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A THEORETICAL AND EXPERIMENTAL STUDY OF FAST LOWER BOUNDS

FOR THE TWO-DIMENSIONAL BIN PACKING PROBLEM

Mehdi Serairi1 and Mohamed Haouari2

Abstract. We address the two-dimensional bin packing problem with fixed orientation. This problem
requires packing a set of small rectangular items into a minimum number of standard two-dimensional
bins. It is a notoriously intractable combinatorial optimization problem and has numerous applications
in packing and cutting. The contribution of this paper is twofold. First, we propose a comprehen-
sive theoretical analysis of lower bounds and we elucidate dominance relationships. We show that
a previously presented dominance result is incorrect. Second, we present the results of an extensive
computational study that was carried out, on a large set of 500 benchmark instances, to assess the em-
pirical performance of the lower bounds. We found that the so-called Carlier-Clautiaux-Moukrim lower
bounds exhibits an excellent relative performance and yields the tightest value for all of the benchmark
instances.
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1. Introduction

The two-dimensional bin packing problem (2BPP ) is defined as follows. Given a set J of n rectangular items
where each item j (j = 1, . . . , n) has a width wj and a height hj , a set of n identical rectangular bins where each
bin is characterized by a width W and a height H, the 2BPP requires packing, without overlapping, the set of
items into a minimum number of bins. The version where items cannot be rotated is considered. This problem
is NP-hard since it is a generalization of the much-studied one-dimensional bin packing (1BPP ). Indeed, the
particular case where the inequality wj >

W
2 holds for all j ∈ J trivially reduces to a one-dimensional bin

packing problem. In fact, the BPP and its two dimensional variation do have the same search space. The
2BPP has a wealth of pertinence to a wide range of applied areas including wood, glass, and steel industries,
to quote just a few.

So far, several authors have investigated the 2BPP . Exact methods can be found in Martello and Vigo [34],
Clautiaux et al. [12] and Pisinger and Sigurd [35]. Moreover, exact approaches for the single-bin variant, which
is referred to as the two-dimensional orthogonal packing problem (2OPP ), were proposed by Hadjiconstantinou
and Christofides [24], Clautiaux et al. [13], and Fekete et al. (2006). In addition to the exact methods, several
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heuristics and meta-heuristics were developed for the 2BPP. We refer to the excellent survey papers of Lodi
et al. [29, 30] for a comprehensive review of approximation algorithms and heuristic approaches that were
proposed up to the late 1990s. Recently, Cui et al. [16] proposed a sequential heuristic procedure that was
shown to outperform five published algorithms. Also, Hong et al. [25] proposed a hybrid simulated annealing
algorithm for the the variable-sized problem variant.

Furthermore, several authors addressed numerous variants of the 2BPP. We provide a concise description of
the most relevant contributions in this area.

− The two-dimensional strip packing problem: This problem requires orthogonally packing a given set of
rectangular items into a strip, by minimizing the overall height of the packing. Exact approaches for this
problem were extensively studied by many authors including Martello et al. [31], Cintra et al. [11], Kenmochi
et al. [26], Boschetti and Montaletti [5], and Côté et al. [15]. Recently, Wei et al. [36] addressed the special
variant of this problem with guillotine-cut constraint. They proposed a heuristic approach that requires
iteratively packing horizontal layers.

− The two-dimensional knapsack packing problem: In this case, it is assumed that a non-negative weight (profit)
is associated with each rectangular item, and the problem is to orthogonally pack a maximum-profit subset of
items into a single rectangular knapsack. Hadjiconstantinou and Christofides [24] proposed an exact algorithm
for this problem, while Egeblad and Pisinger [18], and Bortfeldt and Winter[3] proposed heuristic approaches.
Furthermore, Caprara et al.[7] proposed an approximation scheme.

− The two-dimensional loading vehicle routing problem: This rich vehicle routing problem requires distributing
two-dimensional items to a set of scattered customers. It involves two main decisions: loading the items into
the vehicles (that can be viewed as two-dimensional bins) and designing the vehicle routes. Several authors
addressed this challenging problem including Gendreau et al. [23], Fuellerer et al. [22], Zachariadis et al.[38]),
Iori and Martello [27], and Wei et al. [37].

Furthermore, several additional 2D packing problems have been investigated in the operations research literature
(though receiving relatively much less attention). A non exhaustive list includes the problem that requires
packing, with no overlapping, a set of rectangles into the smallest square (Martello and Monaci [32]), and the
two-dimensional vector packing problem (Alves et al. [1]) where a set of items with two independent dimensions
must be packed into two-dimensional bins with independent dimensions.

In this paper, we focus on lower bounds for the 2BPP . With few exceptions, all the lower bounds that we
shall discuss were not thoroughly investigated in the literature. The objective of this paper is twofold. First,
we provide an updated comprehensive theoretical study of lower bounds for the 2BPP with an emphasis on
polynomial bounds that can be efficiently computed. Toward this end, we propose a classification of the lower
bounds and point out the relation between proposed lower bounds and dual feasible functions. Furthermore, we
show that the dominance relation claimed by Carlier et al. [9] of their lower bounds is incorrect by providing a
counterexample. Second, we provide the results of a comprehensive computational study that was carried out
to assess the empirical performance of the lower bounds.

The remainder of this paper is organized as follows. Section 2 includes a detailed description and analysis of
the lower bounds that were proposed so far. In Section 3, we analyze dominance relationships between 2BPP
lower bounds. In Section 4, we report the results of a comprehensive computational study that was carried
to assess the computational performance of the different lower bounds. Finally, some concluding remarks and
directions for future research are provided in Section 5.

2. Lower bounds for the 2BPP

In this section, we provide an updated theoretical study of polynomial 2BPP lower bounds that were proposed
so far. Before proceeding further we introduce the following notation that will be used throughout this paper.

• LdXY,q refers to the qth d-dimensional bin packing lower bound that was originally described in the paper
whose authors’ initials are X and Y, respectively.
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• I1 denotes an instance of the one-dimensional bin-packing problem that requires packing a set S of items,
each item being characterized by a weight cj , into a set of identical bins of capacity C.

• L(I) denotes the value of the bound delivered by a lower bounding procedure L(.) for an instance I.

• L1
0(I1) ≡ d

∑
j∈S

cj/Ce is the so-called continuous 1BPP bound.

• L1
MV refers to the lower bound proposed by Martello and Vigo [34]. This bound is based on the bounds

of Martello and Toth [33] and Dell’Amico and Martello [17], respectively. For the sake of completeness, we
provide a description of L1

MV along the following lines. Let I be an 1BPP instance, and p an integer such
that 1 ≤ p ≤ C

2 . We define S1(p), S2(p) and S3(p) as, respectively, the following subsets: S1(p) = {j ∈ S :
cj > C − p}, S2(p) = {j ∈ S\S1(p) : cj >

C
2 } and S3(p) = {j ∈ S\(S1(p)∪S2(p)) : cj ≥ p}. Then, we define:

L1
MV ≡ max{Lα, Lβ},

where

Lα = max
1≤p≤C

2

|S1(p) ∪ S2(p)|+ max

0,



∑
j∈(S2(p)∪S3(p))

cj

C
− |S2(p)|






Lβ = max
1≤p≤C

2

|S1(p) ∪ S2(p)|+max

0,


|S3(p)| −

∑
j∈S2(p)

⌊
C−cj
p

⌋
⌊
C
p

⌋





In the sequel, and for the sake of convenience, we shall partition the set of lower bounds that will be discussed
into three classes depending on how both dimensions are handled. More precisely, we define the following classes:

• Class 1. These bounds consider only one dimension at one time. An 1BPP -based lower bound is computed
by considering just one specified dimension. Next, the same process is repeated by considering the second
dimension.

• Class 2. These bounds consider both dimensions simultaneously.
• Class 3. These bounds are based on an appropriate transformation of the genuine heights and widths into

new ones and then computing a lower bound using these modified dimensions.

Remark 2.1. In addition to the discussed polynomial lower bounds, non-polynomial lower bounding procedures
were proposed as well. In particular, Pisinger and Sigurd [35] proposed a column-generation-based lower bound
and Caprara and Monaci [8] proposed bi-linear programming-based lower bounds. Not surprisingly, these bounds
require a significant computational burden and will be omitted in this survey. Actually, while the considered
polynomial lower bounds needs few milliseconds, the computation times of the lower bounds of Pisinger and
Sigurd [35] and Caprara and Monaci [8] are of the order of several seconds.

