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SUPPLIER-RETAILER PRODUCTION AND INVENTORY MODELS

WITH DEFECTIVE ITEMS AND INSPECTION ERRORS

IN NON-COOPERATIVE AND COOPERATIVE ENVIRONMENTS

Chih-Te Yang1,∗, Chia-Huei Ho2, Hsiu-Mei Lee3 and Liang-Yuh Ouyang4

Abstract. This paper proposes single-supplier single-retailer production and inventory models for
maximizing the supplier and retailer’s profits in non-cooperative and cooperative environments. The
effect of defective items and inspection errors are considered in the proposed models. In addition, we
consider that the supplier offers the retailer a quantity threshold to absorb transportation costs for
promoting the economies of scale of transport. Mathematical analyses are conducted, and optimal
equilibrium production and replenishment strategies for the supplier and retailer are derived under
non-cooperative and cooperative situations. Subsequently, we establish two algorithms to explain the
optimal equilibrium solutions for these cases. Finally, several numerical examples and a sensitivity
analysis with respect to major parameters are presented to demonstrate the theoretical results, compare
the distinct solutions, and derive managerial insights.
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1. Introduction

Product quality is an important and crucial issue for companies or supply chains in production and sales ac-
tivities. On the production side, quality will affect cost and efficiency. In sales, customer satisfaction is primarily
induced by quality. Traditional models of economic production quantity (EPQ) and economic order quantity
(EOQ) are developed with a perfect production process and do not address product quality. However, such a
situation is unattainable; in practice, defective items are inevitable in any production environment. Therefore,
deriving the optimal production and order quantities from traditional EPQ and EOQ models is unrealistic
because the influence of defective goods on production and order quantities is overlooked. Porteus [32] was the
first to use the EPQ model to explore how an out-of-control production process can produce defective items.
Considering that the purpose of this model is to determine the optimal production batch, Porteus hypothesized
that manufacturers can invest in improving process quality to reduce the output of defective items. Lee and
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Rosenblatt [21] developed an economic manufacturing quantity model that accounts for defective items, in which
the production cycle length and equipment maintenance time serve as the decision variables. Lee and Rosen-
blatt [22] subsequently explored the EPQ model in an imperfect production process by considering the costs of
machinery maintenance and repair. Zhang and Gerchak [57] developed an EOQ model with a random defective
rate for identifying the optimal lot size and the fraction of goods to be inspected. Sana [37] proposed an economic
production lot size model by assuming that the percentage of imperfect products varies with the production rate
and production run time. Further, Sana [38] developed an EOQ model considering stochastic demand, where
a certain percentage of nonconforming quality goods after the screening process are returned/bought back by
the supplier at a reduced price. Other studies on production quality include [5, 33, 44, 53]. These studies have
focussed on the effects of defective items on optimal production or order strategies without addressing how
manufacturers should manage defective items.

To ensure product quality and maintain a favourable reputation, business owners perform quality inspections
before selling their goods and implement procedures for managing defective items. Salameh and Jaber [35]
conducted a full inspection on purchased goods and suggested selling defective items at a lower price. Chan
et al. [4] developed an EPQ model that accounts for a full inspection of goods, selling defective items at
lower prices, and reworking or rejecting products. Assuming that defective items occur randomly and can be
reworked or rejected, Chiu [7] developed an EPQ model that considers out-of-stock situations. Papachristos
and Konstantaras [30] extended Salameh and Jaber’s [35] model to the case in which withdrawing occurs at
the end of the planning horizon. Jaber et al. [17] extends the work of Salameh and Jaber [35] by assuming the
percentage defective per lot reduces according to a learning curve. Further, Konstantaras et al. [20] extended
the model of Jaber et al. [17] by assuming shortages and unequal lot sizes over a finite planning horizon. Other
relevant studies include [8,9,16,25,27,34,36,40,42,43,58] and their references. These studies determined optimal
production or order strategies by adopting various methods to manage defective items based on the assumption
that there is no human error in the screening process.

However, inspection results may be erroneous because of staff negligence, old equipment, or ineffective in-
spection technology. In other words, a proportion of non-defective items might be misclassified as defective ones
(Type I inspection error) and a proportion of defective items might be misclassified as non-defective ones (Type
II inspection error) during the inspection process. Yoo et al. [54] developed an EPQ model that accounts for
defective items and inspection errors, in which items deemed defective or defective items returned by consumers
are sold at a lower price or at the original price after modification. Wang et al. [49] constructed an EPQ model
that reports Type I and II errors during raw material inspection and confirmed that partial inspection is more
effective than full or no inspection. Khan et al. [19] expanded the EOQ model developed by Salameh and
Jaber [35], which accounts for defective items, to include instances that may involve erroneous inspections. Yoo
et al. [55] further proposed an EPQ model in which manufacturers invest money to improve imperfect production
and enhance inspection quality. The purpose of their paper is to determine optimal production and inspection
strategies for minimizing total quality cost and maximizing total profits. Hsu and Hsu [14] developed an EOQ
model in which defective items and inspection errors are accounted for, out-of-stock and complete backorders
are tolerated, and defective items may be returned. Mohammadi et al. [24] studied an inventory-production
system with process deterioration and imperfect inspection where elapsed time of the system in the in-control
state is a random variable. Recently, Zhou et al. [59] developed a synergic EOQ model involving trade credit,
shortages, imperfect quality and inspection errors.

As mentioned, studies on defective items and inspection errors have involved exploring optimal production
or order strategies only from a supplier or retailer perspective. Because of economic liberalization, market
internationalization, and product diversification, business owners must integrate supply chain systems, improve
operational efficiency, quickly respond to customer demands, and reduce inventory costs to survive in the
fiercely competitive and rapidly changing global market. Recently, the concept of supply chain management has
received considerable attention. Goyal [10] first proposed a single-seller single-buyer integrated inventory model.
Banerjee [1] proposed an integrated inventory model in which suppliers manufacture and ship products according
to the order quantity requested by retailers. Goyal [11] reported that when the setup cost borne by suppliers
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Table 1. The major issues compared the above-mentioned studies with present paper.

