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TRANSIENT BEHAVIOUR OF THREE-HETEROGENEOUS SERVERS QUEUE
WITH SYSTEM DISASTER AND SERVER REPAIR
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Abstract. Three-heterogeneous servers queue with system disaster, server failure and repair is inves-
tigated. The arrival of customers follows Poisson process and service time is exponentially distributed.
Explicit expressions are derived for the transient-state probabilities using generating function, mod-
ified Bessel function and Laplace transform. Further, the steady-state system size probabilities are
deduced and certain important performance measures are acquired. Finally, numerical interpretations
are presented to depict the system behaviour.
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1. Introduction

Heterogeneity of service is a major aspect of multiprocessor queueing environment such as banks, hospitals,
telecommunication networks, manufacturing systems and several business organisations. Morse [13] introduced
the concept of heterogeneity in service. The heterogeneous servers have the characteristic of containing distinct
levels and speed of service. The Internet itself is an example of a heterogeneous network.

The investigation of the time-dependent behaviour of queueing models is efficient in acquiring optimal solution
which helps in the development of more efficient congestion control of the system. The time-dependent studies
have really proved significant and are largely adopted by business organizations.

Trivedi [19] analyzed the two-server heterogeneous system in steady-state. For the same model, Dharmaraja [5]
obtained the exact transient-state probabilities using generating function. Two heterogeneous servers queueing
system with balking was discussed by Singh [16]. Ammar [1] derived the transient solution of an M/M/2
heterogeneous servers queue subject to balking and reneging.

Krishna Kumar and Pavai Madheswari [10] analyzed two heterogeneous servers queue with multiple vaca-
tions using matrix geometric method. Recently the authors [21] examined two heterogeneous servers perishable
inventory system and calculated the system performance measures in steady-state.

Singh [15] performed steady-state analysis for three heterogeneous servers queueing system. Vijayalakshmi
and Jyothsna [20] investigated a renewal input multiple working vacation queue with balking, reneging and
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heterogeneous servers. In [9] Ke et al. considered a machine repair problem with queue-dependent heterogeneous
repairmen.

Tien Van Do [6] examined a tollbooth queueing model with two heterogeneous servers. He and Chao [8]
considered a toll booth tandem queueing system with K heterogeneous servers using matrix-analytic method
and obtained the explicit results for various performance measures. Li and Stanford [12] developed a multi-server
queueing model with heterogeneous servers and established the waiting time distribution.

Moreover, the adoption of the First Come First Served (FCFS) discipline may not be realistic in modelling
service systems with heterogeneous structures. Ramasamy et al. [14] considered the M/G/2 heterogeneous
servers queueing model with a minimum violation of FCFS queue discipline.

There is a growing interest in the study of queueing models in the event of system disaster and repairable
server. A disaster is also known as catastrophe, mass exodus, or queue flushing [3]. A disaster can be treated
as a server reset which breaks down the server and causes all the customers in the system to get lost. The loss
of customers due to disastrous breakdowns (also referred to as a kind of negative arrivals) was first introduced
by Gelenbe [7]. Krishna Kumar et al. [11] studied two heterogeneous servers queue with catastrophe. Sudhesh
et al. [18] analyzed an M/M/1 queue with N− policy and system disaster.

Most of the works in the previous literature are carried out based on the assumption that disaster (catas-
trophe) occurs only when the system is not empty. However, this situation is predominantly unsuitable in
many real-life systems. In various practical situations disaster may occur even when the system is empty. This
motivates us to consider a system with disastrous breakdowns when the system is both idle and busy.

Ammar [2] expands the model described in Dharmaraja [5] subject to disastrous breakdowns and obtained
an exact time-dependent solution. Dharmaraja and Rakesh Kumar [4] obtained the transient solution of the
c−heterogeneous servers queue with system disaster. In recent times Sudhesh et al. [17] inferred two heteroge-
neous servers queue with system disaster, server repair and customers’ impatience and obtained the transient-
state and steady-state probabilities in closed form.

However, no work has been developed in the previous literature which analyzes queueing systems with more
than two heterogeneous servers taking together the effect of system disaster and server repair. Based on this
survey, we have evaluated the transient-state system size probabilities for the three-heterogeneous server queue-
ing system subject to system disaster and server repair using generating function, Bessel function and Laplace
transform.

The framework of this article is categorized as follows: in Section 2, the mathematical model and the system
of difference equations determining this model are presented. In Section 3, the transient-state probabilities
using generating function, Bessel function and Laplace Transform were obtained. In Section 4, the steady-state
probabilities of the system size are deduced. In Section 5, certain performance measures of the system are given.
In Section 6, numerical illustrations are presented to get more insight of the system behaviour and finally the
concluding remarks are summarized in Section 7.