2.1. The continuous bound

To begin with, we introduce a simple O(n) continuous bound that is defined as follows:

L2
0 =

⌈∑
j∈J hjwj

HW

⌉
(2.1)

Martello and Vigo [34] show that the worst-case performance ratio of L2
0 is 1

4 .
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2.2. Lower bounds of Class 1

2.2.1. L2
MV,1 lower bound

A first bound proposed by Martello and Vigo [34] is described as follows. Define an 1BPP instance I1w that is
constructed as follows: Sw =

{
j ∈ J : wj >

W
2

}
is the set of items, the weight of an item j is cj = hj , and the bin

capacity is C = H. Since in any feasible solution no two items from Sw can be packed side by side then an 1BPP
lower bound L(I1w) is also a valid lower bound for the original 2BPP instance. Similarly, by interchanging the
roles of the widths and the heights, we can derive a symmetric bound L(I1h). In their implementation, Martello
and Vigo [34] used L1

MV as the 1BPP lower bound. This yields the O(n2) lower bound:

L2
MV,1 = max

(
L1
MV (I1w), L1

MV (I1h)
)

(2.2)

Martello and Vigo [34] show that no dominance relation exists between L2
0 and L2

MV,1.

2.2.2. L2
MV,2 and L2

BM,1 lower bounds

The main idea of these two lower bounds is based on the fact that the large items cannot be packed side
by side. Therefore a one-dimensional bin packing lower bound is invoked to estimate the number of bins that
should be considered to pack the subset of large items. It follows that the remaining items should be packed
into a bin with a large item or into new one.

Formally, let q be an integer in [0,W/2], we consider the following two subsets:

Jw1 (q) = {j ∈ J : wj > W − q}
Jw2 (q) = {j ∈ J : q ≤ wj ≤W − q}

Martello and Vigo [34] define L2,w
MV,2(q) as follows:

L2,w
MV,2(q) = L1

MV (I1w) + max


0,



∑
j∈Jw

2 (q)

hjwj −

HL1
MV (I1w)−

∑
j∈Jw

1 (q)

hj

W

HW




(2.3)

This yields the lower bound:
L2,w
MV,2 = max

1≤q≤W
2

L2,w
MV,2 (q). (2.4)

Similarly, an analogous lower bound L2,h
MV,2 can be obtained by exchanging the widths with the heights. Fi-

nally, L2
MV,2 is given by:

L2
MV,2 = max

(
L2,w
MV,2, L

2,h
MV,2

)
(2.5)

Martello and Vigo [34] show that L2
MV,2 can be computed in O(n2) time. Indeed, in L2,w

MV,2 instance I1w does
not depend on the value of q, and at most n values of q that correspond to distinct values of wj should be
considered.

Moreover, since we have L2
MV,2 ≥ L1

0(I1w(1)) ≡ L2
0 and L2

MV,2 ≥ max(L1
MV (I1w), L1

MV (I1h)) ≡ L2
MV,1, L2

MV,2

dominates both L2
0 and L2

MV,1.

Boschetti and Mingozzi [6] introduced a lower bound L2
BM,1. Since in any feasible solution no item j ∈ J1(q)

can be packed side by side with an item from J1(q)∪J2(q) therefore the width of item j can be increased to W .
Consider an 1BPP instance I1w(q) that is defined as follows:

S = Jw1 (q) ∪ Jw2 (q), C = WH and cj =


Whj if j ∈ Jw1 (q)

wjhj if j ∈ Jw2 (q)

0 otherwise

(2.6)
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Clearly, L(I1w(q)) is a valid lower bound for the original 2BPP instance. Thus the following lower bound is
valid.

L2,w
BM,1 = max

1≤q≤W
2

L2,w
BM,1 (q). (2.7)

Here again, only the value of q corresponding to distinct values of wj should be considered to compute L2,w
BM,1.

Therefore the considered one-dimensional lower bound is invoked n times.
The symmetric lower bound L2,h

BM,1 is derived in a similar way. Finally, we get:

L2
BM,1 = max

(
L2,w
BM,1, L

2,h
BM,1

)
(2.8)

In their implementation, Boschetti and Mingozzi [6] used L1
MV as the 1BPP lower bound. In this case they

show that L2
BM,1 can be computed in O(n3) time since L2

BM,1 is invoked 2n times as explained above.

Actually, it is easy to see that L2
BM,1 can be viewed as an improved variant of L2

MV,2. Indeed, we can restate

L2
MV,2 in the following way:

L2,w
MV,2(q) = max

L
1
MV (I1w),



∑
j∈Jw

2 (q)

hjwj +
∑

j∈Jw
1 (q)

hjW

HW



 (2.9)

Hence,
L2,w
MV,2(q) = max(L1

MV (I1w), L1
0(I1w(q))) (2.10)

Thus, L2,w
MV,2 is given by

L2,w
MV,2 = max(L1

MV (I1w), max
0≤q≤W

2

L1
0(I1w(q))) (2.11)

By replacing L1
0(.) by L1

MV (.), we obtain L2
BM,1. Clearly, L2

BM,1 dominates L2
MV,2.

2.3. Lower bounds of Class 2

2.3.1. L2
BM,2 lower bound

Given two integers p and q such that 1 ≤ p ≤ H
2 and 1 ≤ q ≤ W

2 , define the following subsets

JLarge(p, q) = {j ∈ J : wj > W − q and hj > H − p}

JTall(p, q) = {j ∈ J\JLarge(p, q) : wj ≥ q and hj > H − p}

JWide(p, q) = {j ∈ J\JLarge(p, q) : wj > W − q and hj ≥ p}

JSmall(p, q) = {j ∈ J\ (JLarge(p, q) ∪ JTall(p, q) ∪ JWide(p, q)) : wj ≥ q and hj ≥ p}

Obviously, each item of JLarge(p, q) requires a separate bin. Hence, |JLarge(p, q)| is a trivial valid lower bound.
Moreover, there is no item from j ∈ JTall(p, q) ∪ JWide(p, q) ∪ JSmall(p, q) that can be packed together with an
item from JLarge(p, q). Consequently, the value |JLarge(p, q)| can be tightened by computing a lower bound on the
number of bins required for packing the items of JTall(p, q)∪JWide(p, q)∪JSmall(p, q). Boschetti and Mingozzi [6]
introduced two methods for computing such a lower bound. These methods are based on transforming the 2BPP
instance, composed by the items of JTall(p, q) ∪ JWide(p, q) ∪ JSmall(p, q) into an 1BPP instance.

First method. Let two items i and j such that j ∈ JWide(p, q) and i ∈ JTall(p, q) ∪ JWide(p, q) ∪
JSmall(p, q). Since wi + wj > W then in any feasible packing there exists no pair {i, j} of items such that
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i ∈ JTall(p, q) ∪ JWide(p, q) ∪ JSmall(p, q) and j ∈ JWide(p, q) and i is packed side by side with item j. Therefore,
the width of item j can be increased to W . Using similar arguments, we observe that the height of any item
k ∈ JTall(p, q) can be increased to H. Consider the 1BPP instance Iα1 (p, q) that is defined as follows:

S = JTall(p, q) ∪ JWide(p, q) ∪ JSmall(p, q)

C = HW

cj =


Hwj if j ∈ JTall(p, q)

hjW if j ∈ JWide(p, q)

hjwj if j ∈ JSmall(p, q)

(2.12)

Clearly, L1
MV (Iα1 (p, q)) is a valid lower bound on the minimal number of bins that are required for packing the

items that belong to JTall(p, q) ∪ JWide(p, q) ∪ JSmall(p, q).

Second method. Let i and j be two items such that i ∈ JWide(p, q) and j ∈ JTall(p, q). Since wi + wj > W
and hi + hj > H, it follows that in a feasible solution items i and j can not be packed together in the same
bin. Thus, a valid lower bound on the number of bins that are required for packing the items of JTall(p, q) ∪
JWide(p, q) ∪ JSmall(p, q) is the sum of the lower bound on the number of bins that are required for packing
the items of JWide(p, q) and the lower bound on the number of bins that are required for packing the items of
JTall(p, q). Furthermore, we observe that there are no two items from JWide(p, q) (respectively, JTall(p, q)) that
can be packed side by side (respectively, one above the other) in the same bin. Therefore, we should consider
the following two 1BPP instances.

