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Abstract. Most of the research works conducted on Project Scheduling Problem (PSP) especially
Resource Constrain Project Scheduling Problem (RCPSP) either ignore equipment planning or schedule
the activities first, and then plan for the required equipment. Moreover, little works that consider
simultaneous PSP and Equipment Planning (EP) are based on the assumption that the equipment
is continuously available. However, in reality, equipment is subject to either random breakdowns or
deterministic maintenance programs that make it not being available all the time. In this paper, the PSP
and EP problems are simultaneously considered in closer to reality situations in which the equipment is
not always available. In order to minimize costs and overcome the associated functional and structural
complexities, the problem is first mathematically formulated. Then, a system simulator along with a
genetic algorithm is utilized to find a near optimum solution. As there are no benchmarks available in
the literature, a simulated annealing algorithm is also employed in combination with the simulator to
validate the obtained results. In addition, design of experiments is used to set the parameters of the
algorithms such that both the running times and the responses are minimized. Computational results
on 400 generated test problems of different sizes indicate good performance of the genetic algorithm
with respect to the basic parameters of the selected problem.
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1. Introduction

Project Scheduling Problem (PSP) is a concept rich in literature due to its wide variants in different usages,
various industrial conditions, and several types of activities, resources, and precedence relations. Besides, because
of the complexity involved, researchers are constantly seeking efficient solution procedures to solve the problem.

The problem addressed in this paper is a PSP with simultaneous consideration of equipment planning in which
the equipment is subject to random breakdowns, a problem that is classified NP-hard, due to its complexity [7].
To do this, the model introduced by Dodin and Elimam [7] is first extended to include equipment with stochastic
breakdowns. This makes them not being available all the time; making the model to be applicable to closer
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to reality problems that limit usage of the equipment. In this model, there are several costs including activity
crashing, equipment setup, transportation, equipment idle time, operator overtime, and penalty for delayed
completion. Besides, project worth and rewards for early completion are taken into account.

The equipment considered in this study is an expensive renewable resource that is available in intermittent
periods [3,7,10]. Human resources, machinery, tools, equipment and the like, are examples of renewable resources
available in limited and specific amounts at any period, to be used on only one project and renewable for the
next period.

In the scheduling literature, two actions are usually taken to process an activity after it is stopped because
of scheduled preventive maintenance or random breakdowns. Depending on these actions, the activities are so-
called resumable if they resume after equipment maintenance and repairs, or non-resumable if they do not [1,2].
In this paper, activities are assumed resumable without any loss of time and monitory penalty at the point where
the maintenance or the breakdown has occurred. Moreover, there are two approaches for dealing with scheduled
preventive maintenance and random breakdowns. The first approach considers preventive maintenance and
random breakdowns as constraints of the production system for which the scheduling is aimed. In the second
approach, preventive maintenance and random breakdowns are taken into account in the model with the aim
of finding a feasible schedule [11]. In this paper, the first approach is taken. Note that when an equipment
breakdown is taken into account as a random constraint (both in time of occurrence and the required repair
time), probability appears and the calculation of the project completion times is not possible using exact
methods. In other words, the completion time becomes a random variable having a probability distribution.
In this case, the project-scheduling and equipment-planning problem is categorized under dynamic scheduling
problem, for which the average completion time can be used as a suitable criterion.

The project-scheduling and equipment-planning problem, PS-EP thereafter, with random breakdown at hand
possesses two types of complexities: (a) algorithmic complexity; and (b) functional and structural complexity.
This problem, regardless of the random breakdowns, is NP-hard, where by increasing the number of activities,
complexity increases significantly [5,8,9,12–14,19]. This justifies the use of a meta-heuristic algorithm to find a
near-optimum solution. In addition, due to structural and functional complexities such as random breakdown of
the equipment, involved in real-world industries the mathematical formulation of the problem is hard to solve;
justifying the use of a simulator to obtain a near-optimal solution. Furthermore, we show how a meta-heuristic
algorithm can be integrated with a simulation approach for solving the dynamic scheduling problem.

The remainder of the paper is organized as follows. In Section 2, the problem is defined, the assumptions are
explicitly made, the notations are shown, and finally the problem is mathematically formulated. The proposed
algorithms of a simulator in combination with the meta-heuristics are discussed in Section 3. Parameter tuning,
testing, and comparisons come in Section 4. Finally, we summarize the findings and conclude the paper in
Section 5.

2. Mathematical formulation

The purpose of this research is to determine the optimal values of activity durations, activity finish times, and
equipment scheduling such that the total cost of the PS-EP problem with random breakdowns is minimized while
the constraints are satisfied. Before presenting the mathematical formulation, we first define the assumptions
used in the formulation.

2.1. Assumptions

The assumptions involved to the model are as follows:

• The project is defined as a network G (N, A), where N and A represente nodes and arc of the network,
respectively. Moreover, the first and the last activities are dummies and numbered 1 and N .

• Preemptions are prohibited.
• The project needs some equipment to perform the activities.
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• Equipment is not available at any moment due to its random breakdowns. These breaks occur while the
equipment is in its working status, not in its idle times.

• Activities are assumed resumable after a random breakdown occurs in equipment.
• Mean Time Between Failure (MTBF ) is the average time between two breakdowns of an equipment following

an exponential distribution. Therefore, the number of failures follows a Poisson distribution.
• Mean Time To Repair (MTTR) is the average time needed to repair an equipment.
• Equipment is assumed to have different MTBF and MTTR values.
• FEL (future events list) denotes a set of variables each of which representing the failure time of the equipment

after it commences processing. In other words, the FEL contains intervals between every two breakdowns of
the equipment. This set is updated after any equipment breakdown.

• LIFE denotes a set of variables each of which representing the life time of the equipment. At the time the
equipment suffers a breakdown, its LIFE variable is set to zero. This is due to the memory less property of
the exponential distribution.

• Overtime is added to normal working hours.
• Equipment cannot equip more than one activity at a time.
• If an activity needs more than one equipment, it should have all equipment together at the same time.

Therefore, if random breakdown occurs in equipment, the processing of the activity is stopped until the
equipment is repaired.