References Individual/supply Defective Inspection Quantity-dependent

chain perspective item error freight

[20,25] EOQ Constant No No

[16,30,33,57] EOQ Random No No

[14,19,59] EOQ Random Yes No

[29] EPQ No No No

[4,5, 8, 17,27,40,42,43,58] EPQ Constant No No

[7,21,22,32,35–38,44,53] EPQ Random No No

[34] EPQ Fuzzy No No

[19,24,49,54,55] EPQ Random Yes No

[1, 2, 6, 10–13,23,28,39,41,45,47,51,52,60] Integration supply chain No No No

[9] Integration supply chain Constant No No

[18] Integration supply chain Random Yes No

[15,26,31,50,56] Competitive supply chain No No No

[3] Competitive/cooperative No No No

supply chain

Present paper Competitive/cooperative Random Yes Yes

supply chain

is considerably higher than the ordering cost borne by retailers, the suppliers should manufacture products in
integral multiples of the quantity ordered by the retailers and ship them in equal quantities. Compared with the
total cost per unit time yielded by the method recommended by Banerjee [1], in which suppliers manufacture
the exact quantity of products ordered by retailers, the return by the method proposed by Goyal [11] is lower.
Subsequently, Lu [23] applied the model implemented by Goyal [11] to an integration problem involving a
single supplier and multiple retailers by using a relaxed assumption that products could be shipped before all
production processes were completed. Assuming that supplier productivity exceeds the market demand rate,
suppliers can begin shipping when the manufactured products reach the quantity ordered by retailers; afterward,
shipments can be made in equal quantities. Other relevant studies of supply chain production and inventory
models include [2, 6, 12, 13, 39, 41, 45, 47, 51, 52, 60]. Recently, Khan et al. [18] reported a production-inventory
model that integrates suppliers and retailers and accounts for inspection errors on the sales side and learning
effects on the production side. The authors designed the model to identify production and order strategies that
minimize the total supply chain cost. These studies have been conducted with the assumption that suppliers and
retailers fully cooperate to form a single system in which both parties jointly determine the optimal production
and order quantities that yield the maximal total profit or minimal total cost in the supply chain system.

In practice, not all suppliers and retailers are willing to cooperate to form a single supply chain system.
Under such circumstances, game theory can be employed to understand the interaction between the strategies
adopted by both parties, thereby yielding an equilibrium solution. Parlar [31], Wang and Parlar [50], Cachon and
Zipkin [3], Netessine et al. [26], Yu and Huang [56] and Huang and Huang [15] have used the Nash equilibrium
to obtain the optimal solution of various production and inventory problems when suppliers and retailers are
unwilling to cooperate. However, these studies have overlooked the possibility of defective items existing among
the goods manufactured by upstream enterprises (suppliers or manufacturers).

The major issues considered in the above-mentioned studies and present paper are summarized in Table 1.
Based on Table 1, it is obvious that he superior differences of this paper against previous studies are: (1)
Goods delivered by the supplier include defective items (random defective rate) and the retailer inspects each
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Retailer Supplier 

Secondary market 

Customers 

[(1 )(1 ) ]qα λ βλ− − +

 

Non-defective items 

Defective items 

q units 

[ (1 ) (1 ) ]qα λ β λ− + −  

  βλq 

   βλq Type II inspection error) 

Figure 1. Supplier’s production and the retailer’s inventory systems.

lot of the purchased goods, although the inspection results may be erroneous; (2) we assume that the supplier
encourages the retailer to purchase products in bulk quantities by offering a choice of unit shipping prices
relative to the order quantity (i.e., the unit shipping price decreases as the order quantity increases); and (3)
the optimal production and order strategies are provided for the retailer and the supplier under non-cooperative
and cooperative cases. In a non-cooperative supply chain system, because the supplier (retailer) is difficult to
know its retailer’ (supplier’s) complete information but only know their decision results, then adopting Nash
game is more convincing in this case. On the contrary, the two parties are willing to cooperate and negotiate with
each other in a cooperative supply chain system and we use the cooperative Pareto equilibrium to identify the
optimal equilibrium production and order strategies for the supply chain. First, we developed two mathematical
models and conducted a mathematical analysis to obtain equilibrium solutions. Subsequently, on the basis of the
theoretical results, two algorithms are designed to facilitate problem solving. We described the problem solving
process by using numerical examples and compared the advantages and disadvantages of the non-cooperative
and cooperative decisions. Finally, we proposed managerial implications according to the results of this study.

2. Problem description

In this model, one supplier and one retailer are considered as the members of the supply chain. At the outset,
the retailer orders Q units with ordering cost A and unit wholesale price v. In turn, the supplier produces Q
units and delivers q = Q/n units in n shipments, where nis a positive integer. Furthermore, each shipment
contains certain defective items at a defect rate of λ, and 100% inspection is conducted. Because of erroneous
inspections, a portion of nondefective items may be misclassified as defective because of Type I inspection error
and a portion of defective items may be misclassified as nondefective because of Type II inspection error. Type
I and Type II inspection error occurs at proportions of α and β, respectively. All non-defective items (including
misclassified items) are sold at the unit selling price, p, and the classified defective items are sold to a secondary
market with a lower unit price, k, in a single batch after inspection. Over time, customers sequentially return
defective items misclassified as non-defective because of Type II inspection error. For these returned ones, the
retailer not only must provide refunds to each customer according to the unit selling price but also generate a
treatment cost (including warranty cost) per unit. To reduce losses, these returned defective items are also sold
to a secondary market at the end of each cycle. The entire process is repeated. Figure 1 shows the supplier and
retailer’s production and inventory systems.
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Notation.