• Iβ1 (p, q) : S = JWide(p, q), cj = hj , and C = H
• Iγ1 (p, q) : S = JTall(p, q), cj = wj , and C = W

Consequently, a second valid lower bound on the minimal number of bins that are required for packing the items
that belong to JTall(p, q) ∪ JWide(p, q) ∪ JSmall(p, q) is:

L1
MV (Iβ1 (p, q)) + L1

MV (Iγ1 (p, q)). (2.13)

Finally, lower bound L2
BM,2 is

L2
BM,2 = max

1≤p≤H
2 ,1≤q≤

W
2

L2
BM,2(p, q) (2.14)

where,

L2
BM,2(p, q) = |JLarge(p, q)|+ max(L1

MV (Iα1 (p, q)), L1
MV (Iβ1 (p, q)) + L1

MV (Iγ1 (p, q))) (2.15)

The time complexity of L2
BM,2 is O(n4). Boschetti and Mingozzi [6] show that L2

BM,2 dominates L2
BM,1.

2.3.2. L2
MV,3, L2

BM,3 and L2
BM,4 lower bounds

These lower bounds take into account both dimensions simultaneously. Given two integers p and q such that
1 ≤ p ≤ H

2 and 1 ≤ q ≤ W
2 , define the following subsets:

• JLarge(p, q) = {j ∈ J : wj > W − q and hj > H − p}
• JMedium(p, q) =

{
j ∈ J\JLarge(p, q) : wj >

W
2 and hj >

H
2

}
Given two items i and k such that

i, k ∈ JLarge(p, q) ∪ JMedium(p, q).
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Then these two items cannot be packed together into the same bin. Thus, |JLarge(p, q) ∪ JMedium(p, q)| is a
valid lower bound. Furthermore, these lower bounds consider a subset of the remaining items and compute
a lower bound on the number of bins that are required to pack the items of this subset. Clearly, items from
J\(JLarge(p, q)∪JMedium(p, q)) can be packed into a bin that has been initialized with an item from JMedium(p, q)
or into an empty bin.

Martello and Vigo lower bound L2
MV,3: Martello and Vigo [34] considered the subset:

Js1(p, q) =

{
j ∈ J : q ≤ wj ≤

W

2
and p ≤ hj ≤

H

2

}
They considered that each item of Js1(p, q) is a piece of size (p × q). Thus |Js1(p, q)| pieces have to be packed
into the |JMedium(p, q)| bins that have been initialized with an item from JMedium(p, q) or in an empty bin. The
number of pieces m(j, p, q) that can be packed into a bin that has been initialized with an item j ∈ JMedium(p, q)
is given by:

m(j, p, q) =

⌊
H

p

⌋⌊
W − wj

q

⌋
+

⌊
W

q

⌋⌊
H − hj

p

⌋
−
⌊
H − hj

p

⌋⌊
W − wj

q

⌋
(2.16)

Furthermore, the maximal number of pieces that can be packed into an empty bin is given by
⌊
H
p

⌋ ⌊
W
q

⌋
Thus, lower bound L2

MV,3 is given by

L2
MV,3 = max

1≤p≤H
2 ,1≤q≤

W
2

|JLarge(p, q) ∪ JMedium(p, q)|

+ max

0,


|Js1(p, q)| −

∑
j∈JMedium(p,q)

m(j, p, q)⌊
H
p

⌋ ⌊
W
q

⌋


 (2.17)

Martello and Vigo [34] show that L2
MV,3 can be computed in O(n3) time and no dominance relation exists

between L2
MV,2 and L2

MV,3.

Boschetti and Mingozzi lower bound L2
BM,4: To calculate a lower bound on the number of bins required

to pack the subset Js(p, q) = {j ∈ J\ (JLarge(p, q) ∪ JMedium(p, q)) : hj ≥ p, wj ≥ q}, L2
BM,4 follows a similar

approach to L2
MV,3. Indeed each item in Js(p, q) is composed by a number a pieces of size (p× q), Boschetti and

Mingozzi [6] determine a lower bound on the number of pieces that compose an item j ∈ Js(p, q). Recall that
Martello and Vigo [34] used a trivial lower bound that is equal to 1 for each item in Js1(p, q). In addition to
the subset Js1(p, q), Boschetti and Mingozzi [6] considered two additional subsets:

Js2(p, q) =

{
j ∈ J : p ≤ hj ≤

H

2
and wj >

W

2

}

Js3(p, q) =

{
j ∈ J : q ≤ wj ≤

W

2
and hj >

H

2

}
The lower bound on the number of pieces that compose an item j ∈ Js(p, q) is given by (2.18)

m
′
(j, p, q) =



⌊
hj
p

⌋⌊
wj
q

⌋
if j ∈ Js1(p, q)(⌊

W

q

⌋
−
⌊
W − wj

q

⌋)⌊
hj
p

⌋
if j ∈ Js2(p, q)(⌊

H

p

⌋
−
⌊
H − hj

p

⌋)⌊
wj
q

⌋
if j ∈ Js3(p, q)

(2.18)



398 M. SERAIRI AND M. HAOUARI

In the same way as for L2
MV,3, the number of pieces that can be packed into a bin that is initialized with an

item j such that j ∈ JMedium(p, q) is given by (2.16) and the maximal number of pieces that can be packed into

an empty bin is given by
⌊
H
p

⌋ ⌊
W
q

⌋
. Thus, lower bound L2

BM,4 is given by:

L2
BM,4 = max

1≤p≤W
2 ,1≤q≤

H
2

|JLarge(p, q) ∪ JMedium(p, q)|

+ max

0,



∑
j∈Js(p,q)

m′(j, p, q)−
∑

j∈JMedium(p,q)

m(j, p, q)⌊
H
p

⌋ ⌊
W
q

⌋


 (2.19)

Boschetti and Mingozzi [6] show that L2
BM,4 dominates L2

MV,3 and its complexity is O(n3).

Boschetti and Mingozzi lower bound L2
BM,3: In L2

MV,3 and L2
BM,4 the items are considered as a number

of pieces of equal size, a lower bound on the number of pieces of each item and an upper bound on the number
of pieces that can be packed into an empty bin and an initialized bin are computed. However for L2

BM,3 the
items are not considered as a number of pieces. Indeed, an upper bound on the number of items that can be
packed together into an empty bin and a bin that was initialized with an item from JMedium(p, q) are calculated
by computing a maximal number of items that can be fitted side by side and a maximal number of items that
can be fitted one over other.

Denote by MW (w, Js) the maximal number of items from S that can be packed side by side in a bin of width
w. Also, by symmetry, MH(h, Js) is defined by similar way by considering the height dimension. Then an upper
bound on the number of items from Js(p, q) that can be fitted in an empty bin is given by

MW (W,Js(p, q))×MH(H,Js(p, q)) (2.20)

Also, a bound on the number of items that can be fitted in a bin that has been initialized with an item from
JMedium(p, q) is given by

m′′(j, p, q) = MW (W − wj , Js(p, q))×MH(H,Js(p, q))

+MW (W,Js(p, q))×MH(H − hj , Js(p, q)) (2.21)

−MW (W − wj , Js(p, q))×MH(H − hj , Js(p, q))

Thus, lower bound L2
BM,3 is given by:

L2
BM,3 = max

1≤p≤W
2 ,1≤q≤

H
2

|JLarge(p, q) ∪ JMedium(p, q)|

+ max

0,


|Js(p, q)| −

∑
j∈JMedium(p,q)

m′′(j, p, q)

MW (W,Js(p, q))×MH(H,Js(p, q))



 (2.22)

where, the subset Js(p, q) is defined as in L2
BM,4.

Boschetti and Mingozzi [6] show that the complexity of L2
BM,3 is O(n4). Furthermore, they show that L2

BM,3

dominates L2
MV,3, but no dominance relationship exists between L2

BM,3 and L2
BM,4.

It is noteworthy that only values of p and q that correspond to distinct values of hj or H−hj and wj or W−wj ,
respectively, have to be considered to derive L2

MV,3, L2
BM,3 and L2

BM,4. For each combination of (p, q) an O(n)-
time procedure is needed to compute m′(j, p, q),∀j ∈ Js(p, q) and m(j, p, q), for all j ∈ JMedium(p, q). However,
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O(n2) time is necessary to compute m′′(j, p, q), for all j ∈ JMedium(p, q). Actually, for each j ∈ JMedium(p, q) a
particular knapsack, where the profit of each item is equal to one, is invoked to calculate MW and MH . The
complexity time of this particular knapsack problem is O(n) time. Therefore, an overall complexity time of
O(n3), O(n3) and O(n4) is needed to achieve L2

MV,3, L2
BM,3 and L2

BM,4, respectively.