• Activity duration times can be crashed by consuming money.
• Equipment works on an activity and then remains idle while it is paid, until other activities are ready for

processing in other periods. Thus, this equipment can either be returned or remained idle until it is needed
or some activities that do not need equipment are crashed by consuming time and money to reduce the idle
time cost.

• Crashing can be done on both critical and non-critical activities.
• Activities are performed without error.

2.2. Alternatives to solve PSEP

The project requires special rented equipment and work on several project activities. This equipment works
on one or a number of activities, and then remains idle (while incurring charges in idle mode) until the other
activities are prepared for processing in other periods. As a result, the equipment can either be returned or kept
idle until it will be needed again.

There are several alternatives for scheduling the equipment to carry out the work. Figure 1 illustrates these
alternatives.

Alternative 1. The equipment initially travels the route from the main warehouse to the site to perform
the desired activity. Then, it remains idle until activity K that does not need the equipment is
completed. Subsequently, the equipment travels the route from site J to site R. Therefore, the
setup process will be completed only once. However, the usage period of the equipment could be
low and idle period costs may be substantial. Hence, the total cost includes the cost of idle time,
setup cost, and the cost of transportation from site J to site R.

Alternative 2. Initially, the equipment travels the route from the main warehouse to the site and performs the
desired activity. Then again, it will be returned to the main site and remains there until activity
K is completed. Afterwards, it will go back from the main site to work on activity R. Therefore,
the setup process will occur twice, we have no idle time, and have a policy similar to Lot for Lot
policy.

Alternative 3. Following the A1 state, while crashing activity K, we will reduce the machine-idle time in
order to decrease the project duration. Therefore, it does not matter that the activity is critical
or non-critical. Hence, the cost of idle time and the setup cost will be reduced, but the crashing
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Figure 1. Alternatives for scheduling the equipment in a three activities project.

cost will increase. Therefore, we should establish a balance between the costs of crashing, idle
time, and setup processing cost [7].

2.3. Introducing the costs associated with PSEP

The costs associated with PSEP are:

(1) Activities’ Crashing Cost: this cost is of continuous and linear type during the activity processing (for both
critical and non-critical activities).

(2) Holding Cost: this cost will be calculated at the end of each period as a percentage of the project cost.
(3) Rewards and Penalties Cost: the fact that a single equipment cannot do more than one activity at a time

will lead to the completion of the project beyond the due date. Thus, we establish and impose rewards and
penalties in order to compress and reduce idle time and decrease the number of setup repetition times.

(4) Transition Cost: this is the cost of moving the activity from one activity site to another (like the cost of
traveling from one city to another (Travelling Salesman Problem [TSP])).

(5) Setup Cost: this is the cost of preparing and transporting equipment for activities and also returning them
to the starting location or the main warehouse.

(6) Idle Time Cost: this is the cost incurred due to keeping the equipment out of work and unused in the site.
(7) Overtime Cost: this cost is associated with the equipment and the operators being used in overtime. Note

that the former is calculated on a daily basis and the latter is charged on an hourly basis.

The equipment has two types of motions, one from the main location of the equipment toward the activity
location, providing services, and eventually returning to the original location, and the other from one activity
to another, in which the equipment may travel from the main warehouse to the site and perform the desired
activity. Then again, it returns to the main site and remains there until activity K is completed. Afterward it
goes from the main site back to activity R. Therefore, the main site will be considered as a Hub. Then, two
virtual activities of N1 and N2 will be added to the project activities, where N1 represents the main site of the
equipment and N2 represents the Hub in the movement of equipment from one activity to another. Thus, the
virtual activity of N2 is the only activity that the equipment can pass more than once [7].
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2.4. The model

The indices, parameters, and decision variables of the model are as follows:
Indices

j = 1, . . . , N Index of project activities
i = 1, . . . , M Index of equipment used in the project
t = 0, 1, . . . , H Time index

Parameters
The parameters are grouped into classes related to activity, equipment, and project. The activity-based

parameters are:

Bj Set of activities immediately preceding activity j, where B0 is the set containing activities without pre-
decessor.

bj Cost of activity j at its crash duration ($).
cj Marginal cost of reducing the duration of activity j by one period.
uj Upper bound on the duration of activity j (normal activity time).
vj Lower bound on the duration of activity j (crash activity time).
ej The earliest completion time of activity j (assuming the project starts at time zero and the duration of

an activity is equal to its crash time).
lj The latest completion time of activity j (assuming the project can end at time Hand the duration of an

activity is equal to its crash time).
Aij Set of activities requiring equipment i.
EAij Set of activities that follow activity j and, along with activity j, require the use of equipment i (This set

includes a dummy activity N2).
EBij Set of activities that can precede activity j and, along with activity j, require the use of equipment i (it

also includes the dummy activity N2).
Jt Set of activities that can be completed in period t.

The equipment-related parameters are:

AEi Set of activities that require equipment i.
ci Idle-time cost of equipment i ($/period, where a period is assumed to be a day).
coi Overtime cost of crew required to operate equipment i for an extra shift ($/period).
EEi Set of activities visited last by equipment i.
gi Total set-up cost for a round trip of equipment i from the main storage to the project site.
rui Utilization rate of equipment i (hour/shift).
SEi Set of activities based on which equipment ican start.
sijk Change-over/set-up cost of equipment i as it shifts from activity j to activity k without going through the

hub ($).
aij Amount of overtime needed to operate equipment i to process activity j at its minimum duration (crash

duration). This assumes that the work content of the activity is constant.
cii Equipment idle time cost.

The project-related parameters are:

d The project due date.
h The absolute due date of the project, and the maximum length of the planning horizon (h > d).
p Penalty cost per period to complete the project beyond its due date ($/period).
r Reward paid per period to complete the project before its due date ($/period).
s Worth of completed activity representing the holding cost (% per period).
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Decision Variables

Δjt =

{
1

0

If activity j is completed in period t

Otherwise.