2. Model description

Observe a three-processor heterogeneous system with system disaster and server repair. Customer arrival
process is Poisson with rate λ and the system has one waiting line. Service time is exponentially distributed
where the three servers provide heterogeneous service with different service rates μ1, μ2 and μ3 such that
μ1 > μ2 > μ3. Each customer needs only one server for service and chooses on Fastest Server First (FSF) basis.

An accomplishing customer identifying more than one idle server prefers the faster among the free servers.
If the customer observes exactly one idle server , customer go for it. If the customer finds all the three servers
busy, customer joins the queue and wait to take service from either faster server or slower server based on who
completed the service first. This schedule is reiterated whenever there are four or more customers in the system.

When the system is idle or busy, disaster occurs according to a Poisson procedure of rate γ. Whenever disaster
happens, the entire customers (both waiting and served) are flushed out from the system and all the servers are
subjected to failure. A repair process then begins instantly and the repair time of the system is exponentially
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Figure 1. Pictorial Representation of the Model.

distributed with mean η−1. After repairing, the servers become ready for service when a new arrival occurs.
The pictorial depiction of the system is demonstrated in Figure 1.

Let {(X(t), Y (t)), t ≥ 0} be a two-dimensional continuous-time Markov chain, where X(t) represents the
amount of customers in the system at time t and Y (t) denotes the state of the system at time t. Let Qn,j(t)
denote the time dependent system size probabilities where there are n customers in the system at time t and j
takes values 0, 1, 2, 3, 12, 13, 23, 4 and 5. Mathematically,

Qn,j(t) = Q[X(t) = n, Y (t) = j], n ≥ 0; j = 0, 1, 2, 3, 12, 13, 23, 4, 5.

Let Q0,0(t) be the probability that there are no customers in the system and the servers are ready to serve
customers.

For n = 1, let Q1,j(t) be the probability that there are one customer in the system and only the jth server
is on the working state where j varies from 1 to 3.

For n = 2, let Q2,ij(t) =
3∑

i<j

Q2,ij(t) be the probability that there are two customers in the system where ith

and jth servers are on the working state such that i takes values 1 and 2 and j takes values 2 and 3.

For j = 4, let Qn,4(t) be the probability that there are n ≥ 3 customers in the system and all the three
servers are on the working state and

For j = 5, let Qn,5(t) be the probability that there are n ≥ 0 customers in the system and all the three
servers are on the failure state.

The transition-rate diagram of the proposed model is depicted in Figure 2.
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Figure 2. Transition-rate diagram of the system.

2.1. Governing equations

In view of the aforementioned assumptions, the behaviour of resulting system is described by a set of
Chapman−Kolmogorov forward equations which can be written as :

Q
′
0,0(t) = − (λ + γ)Q0,0(t) + μ1Q1,1(t) + μ2Q1,2(t) + μ3Q1,3(t) + ηQ0,5(t), (2.1)

Q
′
1,1(t) = − (λ + μ1 + γ)Q1,1(t) + λQ0,0(t) + μ2Q2,12(t) + μ3Q2,13(t) + ηQ1,5(t), (2.2)

Q
′
1,2(t) = − (λ + μ2 + γ)Q1,2(t) + μ1Q2,12(t) + μ3Q2,23(t), (2.3)

Q
′
1,3(t) = − (λ + μ3 + γ)Q1,3(t) + μ1Q2,13(t) + μ2Q2,23(t), (2.4)

Q
′
2,12(t) = − (λ + μ1 + μ2 + γ)Q2,12(t) + λQ1,1(t) + λQ1,2(t) + μ3Q3,4(t) + ηQ2,5(t), (2.5)

Q
′
2,13(t) = − (λ + μ1 + μ3 + γ)Q2,13(t) + λQ1,3(t) + μ2Q3,4(t), (2.6)

Q
′
2,23(t) = − (λ + μ2 + μ3 + γ)Q2,23(t) + μ1Q3,4(t), (2.7)

Q
′
3,4(t) = − (λ + γ + μ)Q3,4(t) + λQ2,13(t) + λQ2,12(t) + λQ2,23(t) + μQ4,4(t) + ηQ3,5(t), (2.8)

Q
′
n,4(t) = − (λ + γ + μ)Qn,4(t) + λQ(n−1),4(t) + μQ(n+1),4(t) + ηQn,5(t), n ≥ 4, (2.9)

Q
′
0,5(t) = − (η + λ)Q0,5(t) + γ

[
1 −

∞∑
n=0

Qn,5(t)

]
, (2.10)

Q
′
n,5(t) = − (η + λ)Qn,5(t) + λQn−1,5(t), n ≥ 1, (2.11)

where μ = μ1 + μ2 + μ3.

We assume that the amount of customers available at first is random with the probability pr, r ≥ 0 where r
denotes the amount of customers in the system at the beginning.
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3. Transient behaviour

Define the probability generating function

G(t, z) = R(t) +
∞∑

n=0

Q(n+4),4(t)zn+1, (3.1)

where

R(t) = Q0,0(t) +
3∑

i=1

Q1,i(t) + Q2,12(t) + Q2,13(t) + Q2,23(t) + Q3,4(t),

with initial condition G(0, z) =
∑∞

r=0 prz
r.