2.4. Lower bounds of Class 3

All these lower bounds are based on the so-called Dual Feasible Functions (DFF). Before proceeding further,
and for the sake of making the paper self-contained, we shall briefly introduce this class of functions that
represent a powerful tool for deriving enhanced 2BPP lower bounds.

Definition 2.2. A function f : [0, 1] → [0, 1] is said to be dual feasible if for any finite set S of positive real
numbers, we have the relation

∑
x∈S

x ≤ 1 =⇒
∑
x∈S

f(x) ≤ 1

Definition 2.3. A function f : N → N is said to be discrete dual feasible if for any set S ⊂ N, we have the
relation: ∑

x∈S
x ≤ C ⇒

∑
x∈S

f(x) ≤ f(C)

The concept of dual feasible functions has been first introduced by Johnson [28] in the context of bin packing.
During the last years, and following the paper by Fekete and Schepers [19], there has been a resurgence of interest
in DFF as a new tool for deriving a class of tight lower bounds for bin packing problems. Furthermore, Carlier
and Néron [10] introduced the so-called redundant functions in the context of cumulative scheduling and which
might be viewed as discretized versions of DFF. We refer to Clautiaux et al. [14] for a survey of DFF.

So far, several DFF were used in the context of bin packing problems. Here, we provide a short review of the
most preeminent ones.

Type 1.

Fekete and Schepers [20] introduced the following DFF: Let k ∈ N then:

fkFS,0(x) =


x if (k + 1)x ∈ Z

b(k + 1)xc 1

k
otherwise

(2.23)

Type 2.

Fekete and Schepers [20] presented fFS,1 that can be considered as the dual feasible version of the lower
bound of Martello and Toth [33].

Let k ∈
[
0, 12
]

fkFS,1(x) =


1 if x > 1− k
x if k ≤ x ≤ 1− k
0 otherwise

(2.24)

Carlier et al. [9] proposed the following discretized version of this function.

Let k ∈
[
0, C2

]
then:

fkCCM,0(x) : [0, C]→ [0, C]
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fkCCM,0(x) =


C if x > C − k

x if k ≤ x ≤ C − k

0 otherwise

(2.25)

Type 3.

Carlier et al. [9] introduced a new concept of Data Dependent Dual Feasible Function (DDFF) that can be
defined as follows.

Definition 2.4. Let Υ = {υ1, υ2, . . . , υn} be a set of n integers, and C be an integer such that C ≥ υi,
∀i ∈ {1, . . . , n}. A function f : [0, C]→ [0, f(C)] associated with Υ and C is said to be a DDFF if for any subset
S ⊂ Υ , we have the relation: ∑

x∈S
x ≤ C ⇒

∑
x∈S

f(x) ≤ f(C)

Carlier et al. [9] proposed a DDFF that is inspired from L2
BM,3 of Boschetti and Mingozzi [6]. At this point,

it should be pointed that no equivalence exists between resulting lower bound of this function and L2
BM,3.

Let k ∈
[
1, C2

]
then:

fkCCM,1(x) : [0, C]→ [0,MC(C, S)]

fkCCM,1(x) =


MC(C, S)−MC(C − x, S) if x > C

2

1 if k ≤ x ≤ C
2

0 otherwise

(2.26)

where Mc(C, S) denotes the maximum number of items in a subset S that can be simultaneously packed into
a (one-dimensional) knapsack of capacity C.

Type 4.

Fekete and Schepers [20] presented the following DFF:

Let k ∈
(
0, 12
]

fkFS,2(x) =


1−

⌊
(1− x)k−1

⌋
bk−1c

if x >
1

2
1

bk−1c
if k ≤ x ≤ 1

2
0 otherwise

(2.27)

Clautiaux et al. [14] showed that the following DFF is the discrete version of fFS,2.

Let k ∈
[
1, C2

]
then:

fkMV,1(x) : [0, C]→
[
0,

⌊
C

k

⌋]

fkMV,1(x) =


(⌊

C

k

⌋
−
⌊
C − x
k

⌋)
if x >

C

2

1 if k ≤ x ≤ C

2
0 otherwise

(2.28)

Furthermore, applying fMV,1 on both dimensions turns out to yield L2
MV,3 lower bound.
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As we mentioned earlier in Section 2.3.2 L2
BM,4 can be considered as an improved version of L2

MV,3.

Consider the function fBM,1 introduced in Boschetti [4]:

Let k ∈
[
1, C2

]
then:

fkBM,1(x) : [0, C]→
[
0,

⌊
C

k

⌋]

fkBM,1(x) =


(⌊

C

k

⌋
−
⌊
C − x
k

⌋)
if x >

C

2⌊x
k

⌋
if x ≤ C

2

(2.29)

Interestingly, L2
BM,4 is equivalent to the lower bound resulting by applying fBM,1 on both dimensions.

Finally, Carlier et al. [9] extended the DFF fBM,1 to obtain the following function:

Let k ∈
[
1, C2

]
then:

fkCCM,2(x) : [0, C]→
[
0, 2

⌊
C

k

⌋]

fkCCM,2(x) =



2

(⌊
C

k

⌋
−
⌊
C − x
k

⌋)
if x >

C

2⌊
C

k

⌋
if x =

C

2

2
⌊x
k

⌋
otherwise

(2.30)

It is noteworthy that function fCCM,2 is a maximal DFF (MDFF). The concept of MDFF was first introduced
by Carlier and Néron (2007).

Definition 2.5. A function f is a MDFF if and only if: (i) f is a DFF, (ii) f(0) = 0 and, (iii) f is nondecreasing,
superadditive (f(x) + f(y) ≥ f(x+ y)), and symmetric (f(x) + f(C − x) = f(C),∀x ∈ [0, C]).

Interestingly, fCCM,2 can be obtained by applying Theorem 2.6 of Clautiaux et al. [14] on fBM,1.

Theorem 2.6. Let f be a superadditive and nondecreasing function defined from [0, C] to [0, f(C)], and such
that f(0) = 0. The following function is a maximal DFF.

g : [0, C]→ [0, 2f(C)] (2.31)

g(x) =



2f(C)− 2f(C − x), if C ≥ x > C

2

f(C), if x =
C

2

2f(x), if x <
C

2

(2.32)

2.4.1. Fekete and Schepers lower bound

In order to derive a valid lower bound for 2BPP , Fekete and Schepers (2.23), (2.24) and (2.27) and normalize

the dimensions of the items as w
′

j =
wj

W and h
′

j =
hj

H and set the bin sizes to W
′

= 1 and H
′

= 1.
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Let functions Fu (u = 1 . . . 7) be defined as follows:

F1 = max
ε∈(0, 12 ]

∑
j∈J

f1FS,0(w
′

j)f
ε
FS,1(h

′

j) (2.33)

F2 = max
ε∈(0, 12 ]

∑
j∈J

f εFS,1(w
′

j)f
1
FS,0(h

′

j) (2.34)

F3 = max
ε∈(0, 12 ]

∑
j∈J

f1FS,0(w
′

j)f
ε
FS,2(h

′

j) (2.35)

F4 = max
ε∈(0, 12 ]

∑
j∈J

f εFS,2(w
′

j)f
1
FS,0(h

′

j) (2.36)

F5 = max
ε∈(0, 12 ]

∑
j∈J

w
′

jf
ε
FS,1(h

′

j) (2.37)

F6 = max
ε∈(0, 12 ]

∑
j∈J

f εFS,1(w
′

j)h
′

j (2.38)

F7 = max
ε,ε′∈(0, 12 ]

∑
j∈J

f εFS,2(w
′

j)f
ε
′

FS,2(h
′

j) (2.39)

Lower bound L2
FS is given by

L2
FS = max

1≤u≤7
Fu (2.40)

Note that the time complexity of L2
FS is O(n2).