D Retailer’s demand rate
P Supplier’s production rate, where P > D
A Retailer’s ordering cost per order
K Supplier’s setup cost per setup
F Fixed transportation cost per shipment
r` The corresponding all-unit freight charged per unit, where ` =1, 2,. . . , ε
c Supplier’s unit production cost
v Retailer’s unit wholesale price, where v > c
p Retailer’s unit selling price of non-defective items, where p > v
k Retailer’s unit selling price of defective items in the secondary market, where k < v
w Retailer’s unit treatment cost of defective items (including warranty cost)
hv Supplier’s holding cost per unit per unit time
h1 Retailer’s holding cost per non-defective item per unit time
h2 Retailer’s holding cost per defective item per unit time, where h2 6 h1

s Retailer’s unit inspection cost
x Retailer’s inspection rate
λ Defective rate per shipment, a random variable with p.d.f. f1(λ), where 0 < λ < 1
α Proportion of Type I inspection error, a random variable with p.d.f. f2(α), where 0 < α < 1
β Proportion of the Type II inspection error, a random variable with p.d.f. f3(β), where 0 < β < 1
Q Retailer’s order quantity per order, a decision variable
q Supplier’s shipment quantity per delivery, a decision variable
t Retailer’s inspection time during a replenishment cycle, that ist = q/x
T Retailer’s replenishment cycle length, a decision variable
n Number of shipment from the supplier to the retailer per production run, an integer decision variable
TPB(·) Retailer’s total profit per replenishment cycle
TPV (·) Supplier’s total profit per production cycle
E(·) Expected value

Table 2. All-unit freight charged schedule.

` q r`
1 q1 < q < q2 r1
2 q2 6 q < q3 r2

. . . . . . . . .
ε qε 6 q r`

Assumption

(1) The production-inventory models consider a single supplier, single retailer, and single commodity. Further, no dom-
inating firm exists in this supply chain system.

(2) The retailer orders Q units per order and allows the supplier to deliver qunits in n shipments. That is, Q = nq
(3) The freight charged per unit r` is dependent on the shipment quantity q and has the following all-unit freight charged

schedule (Tab. 2):

To develop the inventory system mathematical model, the notation is used throughout this paper as follows:

where, 0 = q1 < q2 < . . . < q` and r1 > r2 > . . . > r` > 0

(4) Each shipment contains certain defective items with a defective rate of λ, and 100% inspection is conducted.
During the inspection process, Type I and Type II inspection errors may occur at proportions of α and β,
respectively. Table 3 shows the results of the retailer’s product inspection process.
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Table 3. The results of stock inspection for the retailer

Inspection results
Total

Non-defective Defective
Real non-defective (1 − α)(1 − λ)q α(1 − λ)q (Type I error) (1 − λ)q

Real defective βλq (Type II error) (1 − β)λq λq
Total [(1 − α)(1 − λ) + βλ]q [α(1 − λ) + (1 − β)λ]q q

(5) After inspection, all classified defective items are immediately sold in a single batch in a secondary market
at a lower price, k. In addition, as to the defective items successively returned by customers because of a
Type II inspection error, they are stored and then sold to a secondary market in a single batch at the end
of each cycle.

(6) The defective rate of item λ, the proportion of the Type I inspection error (α), and the proportion of the
Type II inspection error (β) are independent, random variables with probability density functions f1(λ),
f2(α), and f3(β), respectively.

(7) Replenishments are instantaneous, and the lead time is zero.
(8) Shortages are not allowed to occur.

3. Model formulation

Now, we initially establish the retailer’s total profit function per replenishment cycle and then establish the
supplier’s total profit function per production run base on above notation and assumptions.

3.1. Retailer’s total profit function

The retailer’s total profit per replenishment cycle includes the sales revenue, ordering cost, purchasing cost,
freight cost, inspection cost, holding cost, and treatment cost for the customer-returned defective items. These
components are calculated as follows:

(1) Sales revenue (SR): The sales revenue per replenishment cycle includes real non-defective items ((1 −
α)(1− λ)q units with unit pricep), classified defective items ([α(1− λ) + (1− β)λ]q units with unit price
k), and defective items returned by customers (βλq units with unit price k). Therefore, the sales revenue
per replenishment cycle is expressed as SR = p(1− α)(1− λ)q + k[α(1− λ) + λ]q

(2) Ordering cost (OC ): The retailer’s ordering cost per replenishment cycle is OC = A/n
(3) Purchasing cost (PC ): The retailer’s purchasing cost per replenishment cycle is PC = vq.
(4) Freight cost (FC`): The retailer’s freight cost per replenishment cycle includes fixed cost F and various

costs associated with the shipment quantity per delivery. Namely, when the shipment quantity is q ∈
[q`, q`+1), ` =1, 2, . . . , ε, the retailer’s freight cost per replenishment cycle is FC` = F + r`q, where r` is
shown in Table 1.

(5) Inspection cost (IC ): With a unit inspection cost, s, the inspection cost per replenishment cycle is IC= sq.
(6) Holding cost (HC ): Figure 2 illustrates the retailer’s inventory level in a replenishment cycle. Before

defective items are inspected, they are stored in a warehouse until they are examined and classified as
defective following which they are managed. Hence, the retailer’s holding cost includes non-defective and
defective items and is calculated as follows:

Figure 2 shows that because the quantity of classified non-defective items is [(1 − α)(1 − λ) + βλ]q and the
quantity of defective items before identification is [α(1 − λ) + (1 − β)λ]q, the retailer’s cost of holding non-
defective items per replenishment cycle can be calculated according to the holding cost per non-defective item
per unit time h1 as

h1

{
1

2
[(1− α) (1− λ) + βλ] qT +

1

2
[α (1− λ) + (1− β)λ] q

( q
x

)}
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Figure 2. Retialer inventory level per replenishment cycle.

By contrast, the retailer’s cost of holding defective items per replenishment cycle can be calculated according
to the holding cost per defective item per unit time h2 as

h2

{
1

2
[α (1− λ) + (1− β)λ] q

( q
x

)
+

1

2
βλqT

}
In summary, the retailer’s total holding cost per replenishment cycle is

HC =
1

2
{h 1 [(1− α) (1− λ) + βλ] + h 2βλ} qT +

q2

2x
(h 1 + h 2) [α (1− λ) + (1− β)λ]

(7) Treatment cost for the returned defective items (TC ): Because of Type II inspection error, βλq units
of defective products are overlooked during inspection and sold to customers incurring defective item
treatment costs (including warranty cost, reverse logistics from customers to the retailer, and loss of
goodwill) in addition to w per unit. Therefore, the treatment cost for the customer-returned defective
items per replenishment cycle is TC = wβλq.