The system of equations (2.1)−(2.9) yield the following partial differential equation

∂G

∂t
= − γR(t) + η

[
3∑

i=0

Qi,5(t) +
∞∑

n=1

Q(n+3),5(t)zn

]

+ λ(z − 1)Q3,4(t) + (λz − (λ + γ + μ) +
μ

z
)
[
G(t, z) − R(t)

]
. (3.2)

On integration, we get

G(t, z)=
[∫ t

0

exp{−(λ + γ + μ)(t − y)} exp
{(

λz +
μ

z

)
(t − y)

}
dy

]

×
[
λ(z − 1)Q3,4(y) +

[
(λ + μ) −

(
λz +

μ

z

)]
R(y) + η

(
3∑

i=0

Qi,5(y) +
∞∑

n=1

Q(n+3),5(y)zn

)]

+
∞∑

r=0

prz
r exp{−(λ + γ + μ)(t)} exp

{(
λz +

μ

z

)
(t)
}

. (3.3)

If α = 2
√

λμ and β =
√

λ
μ then

exp
{(

λz +
μ

z

)
(t − y)

}
=

∞∑
n=−∞

(βz)nIn[α(t − y)],

where In(.) = In[α(t − y)] is the modified Bessel function of first kind.

3.1. Evaluation of Q(n+3),4(t), n ≥ 1

Comparing the coefficients of zn on both sides of equation (3.3), for n ≥ 1, we have

β−nQ(n+3),4(t) =

[∫ t

0

exp{−(λ + γ + μ)(t − y)}dy

]
×
[ [

λβ−1In−1(.) − λIn(.)
]
Q3,4(y)

+
[
(λ + μ)In(.) − λβ−1In−1(.) − μβIn+1(.)

]
R(y)

+ η[
3∑

i=0

Qi,5(y)In(.) +
∞∑

i=1

Q(i+3),5(y)β−iIn−i(.)]

]

+ exp{−(λ + γ + μ)(t)}
∞∑

r=0

prβ
−rIn−r(αt). (3.4)
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The above equation (3.4) holds for negative powers of n with left hand side replaced by zero. Using Bessel
property I−n(.) = In(.) for n ≥ 1 , we get

0 =

[∫ t

0

exp{−(λ + γ + μ)(t − y)}dy

]
×
[ [

λβ−1In+1(.) − λIn(.)
]
Q3,4(y)

+
[
(λ + μ)In(.) − λβ−1In+1(.) − μβIn−1(.)

]
R(y)

+ η

[
3∑

i=0

Qi,5(y)In(.) +
∞∑

i=1

Q(i+3),5(y)β−iIn+i(.)

] ]

+ exp{−(λ + γ + μ)(t)}
∞∑

r=0

prβ
−rIn+r(αt). (3.5)

Difference of equation (3.5) from equation (3.4), for n ≥ 1 we obtain

Q(n+3),4(t) =

[∫ t

0

exp{−(λ + γ + μ)(t − y)}dy

]

×
[
λβn−1[In−1(.) − I(n+1)(.)]Q3,4(y) + η

∞∑
i=1

βn−iQ(i+3),5(y)[In−i(.) − I(n+i)(.)]

]

+ exp{−(λ + γ + μ)(t)}
∞∑

r=0

prβ
n−r[In−r(αt) − In+r(αt)]. (3.6)

3.2. Evaluation of Q3,4(t)

We rewrite the system of equation (2.1)−(2.7) in the following matrix form:

dH(t)
dt

= BH(t) + ηQ0,5(t)e1 + ηQ1,5(t)e2 + (μ3Q3,4(t) + ηQ2,5(t)) e3 + μ2Q3,4(t)e4 + μ1Q3,4(t)e5, (3.7)

where

H(t) = (Q0,0(t), Q1,1(t), Q1,2(t), Q1,3(t), Q2,12(t), Q2,13(t), Q2,23(t))
T ,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a μ1 μ2 μ3 0 0 0

λ b 0 0 μ2 μ3 0

0 0 c 0 μ1 0 μ3

0 0 0 d 0 μ1 μ2

0 λ λ 0 f 0 0

0 0 0 λ 0 g 0

0 0 0 0 0 0 h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

a = −(λ+γ), b = −(λ+μ1+γ), c = −(λ+μ2+γ), d = −(λ+μ3+γ), f = −(λ+μ1+μ2+γ), g = −(λ+μ1+μ3+γ),

h = −(λ + μ2 + μ3 + γ), e1 = (1, 0, 0, 0, 0, 0, 0)T , e2 = (0, 1, 0, 0, 0, 0, 0)T , e3 = (0, 0, 0, 0, 1, 0, 0)T ,
e4 = (0, 0, 0, 0, 0, 1, 0)T and e5 = (0, 0, 0, 0, 0, 0, 1)T .