2.4.2. Carlier et al. lower bounds L2
CCM,1 and L2

CCM,2

We start first with L2
CCM,1. Carlier et al. [9] proposed a lower bound, hereafter referred to by L2

CCM,1, which

can be viewed as a modified version of L2
BM,2. Indeed, the lower bound L1

MV is replaced by L1
CCM which is

defined as follows:

L1
CCM = max

u∈{0,1,2}
max

k∈[1,C2 ]

∑
j∈S

fkCCM,u(cj)

Since L1
CCM dominates L1

MV (see Carlier et al. [9]) then L2
CCM,1 dominates L2

BM,2. Note that L2
CCM,1 has

the same complexity as L2
BM,2. It is noteworthy that since L2

CCM,1 is defined in the spirit of L2
BM,2 then is

similarly classified in Class 2.

Carlier et al. [9] introduced lower bound L2
CCM,2 based on the three discrete dual feasible functions (2.25),

(2.26) and (2.30) this lower bound can be defined as follows:

F (u, v) = maxk∈[0,W2 ],l∈[0,H2 ]

⌈∑
j∈J f

k
CCM,u(wj)× f lCCM,v(hj)

fkCCM,u(W )× f lCCM,v(H)

⌉
(2.41)

L2
CCM,2 = max

u∈{0,1,2},v∈{0,1,2}
F (u, v) (2.42)

Carlier et al. [9] claim that L2
CCM,2 dominates both L2

BM,3 and L2
BM,4. However, in Section 3.1 we show that

this result is not correct.
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3. Dominance results

In this section, we analyze dominance relationships between 2BPP lower bounds. In the sequel, we shall
denote by:

• L2
MV = max(L2

MV,2, L
2
MV,3)

• L2
BM = max(L2

BM,2, L
2
BM,3, L

2
BM,4)

• L2
CCM = max(L2

CCM,1, L
2
CCM,2)

It is noteworthy that L1
MV,1 and L1

BM,1 will not be further considered since they are dominated by L2
MV,1 and

L2
BM,1, respectively.

3.1. About the dominance of L2
CCM

Carlier et al. [9] claim that L2
CCM dominates L2

BM . Toward this end, they show that L2
CCM,1 dominates

L2
BM,2 and that L2

CCM,2 dominates both L2
BM,3 and L2

BM,4. However, no relationship exists between L2
CCM,2

and L2
BM,3. In fact, Carlier et al. [9] claim that F (1, 1) dominates L2

BM,3. Let us denote by F p,q(1, 1) the lower
bound resulting by applying the DDFF fpCCM,1 and fqCCM,1 on the width and the height, respectively. Clearly,
we have:

F p,q(1, 1) =

⌈∑
j∈J f

p
CCM,1(hj)× fqCCM,1(wj)

fpCCM,1(H)× fqCCM,1(W )

⌉
(3.1)

=

⌈ ∑
j∈J f

p
CCM,1(hj)× fqCCM,1(wj)

MH(H,JH(p))×MW (W,JW (q))

⌉
(3.2)

Where JH(p) = {j ∈ J : p ≤ hj ≤ H
2 } and JW (q) = {j ∈ J : q ≤ wj ≤ W

2 }. Carlier et al. [9] stated that:

F (1, 1) = max
p,q

⌈ ∑
j∈J f

p
CCM,1(hj)× fqCCM,1(wj)

MW (W,Js(p, q))×MH(H,Js(p, q))

⌉
However no relationship exists between subsets Js(p, q), JH(p) and JW (q). Indeed an item j having p ≤ hj ≤

H
2 and wj < q belongs to JH(p), but not to Js(p, q). Similarly, let us consider an item j′ having hj′ >

H
2 and

w ≤ W
2 , this item belongs to Js(p, q) but not to JH(p). A similar observation can be made for Js(p, q) and

JW (q) by interchanging the roles of the width the height. In their paper, Carlier et al. [9] wrongly used subset
Js instead of subsets JW and JH .

A Counterexample. We consider the following 6-item instance. The items’ sizes are (230, 190), (82, 194),
(118, 248), (439, 275), (178, 246), and (283, 25). The bin size is 920× 430.
The corresponding values of the lower bounds are:

L2
CCM,1 = 1, L2

CCM,2 = 1 thus L2
CCM = 1

L2
BM,2 = 1, L2

BM,3 = 2, L2
BM,4 = 1 so L2

BM = 2

The value L2
BM,3 = 2 can be obtained by setting p = 118 and q = 190. Hence, as we see

L2
CCM does not dominate L2

BM .

In the following, we give some details about the computation of L2
BM,3 and L2

CCM,2 for the latter instance. In
particular, we restrict the details for p = 118 and q = 190.

We begin first with the computation of L2
BM,3. Note that, in this instance |JLarge(p, q) ∪ JMedium(p, q)| = 0,

thus

L2
BM,3(p, q) = max

(
0,

⌈
|Js(p, q)|

MW (W,Js(p, q))×MH(H,Js(p, q))

⌉)
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Table 1. Details of computing DFF.

wj 230 82 118 439 178 283 920
f118
CCM,0 230 0 118 439 178 283 920
f118
CCM,1 1 0 1 1 1 1 4
f118
CCM,2 2 0 2 6 2 4 14
hj 190 194 248 275 246 25 430

f190
CCM,0 190 194 430 430 430 0 430
f190
CCM,1 1 1 2 2 2 0 2
f190
CCM,2 2 2 4 4 4 0 4

Furthermore, Js(p, q)={1, 3, 4, 5},MW (W,Js(p, q))=3 and MH(H,Js(p, q))=1. Therefore, L2
BM,3(p, q)=2.

Regarding L2
CCM,2, Table 1 provides the details of the computations of the different dual feasible functions

on both dimensions. Therefore, we get L2
CCM,2 = 1.

At this point, it is noteworthy that L2
CCM dominates L2

MV and L2
FS . Indeed, since max(L2

BM,2, L
2
BM,4)

dominates both L2
MV and L2

FS (see Boschetti and Mingozzi [6]) and L2
CCM,1 ≥ L2

BM,4 and L2
CCM,2 ≥ L2

BM,2

(see Carlier et al. [9]) then L2
CCM dominates both L2

MV and L2
FS .

3.2. Additional new dominance results

In order to get a better picture of the dominance relationships between the different lower bounds, we provide
hereafter some dominance relationships that were omitted in the literature so far.

• Martello and Vigo [34] claimed that L2
MV,2 and L2

MV,3 are better than L2
0 and L2

MV,1. However no dominance

relation exists between L2
MV,3 and L2

0.

We consider the following 5-item instance where the item sizes are (7,7), (3,3), (3,6), (3,6), (6,3), respectively.
The bin size is 10 × 10. For this instance, we have L2

0 = 2 and L2
MV,3 = 1. However, if we consider the

following 5-item instance (Martello and Vigo [34]) where the item sizes are (8, 16), (3, 3), (3, 3), (3, 3) and
(3, 3), respectively, and the bin size is 10× 20. For this latter instance, we have L2

0 = 1 and L2
MV,3 = 2.

• L2
BM,4 dominates L2

0. Let p = 1 and q = 1 then

L2
BM,4 =

⌈∑
j∈JLarge(p,q)

WH +
∑
j∈(Js(p,q)∪JMedium(p,q)) wjhj

HW

⌉
≥ L0

• No dominance relationship exists between L2
BM,3 and L0.

We consider the following 11-item instance where the item sizes are (6,6), (4,5), (5,4), (1,4), (1,4), (1,4),
(1,4), (4,1), (4,1), (4,1) and (4,1), respectively. The bin size is 10× 10. We have L0 = 2 and L2

BM,3 = 1.
However, if we consider the following 5-item instance where the item sizes are (6, 6), (4, 4), (4, 4), (4, 4),

and (4, 4), respectively. The bin size is 10× 10. We have L0 = 1 and L2
BM,3 = 2.

3.3. Synthesis of dominance results

This section contains a brief overview of the dominance results already established between the polynomial
lower bounds presented in this paper. In Figure 1 each lower bound is represented by a node. An outgoing
arc from node A to node B means that lower bound A is dominated by lower bound B. The dominance was
established in the reference located at the side or below the arc.
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L2
MV,1

[34]

L2
MV,2

[6]

[34]

L2
BM,1

[6]

L2
BM,2

[9]

[6]

L2
CCM,1

[9]

[34]

L2
0

[6]
[6]

[34]
L2
MV,3

[6]

L2
BM,3

[9]

[6]

L2
BM,4

L2
MV

[20]

L2
FS

[6]

L2
BM

L2
CCM L2

CCM,2
[9]

Figure 1. Synthesis of the dominance relationships.

4. Computational results

In this section we compare the empirical performance of the previous lower bounds. We have coded them
in C, and implemented on an Intel CORE Duo 2 2.4 GHz personal computer with 3GB RAM.