Based on the above-mentioned components, the retailer’s total profit function in a replenishment cycle for a
given value of r` is expressed as

TPB `(q) =SR−OC − PC − FC` − IC −HC − TC
= p (1− α)(1− λ) q + k [α (1− λ) + λ] q

−
{
A

n
+ F + γ`q + sq + v q + wβλq +

1

2
qT

× {h 1 [(1− α) (1− λ) + βλ] + h2βλ}

+
q2

2x
(h1 + h2) [α (1− λ) + (1− β)λ]

}
(3.1)
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Because λ, α, and β are independent random variables with probability density functions f1(λ), f2(α), and
f3(β), respectively, for a given value of r`, the retailer’s expected total profit in a replenishment cycle is

E[TPB`(q)] = p (1− µλ)(1− µα)q + k [µα(1− µλ) + µλ] q

− A

n
− F − (r` −+s−+v −+wµλµβ)q

− qE(T )

2
[h1(1− µλ)(1− µα) + (h1 + h2)µλµβ ]

− q2

2x
(h1 + h2)[µα(1− µλ) + (1− µβ)µλ]. (3.2)

where µλ = E(λ), µα = E(α), and µβ = E(β).

3.2. Supplier’s total profit function

The supplier’s total profit per production run includes the sales revenue, setup cost, production cost, and
holding cost. These components are calculated as follows:

(1) Sales revenue (SR): The supplier’s sales revenue per production run is expressed as SR = vnq.
(2) Setup cost (SC ): The supplier’s setup cost per production run is SC = K
(3) Production cost (PC ): The supplier’s production cost per production run is PC =cnq.
(4) Holding cost (HC ): Figure 3 shows the supplier’s inventory level in a production run. From Figure 3, the

supplier’s cumulative inventory quantity in the production run is

nq

{
q

P
+

(n− 1) [(1− α)(1− λ) + βλ] q

D

}
− n2q2

2P
− [1 + 2 + . . .+ (n− 1)] q [(1− α)(1− λ) + βλ]

q

D

=
nq2

2

{
2− n
P

+
(n− 1)[(1− α)(1− λ) + βλ]

D

}
Hence, the supplier’s holding cost per production run is

HC =
hvnq

2

2

{
2− n
P

+
(n− 1)[(1− α)(1− λ) + βλ]

D

}
q/P (n− 1)[(1− α)(1− λ) + βλ]q/Dnqnq/Pq

Therefore, the supplier’s total profit function in a production run can be derived as follows:

TPV (n) =SR− SC − PC −HC

= vnq −K − cnq−hvnq
2

2

{
2− n
P

+
(n− 1)[(1− α)(1− λ) + βλ]

D

}
(3.3)

Similarly, the supplier’s expected total profit in a production run is

E[TPV (n)] = vnq −K − cnq − hvnq
2

2

{
2− n
P

+
(n− 1)[(1− µλ)(1− µα) + µλµβ ]

D

}
· (3.4)

4. Theoretical results

The following subsections explain the retailer’s and the supplier’s optimal strategies in non-cooperative and
cooperative environments
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/q P  ( 1)[(1 )(1 ) ] /n q Dα λ βλ− − − +

nq  

/nq P

Supplier’s cumulative inventory level

Retailer’s cumulative inventory level

Time 

Inventory level 

q

Figure 3. Supplier’s inventory level in a production run.

4.1. Non-cooperative Nash equilibrium solution

Table 2 shows that [(1 − α)(1 − λ) + βλ]q units are classified as non-defective after inspection. These units
meet the market demand in a replenishment cycle; namely, [(1− α)(1− λ) + βλ]q = DT . Therefore, the length
of the retailer’s replenishment cycle can be expressed as T = [(1− α)(1− λ) + βλ]q/D and hence the expected
length of the retailer’s replenishment cycle time is

E(T ) =E {[(1− α) (1− λ) + βλ] q/D}
= [(1− µλ)(1− µα) + µλµβ ] q/D.

For a given value of r`, the Renewal-Reward Theorem can be used to derive the retailer’s expected total profit
per unit time as

E [TPUB`(q)] =
E [TPB`(q)]

E(T )

=
D

(1− µλ)(1− µα) + µλµβ
{p(1− µλ)(1− µα) + k [µα(1− µλ) + µλ]

− {r` + s+ v + wm1m3 + q(h1 + h2)[µα(1− µλ) + (1− µβ)µλ]/(2x)}}

− D(A/n+ F )

[(1− µλ)(1− µα) + µλµβ ] q
− q

2
[h1(1− µλ)(1− µα) + (h1 + h2)µλµβ ] . (4.1)

and the supplier’s expected total profit per unit time as

E [TPUV (n)] =
E [TPV (n)]

E(nT )

=
D(v − c)

(1− µλ)(1− µα) + µλµβ
− DK

n [(1− µλ)(1− µα) + µλµβ ] q

− Dhv(2− n)q

2P [(1− µλ)(1− µα) + µλµβ ]
− hv(n− 1)q

2
(4.2)

The objective of this case is to determine the optimal batch quantity, q∗, and the number of shipments per
production cycle, n∗, for maximizing the retailer’s and the supplier’s expected total profits per unit time in
a competitive environment. For the retailer, for a given value of r`, ` = 1, 2, . . . , ε, the first-order necessary
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condition required for maximizing E [TPUB`(q)] is dE [TPUB`(q)]/dq = 0, which leads to

(h1 + h2)D[µα(1− µλ) + (1− µβ)µλ]

2x[(1− µλ)(1− µα) + µλµβ ]
+
h1(1− µλ)(1− µα) + (h1 + h2)µλµβ

2
=

D(A/n+ F )

[(1− µλ)(1− µα) + µλµβ ]q2
·

(4.3)
Furthermore, the second-order sufficient condition is

d2E[TPUB`(q)]

dq2
= − 2D(A/n+ F )

[(1− µλ)(1− µα) + µλµβ ]q3
< 0.

Therefore, for a given value of r`, ` = 1, 2, . . . , ε, E[TPUB`(q)] is a concave function of q; therefore, there is a
unique value of q that maximizes E[TPUB`(q)]. By solving equation (4.3), the following is derived:

q =

√
2xD(A/n+ F )

H
, (4.4)

where

H = (h1 + h2)D[µα(1− µλ) + (1− µβ)µλ] + x [h1(1− µλ)(1− µα)

+ (h1 + h2)µλµβ ][(1− µλ)(1− µα) + µλµβ ] > 0.