Let f̃(s) denotes the Laplace transform of f(t). Applying Laplace transform on equation (3.7), we get

H̃(s)=(sI − B)−1
[
H(0)+ηQ̃0,5(s)e1+ηQ̃1,5(s)e2+

(
μ3Q̃3,4(s)+ηQ̃2,5(s)

)
e3+μ2Q̃3,4(s)e4+μ1Q̃3,4(s)e5

]
, (3.8)
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with

H(0) = (Q0,0(0), Q1,1(0), Q1,2(0), Q1,3(0), Q2,12(0), Q2,13(0), Q2,23(0))T

=(Q1(0), Q2(0), Q3(0), Q4(0), Q5(0), Q6(0), Q7(0))T (say).

To find Q̃3,4(s), we have

R̃(s) = eT H̃(s) + Q̃3,4(s), (3.9)

where e = (1, 1, 1, 1, 1, 1, 1)T . Comparing the constant term in either side of equation (3.3) and using Bessel
property, we obtain

R(t) =

[∫ t

0

exp{−(λ + γ + μ)(t − y)}dy

]
×
[ [

λβ−1I1(.) − λI0(.)
]
Q3,4(y)

+
[
(λ + μ)I0(.) − λβ−1I1(.) − μβI1(.)

]
R(y)

+ η

[
3∑

i=0

Qi,5(y)I0(.) +
∞∑

i=1

Q(i+3),5(y)β−iIi(.)

]]

+ exp{−(λ + γ + μ)(t)}
∞∑

r=0

prβ
−rIr(αt). (3.10)

Taking Laplace transform and after some simplifications, the above equation yield

R̃(s)(s + γ) =
1
2
Q̃3,4(s)

[
w −

√
w2 − α2 − 2λ

]
+ η

3∑
i=0

Q̃i,5(s)

+ η

∞∑
i=1

Q̃(i+3),5(s)

(
w −√

w2 − α2

2λ

)i

+
∞∑

r=0

pr

(
w −√

w2 − α2

2λ

)r

, (3.11)

where w = s + λ + γ + μ.
Using equations (3.8) and (3.9) in equation (3.11) and simplifying we get,

Q̃3,4(s) =

[
s + γ − 1

2
[w −

√
w2 − α2 − 2λ] + (s + γ)eT (sI − B)−1(μ3e3 + μ2e4 + μ1e5)

]−1

×
[ ∞∑

r=0

pr

(
w −√

w2 − α2

2λ

)r

+ η
3∑

i=0

Q̃i,5(s) + η
∞∑

i=1

Q̃(i+3),5(s)

(
w −√

w2 − α2

2λ

)i

− eT (sI − B)−1(s + γ)

[
H(0) + η

2∑
i=0

Q̃i,5(s)ei+1

]]
. (3.12)

Let

(sI − B)−1 = (b∗ij(s))7×7, (3.13)

which can be found using matlab and sk, (k = 1, 2, . . . , 7) be the eigen values of equation (3.13). Using matlab,
it is known that the eigen values of B are all different. Hence, the inverse transform bij(t) of b∗ij(s) can be
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obtained by partial fraction decomposition. Now using equation (3.13), we get

eT (sI − B)−1H(0) =
7∑

i=1

7∑
j=1

b∗ij(s)Qj(0), (3.14)

eT (sI − B)−1e1 =
7∑

j=1

b∗j1(s), (3.15)

eT (sI − B)−1e2 =
7∑

j=1

b∗j2(s), (3.16)

eT (sI − B)−1e3 =
7∑

j=1

b∗j5(s), (3.17)

and

eT (sI − B)−1[μ3e3 + μ2e4 + μ1e5] =

⎡
⎣μ3

7∑
j=1

b∗j5(s) + μ2

7∑
j=1

b∗j6(s) + μ1

7∑
j=1

b∗j7(s)

⎤
⎦ . (3.18)

Using (3.14)−(3.18) in (3.12), we get

Q̃3,4(s) =

[
s + γ − 1

2

[
w −

√
w2 − α2 − 2λ

]
+ c∗4(s)

]−1

×
[ ∞∑

r=0

pr

(
w −√

w2 − α2

2λ

)r

+ η
3∑

i=0

Q̃i,5(s)

+ η

∞∑
i=1

Q̃(i+3),5(s)

(
w −√

w2 − α2

2λ

)i

− c∗0(s) − η

3∑
i=1

c∗i (s)Q̃(i−1),5(s)

]
, (3.19)

where

c∗0(s) = (s + γ)
7∑

i=1

7∑
j=1

b∗ij(s)Qj(0),

c∗1(s) = (s + γ)
7∑

j=1

b∗j1(s),

c∗2(s) = (s + γ)
7∑

j=1

b∗j2(s),

c∗3(s) = (s + γ)
7∑

j=1

b∗j5(s),

and

c∗4(s) = (s + γ)