Yijk =

{
1

0

If equipment i processes activity k after activity j

Otherwise.
IMijk Idle time of equipment i if it waits to process activity k after processing activity j.
TOi Total overtime required to operate equipment i.
OTij Extra labor needed for overtime operation of equipment i on activity j.
Wt Project worth at the end of period t.
Wjt Worth of activity j that is completed in period t ($) (It is the cost of activity j that uses

renewable and non-renewable resources).
Xj Completion time of activity j.
Zj Duration of activity j.

The PSEP problem is formulated as a Mixed Integer Programming (MIP) model as follows:

Minimize

⎡
⎣ N∑

j=1

[bj − cj (Zj − vj)] +
M∑
i=1

gi

⎛
⎝ ∑

j∈SEi

YijN1 +
∑

j∈AEi

YijN2

⎞
⎠

⎤
⎦

+
M∑
i=1

∑
j∈AEi

∑
k∈Aij

(sijk) Yijk +
M∑
i=1

∑
j∈AEi

∑
k∈Aij

(cii) IMijk +
M∑
i=1

(coi)TOi

+
h−1∑
t=1

sWt −
d−1∑
t=en

r (d − t)ΔNt +
ln∑

t=d+1

p (t − d)ΔNt

Subject to:

Xj − Xk � Zj ; ∀ k ∈ Bj (2.1)

Xj � Zj ; ∀ j ∈ B0 (2.2)
Zj � uj; for j = 1, . . . , N (2.3)
Zj � vj ; for j = 1, . . . , N (2.4)
Xj � lj ; for j = 1, . . . , N (2.5)
Xj � ej ; for j = 1, . . . , N (2.6)

lj∑
t=ej

Δjt = 1; for j = 1, . . . , N (2.7)

lj∑
t=ej

t (Δjt) � Xj ; for j = 1, . . . , N (2.8)

∑
j∈SEi

YijN1 = 1; for j = 1, . . . , N (2.9)

∑
j∈EEi

YijN1 = 1; for j = 1, . . . , N (2.10)

∑
k∈EBij

Yijk −
∑

k∈EAij

Yijk = 0; j ∈ AEi ∪ N2 (2.11)

∑
k∈EAj

Yijk = 1; for i = 1, . . . , M and j ∈ AEi (2.12)
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∑
k∈EBik

Yijk = 1; for i = 1, . . . , M and k ∈ AEi (2.13)

IMijk � Xk − Xj − Zk − h (1 − Yijk) (2.14)
IMijk � 0; for i = 1, 2, . . .M, j ∈ AEi, k ∈ Aij (2.15)
OTij � aij − rui (Zj − vj) ; for i = 1, 2, . . .M, j ∈ AEi (2.16)
OTij � 0 (2.17)

TOi =
∑

j∈AEi

OTij (2.18)

Wjt � (bj − cj (Zj − vj)) −
⎛
⎝ N∑

j=1

bj

⎞
⎠ (1 − Δjt) ; for j = 1, 2, . . .N & t ∈ [ej, lj ] (2.19)

Wt � Wt−1 +
∑
j∈Jt

Wjt; for t = 1, 2, . . . , eN (2.20)

Wt � Wt−1 +
∑
j∈Jt

Wjt −
⎛
⎝ N∑

j=1

bj

⎞
⎠ΔNt; for t = eN + 1, . . . , h (2.21)

Wt � 0; for t = 1, 2, . . . , h (2.22)
W0 = 0. (2.23)

The total cost in the objective function consists of eight terms. These terms are (1) the activity crashing cost.
This is the cost of reducing the activity duration from its normal time. It is assumed to be linear and continuous
over the duration of the activity. While such cost is normally required to crash critical activities, it shows that
crashing non-critical activities cannot be of merit. (2) The set-up cost for shipping equipment to and from the
main storage. (3) The cost for equipment transition from one activity to another. The transition cost might
affect the equipment sequence between various activities requiring its services and their durations. This cost
resembles the cost of moving from one city to another for the well-known Traveling Salesman Problem (TSP).
(4) The equipment idle time. The cost incurred due to keeping the equipment unused on project site, rather
than returning it to the main storage. Typically, the equipment stays idle on the project site after completing
an activity and waiting until another activity to use it. (5) The crew cost for operating equipment during
overtime. It is assumed that the equipment cost is charged on a daily basis, while the operators’ cost is incurred
per shift. Moreover, operators’ overtime is incurred on hourly basis. In order to reduce the equipment setup
and idle time costs, the crew might operate the equipment more than 8 h per day leading to higher operators
overtime cost and lower equipment idle and setup costs. (6) The project worth. This is the cost of the project
worth. It is accumulated as the project goes on. This is usually computed as a percentage of the project value
at the end of each period. This cost is similar to the material inventory holding cost. However, in our case it
is the cost of holding the completed work of the project before the project is ready for final delivery. (7) The
rewards for early completion, and (8) the penalty for delayed completion. It is a well-known fact that resource
scheduling can lead into project delays. In order to counteract the impact of equipment sequencing on the
project schedule and its ability to meet the project due date, a penalty is introduced for delays beyond such due
dates. Conversely, one might be willing to complete the project ahead of its due date in order to be able to claim
an offered reward. A penalty or a reward is typically computed in monetary amount per period of early or late
completion, respectively. Constraints (2.1) and (2.2) take into consideration the precedence relation between
each pair of activities (i, j), where i immediately precedes j. Constraints (2.3) and (2.4) limit activity durations
between their normal and crash time. Constraints (2.5) and (2.6) set bounds on the activity completion times.
Constraints (2.7) and (2.8) indicate activity completion time and guarantee that each activity must be completed
within the interval [ej , lj]. Constraints (2.9)−(2.13) are of a flow-conservation type that limit transitions of the
equipment because each equipment initially starts working on the project, then, it must eventually leave the
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project, and finally, if it works on an activity must leave it to another activity requiring its service or go to the
hub, represented by dummy activity N2. The rest of the constraints indicate the limitations associated with
equipment idle time, operator overtime cost, and project worth [7].

Taking into account that expressing limitation of industrial problems such as equipment random failure is
difficult to model due to its structural and functional complexities, a hybrid simulation and meta-heuristic
algorithm is proposed in the next section to find a near-optimum schedule.

