the first for loop in the reverse delete. Hence S′ = {D,B,C}. Note that S′ does not contain
the resource A (as when considering main slot 5, A appears in the same band as B and C and B is the resource
extending farthest to the left while C is the resource extending farthest to the right). After the reverse delete
step, the dual variables will be y5 = 7, y3 = 8, y7 = 8, y1 = 10. Time slot 5 is marked borrowed and main. Final
resources used will be a multi-set of D, B and C.

Based on the working of the algorithm, we can establish following properties easily.

Lemma 3.1. At the end of the reverse delete phase, for any time slot t, there exists an interval i′ ∈ S′ such
that i′ is active at t and fS′(i

′)hi′ ≥ dt

2 .

Proof. We first prove that the lemma holds at the end of line 10 of the reverse delete. Let i be the interval
associated with t. If i ∈ S′, then fS′(i)hi ≥ dt

2 . Hence, we can take i′ = i and the lemma holds true. Let
us assume that i got deleted while considering a main time slot t∗. Now consider the demand fulfillment
at t∗. Since i got deleted, the algorithm must have retained a leftmost and a rightmost interval (say il and
ir respectively) that were in the same band as i. At least one of these two intervals (say il) must be active
at t. Hence, H(il, t

∗) ≥ H(i, t∗)/2. There are two possible cases: (i) hi < dt∗ and (ii) hi ≥ dt. For case (i),
H(i, t∗) = fS′(i)hi ≥ dt as i is associated with t. Hence, from the last two expressions, H(il, t

∗) ≥ dt

2 . So with
i′ = il the lemma holds. For case (ii), H(i, t∗) ≥ dt∗ , and hence i belongs to the band [dt∗ , 2dt∗ ]. In other words,
i belongs the the same band as il and H(il, t

∗) ≥ dt∗ . Let t′ be the main time slot for i. As both t∗ and t′

are main time slots, dt∗ ≥ dt′ otherwise in the construction phase t′ would not have been considered earlier
and it would have marked t∗ dead. As t′ is the main slot for i, dt′ ≥ dt. It follows that dt∗ ≥ dt. Therefore,
fS′(il)hil ≥ dt. Again for i = il, the lemma is true.

Now we would like to point out that the rest of the reverse delete does not violate the lemma. In other
words, execution of routines adjust-primal-left and adjust-primal-right does not violate the lemma. During the
execution of the lemma, whenever a resource from S′ is deleted, one or more resources are added to make sure
that the contribution for deleted resource is adequately met for each of the effected time slot. Hence at the end
of the reverse delete the lemma holds true. �

We use the doubling phase of [13] without any modification. The final set of resources used is referred to as
B and the dual solution is y.

Lemma 3.2. At the end of the primal dual algorithm, the solution (B, y) satisfies (1) dual feasibility, (2)
primal feasibility, (3) primal complementary slackness, (4) the approximate dual complementary condition for
any main slot t∗, yt > 0 =⇒

∑
i∈A(t∗) hit∗xi ≤ 10dt∗ , and (5) the approximate dual complementary condition
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for a borrowed and main time slot t with the two closest self slots lt and rt: yt > 0 =⇒
∑

i∈A(t) witxi ≤
8(dlt + drt) ≤ 16dt. Further (6) for a dead timeslot t, yt = 0 and (7) For each borrowed and main slot t, there
are two closest main slots lt and rt such that yt ≤ min{ylt , yrt} or yt = 0.

Proof.

(1) Let us consider effect of change of yt for a main slot on dual feasibility of the resources on or to the left
of t. Routine adjust-dual-left considers all the tight resources on the left of t whose dual feasibility may be
effected by change in yt and maintains them tight. Amount of decrement of the dual value ys for any slot s
is upper bounded by the ym = minh∈T :h is at even position in T yh ≤ ys. Hence, if ys is decremented, post
adjustment ys ≥ 0.
Amount of increment of a dual value ys cannot be arbitrary. As for each increment, we are checking the
dual feasibility of all the resources active over s, dual feasibility cannot be violated due to increase of y
values.
For any tight resource r, |T ∩A(r)| cannot be odd. Assume this to be odd. Let us consider the leftmost slot
of r that is added to T . Then for this slot when tr is considered, the while condition of the left-estimate
routine becomes false (as resource r is already tight) and it will not be added to T . A contradiction. If
|T ∩A(r)| is even,

∑
i∈A(r)∆yi = 0, since each |∆yh| = ym,∀h ∈ T and adjustment of y alternates in sign.

So the dual constraint for r remains tight post execution of the routine.
A similar argument holds true for change of yt for a self slot on dual feasibility of the resources on or to
the right of t (through routine.

(2) Primal variable xi is increased to satisfy the primal constraints for a time slot in SRA manner. We continue
the process till we satisfy primal constraints for all the time slots. Since the time slots are considered in
non-increasing order of demand, if there is any time slot with unmet demand at an intermediate step and
there is a feasible solution, we will always be able to increase y values corresponding to this time slot without
violating dual feasible constraints. During the reverse delete phase, we can violate the primal feasibility up
to a factor of 1

2 . Hence, at the end of the doubling phase (end of algorithm), B is primal feasible.
(3) Primal complementary slackness condition is true at the end of the forward phase as per [12]. If the value of

a primal variable becomes zero during the reverse delete phase, then the condition is vacuously true. Also,
tight resources remain tight when we adjust the y-values during the reverse delete phase. In routines adjust-
primal-left and adjust-primal-right, a primal variable is set to non-zero value only when the corresponding
dual constraint is tight.