⎡
⎣μ3

7∑
j=1

b∗j5(s) + μ2

7∑
j=1

b∗j6(s) + μ1

7∑
j=1

b∗j7(s)

⎤
⎦ .
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After some simple algebraic manipulations, equation (3.19) reduces to

Q̃3,4(s) =

[
2
α

(
w −√

w2 − α2

α

)( ∞∑
r=0

pr

(
w −√

w2 − α2

2λ

)r

+ η
3∑

i=0

Q̃i,5(s)

+η

∞∑
i=1

Q̃(i+3),5(s)

(
w −√

w2 − α2

2λ

)i

− c∗0(s) − η

3∑
i=1

c∗i (s)Q̃(i−1),5(s)

)]

×
[ ∞∑

m=0

(μ

λ

)m
2

(
w −√

w2 − α2

α

)m ]
×
[ ∞∑

m=0

m∑
k=0

(−1)k

(
m

k

)(
c∗4(s)

μ

)k
]
.

On Laplace inversion, we get an explicit expression for Q3,4(t) as

Q3,4(t) =

( ∞∑
m=0

(μ

λ

)m
2

m∑
k=0

(−1)k

(
m

k

)(
1
μ

)k
)

×
(∫ t

0

c∗
k

4 (t − u) exp{−(λ + γ + μ)u}
∞∑

r=0

prβ
−r[Im+r(αu) − Im+r+2(αu)]du

+ η

∫ t

0

c∗
k

4 (t − u)

[∫ u

0

3∑
i=0

Qi,5(u − v) exp{−(λ + γ + μ)v}[Im(αv) − Im+2(αv)]dv

]
du

+ η

∫ t

0

c∗
k

4 (t − u)

[∫ u

0

∞∑
i=1

Q(i+3),5(u − v)β−i exp{−(λ + γ + μ)v}[Im+i(αv) − Im+i+2(αv)]dv

]
du

−
∫ t

0

c∗
k

4 (t−u)

[∫ u

0

[
c0(u − v) + η

[
2∑

i=0

Qi,5(t − u)ci+1(u − v)

]]
exp{−(λ + γ + μ)v}[Im(αv) − Im+2(αv)]dv

]
du

)
,

(3.20)

where c∗
k

4 is the k-fold convolution of c4(t) with itself and c∗
0

4 (t) = δ(t).

3.3. Evaluation of Q0,0(t), Q1,1(t), Q1,2(t), Q1,3(t), Q2,12(t), Q2,13(t), Q2,23(t)

Using equation (3.13) in equation (3.8), we have

Q̃0,0(s) =

⎡
⎣ 7∑

j=1

b∗1j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗11(s)

+ ηQ̃1,5(s)b∗12(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗15(s)

+ μ2Q̃3,4(s)b∗16(s) + μ1Q̃3,4(s)b∗17(s), (3.21)

Q̃1,1(s) =

⎡
⎣ 7∑

j=1

b∗2j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗21(s)

+ ηQ̃1,5(s)b∗22(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗25(s)

+ μ2Q̃3,4(s)b∗26(s) + μ1Q̃3,4(s)b∗27(s), (3.22)
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Q̃1,2(s) =

⎡
⎣ 7∑

j=1

b∗3j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗31(s)

+ ηQ̃1,5(s)b∗32(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗35(s)

+ μ2Q̃3,4(s)b∗36(s) + μ1Q̃3,4(s)b∗37(s), (3.23)

Q̃1,3(s) =

⎡
⎣ 7∑

j=1

b∗4j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗41(s)

+ ηQ̃1,5(s)b∗42(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗45(s)

+ μ2Q̃3,4(s)b∗46(s) + μ1Q̃3,4(s)b∗47(s), (3.24)

Q̃2,12(s) =

⎡
⎣ 7∑

j=1

b∗5j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗51(s)

+ ηQ̃1,5(s)b∗52(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗55(s)

+ μ2Q̃3,4(s)b∗56(s) + μ1Q̃3,4(s)b∗57(s), (3.25)

Q̃2,13(s) =

⎡
⎣ 7∑

j=1

b∗6j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗61(s)

+ ηQ̃1,5(s)b∗62(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗65(s)

+ μ2Q̃3,4(s)b∗66(s) + μ1Q̃3,4(s)b∗67(s), (3.26)

and

Q̃2,23(s) =

⎡
⎣ 7∑

j=1

b∗7j(s)Qj(0) + ηQ̃0,5(s)

⎤
⎦ b∗71(s)

+ ηQ̃1,5(s)b∗72(s) + [μ3Q̃3,4(s) + ηQ̃2,5(s)]b∗75(s)

+ μ2Q̃3,4(s)b∗76(s) + μ1Q̃3,4(s)b∗77(s). (3.27)