3. The proposed hybrid algorithm

The proposed hybrid algorithm is a combination of a simulator and a meta-heuristic algorithm. The simulator
is used to model random failures of the equipment. When a failure occurs in equipment, not only is the duration
of the repair time needed, but also its lifetime, which is the time the equipment will work after the repair until
its next failure, should be calculated. Moreover, as equipment failures occur only during the processing time
of activities, the equipment idle and set up time do not contribute to its lifetime, and hence, only the activity
processing times between two failures are considered. Furthermore, the repair time of equipment is added to the
activity completion time. We must note that since the simulation output is random due to its stochastic input,
independent replications in which all parameters remain constant are required to estimate the mean completion
time of the network activities. Moreover, FEL and LIFE, which are obtained based on independent exponential
random generations, are used to simulate the system. Note that after the equipment suffers a breakdown and is
repaired, its lifetime is considered equal to when it had started processing the activities (due to the memory-less
property of the exponential distribution.) In the next subsection, a genetic algorithm is developed to accompany
the simulator in finding a near optimum schedule.

3.1. Genetic algorithm

While the general characteristics of GA follow, we refer the reader to the numerical illustration given in
Section 3.6 for more details:

• A chromosome is coded as a 2 × Nmatrix. The first row contains durations and the second row shows the
completion times of the activities.

• In the first generation, a uniformly distributed random duration between the normal and crashing times is
initially generated for each activity. Then, the duration is randomly selected for each activity between its
low and high value chromosomes as follows:
– The low value chromosome is a 2-row matrix. The first row is the crash duration vj and the second row

is the early completion time ej . The early completion time, ej is determined using vj starting at time
zero.

– The high value chromosome is also a 2-row matrix. The first row is the normal duration uj and the
second row is the late completion time lj . The late completion time, lj , is determined using uj ending
the schedule at the deadline.

• A specific percentage is used for elitism.
• A specific percentage is used for a one-point crossover operation.
• A specific percentage is used for a random multi-point mutation operation. The maximum number of mu-

tation points comes from the number of activities divided by five. For instance, if the project consists of 10
activities, then a maximum of two random activities are selected in a chromosome to be mutated.

After the initial population generation, the next populations are randomly created using the genetic operators,
where ranking chromosomes using their fitness is employed. The pseudo code of this algorithm follows.

3.1.1. The pseudo code of GA

1. Read inputs including problem data and genetic parameters;
2. Let the current schedule be set based on ECT (early completion time);
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3. Do from the first to the last generation;
3.1. Save the start solving time;
3.2. If first loop, then create initial population, otherwise create population using genetic parameters;
3.3. Do for all chromosomes with fitness less than the number of activities (N).

3.3.1. Evaluate chromosome using the “eval psep.m” function described in Section 3.3.
3.3.2. Run the failure simulation function, “failure sim psep.m,” for each chromosome and obtain the

failure chromosome and the relative objective value.
3.3.3. Make sure the failure chromosome does not exceed the deadline. If the completion time of the

chromosome is greater than the deadline, let the fitness be equal to zero. Otherwise, let the fitness
be equal to the number of activities.

3.3.4. End of Loop;
3.4. Calculate chromosome ranks of this generation: For each chromosome divide its objective function by

its fitness. Since the fitness is either zero or N , the objective function for chromosomes with no fitness
is infinite. Hence, chromosome with fitness will be sorted increasingly.

3.5. Save the best chromosome with its solving time;
3.6. End of loop;

4. Calculate the best schedule using the best chromosome and its related failure chromosome.
5. Finish.

As there are no benchmarks available in the literature, in the next subsection a simulated annealing algorithm
is developed to validate the results obtained.

3.2. The simulated annealing algorithm

Similar to GA, Simulated Annealing (SA) is a search algorithm with the advantage of not being trapped in
the local minima. In this algorithm, the initial population is generated similar to the GA and the pseudo code
follows:

1. Input data.
1.1. Nx: Number of initial solutions (it is equal to one).
1.2. T0max: The initial maximum temperature.
1.3. αSA: The cooling parameter.
1.4. Chain: Number of Markov chains.
1.5. Step: Number of steps in each chain.
1.6. N0: Number of neighbors in the first step.

2. Save the initial solution as the current and the best solution.
3. Do from the first to the last chain.

3.1. T = T0max, where T is the current temperature.
3.2. Ns = N0, where Ns is the number of neighbors in the current step.
3.3. Do from the first to the last step.

3.3.1. Do from 1 to Ns

3.3.1.1. Create a neighbor with the following innovative method.
3.3.1.2. Choose some activities randomly so that the number of selected activities decreases while

the number of neighbors increases.
3.3.1.3. Select a portion from these activities.
3.3.1.4. Change the durations and finish times of the activities in random.
3.3.1.5. Evaluate the result using the “eval psep.m” function.
3.3.1.6. Run failure sim psep.m for each solution and obtain the failure solution and the relative

objective value.
3.3.1.7. Make sure the failure solution does not exceed the deadline.



1198 A. SHAFIKHANI ET AL.

3.3.1.8. If the completion time of the solution is greater than the deadline, let the objective value
be infinite (to not to be chosen for the probability algorithm of selecting a neighbor).

3.3.1.9. Run the probability algorithm to select the neighbor
3.3.1.9.1. Calculate Δ: the difference between the objective values of the current and the
neighbor solution.

3.3.1.9.2. If Δ < 0 (the neighbor is better)
3.3.1.9.2.1. Let the current solution be the neighbor solution.
3.3.1.9.2.2. If neighbor is better than the best solution, let the best solution be the neighbor
solution.

3.3.1.9.3. If Δ > 0 (The neighbor is worse).
3.3.1.9.4. Calculate P : the probability of selecting neighbor using P = e−Δ/T

3.3.1.9.5. If P < Y (Y is a uniform random number between 0 and 1)
3.3.1.9.5.1. Select the worse neighbor as the current solution.