Note that the value of q in equation (4.4) is independent of r`.
Regarding the supplier, the first-order necessary condition required for maximizing the supplier’s expected

total profit per unit time E[TPUV (n)] is dE[TPUV (n)]/dn = 0. This implies that

DK

[(1− µλ)(1− µα) + µλµβ ]n2q
− {P [(1− µλ)(1− µα) + µλµβ ]−D}hvq

2P [(1− µλ)(1− µα) + µλµβ ]
= 0. (4.5)

Because the second-order derivative of E[TPUV (n)], with respect to n, is

d2E[TPUV (n)]

dn2
=

−2DK

[(1− µλ)(1− µα) + µλµβ ]n3q
< 0,

E[TPUV (n)] is a concave function of n; therefore, there is a unique value of n that maximizes E[TPUV (n)].
By solving equation (4.5), the following expression is derived:

n =

√
2PDK

{P [(1− µλ)(1− µα) + µλµβ ]−D}hvq2
. (4.6)

Notice that the optimal solution for n must be a positive integer because this variable represents the number of
shipments per production run from the supplier to the retailer. We can summarize the preceding arguments and
develop an algorithm to obtain the Nash equilibrium solution for the supplier and retailer in a non-cooperative
environment. The flowchart is also shown as in Figure 4.

Algorithm 1.

Step 1. Start with j = 1 and the initial value of n∗(j) = 1

Step 2. Find q(j) from equation (4.4).
Step 3.

(i) If q(j) ∈ [q`, q`+1) for some ` = 1, 2, . . . , ε−1, then substitute (q(j), r`), and (q`+1, r`+1), (q`+2, r`+2),. . . ,
(qε, rε) into equation (4.1) to separately evaluate E[TPUB`(q(j))] and E[TPUBi(qi)], where i = `+ 1, `+
2, . . . , ε. Go to Step 4.
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Figure 4. The flowchart of Algorithm 1.
Note:

⌊
n(j+1)

⌋
denote the great integer less than or equal to n(j+1)

(ii) If q(j) ∈ [qε, ∞), then set q∗(j) = q(j) and substitute (q∗(j), γε) into equation (4.1) to evaluate

E[TPUBε(q
∗
(j))]. Go to Step 5.

Step 4. Find Max{E[TPUB`(q(j))], E[TPUBi(qi)], i = `+ 1, `+ 2, . . . , ε} and set q∗(j) = q(j) or qi according
to the highest value of the retailer’s expected total profits per unit time
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Step 5. For a given q∗(j) solve for the value of n(set n(j+1)) from equation (4.6). Let
⌊
n(j+1)

⌋
denote the great

integer less than or equal to n(j+1) and separately substitute
⌊
n(j+1)

⌋
and

⌊
n(j+1)

⌋
+ 1 in equation (4.2).

(i) If E[TPUV (
⌊
n(j+1)

⌋
)] > E[TPUV (

⌊
n(j+1)

⌋
+ 1)], then set n∗(j+1) =

⌊
n(j+1)

⌋
.

(ii) If E[TPUV (
⌊
n(j+1)

⌋
)] < E[TPUV (

⌊
n(j+1)

⌋
+ 1)], then set n∗(j+1) =

⌊
n(j+1)

⌋
+ 1.

Step 6. If n∗(j+1) = n∗(j), then set n∗ = n∗(j) and q∗ = q∗(j). Therefore, (q∗, n∗) is the Nash equilibrium solution.
Otherwise, set j = j + 1 and return to Step 2.

Once the optimal solution (q∗, n∗) is obtained, the optimal retailer’s order quantity Q∗ = n∗q∗ follows.

4.2. Cooperative Pareto equilibrium solution

If the supplier and retailer cooperate through consultations and adopt a Pareto equilibrium model, then they
can jointly determine the optimal strategies to maximize the weighted expected total profit per unit time. The
weight of the retailer’s expected total profit per unit time is δ, whereas that of the supplier’s expected total
profit per unit time is 1− δ, where 0 < δ < 1. Hence, for a given value of r`, the weighted expected total profit
per unit time is

E[JTPU`(q, n)] = δ · E [TPUB`(q)] + (1− δ) · E [TPUV (n)]

=
D

(1− µλ)(1− µα) + µλµβ
{δ { p(1− µλ)(1− µα) + k [µα(1− µλ) + µλ] − {r` + s

+ v + wµλµβ + q(h1 + h2)[µα(1− µλ) + (1− µβ)µλ]/(2x)}+ (1− δ)(v − c)}

− D{[δA+ (1− δ)K]/n+ δ F}
[(1− µλ)(1− µα) + µλµβ ] q

− q

2
{δ [h1(1− µλ)(1− µα) + (h1 + h2)µλµβ ]

+ (1− δ)hv(n− 1)} − (1− δ)Dhv(2− n)q

2P [(1− µλ)(1− µα) + µλµβ ]
· (4.7)

The objective of this case is to determine the optimal batch quantity, q∗, and the number of shipments per
production run, n∗, to maximize the weighted expected total profit per unit time in a cooperative environment.
The first-order necessary conditions required for maximizingE[JTPU`(q, n)] are ∂E[JTPU`(q, n)]/∂q = 0 and
∂E[JTPU`(q, n)]/∂n = 0, where ` = 1, 2, . . . , ε which lead to

∂E[JTPU`(q, n)]

∂ q
=
−δ D(h1 + h2)[µα(1− µλ) + (1− µβ)µλ]

2x [(1− µλ)(1− µα) + µλµβ ]
+
D{[δA+ (1− δ)K]/n+ δ F}
[(1− µλ)(1− µα) + µλµβ ] q2

− δ [h1(1− µλ)(1− µα) + (h1 + h2)µλµβ ] + (1− δ)hv(n− 1)

2

− (1− δ)Dhv(2− n)

2P [(1− µλ)(1− µα) + µλµβ ]
= 0, (4.8)

and

∂ E[JTPU`(q, n)]

∂ n
=

D [δ A+ (1− δ)K]

[(1− µλ)(1− µα) + µλµβ ] n2q
− (1− δ)hvq

2

+
(1− δ)Dhvq

2P [(1− µλ)(1− µα) + µλµβ ]
= 0. (4.9)

Deriving the closed-form solution of (q, n) from equations (4.8) and (4.9) is difficult. In addition, because of
the high-power expression of the decision variables, the concavity property of the weighted expected total profit
per unit time in equation (4.7) cannot be proved using the Hessian Matrix. Instead, we solve the problem by
using the following search procedure: First, for fixed q and r` (` = 1, 2, . . . , ε), examining the effect of n on
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the weighted expected total profit per unit time E[JTPU`(q, n)] and obtaining the second-order derivative of
E[JTPU`(q, n)] with respect to n yields

d2E[JTPU`(q, n)]

dn2
=

−2D[δA+ (1− δ)K]

[(1− µλ)(1− µα) + µλµβ ] n3q
< 0.