Using equations (3.21)−(3.27) and inverting, we obtain

Q0,0(t) =
∫ t

0

7∑
j=1

b1j(u)Qj(0)b11(t − u)du

+
∫ t

0

ηQ0,5(u)b11(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b15(t − u)du

+
∫ t

0

μ2Q3,4(u)b16(t − u)du +
∫ t

0

μ1Q3,4(u)b17(t − u)du, (3.28)

Q1,1(t) =
∫ t

0

7∑
j=1

b2j(u)Qj(0)b21(t − u)du

+
∫ t

0

ηQ0,5(u)b21(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b25(t − u)du

+
∫ t

0

μ2Q3,4(u)b26(t − u)du +
∫ t

0

μ1Q3,4(u)b27(t − u)du, (3.29)
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Q1,2(t) =
∫ t

0

7∑
j=1

b3j(u)Qj(0)b31(t − u)du

+
∫ t

0

ηQ0,5(u)b31(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b35(t − u)du

+
∫ t

0

μ2Q3,4(u)b36(t − u)du +
∫ t

0

μ1Q3,4(u)b37(t − u)du, (3.30)

Q1,3(t) =
∫ t

0

7∑
j=1

b4j(u)Qj(0)b41(t − u)du

+
∫ t

0

ηQ0,5(u)b41(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b45(t − u)du

+
∫ t

0

μ2Q3,4(u)b46(t − u)du +
∫ t

0

μ1Q3,4(u)b47(t − u)du, (3.31)

Q2,12(t) =
∫ t

0

7∑
j=1

b5j(u)Qj(0)b51(t − u)du

+
∫ t

0

ηQ0,5(u)b51(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b55(t − u)du

+
∫ t

0

μ2Q3,4(u)b56(t − u)du +
∫ t

0

μ1Q3,4(u)b57(t − u)du, (3.32)

Q2,13(t) =
∫ t

0

7∑
j=1

b6j(u)Qj(0)b61(t − u)du

+
∫ t

0

ηQ0,5(u)b61(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b65(t − u)du

+
∫ t

0

μ2Q3,4(u)b66(t − u)du +
∫ t

0

μ1Q3,4(u)b67(t − u)du, (3.33)

and

Q2,23(t) =
∫ t

0

7∑
j=1

b7j(t)Qj(0)b71(t − u)du

+
∫ t

0

ηQ0,5(u)b71(t − u)du +
∫ t

0

(μ3Q3,4(u) + ηQ2,5(u))b75(t − u)du

+
∫ t

0

μ2Q3,4(u)b76(t − u)du +
∫ t

0

μ1Q3,4(u)b77(t − u)du. (3.34)

3.4. Evaluation of Qn,5(t), n ≥ 0

The transient system size probabilities Qn,5(t), n ≥ 0 are obtained by using Laplace transform.
Applying Laplace transform in equation (2.11), we have

Q̃n,5(s) =
(

λ

s + η + λ

)n

Q̃0,5(s) n ≥ 1. (3.35)
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On taking Laplace transform of equation (2.10) and using equation (3.35), we obtain

Q̃0,5(s) =
(

γ

s(s + η + λ)

)(
s + η

s + γ + η

)
provided

∣∣∣∣ λ

s + η + λ

∣∣∣∣ < 1, (3.36)

with the assumption that Q0,5(0) = 0.
Taking inverse Laplace transform, we get

Q0,5(t) =

[
γ

η + λ

[
1− exp{−(η + λ)t}

]]
×
[
1− γ

(γ + η)

]
+

γ2

(γ + η)(λ − γ)
[exp{−(γ + η)t} − exp{−(η + λ)t}] .

(3.37)

Using (3.36) in (3.35), we yield

Q̃n,5(s) =
λnγ

(s + η + λ)n+1

[
s + η

s(s + γ + η)

]
, (3.38)

with the assumption that Qn,5(0) = 0.
On Laplace inversion, we have for n > 0,

Qn,5(t) =

[
λnγ

n!(γ + η)

[
n∑

r=0

nCrt
n−rr!(−1)r exp{−(η + λ)t}

]]

×
[

η[− (η + λ)
]r+1 +

γ[− (λ − γ)
]r+1

]

+
λnηγ

(γ + η)(η + λ)n+1
+

λnγ2 exp{−(γ + η)t}
(γ + η)(λ − γ)n+1

· (3.39)

Thus equations (3.6), (3.20), (3.28)−(3.34), (3.37) and (3.39) completely determined all the transient-state
probabilities.

4. Steady-state probabilities

The steady-state system size probabilities for the three-heterogeneous servers queue with system disaster and
server repair are derived. Let

Qnj = lim
t→∞Q{X(t) = n, Y (t) = j}, n ≥ 0; j = 0, 1, 2, 3, 12, 13, 23, 4, 5.