3.3.2. End of loop neighbors Ns

3.3.3. Decrease the temperature using T = T (αSA)
3.4. End of loop Steps.
3.5. Save the solution time for the current Markov chain.
3.6. Find the best solution in the current chain.

4. End of loop of the Markov chain.
5. Return to the best solution.
6. End of the SA algorithm.

In the next three subsections, the two common functions used in the GA and SA algorithms and the simulator
responsible for modelling equipment failures are described.

3.3. The “eval psep.m” function

This function initially evaluates a two-row schedule, selects the activity with the lowest start time (the most
important activity has the lowest start time), and matches it with the problem conditions. Then, if at any stage
the schedule is not matched, this function will change the schedule and provide a feasible schedule as output.
The input of this function includes the schedules that have not been evaluated yet, the number of activities, the
precedence relations, the earliest start times, and the equipment. The output is the evaluated feasible schedule.

3.4. The “failure psep.m” function

Before describing this function, it is essential to notice some points.

• After a breakdown occurs, it is required to calculate the repair time, i.e. the duration of the repair.
• The lifetime of the equipment, the time which has been consumed on the equipment from the last breakdown

event, is necessary to be saved.
• As a breakdown occurs while an activity is being processed, the lifetime of the equipment at a particular

time is defined as the total processing times of the activities which the equipment has processed from the
last breakdown event up to that time. In addition, neither idle times nor setup times are taken into account
for the lifetimes of the equipment.

• We add the repair time to the completion time of the considered activity j.
• On account of the fact that the problem has probabilistic nature, it is essential to replicate the computation

of simulator several times (no.simu) for each sequence when all the features of the problem remain constant.
• We calculate the mean of the project duration obtained in the previous step as the fitness value for each

sequence used in the genetic algorithm.

This function initially evaluates working equipment and adds the repair time to the duration of the activities
being processed in the case of a failure. Then, it returns the total durations. The inputs of this function are
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MTBF, MTTR, Life, FEL, and active equipment. The output is the activity duration time, the updated FEL,
and Life of equipment.

3.5. Pseudo code of the simulator

The failure simulator is implemented to account for stochastic failures. This algorithm first simulates the
equipment failure on one chromosome with the number of replications equal to no.rep. Then, it returns the
related failure chromosome and the value of the objective function as the output. The steps involved in the
simulator follow

1. Save the first row of the chromosome (durations).
2. Set the finish times and the value of the objective function to zero.
3. Do the following for no.rep times.

3.1. Initialize the FEL for all equipment; FEL(equipment) = exp-rand (MTBF ).
3.2. Set the lifetime equal to zero for all equipment.
3.3. Do following for activity j = 1 to N .

3.3.1. Find equipment required to process activity j.
3.3.2. Run the “failure psep.m” function and find the duration of activity j after failure implementation.

3.3. Finish.
3.4. Create failure chromosome based on the duration of all activities after failure implementation.
3.5. Evaluate failure chromosome using the “eval psep.m” function.
3.6. Calculate the objective function value for the failure chromosome.
3.7. End of simulation.

4. Calculate the average value of the objective functions.
5. Find the nearest chromosome to the average.
6. Return the failure chromosome and its objective function value.

In the next section, an illustrative example is given to demonstrate the application of the proposed methodology.

3.6. An illustrative example

Consider a project consisting of 10 activities and three equipment with initial data given in Table 1.

Table 1. Data for the illustrative example.

Normal duration Crash duration Preceding activities Activity j
3 1 – 1
3 1 1 2
4 2 1 3
3 1 2 4
3 2 2 5
3 1 3 6
3 2 3 7
3 1 4,6 8
3 2 5,7 9
2 1 8,9 10

Activities requiring equipment Equipment i
1, 5, 7, 9 1

5, 6, 7, 9, 10 2
1, 7, 8, 9 3
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Based on the data given in Table 1, the first row of the chromosome matrix indicates the activity durations
and the second row shows their completion times as:

Chromosome =
1 1 3 2 3 2 2 2 3 2
8 4 11 13 8 4 9 13 11 9

Then, the prior start time of the activities becomes

prior start = 7 3 8 11 5 2 7 11 8 7

First iteration:
Activity 1 with the lowest time is selected from the list of activities that can be started. The start time vector

of activity is updated to:
Start = 0 0 0 0 0 0 0 0 0

Read the required equipments of the selected Activity 1. Since the assigned equipments 1 and 3 are dedicated
to this activity, set the release time of all other activities that need these equipment and still are not selected
(activities 5, 7, 8, and 9), equal to the finish time (2.1) of the selected Activity 1. The activities 5, 7, 8, and 9
should wait until processing of Activity 1 is finished. Then, the release time vector becomes

Release = 0 0 0 0 1 0 1 1 1 0

Second iteration:
Find feasible activities based on the precedence relations. Between activities 2 and 3, which can be processed

after Activity 1, the activity with the lowest time in the prior start vector is chosen (Activity 2), and the start
and release time vectors become:

Start = 0 1 0 0 0 0 0 0 0 0

Release = 0 0 0 0 1 0 1 1 1 0

Third iteration:
Again, according to precedence relations, one activity among activities 3, 4, and 5 is selected (Activity 5).

Then, the start and release time vectors become:

Start = 0 1 0 0 2 0 0 0 0 0
Release = 0 0 0 0 1 5 5 1 5 5

Thus, the resulting feasible schedule is

Finish time = 1 2 4 4 5 7 9 14 12 16

To implement the equipment failure, the simulator is used here to find both the failure chromosome and its
objective function value. The procedure repeats until a near optimum schedule is found.

4. Parameter calibration, testing, and comparison

Several algorithms with different scenarios that have been developed to solve various problems forced re-
searchers to create a group of standard problems having various scenarios to provide comparisons of the offered
algorithms in solving them. Davis and Patterson [4] were the first who created 83 standard test problems for
PSP. Then, other researchers including [20–22] added more problems adding up to 1100 test problems. In addi-
tion, Kolisch et al. [15] introduced a software package called Progen to generate standard scheduling problems
with resources. A standard instance set was also built as PSPLIB and is used today for testing the algorithms.
However, since the PSP-EP with random failure has initially been introduced in this study, there is no ready
instance library available to test the proposed methodology. Therefore, Rangen2 [6, 24] is employed based on
the control parameters given in Table 2 to produce test problems.
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Table 2. Parameter levels of the PS-EP problem.