Hence, E[JTPU`(q, n)] is a concave function of n for given q and r` (` = 1, 2, . . . , ε). Consequently, the search
for the optimal number of shipments n is narrowed to derive a local maximum.

For any given integer n, the condition required for maximizing the weighted expected total profit per unit
time E[JTPU`(q, n)] is dE[JTPU`(q, n)]/dq = 0, which implies that

δ D(A+ nF ) + (1− δ)DK
[(1− µλ)(1− µα) + µλµβ ]nq2

=
(1− δ)hv{D(2− n) + P [(1− µλ)(1− µα) + µλµβ ](n− 1)}

2P [(1− µλ)(1− µα) + µλµβ ]

+
δD(h1 + h2)[µα(1− µλ) + (1− µβ)µλ]

2x [(1− µλ)(1− µα) + µλµβ ]

+
δh1(1− µλ)(1− µα) + (h1 + h2)µλµβ

2
· (4.10)

Next, for any given n, obtaining the second-order derivative of E[JTPU`(q, n)] with respect to q yields

d2E[JTPU`(q, n)]

dq2
= − 2D[δ (A+ nF ) + (1− δ)K]

[(1− µλ)(1− µα) + µλµβ ]n q3
< 0.

Consequently, for any given n, E[JTPU`(q, n)] is a concave function of q and hence there is a unique value of
q (denoted by q(n)) that maximizes E[JTPU`(q, n)] as follows:

q(n) =

√
2[δ D(A/n+ F ) + (1− δ)D(K/n)]

H ′
, (4.11)

where

H ′ =
(1− δ)hv{D(2− n) + [(1− µλ)(1− µα) + µλµβ ](n− 1)P}

P

+
δD(h1 + h2)[µα(1− µλ) + (1− µβ)µλ]

x
+ [(1− µλ)(1− µα) + µλµβ [δ h1(1− µλ)(1− µα) + (h1 + h2)µλµβ ] > 0.

Similarly, notice that the value q(n) in equation (4.11) is independent of r`.
An algorithm can be developed to obtain the optimal solution for the supplier and retailer in a cooperative

environment. The flowchart is similar to Algorithm 1, and hence we omit it here.

Algorithm 2.

Step 1. Start with the initial value of n = 1.
Step 2. Find q(n) from equation (4.11).
Step 3.

(1) If q(n) ∈ [q`, q`+1) for some ` = 1, 2, . . . , ε− 1, then substitute (q(n), r`) and (q`+1, r`+1), (q`+2, r`+2),. . . ,
(qε, rε) in equation (4.7) to separately evaluate E[JTPU`(q(n), n)] and E[JTPUi(qi, n)], where i = ` +
1, `+ 2, . . . , ε. Go to Step 4.

(2) If q(n) ∈ [qε, ∞), then substitute (q(n), rε) in equation (4.7) to evaluate E[JTPUε(q(n), n)], and set
E[JTPUε(q

∗
(n), n)] = E[JTPUε(q(n), n)]. Go to Step 5.
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Table 4. Freight terms for Example 5.1.

Shipment quantity (units) Freight ($/unit)

q1 = 0 6 q < 5000 = q2 r1 = 0.5

q2 = 5000 6 q < 10 000 = q3 r2 = 0.45

q3 = 10 000 6 q r3 = 0.4

Table 5. Results of using Algorithm 1 for Example 5.1.

j n∗
j q∗(j) E[TPUBj(q)] E[TPUBj(q)]

1 1 10 000 158, 197 154, 446

2 2 10 000 158, 676 155, 311

3 2 10 000 158, 676 155, 311

Note: Boldface type expresses the optimal solution of in Example 5.1.

Step 4. Find Mxa{E[JTPU`(q(n), n)], E[JTPUi(qi, n)], i = `+1, `+2, . . . , ε}, and set E[JTPU(q∗(n), n)] =

Mxa{E[JTPU`(q(n), n)], E[JTPUi(qi, n)], i = `+ 1, `+ 2, . . . , ε}.
Step 5. Set n = n+ 1 and repeat Steps 2−4.

Step 6. If E[JTPU(q∗(n), n)] > E[JTPU(q∗(n−1), n− 1)], then return to Step 5; otherwise, execute Step 7.

Step 7. Let (q∗, n∗) = (q∗(n−1), n−1); therefore, (q∗, n∗) is the optimal solution and the corresponding maximum

weighted expected total profit per unit time is E[JTPU(q∗, n∗)].

Once the optimal solution (q∗, n∗) is obtained, the retailer’s optimal order quantity Q∗ = n∗ q∗ follows.

5. Numerical examples

Example 5.1. To illustrate the problem solving procedure, we consider an inventory system involving the
following data: D = 30000 units/year, P = 45000 units/year, A = $300/order, K = $1000/setup, F =
$100/shipment, c = $3/unit, v = $8/unit, p = $15/unit, k = $3/unit, w = $2/unit, hv = $0.5/unit/year,
h1 = $0.75/unit/year, h2 = $0.35/unit/year, s = $0.75/unit, x = 150 000 units/year, λ ∼ U(0, 0.02),
α ∼ U(0, 0.1), β ∼ U(0, 0.1), implying that E [λ] = µλ = 0.01, E [α] = µα = 0.05, and E [β] = µβ = 0.05.
Table 4 lists the freight terms offered by the supplier.

The optimal Nash equilibrium solution derived using Algorithm 1 is (q∗, n∗) = (10 000, 2) Hence, the re-
tailer’s optimal order quantity is Q∗ = n∗q∗ = 20 000 units, the retailer’s expected annual total profit is
E[TPUB(q∗)] = $158,676, the supplier’s expected annual total profit is E[TPUV (n∗)] = $155,311, and the
sum of the retailer’s and supplier’s expected annual total profit is $313, 987 (i.e., $158,676 + $155,311). The
solution procedure is shown in Table 5. The results show that supplier can provide freight discounts to encourage
the retailer to deliver more quantities each time such that the delivery times can be reduced effectively.