From equation (3.19), for γ, η > 0, we get

Q̃3,4(s) =

[
s + γ − 1

2

[
w −

√
w2 − α2 − 2λ

]
+ c∗4(s)

]−1

×
[ ∞∑

r=0

pr

(
w −√

w2 − α2

2λ

)r

+ η

3∑
i=0

Q̃i,5(s)

+ η

∞∑
i=1

Q̃(i+3),5(s)

(
w −√

w2 − α2

2λ

)i

− c∗0(s) − η

3∑
i=1

c∗i (s)Q̃(i−1),5(s)]

]
.
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By using Tauberian theorem, we get

Q3,4 =

[
γ − 1

2

[
(λ + γ + μ) −

√
(λ + γ + μ)2 − α2 − 2λ

]
+ lim

s→0
sc∗4(s)

]−1

×
[
η

3∑
i=0

Qi,5 + η
∞∑

i=1

Q(i+3),5

(
(λ + γ + μ) −√(λ + γ + μ)2 − α2

2λ

)i

− lim
s→0

sc∗0(s) − η lim
s→0

s
3∑

i=1

c∗i (s)Q(i−1),5

]
. (4.1)

Taking Laplace transform of (3.6) and after considerable simplifications, we have for n ≥ 1

Q̃(n+3),4(s) =

[√
(s + λ + γ + μ)2 − α2

[
(s + λ + γ + μ) +

√
(s + λ + γ + μ)2 − α2

]n]−1

×
[[

(2λ)n
√

(s + λ + γ + μ)2 − α2
]
Q̃3,4(s)

+

[
η

∞∑
i=1

(2λ)n−i
(
(s + λ + γ + μ) +

√
(s + λ + γ + μ)2 − α2

)i

×
(

1 − α2i
(
(s + λ + γ + μ) +

√
(s + λ + γ + μ)2 − α2

)−2i
)]

Q̃(i+3),5(s)

+
∞∑

r=0

pr(2λ)n−r
(
(s + λ + γ + μ) +

√
(s + λ + γ + μ)2 − α2

)r

×
(
1 − α2r

(
(s + λ + γ + μ) +

√
(s + λ + γ + μ)2 − α2

)−2r
]
.

Then, again by using Tauberian theorem, we obtain

Q(n+3),4 =

[√
(λ + γ + μ)2 − α2

[
(λ + γ + μ) +

√
(λ + γ + μ)2 − α2

]n]−1

×
[ [

(2λ)n
√

(λ + γ + μ)2 − α2
]
Q3,4 +

[
η

∞∑
i=1

(2λ)n−i
(
(λ + γ + μ) +

√
(λ + γ + μ)2 − α2

)i

×
(
1 − α2i

(
(λ + γ + μ) +

√
(λ + γ + μ)2 − α2

)−2i)]
Q(i+3),5

]
. (4.2)

In a similar way, equation (3.21) gives

Q0,0 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗1j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗11(s)

+ η lim
s→0

sQ1,5b
∗
12(s) + [μ3 lim

s→0
sQ3,4 + η lim

s→0
sQ2,5]b∗15(s)

+ μ2 lim
s→0

sQ3,4b
∗
16(s) + μ1 lim

s→0
sQ3,4b

∗
17(s). (4.3)
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From (3.22), we have

Q1,1 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗2j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗21(s) + η lim

s→0
sQ1,5b

∗
22(s)

+ [μ3 lim
s→0

sQ3,4 + η lim
s→0

sQ2,5]b∗25(s)

+ μ2 lim
s→0

sQ3,4b
∗
26(s) + μ1 lim

s→0
sQ3,4b

∗
27(s). (4.4)

From (3.23), we get

Q1,2 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗3j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗31(s) + η lim

s→0
sQ1,5b

∗
32(s)

+ [μ3 lim
s→0

sQ3,4 + η lim
s→0

sQ2,5]b∗35(s)

+ μ2 lim
s→0

sQ3,4b
∗
36(s) + μ1 lim

s→0
sQ3,4b

∗
37(s). (4.5)

From (3.24), we obtain

Q1,3 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗4j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗41(s) + η lim

s→0
sQ1,5b

∗
42(s)

+ [μ3 lim
s→0

sQ3,4 + η lim
s→0

sQ2,5]b∗45(s)

+ μ2 lim
s→0

sQ3,4b
∗
46(s) + μ1 lim

s→0
sQ3,4b

∗
47(s). (4.6)

From (3.25), we yield

Q2,12 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗5j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗51(s)

+ η lim
s→0

sQ1,5b
∗
52(s) + [μ3 lim

s→0
sQ3,4 + η lim

s→0
sQ2,5]b∗55(s)

+ μ2 lim
s→0

sQ3,4b
∗
56(s) + μ1 lim

s→0
sQ3,4b

∗
57(s). (4.7)

From (3.26), we have

Q2,13 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗6j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗61(s) + η lim

s→0
sQ1,5b

∗
62(s)

+ [μ3 lim
s→0

sQ3,4 + η lim
s→0

sQ2,5]b∗65(s)