Control parameter Value
Number of activities 7 10 20 30
Number of equipment types 0;1;3 0;1;3 0;1;3 0;1;3
Number of activities requiring equipment 0;1;7 0;1;7 0;1;12 0;1;12
Activity crash time [1,10] [1,10] [1,10] [1,10]
Activity normal time vj+[1,3] vj+[1,3] vj+[1,3] vj+[1,3]
Reward paid [0,50] [0,50] [0,50] [0,50]
Penalty cost [0,50] [0,50] [0,50] [0,50]
Worth of completed activity [0.01,0.05] [0.01,0.05] [0.01,0.05] [0.01,0.05]
Set-up cost [1500,3000] [1500,3000] [1500,3000] [1500,3000]
Idle time cost [300,600] [300,600] [300,600] [300,600]
Operator overtime [60,100] [60,100] [60,100] [60,100]
Reduction cost ($/pd.) [200,600] [200,600] [200,600] [200,600]
Crash cost ($) [2000,5000] [2000,5000] [2000,5000] [2000,5000]
Sijk [1000,2500] [1000,2500] [1000,2500] [1000,2500]
d Randomly selected with factor 1.5, 1.75, 2.00, 2.25, 2.5
H Randomly selected with factor 1.5, 1.75, 2.00, 2.25, 2.5

Table 3. Search range and the levels of GA parameters.

Parameter range Low (–1) Medium (0) High (+1)
population size (x1) n − 3n n 2n 3n

crossover probability (x2) 0.6–1 0.6 0.8 1
mutation probability (x3) 0–0.3 0 0.15 0.3

max iteration (x4) 50–150 50 100 150
no.rep (x5) 20–40 20 30 40

Table 4. Search range and the levels of SA parameters.

Parameter range Low (–1) Medium (0) High (+1)
Temp. decrease (z1) 0.8–0.99 0.8 0.895 1
Max init. temp (z2) 40–80 40 60 80
Max iterations (z3) 20–100 20 60 100

no.rep (z4) 20–40 20 30 40

4.1. Tuning the parameters

For genetic algorithm, the population size, crossover probability, mutation probability, maximum number of
iterations, and number of simulation replications (no.simulator), denoted by x1, x2, x3, x4, x5, respectively, are
the parameters needing calibration. The parameters of the SA to be tuned are the rate of temperature reduction,
maximum initial temperature, maximum number of iterations, and no.simulator, denoted by x1, x2, x3, x4,
respectively. These parameters are calibrated by utilizing an experimental design based on the generated problem
instances. The goal is to find optimum levels of the significant parameters that optimize two responses; (1) the
objective function value of a near-optimum schedule as an accuracy measure, and (2) the CPU time required to
find the solution. Tables 3 and 4, determine the search range and the levels of the parameters of GA and SA,
respectively. Here, each parameter is coded as –1, 0, and 1 for low, medium, and high levels, respectively.

To analyze the results statistically, 400 problems were selected with 7, 10, 20, and 30 activities along with 1
to 3 equipments for testing. A fractional factorial design with four central points, called the central composite
design (CCD), is used for experiments. Then the developed GA and SA algorithms run these test problems
based on the design. The result of the analysis of variance indicates that there is a significant curvature for both
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responses (accuracy performance Y1 and CPU time performance Y2) in GA, for which second order models are
required to be estimated. However, only the CPU time response (Z2) has a significant curvature and hence a
second order model is needed.

The CCD is the most popular and efficient class of designs used for fitting a second order model. Generally,
CCD consists of a 2k factorial (or fractional factorial of resolution V) with nF factorial runs, 2k axial points, and
nc center runs. There are two parameters in the CCD that must be specified; the distance α of the axial points
from the design center and the number of center runs. The choice of α depends on the rotatability of the design;
that is the variance of the predicted response is constant on spheres. Since the purpose of RSM is optimization
and the location of the optimum is unknown prior to running the experiments, it makes sense to use a design
that provides equal precision of estimation in all directions. For a spherical region of interest, the best choice of α
from a prediction variance viewpoint for the CCD is to set α =

√
k [16]. When the region of interest is a sphere,

the design must include center runs to provide reasonably stable variance of the predicted response. Generally,
3 to 5 center runs are recommended [16]. However, since the region of interest in this study is cuboidal, a useful
variation of the CCD is the central composite face-centered (CCF) design in which α = 1. The CCF does not
require as many center points as the spherical CCD does. In practice, while nc is 2 or 3, it is sufficient to provide
good variance of prediction throughout the experimental region. Sometimes more center runs are employed to
give a reasonable estimation of the experimental error [17]. In this research, a 25−2 fractional factorial CCF
design with 4 central runs and 10 axial points (±1,0,0,0,0), (0, ±1,0,0,0), . . . ,(0,0,0,0,±1), is selected to estimate
the second order models for GA algorithm. Besides, a 24−1 fractional factorial CCF design with 4 central runs
and 8 axial points, (±1,0,0,0), (0,±1,0,0), . . . ,(0,0,0,±1), is selected to estimate the second order model for SA
algorithm.

Tables 5 and 6 show the levels of the parameters and the responses for GA and SA, respectively. The results
in these tables are used to estimate the quadratic model of each response. Equations (4.1) and (4.2) are related
to the responses of the genetic algorithm and equations (4.3) and (4.4) correspond to the responses of SA.