We tested the lower bounds on the benchmark available on the following web page:
http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm

The benchmark is composed of 10 classes, the first 6 classes have been introduced by Berkey and Yang [2].
Martello and Vigo [34] proposed the remaining ones. For each class, the number of items is 20,40,60,80 and 100,
respectively. For each combination of class and number of item there are 10 randomly generated instances.

A summary of the performance of ten lower bounds is depicted in Tables 2−5. It is noteworthy that the
performance of L2

MV,1 was omitted, since this latter is dominated by L2
MV,2 and has the same complexity. In

Tables 2−5 and 7−10 we report for each lower bound:

• Opt: number of times that the lower bound is equal to a proven optimal solution.
• Max: number of times that the lower bound yields the maximal value.

It should be precised that we did not report the CPU times because all these bounds are extremely fast and
require only few milliseconds.

From Tables 2−5, we observe that the performance of most lower bounds (measured in terms of the number
of times it yields an optimal value) is dependent on the instance density (that is, the ratio of the number of items

http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm
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Table 2. Class 1 lower bounds results Classes 1−10.

L2
0 L2

MV,2 L2
BM,1 L2

0 L2
MV,2 L2

BM,1

Class n Opt Max Opt Max Opt Max Class n Opt Max Opt Max Opt Max

1 20 4 4 6 7 7 8 6 20 10 10 10 10 10 10

40 3 5 5 7 5 8 40 8 10 8 10 8 10

60 2 3 3 5 5 7 60 10 10 10 10 10 10

80 0 0 5 5 6 6 80 10 10 10 10 10 10

100 3 3 7 7 9 9 100 8 10 8 10 8 10

Tot 12 15 26 31 32 38 Tot 46 50 46 50 46 50

2 20 10 10 10 10 10 10 7 20 3 3 8 8 8 8

40 10 10 10 10 10 10 40 0 1 7 8 7 8

60 10 10 10 10 10 10 60 0 0 7 8 7 8

80 10 10 10 10 10 10 80 0 0 1 6 1 6

100 10 10 10 10 10 10 100 0 0 7 7 7 7

Tot 50 50 50 50 50 50 Tot 3 4 30 37 30 37

3 20 5 6 5 7 5 7 8 20 3 3 7 7 7 7

40 3 5 4 6 4 6 40 0 0 8 9 8 9

60 1 3 4 6 4 6 60 0 0 8 9 8 9

80 0 1 5 6 6 7 80 0 0 8 9 8 9

100 1 2 4 6 4 6 100 0 0 4 9 4 9

Tot 10 17 22 31 23 32 Tot 3 3 35 43 35 43

4 20 10 10 10 10 10 10 9 20 0 0 10 10 10 10

40 10 10 10 10 10 10 40 0 0 6 6 6 6

60 8 10 8 10 8 10 60 0 0 6 6 6 6

80 8 10 8 10 8 10 80 0 0 2 2 3 3

100 9 10 9 10 9 10 100 0 0 5 5 5 5

Tot 45 50 45 50 45 50 Tot 0 0 29 29 30 30

5 20 2 2 5 5 5 5 10 20 6 7 8 9 8 9

40 1 2 6 8 7 9 40 5 7 7 9 7 9

60 0 0 3 4 4 5 60 3 6 6 9 6 9

80 0 0 2 5 2 8 80 4 9 5 10 5 10

100 0 1 2 4 2 4 100 4 10 4 10 4 10

Tot 3 5 18 26 20 31 Tot 22 39 30 47 30 47

to the number of required bins). In Table 6, we report the mean number of items per bin which is computed
for each instance as the total number of items to the optimal number of bins (or, near-optimal if the optimal
value is unknown).

Looking at these tables, we can make the following observations:

• Lower bounds L2
BM,2, L2

CCM,1 and L2
CCM,2 outperform all the other bounds. In particular L2

CCM,2 performs
very well and yields the optimal solution for 426 instances, and the best solution for 495 instances.

• Surprisingly, L2
MV,3 and L2

BM,3 exhibit a relative poor performance on most classes. However L2
BM,3 outper-

forms L2
0, L2

MV,2 and L2
BM,1 on Class 9 where the density is the smallest.

• The relative performance of L2
0, L2

MV,2 and L2
BM,1 decreases as the instance density decreases. For example,

L2
0 yields the best solution for 150 instances in Classes 2, 4 and 6, 22 instances in Class 10 and, 0 in Class 9.
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Table 3. Class 2 lower bounds results Classes 1−5.

L2
BM,2 L2

CCM,1 L2
MV,3 L2

BM,3 L2
BM,4

Class n Opt Max Opt Max Opt Max Opt Max Opt Max

1 20 9 10 9 10 0 0 4 4 7 8

40 7 10 7 10 0 0 1 1 6 9

60 7 9 7 9 0 0 0 0 7 9

80 8 8 9 9 0 0 0 0 8 8

100 10 10 10 10 0 0 0 0 7 7

Tot 41 47 42 48 0 0 5 5 35 41

2 20 10 10 10 10 10 10 10 10 10 10

40 10 10 10 10 1 1 1 1 10 10

60 10 10 10 10 0 0 0 0 10 10

80 10 10 10 10 0 0 0 0 10 10

100 10 10 10 10 0 0 0 0 10 10

Tot 50 50 50 50 11 11 11 11 50 50

3 20 8 10 8 10 1 1 4 6 6 8

40 8 10 8 10 0 0 3 3 8 10

60 6 8 6 8 0 0 2 3 6 8

80 8 9 8 9 0 0 1 1 8 9

100 7 9 7 9 0 0 0 1 7 9

Tot 37 46 37 46 1 1 10 14 35 44

4 20 10 10 10 10 10 10 10 10 10 10

40 10 10 10 10 1 1 1 1 10 10

60 8 10 8 10 0 0 0 1 8 10

80 8 10 8 10 0 0 0 0 8 10

100 9 10 9 10 0 0 0 0 9 10

Tot 45 50 45 50 11 11 11 12 45 50

5 20 10 10 10 10 0 0 4 4 5 5

40 7 10 7 10 1 1 5 6 7 10

60 7 9 7 9 0 0 2 3 7 9

80 3 9 4 10 0 0 3 5 4 10

100 4 6 4 6 0 0 2 2 8 10

Tot 31 44 32 45 1 1 16 20 31 44

Actually, the density is about 25 for Classes 2, 4 and 6, 6 for Class 10, and 1.4 for Class 9. However,
we observe that the performance of L2

BM,2, L2
CCM,1 and L2

FS is much less dependent on the instance density.

Interestingly, this dependence seems drastically reduced for L2
BM,4 and L2

CCM,2.
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Table 4. Class 2 lower bounds results Classes 6−10

L2
BM,2 L2

CCM,1 L2
MV,3 L2

BM,3 L2
BM,4

Class n Opt Max Opt Max Opt Max Opt Max Opt Max

6 20 10 10 10 10 10 10 10 10 10 10

40 8 10 8 10 3 5 3 5 8 10

60 10 10 10 10 0 0 1 1 10 10

80 10 10 10 10 0 0 0 0 10 10

100 8 10 8 10 0 0 0 0 8 10

Tot 46 50 46 50 13 15 14 16 46 50

7 20 8 8 8 8 0 0 3 3 8 8

40 7 8 7 8 0 0 0 0 8 9

60 7 8 7 8 0 0 0 0 8 9

80 2 7 2 7 0 0 0 0 2 7

100 7 7 7 7 0 0 0 0 8 8

Tot 31 38 31 38 0 0 3 3 34 41

8 20 10 10 10 10 0 0 1 1 7 7

40 8 9 8 9 0 0 0 1 9 10

60 8 9 8 9 0 0 0 0 8 9

80 8 9 8 9 0 0 0 0 9 10

100 4 9 4 9 0 0 0 0 5 10

Tot 38 46 38 46 0 0 1 2 38 46

9 20 10 10 10 10 5 5 10 10 10 10

40 10 10 10 10 1 1 8 8 7 7

60 10 10 10 10 2 2 8 8 8 8

80 10 10 10 10 1 1 5 5 7 7

100 10 10 10 10 0 0 8 8 8 8

Tot 50 50 50 50 9 9 39 39 40 40

10 20 8 9 8 9 3 3 7 8 7 8

40 8 10 8 10 0 0 2 4 8 10

60 6 9 6 9 0 0 0 2 4 7

80 5 10 5 10 0 0 0 0 4 9

100 4 10 4 10 0 0 0 0 4 10

Tot 31 48 31 48 3 3 9 14 27 44

• For Classes 2, 4 and 6, we see that all the considered lower bounds, except L2
MV,3 and L2

BM,3, yield the best
solution and achieve the optimal value for 141 instances. Hence, these classes appear to be the easiest ones.
They are characterized by a large number of items per bin.