+ μ2 lim
s→0

sQ3,4b
∗
66(s) + μ1 lim

s→0
sQ3,4b

∗
67(s) (4.8)

and from (3.27), we get

Q2,23 =

⎡
⎣ 7∑

j=1

lim
s→0

sb∗7j(s)Qj(0) + η lim
s→0

sQ0,5

⎤
⎦ b∗71(s) + η lim

s→0
sQ1,5b

∗
72(s)

+ [μ3 lim
s→0

sQ3,4 + η lim
s→0

sQ2,5]b∗75(s)

+ μ2 lim
s→0

sQ3,4b
∗
76(s) + μ1 lim

s→0
sQ3,4b

∗
77(s). (4.9)
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Using (3.38), we obtain for n ≥ 1

Qn,5 =
λnηγ

(γ + η)(η + λ)n+1
· (4.10)

From (3.36), we get

Q0,5 =
ηγ

(γ + η)(η + λ)
· (4.11)

Remark 4.1. The aforementioned model ensures the convergence of steady-state probabilities due to the pres-
ence of system disaster. As the disaster rate γ is positive, the disaster event will eventually happen with
probability one and hence the proposed system would never be unstable.

5. Performance measures

In this section, we obtain some important performance measures of the system.

5.1. Probability of arriving customers joining the queue

The probability that an accomplishing customer is mandatory to wait in line at time t is accounted as

Q(X(t) ≥ 3) = Q3,4(t) +
∞∑

n=1

([∫ t

0

exp{−(λ + γ + μ)(t − y)}dy

]

×
[
λβn−1[In−1(.) − I(n+1)(.)]Q3,4(y)

+ η

∞∑
i=1

βn−iQ(i+3),5(y)[In−i(.) − I(n+i)(.)]

]

+ exp{−(λ + γ + μ)(t)}
∞∑

r=0

prβ
n−r[In−r(αt) − In+r(αt)]

)
. (5.1)

5.2. Probability that the system is in breakdown

The probability that the system is in breakdown at time t is alloted by

∞∑
n=0

Qn,5(t), =

[
γ

η + λ

[
1 − exp{−(η + λ)t}

]]
×
[
1 − γ

(γ + η)

]

+
γ2

(γ + η)(λ − γ)

[
exp{−(γ + η)t} − exp{−(η + λ)t}

]

+

[
λnγ

n!(γ + η)

[
n∑

r=0

nCrt
n−rr!(−1)r exp{−(η + λ)t}

]]

×
[

η[− (η + λ)
]r+1 +

γ[− (λ − γ)
]r+1

]

+
λnηγ

(γ + η)(η + λ)n+1
+

λnγ2 exp{−(γ + η)t}
(γ + η)(λ − γ)n+1

· (5.2)
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Figure 3. Transient-state probabilities.

Figure 4. Transient-state probabilities in working state.

6. Numerical interpretations

In order to gain more perception of the model behaviour, some numerical experiments are performed in this
section.
In Figures 3−5, the transient-state probabilities Q0,0(t), Q1,1(t), Q1,2(t), Q1,3(t), Q2,12(t), Qn,4(t)(n = 3, . . . , 9),
Qn,5(t)(n = 0, 1, . . . , 6) are plotted against time with the arrival rate λ = 10, service rates μ1 = 9, μ2 = 7.5,
μ3 = 5.5, system disaster rate γ = 3.5 and repair rate η = 5.5. We assume that initially the system is empty.
We see that initially all the probability curves except Q0,0(t) increases and then decreases gradually up to some
time interval. In addition, the probability distribution attains steady-state as time increases.

Figures 6 and 7 indicates the expected system size E(X(t)) for various values of system disaster rate γ and
repair rate η respectively with the arrival rate λ = 5 and service rates μ1 = 4, μ2 = 2 and μ3 = 1. The value
of E(X(t)) grows gradually with the increase in time t until it takes its maximum value and consequently the
system reaches the steady-state.

Figures 8 and 9 depicts the values Var(X(t)) for various values of γ and η respectively with λ = 5, μ1 = 4,
μ2 = 2 and μ3 = 1. The variance Var(X(t)) increases with time t until it takes its maximum value and
consequently the system transits to the steady-state.
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Figure 5. Transient-state probabilities in failure state.

Figure 6. Expected system size for various disaster rates γ and t corresponding to η = 4.5.

Figure 7. Expected system size for various repair rates η and t corresponding to γ = 2.5.
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Figure 8. The variation of the variance with evolution of system disaster γ and t with η = 4.5.

Figure 9. The variation of the variance with the effect of repair rate η and t with γ = 2.5.

7. Conclusion and future scope

The three-server heterogeneous queueing system with system disaster and server repair is discussed and the
explicit solution is derived in closed form for the time-dependent system size probabilities using generating
function technique. These probabilities and performance measures are useful to know the transient behaviour
of the system. Further, we wish to extend this model for c−heterogeneous servers with customers’ impatience.

Acknowledgements. The authors are grateful to the referees for their useful suggestions that lead to the considerable
improvement in the presentation of the paper.
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