Y1 = (0.957734− 0.009571∗x1 − 0.015029∗x2 − 0.001041∗x3 − 0.008210∗x4 + 0.002736∗x5 + 0.001633∗x2
1

+ 0.007483∗x2
2 − 0.000511∗x2

3 + 0.006121∗x2
4 − 0.004848∗x2

5 + 0.006214∗x1∗x2 + 0.001450∗x1∗x3

+ 0.003895∗x1∗x4 − 0.001238∗x1∗x5 − 0.003403∗x2∗x3 + 0.003339∗x2∗x4 + 0.004828∗x2∗x5) (4.1)
Y2 = (0.358603 + 0.205341∗x1 + 0.035704∗x2 − 0.015180∗x3 + 0.201672∗x4 + 0.040695∗x5 − 0.004364∗x2

1

− 0.042739∗x2
2 + 0.026942∗x2

3 + 0.043027∗x2
4 + 0.000570∗x2

5 + 0.022838∗x1∗x2 − 0.052839∗x1∗x3

+ 0.090150∗x1∗x4 + 0.020177∗x1∗x5 − 0.013520∗x2∗x3 − 0.009460∗x2∗x4 + 0.005054∗x2∗x5); (4.2)

Z1 = (0.981222− 0.000193∗z1 − 0.000827∗z2 − 0.002738∗z3 − 0.000848∗z4 − 0.001789∗z2
1 + 0.001275∗z1∗z3

− 0.000300∗z1∗z4) (4.3)
Z2 = (0.488047 + 0.002503∗z1 − 0.000249∗z2 + 0.352963∗z3 + 0.051416∗z4 + 0.011136∗z2

1 + 0.015041∗z2
2

+ 0.005301∗z2
3 + 0.022077∗z2

4 + 0.034735∗z1∗z2 + 0.001084∗z1∗z3 + 0.002355∗z1∗z4). (4.4)

Tables 7–10 comprehend the results of analysis of variance for the normalized fitness and normalized CPU time
of GA and SA. Note that although there is no curvature in the fitness response surface of SA, a quadratic model
is used.

Since the goal is to find the GA parameter values such that both the solution accuracy and the correspond-
ing solution time of the algorithm are simultaneously optimized, a bi-objective decision-making problem with
conflicting objectives is needed to be solved. Goal planning is one of the powerful methods for solving multi-
objective decision-making problems that attempts to minimize deviation from a goal. To accomplish this, the
goal and the constraints must be presented accurately. The fuzzy set theory can be used in planning the goal
programming, and a group weight ideal planning model is offered with the degree of importance appropriate to
the goals [18, 23]. To solve this problem, the payoff tables should first be created (Tabs. 11 and 12).
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Table 5. Parameter levels and the responses of the GA.

Runs
Input variables Response variables

Fitness CPU Time
x1 x2 x3 x4 x5 Y1 Y2

1 0 0 0 0 0 0.9558 0.3366
2 –1 –1 1 1 –1 0.9844 0.3174
3 –1 1 1 –1 –1 0.9497 0.0830
4 1 –1 –1 –1 –1 0.9737 0.2232
5 0 0 0 0 0 0.9534 0.3338
6 –1 1 –1 –1 1 0.9791 0.0858
7 1 1 1 1 1 0.9513 0.9096
8 –1 –1 –1 1 1 0.9809 0.2460
9 0 0 0 0 0 0.9589 0.3361
10 0 0 0 0 0 0.9529 0.3290
11 1 1 –1 1 –1 0.9446 0.9408
12 1 –1 1 –1 1 0.9747 0.2258
13 1 0 0 0 0 0.9510 0.5719
14 –1 0 0 0 0 0.9702 0.1613
15 0 1 0 0 0 0.9514 0.3639
16 0 –1 0 0 0 0.9815 0.2925
17 0 0 1 0 0 0.9574 0.3827
18 0 0 –1 0 0 0.9595 0.4131
19 0 0 0 1 0 0.9569 0.6157
20 0 0 0 –1 0 0.9733 0.2123
21 0 0 0 0 1 0.9569 0.4122
22 0 0 0 0 –1 0.9514 0.3308

Table 6. Parameter levels and the responses of the SA.

Runs
Input variables Response variables

Fitness CPU Time
z1 z2 z3 z4 z1 z2

1 1 –1 1 –1 0.9560 0.8144
2 –1 1 1 –1 0.9516 0.8148
3 –1 –1 1 1 0.9491 0.9822
4 –1 –1 –1 –1 0.9577 0.1635
5 –1 1 –1 1 0.9584 0.1989
6 1 1 1 1 0.9495 0.9982
7 1 –1 –1 1 0.9567 0.2036
8 0 0 0 0 0.9506 0.4936
9 0 0 0 0 0.9564 0.4929
10 1 1 –1 –1 0.9539 0.1657
11 0 0 0 0 0.9542 0.4939
12 0 0 0 0 0.9576 0.4971
13 1 0 0 0 0.9501 0.4962
14 –1 0 0 0 0.9498 0.4937
15 0 1 0 0 0.9481 0.4907
16 0 –1 0 0 0.9756 0.5071
17 0 0 1 0 0.9469 0.8150
18 0 0 –1 0 0.9558 0.1633
19 0 0 0 1 0.9478 0.5508
20 0 0 0 –1 0.9555 0.4610
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Table 7. Analysis of variance for normalized fitness of GA.

Source DF Seq SS Adj SS Adj MS F P-value
Regression 17 0.003159 0.003159 0.000186 11.70 0.014

Linear 5 0.002193 0.000787 0.000157 9.91 0.023
Square 5 0.000577 0.000577 0.000115 7.26 0.039

Interaction 7 0.000389 0.000389 0.000056 3.50 0.122
Residual Error 4 0.000064 0.000064 0.000016

Lack-of-Fit 1 0.000041 0.000041 0.000041 5.46 0.102
Pure Error 3 0.000023 0.000023 0.000008

Total 21 0.003222
S = 0.003986 R-Sq = 98.0% R-Sq(adj) = 89.6%

Table 8. Analysis of variance for normalized CPU time of GA.

Source DF Seq SS Adj SS Adj MS F P-value
Regression 17 1.02270 1.022695 0.060159 58.98 0.001

Linear 5 0.99119 0.171996 0.034399 33.72 0.002
Square 5 0.01074 0.010744 0.002149 2.11 0.245

Interaction 7 0.02077 0.020766 0.002967 2.91 0.159
Residual Error 4 0.00408 0.004080 0.001020

Lack-of-Fit 1 0.00404 0.004045 0.004045 341.11 0.000
Pure Error 3 0.00004 0.000036 0.000012

Total 21 1.02678
S = 0.03194 R-Sq = 99.6% R-Sq(adj) = 97.9%

Table 9. Analysis of variance for normalized fitness of SA.