Furthermore, we report in Table 7 the performance of the following four lower bounds L2
MV , L

2
FS , L

2
BM

and L2
CCM .
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Table 5. DFF based lower bounds results Classes 1−10.

L2
FS L2

CCM,2 L2
FS L2

CCM,2

Class n Opt Max Opt Max Class n Opt Max Opt Max

1 20 8 9 9 10 6 20 10 10 10 10

40 6 9 7 10 40 8 10 8 10

60 7 9 8 10 60 10 10 10 10

80 8 8 10 10 80 10 10 10 10

100 10 10 10 10 100 8 10 8 10

Tot 39 45 44 50 Tot 46 50 46 50

2 20 10 10 10 10 7 20 8 8 10 10

40 10 10 10 10 40 7 8 9 10

60 10 10 10 10 60 7 8 9 10

80 10 10 10 10 80 1 6 5 10

100 10 10 10 10 100 7 7 10 10

Tot 50 50 50 50 Tot 30 37 43 50

3 20 6 8 8 10 8 20 7 7 9 9

40 8 10 8 10 40 8 9 9 10

60 5 7 7 9 60 8 9 9 10

80 8 9 9 10 80 8 9 9 10

100 6 8 7 9 100 4 9 5 10

Tot 33 42 39 48 Tot 35 43 41 49

4 20 10 10 10 10 9 20 10 10 10 10

40 10 10 10 10 40 7 7 10 10

60 8 10 8 10 60 8 8 10 10

80 8 10 8 10 80 7 7 10 10

100 9 10 9 10 100 8 8 9 9

Tot 45 50 45 50 Tot 40 40 49 49

5 20 5 5 9 9 10 20 8 9 9 10

40 7 10 7 10 40 8 10 8 10

60 7 9 8 10 60 6 9 7 10

80 4 9 4 10 80 5 10 5 10

100 5 7 8 10 100 4 10 4 10

Tot 28 40 36 49 Tot 31 48 33 50

Table 6. Average number of items per bin.

Class 1 2 3 4 5 6 7 8 9 10
items/bin 3.02 24.19 4.38 25.21 3.42 27.77 3.66 3.63 1.4 6.16

We see from this table that L2
CCM provides the best bound over all instances. On the other hand, we observe

that L2
BM exhibits a remarkable performance on all problem classes, except on Class 7, and is only marginally

dominated by L2
CCM .

In order to get a better picture of the performance of L2
CCM , we report in Tables 8 and 9 the performance of

F (u, v) (for u, v = 0, 1 and 2).
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Table 7. Overall lower bounds results Classes 1−10.

L2
MV L2

FS L2
BM L2

CCM L2
MV L2

FS L2
BM L2

CCM

Class n Opt Max Opt Max Opt Max Opt Max Class n Opt Max Opt Max Opt Max Opt Max

1 20 6 7 8 9 9 10 9 10 6 20 10 10 10 10 10 10 10 10

40 5 7 6 9 7 10 7 10 40 8 10 8 10 8 10 8 10

60 3 5 7 9 7 9 8 10 60 10 10 10 10 10 10 10 10

80 5 5 8 8 9 9 10 10 80 10 10 10 10 10 10 10 10

100 7 7 10 10 10 10 10 10 100 8 10 8 10 8 10 8 10

Tot 26 31 39 45 42 48 44 50 Tot 46 50 46 50 46 50 46 50

2 20 10 10 10 10 10 10 10 10 7 20 8 8 8 8 8 8 10 10

40 10 10 10 10 10 10 10 10 40 7 8 7 8 8 9 9 10

60 10 10 10 10 10 10 10 10 60 7 8 7 8 8 9 9 10

80 10 10 10 10 10 10 10 10 80 1 6 1 6 2 7 5 10

100 10 10 10 10 10 10 10 10 100 7 7 7 7 8 8 10 10

Tot 50 50 50 50 50 50 50 50 Tot 30 37 30 37 34 41 43 50

3 20 5 7 6 8 8 10 8 10 8 20 7 7 7 7 10 10 10 10

40 4 6 8 10 8 10 8 10 40 8 9 8 9 9 10 9 10

60 4 6 5 7 7 9 8 10 60 8 9 8 9 8 9 9 10

80 5 6 8 9 8 9 9 10 80 8 9 8 9 9 10 9 10

100 4 6 6 8 8 10 8 10 100 4 9 4 9 5 10 5 10

Tot 22 31 33 42 39 48 41 50 Tot 35 43 35 43 41 49 42 50

4 20 10 10 10 10 10 10 10 10 9 20 10 10 10 10 10 10 10 10

40 10 10 10 10 10 10 10 10 40 6 6 7 7 10 10 10 10

60 8 10 8 10 8 10 8 10 60 6 6 8 8 10 10 10 10

80 8 10 8 10 8 10 8 10 80 2 2 7 7 10 10 10 10

100 9 10 9 10 9 10 9 10 100 5 5 8 8 10 10 10 10

Tot 45 50 45 50 45 50 45 50 Tot 29 29 40 40 50 50 50 50

5 20 5 5 5 5 10 10 10 10 10 20 8 9 8 9 9 10 9 10

40 6 8 7 10 7 10 7 10 40 7 9 8 10 8 10 8 10

60 3 4 7 9 8 10 8 10 60 6 9 6 9 6 9 7 10

80 2 5 4 9 4 10 4 10 80 5 10 5 10 5 10 5 10

100 2 4 5 7 8 10 8 10 100 4 10 4 10 4 10 4 10

Tot 18 26 28 40 37 50 37 50 Tot 30 47 31 48 32 49 33 50

From Tables 8 and 9, we see that F (2, 2) exhibits the best performance since it yields the optimal solution for
391 instances and the maximal solution for 460 instances. Interestingly, in Class 7, the performance of L2

CCM is
due to some different combination (namely F (0, 1) and F (2, 1)). Indeed, for this class of instances, these latter
bounds yields the maximal value for 47 instances while F (2, 2) is maximal for 41 instances only.

Before closing this section, we perform a comparison between L2
CCM,2 and the two lower bounds of Caprara

and Monaci [8], hereafter said L2
CM,1 and L2

CM,2. These two lower bounds are based on solving bilinear programs
and have been implemented on a PC with AMD Athlon 4200+. The comparison is performed on the same set of
83 instances that were considered in the paper of Caprara and Monaci [8]. These instances belong to Classes 1,
3, 4, 5, 6, 7, 8 and 10 described above.
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Table 8. CCM DFF results Classes 1−5.

F (0, 0) F (0, 1) F (0, 2) F (1, 0) F (1, 1) F (1, 2) F (2, 0) F (2, 1) F (2, 2)