Example 5.2. When considering a cooperative environment, to understand the effect of δ on the retailer’s
expected annual total profit and the supplier’s expected annual total profit, we compared the optimal expected
annual total profit of the retailer with that of the supplier. The data are identical to those in Example 1, except
thatδ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Algorithm 2 is applied to obtain an optimal value of
(q∗, n∗). Following, the retailer’s expected annual total profit E[TPUB(q∗)] and the supplier’s expected annual
total profit E[TPUV (n∗)] are subsequently determined from equations (4.1) and (4.2), respectively, such that
the weighted expected total profit per unit time (denoted by JTPU∗) has a maximum value. Table 6 shows the
computation results for different values of δ.
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Table 6. The retailer’s and supplier’s optimal solutions with various values of δ.

δ (q∗, n∗) E[TPUB(q∗)] E[TPUV (n∗)] JTPU∗

0.1 (1525, 14) $157, 433 $156, 197 $156, 320

0.2 (5000, 4) $159, 200 $155, 832 $156, 506

0.3 (5000, 4) $159, 200 $155, 832 $156, 842

0.4 (5000, 5) $159, 295 $155, 786 $157, 190

0.5 (5000, 5) $159, 295 $155, 786 $157, 541

0.6 (5000, 5) $159, 295 $155, 786 $157, 892

0.7 (5000, 5) $159, 295 $155, 786 $158, 243

0.8 (5000, 6) $159, 359 $155, 635 $158, 614

0.9 (10 000, 4) $159, 552 $155, 113 $159, 062

Note. JTPU∗ = δ E[TPUB(q∗)] + (1 − δ)E[TPUV (n∗)].

Table 7. Optimal solutions of non-cooperative and cooperative policies.

Non-cooperative Cooperative Allocated
Optimal number of shipments per production run 2 4

Optimal batch quantity 10 000 10 000
Optimal order quantity 20 000 40 000

Retailer’s expected annual total profit $158, 970 $159, 552 $159, 164
Supplier’s expected annual total profit $155, 311 $155, 113 $155, 501

Joint expected annual total profit $314, 281 $314, 665 $314, 665

Table 5 shows that a higher weight δ results in a higher weighted expected annual total profit. Furthermore,
from an economical perspective, a higher weight δ (which implies the retailer has a greater power or in a
comparative position of the supply chain system) results in a larger order quantity and a higher retailer’s
expected annual total profit. However, when the weight δ increases, the supplier’s expected annual total profit
decreases.

Example 5.3. The data in this example are identical to those in Example 5.1. In addition, we set δ = 0.9. The
optimal Pareto equilibrium solution derived using Algorithm 2 is (q∗, n∗) = (10 000, 4). Hence, the retailer’s
optimal order quantity is n∗q∗ = 40, 000 units, and the maximum weighted expected annual total profit is
$159, 062. For a given value of weight δ(e.g., δ = 0.9), from an individual perspective, the retailer’s maximum
expected annual total profit is E[TPUB(q∗)] = $159,552, the supplier’s maximum expected annual total profit
is E[TPUV (n∗)] = $155,113, and the sum of the retailer’s and supplier’s maximum expected annual total profits
is $314, 665(i.e., $159,552 + $155,113). Table 7 lists the optimal solutions of the decision variables in addition
to the retailer and supplier’s expected annual total profit in non-cooperative and cooperative environments,
indicating that the cooperative policy jointly determined by the retailer and supplier improved supply chain
performance. However, from each party’s perspective, the retailer could gain an improved expected annual total
profit from cooperation, but the cooperation is unfavourable for the supplier because of increased production
quantity, which leads to an increase in the supplier’s holding cost. Therefore, cooperation is never achieved.
To encourage the supplier to cooperate with the retailer, the method of benefit-sharing suggested by various
researchers, including Goyal [10] and Ouyang et al. [30], can be adopted. The expected total profit of $ 314,665
can be allocated between the supplier and retailer according to the following evaluations:

The retailer: $314,665×$158, 970/$314, 281 = $159, 164, and

The supplier: $314,665×$155, 311/$314, 281 = $155, 501

The results of the allocated expected annual total profit are listed in the right-hand column of Table 7.
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Table 8. Comparison of the optimal solutions for non-cooperative and cooperative situations
under different parametric values.

Parameter Value
Non-cooperative Cooperative

(q∗, n∗) E[TPUB (q∗)] E[TPUV (n∗)] (q∗, n∗) E[TPUB (q∗)] E[TPUV (n∗)]

µλ

0.005 (10 000, 2) 162, 700 152, 059 (5000, 5) 160, 348 155, 021
0.0075 (10 000, 2) 160, 709 153, 668 (5000, 5) 159, 823 155, 403
0.01 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786

0.0125 (10 000, 2) 156, 598 156, 989 (5000, 5) 158, 765 156, 172
0.015 (10 000, 2) 154,475 158, 703 (5000, 5) 157, 233 156, 559

µα

0.03 (10 000, 2) 162, 700 152, 059 (5000, 5) 163, 369 152, 473
0.04 (10 000, 2) 160, 709 153, 668 (5000, 5) 161, 354 154, 112
0.05 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.06 (10 000, 2) 156, 598 156, 989 (5000, 5) 157, 193 157, 496
0.07 (10 000, 2) 154, 475 158, 703 (5000, 5) 155, 045 159, 242

µβ

0.03 (10 000, 2) 158, 724 155, 344 (5000, 5) 159, 343 155, 821
0.04 (10 000, 2) 158, 700 155, 328 (5000, 5) 159, 319 155, 803
0.05 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.06 (10 000, 2) 158, 652 155, 294 (5000, 5) 159, 272 155, 796
0.07 (10 000, 2) 158, 627 155, 277 (5000, 5) 159, 248 155, 752

q2

3000 (10 000, 2) 158, 676 155, 311 (3000, 8) 159, 343 155, 821
4000 (10 000, 2) 158, 676 155, 311 (4000, 6) 159, 574 156, 015
5000 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 480 155, 910
6000 (10 000, 2) 158, 676 155, 311 (6000, 4) 159, 295 155, 786
7000 (10 000, 2) 158, 676 155, 311 (7000, 3) 159, 026 155, 702

q3

6000 (6000, 4) 159, 557 155, 702 (6000, 4) 160, 620 155, 702
8000 (8000, 2) 159, 236 155, 493 (8000, 3) 160, 033 155, 493