(4) For a main time slot t∗, let the associated interval be i. In this case, i ∈ B. Then
∑

i′∈S′∩A(t∗)\{i} hi′t∗xi′ ≤∑m
j=2 2 × ( 2dt∗

2j−1 ) ≤ 4dt∗ , as m = dlog(2dt∗)e. Therefore,
∑

j∈B∩A(t∗) hjt∗xj ≤ 2dt∗ + 8dt∗ , (as the set of

retained resources from each band can span t from left or right) = 10dt∗ .
(5) For this case, xi > 0 and i 6∈ B. In this case, total contribution of the jobs to the time slot t ≤

∑ml

j=1 2 ×
(
2dtl

2j−1 ) +
∑mr

j=1 2× (
2dtr

2j−1 ), as ml = dlog(2dtl)e and as mr = dlog(2dtr )e
≤ 8(dtl + dtr ) ≤ 16dt∗ .

(6) For a dead timeslot, we never modify the dual variable yt. Hence yt = 0.
(7) By the working of the reverse delete phase, a time slot is marked borrowed and main only when the said

condition is true. �

Theorem 3.3. The proposed algorithm is a polynomial time approximation scheme that finds an SRA full cover
B such that cost(B) ≤ 12×OPT .

Proof.
Here, OPT ≤

∑
i∈I cixi =

∑
i∈I:xi>0 xi(

∑
1≤t≤T ythit), by primal complemen-

tarity condition ≤
∑

1≤t≤T :yt>0 yt(
∑

i∈A(t)::xi>0 hitxi), by rearranging the terms ≤∑
1≤t≤T :t is main yt(

∑
i∈A(t):xi>0 hitxi) +

∑
1≤t≤T :t is borrowed and main yt(

∑
i∈A(t):xi>0 hitxi) =∑

1≤t≤T :t is main 10ytdt +
∑

1≤t≤T :t is borrowed and main 8yt(dtl + dtr ), where lt and rt are the
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two closest self slots ≤
∑

1≤t≤T :t is main 10ytdt +
∑

1≤t≤T :t is borrowed and main 6yt(dlt +
drt) +

∑
1≤t≤T :t is borrowed and main 2yt(dlt + drt) ≤

∑
1≤t≤T :t is main 12ytdt +∑

1≤t≤T :t is borrowed and main 6yt(dlt + drt), as yt ≤ min{ylt , yrt} ≤
∑

1≤t≤T 12ytdt, as dlt ≤ dt and
drt ≤ dt = 12OPT.

Since there are bounded number of time slots with non-zero demands and in each cycle of the construction
phase demand for at least one time slot is met, there is only a finite number of steps. The reverse delete stage
also invokes a polynomial number of iterations. Hence, the algorithm has polynomial time complexity. �

4. Further results

An SRA k-partial cover S is a k-partial cover if S covers at least k time slots in an SRA fashion. Let OPT
and pOPT be the optimal value of full cover and k-partial cover, respectively.

Corollary 4.1. There exists an SRA k-partial cover B such that cost(B) ≤ 12× pOpt.

Proof. The proof of the corollary is similar that outlined in [13]. Given a subset of time slots X ⊆ [1, T ], the
primal-dual algorithm can produce a solution S such that S covers all the time slots in X in an SRA fashion
and cost(S) ≤ 12cost(Opt(X)), where Opt(X) is the optimum solution covering all the time slots in X. Let the
optimum partial k-cover covers a subset of time slots Z with |Z| ≥ k. We consider a modified instance of the
problem where the demands of all the slots other than Z are set to zero. By applying the proposed algorithm,
we can obtain a solution S′ such that S′ covers all the time slots in Z in an SRA fashion and cost(S′) ≤ 12pOpt.
Hence the corollary follows with B = S′. �

In [13], the set A(t) of intervals active at t were partitioned in a geometric fashion into a set of bands starting
from highest value of 2dt resulting in dlog(2dt∗)e bands. Band Bj = {i ∈ S ∩ A(t) : dt∗

2j < H(i, t∗) ≤ dt∗
2j−1 }.

However, we consider the bands starting with lowest non-zero demand in the slots in the span of A(t), say dtmin,
resulting in dlog( 2dt∗

dt
min

)e bands: band Bj = {i ∈ S ∩ A(t) : 2jdtmin ≤ H(i, t∗) < 2j−1dtmin}. This immediately

improves the performance, with improvement depending on ratio of the largest to smallest non-zero demands
in overlapping region (often referred to as mountain). This observation leads to better ratio for the proposed
algorithm as well as for algorithm in [13].

5. Conclusion

We are not sure whether the current approximation ratio of 12 is tight for the S RA problem. Hence, it would
be worthwhile to prove approximation hardness for the S RA problem. We feel that the approximation ratio
can be improved further before hitting approximation hardness. Taking a cue from this, it may be possible to
prove a better approximation ratio for the RA problem.
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