Class n Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max

1 20 8 9 7 8 8 9 8 9 7 8 8 9 8 9 7 8 8 9

40 6 9 5 8 6 9 5 8 5 8 5 8 6 9 5 8 6 9

60 7 9 5 7 8 10 5 7 4 6 6 8 7 9 5 7 8 10

80 8 8 7 7 7 7 7 7 7 7 7 7 10 10 9 9 10 10

100 10 10 5 5 10 10 5 5 3 3 5 5 9 9 5 5 10 10

Tot 39 45 29 35 39 45 30 36 26 32 31 37 40 46 31 37 42 48

2 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

40 10 10 4 4 10 10 4 4 1 1 4 4 10 10 4 4 10 10

60 10 10 5 5 10 10 5 5 0 0 5 5 10 10 5 5 10 10

80 10 10 0 0 10 10 0 0 0 0 0 0 10 10 0 0 10 10

100 10 10 0 0 10 10 0 0 0 0 0 0 10 10 0 0 10 10

Tot 50 50 19 19 50 50 19 19 11 11 19 19 50 50 19 19 50 50

3 20 6 8 6 8 6 8 8 10 7 9 8 10 6 8 6 8 6 8

40 8 10 8 10 8 10 8 10 7 8 8 10 8 10 8 10 8 10

60 5 7 5 7 5 7 6 8 4 6 6 8 6 8 5 7 7 9

80 7 8 8 9 8 9 6 7 6 7 7 8 8 9 8 9 9 10

100 6 8 5 7 6 8 3 5 3 5 3 5 7 9 5 7 7 9

Tot 32 41 32 41 33 42 31 40 27 35 32 41 35 44 32 41 37 46

4 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

40 10 10 4 4 10 10 4 4 1 1 4 4 10 10 4 4 10 10

60 8 10 5 7 8 10 5 7 0 1 5 7 8 10 5 7 8 10

80 8 10 0 2 8 10 0 0 0 0 0 0 8 10 0 2 8 10

100 9 10 0 0 9 10 0 0 0 0 0 0 9 10 0 0 9 10

Tot 45 50 19 23 45 50 19 21 11 12 19 21 45 50 19 23 45 50

5 20 5 5 6 6 5 5 7 7 7 7 7 7 5 5 7 7 5 5

40 7 10 6 9 7 10 7 10 4 7 6 9 7 10 6 9 7 10

60 5 7 7 9 6 8 7 9 7 9 7 9 7 9 7 9 7 9

80 3 9 3 9 3 9 4 9 4 8 4 9 4 10 4 9 4 10

100 3 5 5 7 6 8 4 5 5 5 6 7 6 8 7 9 8 10

Tot 23 36 27 40 27 40 29 40 27 36 30 41 29 42 31 43 31 44

We report on Table 10 the results of the three latter lower bounds. In addition to Opt and Max, we report
Nins the number of considered instances on each class and CPU the computing time in seconds of each
considered lower bound.

From Table 10, we observe that L2
CM,2 outperforms L2

CM,1 and L2
CCM,2. It yields the best performance on

all considered instances and achieves the optimal solution on 29 instances. L2
CM,1 slightly outperforms L2

CCM,2

these two lower bounds yield the maximal solution for 71 and 66 instances, respectively. Not surprisingly, L2
CM,1

and L2
CM,2 are extremely time consuming. Actually, the average time of L2

CM,1 and L2
CM,2 are 75 and 872 times

longer than L2
CCM,2, respectively.
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Table 9. CCM DFF results Classes 6−10.

F (0, 0) F (0, 1) F (0, 2) F (1, 0) F (1, 1) F (1, 2) F (2, 0) F (2, 1) F (2, 2)

Class n Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt Max

6 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

40 8 10 4 6 8 10 4 6 3 5 4 6 8 10 4 6 8 10

60 10 10 6 6 10 10 7 7 0 0 7 7 10 10 6 6 10 10

80 10 10 0 0 10 10 0 0 0 0 0 0 10 10 0 0 10 10

100 8 10 0 0 8 10 0 0 0 0 0 0 8 10 0 0 8 10

Tot 46 50 20 22 46 50 21 23 13 15 21 23 46 50 20 22 46 50

7 20 8 8 8 8 8 8 4 4 4 4 4 4 8 8 8 8 8 8

40 7 8 8 9 8 9 1 1 1 1 1 1 7 8 8 9 8 9

60 7 8 9 10 8 9 0 0 0 0 0 0 7 8 9 10 8 9

80 1 6 5 10 2 7 0 0 0 0 0 0 1 6 5 10 2 7

100 7 7 10 10 8 8 0 0 0 0 0 0 7 7 10 10 8 8

Tot 30 37 40 47 34 41 5 5 5 5 5 5 30 37 40 47 34 41

8 20 7 7 0 0 7 7 8 8 2 2 8 8 7 7 1 1 7 7

40 8 9 0 1 8 9 8 9 0 1 8 9 9 10 0 1 9 10

60 8 9 0 0 8 9 9 10 0 0 9 10 8 9 0 0 8 9

80 8 9 0 0 8 9 9 10 0 0 9 10 9 10 0 0 9 10

100 4 9 0 0 4 9 5 10 0 0 5 10 5 10 0 0 5 10

Tot 35 43 0 1 35 43 39 47 2 3 39 47 38 46 1 2 38 46

9 20 10 10 3 3 10 10 4 4 2 2 4 4 10 10 3 3 10 10

40 7 7 7 7 7 7 8 8 6 6 8 8 7 7 7 7 7 7

60 8 8 8 8 8 8 4 4 4 4 4 4 8 8 8 8 8 8

80 7 7 9 9 7 7 8 8 8 8 8 8 7 7 9 9 7 7

100 8 8 8 8 8 8 7 7 6 6 7 7 8 8 8 8 8 8

Tot 40 40 35 35 40 40 31 31 26 26 31 31 40 40 35 35 40 40

10 20 8 9 6 7 8 9 8 9 7 8 8 9 7 8 6 7 7 8

40 8 10 8 10 8 10 6 8 6 8 6 8 8 10 8 10 8 10

60 6 9 4 7 6 9 1 4 1 4 1 4 5 8 3 6 5 8

80 5 10 0 3 4 9 1 3 0 1 1 2 5 10 0 3 4 9

100 4 10 1 3 4 10 0 4 0 2 0 4 4 10 1 3 4 10

Tot 31 48 19 30 30 47 16 28 14 23 16 27 29 46 18 29 28 45

5. Conclusion

In this paper, we addressed the deterministic two-dimensional bin-packing problem and considered the version
where the items cannot be rotated. We surveyed the polynomial-time lower bounding strategies that were
developed so far and we investigated dominance relationships. In this regard, we showed that, in contrast to
what was previously claimed in the literature, L2

CCM does not dominate L2
BM . Also, we presented the results of

an extensive computational study that was conducted on a large set of benchmark instances, and we provided
empirical evidence that L2

CCM,2 performs extremely well and outperforms all other lower bounds. Nevertheless,
we observed that this bound failed to provide tight values for many large instances (in particular, for Classes 5
and 10). This is a clear indication, that there is still room for further improvement.
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Table 10. Comparison of L2
CCM,2 with Caprara and Monaci (2009) lower bounds.

L2
CCM,2 L2

CM,1 L2
CM,2

Class Nins Max Opt CPU Max Opt CPU Max Opt CPU

1 7 6 5 0.000 6 5 0.001 7 6 0.064

3 11 8 3 0.002 10 5 0.050 11 6 0.686

4 5 5 0 0.001 5 0 0.080 5 0 2.194

5 13 11 1 0.006 13 3 0.065 13 3 1.175

6 4 4 0 0.002 4 0 0.210 4 0 5.745

7 15 7 0 0.004 7 0 0.024 15 8 0.993

8 9 8 0 0.007 8 0 0.049 9 1 1.818

10 19 17 3 0.004 18 4 0.257 19 5 2.443

83 66 12 0.013 71 17 0.970 83 29 11.210

The last decade has witnessed the resurgence of the concept of dual feasible functions that proved extremely
fruitful for generating enhanced lower bounds. We believe that novel ideas are necessary for producing a new
generation of tighter lower bounds.
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[1] C. Alves, J. Valério de Carvalho, F. Clautiaux and J. Rietz, Multidimensional dual-feasible functions and fast lower bounds
for the vector packing problem. Eur. J. Oper. Res. 233 (2015) 43–63.

[2] J.O. Berkey and P.Y. Wang, Two-dimensional finite bin packing algorithms. J. Oper. Res. Soc. 38 (1987) 423–429.

[3] A. Bortfeldt and T. Winter, A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces. Inter.
Trans. Oper. Res. 16 (2009) 685–713.

[4] M.A. Boschetti, New lower bounds for the three-dimensional finite bin packing problem. Discrete Appl. Math. 140 (2004)
241–258.

[5] M.A. Boschetti and L. Montaletti, An exact algorithm for the two-dimensional strip-packing problem. Oper. Res. 58 (2010)
1774–1791.

[6] M.A. Boschetti and A. Mingozzi, The two-dimensional finite bin packing problem, Part I: New lower bounds for the oriented
case. 4OR (2003) 27–42.

[7] A. Caprara, A. Lodi and M. Monaci, An approximation scheme for the two-stage, two-dimensional knapsack problem. Discrete
Optimiz. 7 (2010) 114–124.

[8] A. Caprara and M. Monaci, Bidimensional packing by bilinear programming. Math. Progr. 118 (2009) 75–108.

[9] J. Carlier, F. Clautiaux and A. Moukrim, New reduction procedures and lower bounds for the two-dimensional bin packing
problem with fixed orientation. Comput. Oper. Res. 34 (2007a) 2223–2250.
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