10 000 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
12 000 (12 000, 2) 158, 195 155, 077 (5000, 5) 159, 295 155, 786
14 000 (14 000, 2) 157, 646 154, 766 (5000, 5) 159, 295 155, 786

r1

0.46 (10 000, 2) 158, 676 155, 311 (2638, 9) 159, 235 156, 057
0.48 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.5 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.52 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.54 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786

r2

0.41 (10 000, 2) 158, 676 155, 311 (5000, 5) 160, 571 155, 786
0.43 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 933 155, 786
0.45 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.47 (10 000, 2) 158, 676 155, 311 (10 000, 2) 159, 313 155, 311
0.49 (10 000, 2) 158, 676 155, 311 (10 000, 2) 159, 313 155, 311

r3

0.36 (10 000, 2) 159, 951 155, 311 (10 000, 2) 160, 588 155, 311
0.38 (10 000, 2) 159, 313 155, 311 (10 000, 2) 159, 951 155, 311
0.4 (10 000, 2) 158, 676 155, 311 (5000, 5) 159, 295 155, 786
0.42 (10 000, 2) 158, 038 155, 311 (5000, 5) 159, 295 155, 786
0.44 (10 000, 2) 157, 400 155, 311 (5000, 5) 159, 295 155, 786

6. Sensitivity analysis

In this section, we study the effects of changes in the defective rate, inspection error and freight parameters
µλ, µα, µβ , q2, q3, r1, r2 and r3 on the optimal solutions for non-cooperative and cooperative situations. The data
in this example are identical to those in Example 5.1. In addition, we set δ = 0.5 for cooperative environment.
The comparison results are shown as in Table 8.

On the basis of the results in Table 8, the following observation can be made.
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(a) When the value of µλ increases, the retailer’s expected annual total profit decreases but the supplier’s
expected annual total profit increases whether in non-cooperative or cooperative environments. However,
the optimal value of (q∗, n∗) remain constant because the quantities the retailer required per shipment
always meet the supplier’s freight discount threshold.

(b) Thought the optimal value of (q∗, n∗) still remain constant, the value of µα has a negative effect on the
retailer’s expected annual total profit but a positive effect on the supplier’s expected annual total profit for
the two situations. On the contrary, the value of µβ has negative effects on the retailer’s and the supplier’s
expected annual total profits.

(c) The optimal solutions are not affected by the supplier’s freight discount threshold q2 in non-cooperative
situation due to the retailer’s optimal shipping quantity is always equal to q3 regardless of the value of q2.
However, when the value of q3 increases, the retailer’s optimal shipping quantity increases. Additionally, in
cooperative case, the retailer’s optimal shipping quantity increases but the number of shipment decreases as
the value q2 increases. Further, both the retailer’s and the supplier’s expected annual total profits increases
first and then decreases with the increase on the value q2.

(d) As to the impact of freight on the optimal solutions and expected annual total profits, because the retailer’s
optimal shipping quantity is always equal to q3 in non-cooperative environment, only the value of r3 has
a negative effect on the retailer’s expected annual total profit. In the case of cooperation, the retailer’s
optimal shipping quantity increases but the supplier’s optimal number of shipment and expected annual
total profit of both sides decrease as the value r1 or r2 increases. However, when the value r3 increases,
the retailer’s optimal shipping quantity and expected annual total profit decrease but supplier’s optimal
number of shipment and expected annual total profits increase.

7. Conclusions

Different from the previous study, this paper proposed production and inventory models in non-cooperative
and cooperative environments by considering the following situations simultaneously: (1) the defective items
with random defective rate; (2) Type I and Type II inspection errors may occur randomly during the inspection
process; and (3) the supplier offers freight discounts to encourage retailers to delivery large quantities per ship-
ment The purpose of this study is to determine optimal equilibrium production and replenishment strategies
for maximizing the retailer and supplier’s expected total profits per unit time under non-cooperative and coop-
erative environments. Two algorithms are developed to determine the optimal solutions for various situations.
Several management insights are obtained from the numerical results and a sensitivity analysis with respect
to the defective rate, inspection error and freight parameters. First, the supplier can encourage the retailer to
deliver more quantities each time such that the delivery times can be reduced effectively by providing freight
discounts to. Second, when the retailer and the suppler are willing to cooperate with each other, the weight δ
plays an important role in weighted expected total profit per unit time. From an individual perspective, a higher
weight δ is favourable for the retailer but unfavourable for the supplier. Third, to ensure a cooperative solution
could be achieved, we develop an allocation mechanism for profit sharing. Finally, from the results of sensitivity
analysis, it is found that the changes of defective rate, inspection error and freight parameters (except the value
of freight discount threshold q3) are not sensitive to optimal solutions of decision variables in non-cooperative
environment. In the case of cooperation, the design of the shipping discount does affect the optimal solutions
for the both sides. It is our belief that our work will make some innovation and significant contributions for a
supply chain to determine its optimal ordering and shipping polices form from the point of view of competition
or cooperation.

The proposed model can be extended in several directions. For instance, it would be interesting to consider the
supply chain system with multiple products (please see example [42,43,45,46]). Because product deterioration is a
common phenomenon in real life such as vegetables, fruits, medicine, and gasoline etc. (for example Mohammadi
et al. [24], Pal et al. [29]), we may generalize the proposed model to consider deteriorating items. Additionally,
this model may also be extended by considering a variable demand rate (a function of price, time, or inventory
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level). Further, a constant unit wholesale price (purchase cost) is assumed in our study. In practice, suppliers
sometimes face a known price increase (Taleizadeh and Pentico [48]). Hence, the effect of known price increase
may be incorporated in the proposed model. Finally, this paper assumes no dominating firm exists in this supply
chain system which implies Nash game is considered in non-cooperative environment, future work could model
a Stackelberg game, with the retailer or the supplier as the leader.
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