Source DF Seq SS Adj SS Adj MS F P-value
Main Effects 4 0.00007150 0.00007150 0.00001787 1.88 0.315

2-Way Interactions 3 0.00003932 0.00003932 0.00001311 1.38 0.399
Curvature 1 0.00000041 0.00000041 0.00000041 0.04 0.848

Residual Error 3 0.00002850 0.00002850 0.00000950
Pure Error 3 0.00002850 0.00002850 0.00000950

Total 11 0.00013973
S = 0.00308227 R-Sq = 79.60% R-Sq(adj) = 25.21%

Table 10. Analysis of variance for normalized CPU time of SA.

Source DF Seq SS Adj SS Adj MS F P-value
Regression 11 1.29237 1.29237 0.117488 387.44 0.000

Linear 4 1.27233 1.27233 0.318083 1048.94 0.000
Square 4 0.01034 0.01034 0.002584 8.52 0.006

Interaction 3 0.00971 0.00971 0.003235 10.67 0.004
Residual Error 8 0.00243 0.00243 0.000303

Lack-of-Fit 5 0.00242 0.00242 0.000483 138.87 0.001
Pure Error 3 0.00001 0.00001 0.000003

Total 19 1.29480
S = 0.01741 R-Sq = 99.8% R-Sq(adj) = 99.6%
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Table 11. Payoff table for GA.

Y2 Y1 Pay off table
0.66275 0.94421 Min Y1

0.343925 0.947676 Min Y2

Table 12. Payoff table for SA.

Z2 Z1 Pay off table
0.986409 0.975802 Min Z1

0.488046 0.980538 Min Z2

The membership function of these two objectives can be achieved according to equations (4.5) and (4.6) for
GA and equations (4.7) and (4.8) for SA.

μ (Y1) =

⎧⎪⎨
⎪⎩

1 Y1 < 0.94421
0.947676−Y1

0.947676−0.94421 0.94421 � Y1 � 0.947676

0 Y1 > 0.947676

(4.5)

μ (Y2) =

⎧⎪⎨
⎪⎩

1 Y2 < 0.343925
0.66275−Y2

0.66275−0.343925 0.343925 � Y2 � 0.66275

0 Y2 > 0.66275

(4.6)

μ (Z1) =

⎧⎪⎨
⎪⎩

1 Z1 < 0.975802
0.980538−Z1

0.980538−0.975802 0.975802 � Z1 � 0.980538

0 Z1 > 0.980538

(4.7)

μ (Z2) =

⎧⎪⎨
⎪⎩

1 Z2 < 0.488046
0.986409−Z2

0.986409−0.488046 0.488046 � Z2 � 0.986409

0 Z2 > 0.986409.

(4.8)

Therefore, we have:

MinZ =
2∑

j=1

wjαj

Subject to:
αj � μ (Yj) ; j = 1, 2

−1 � xi � 1 ; i = 1, 2, . . . , 5 for GA
i = 1, 2, . . . , 4 for SA

αj ∈ [0, 1] ; j = 1, 2

(4.9)

where αj is the achievement degree and wj is the weight of the jth goal. Moreover, since the solution accuracy
is more important than the CPU time performance, w1 = 0.75 and w2 = 0.25 are considered.

Solving (4.9) finally leads us to the optimal values of the GA and SA parameters given in Tables 13 and 14,
respectively.

4.2. Experiments and comparisons

In order to validate the results obtained by the hybrid simulator and GA, and to evaluate the performance
of the proposed algorithms, the computer program is coded using MATLAB and then applied on 400 instance
problems. The programs run on a PC with Pentium 2.8 GHz processor with 512 MB RAM. The problems are
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Table 13. Optimal parameters of GA.

parameters Optimal value
population size 2N

Crossover 0.9
Mutation 0.3

max iteration 138
no.rep 30

Table 14. Optimal parameters of GA.

Parameters Optimal value
Temp. decrease 0.99

Max initial Temp 80
Max iterations 100

no.rep 30

Table 15. T-Paired test with 0.95 confidence level.

H0 Group Sample Standard Deviation t-Statistic p-value Decision Result

F
it

n
es

s

µ1t = µ2t 7activities 225.776 –1.89 0.085 Accept H0 Not Significant
µ1S = µ2S 10activities 1059.38 –2.17 0.053 Accept H0 Not Significant
µ1M = µ2M 20activities 1417.35 –8.33 0+ Reject H0 Significant
µ1L = µ2L 30activities 3008.89 –8.8 0+ Reject H0 Significant
µ1A = µ2A All 3452.4 –5.94 0+ Reject H0 Significant

C
P

U
T

im
e µ1t = µ2t 7activities 1.12711 –13.3 0+ Reject H0 Significant

µ1S = µ2S 10activities 0.52489 –12.93 0+ Reject H0 Significant
µ1M = µ2M 20activities 6.2453 8.34 0+ Reject H0 Significant
µ1L = µ2L 30activities 16.5112 9.09 0+ Reject H0 Significant
µ1A = µ2A All 21.0443 4.29 0+ Reject H0 Significant

categorized in four classes of 7, 10, 20, and 30 activities, and the t-paired test with confidence level of 0.95 was
used to analyze the results shown in Table 15. In this table, μij ; i = 1, 2, j = t, S, M, L, T stands for the mean
response of either fitness or CPU time on 7-activity (t), small (S), medium (M), large (L) size problems and
all problems (A), for the GA and SA, respectively (i = 1, 2).

The results in Table 15 not only validate the results obtained by the combined simulator and GA algorithm,
but also show that GA performs better than SA, especially in larger size problems.

4.3. Sensitivity analysis

The results of sensitivity analysis on the values of the rewards paid per period to finish the project before
the due date, r, and the penalty cost per period to complete the project beyond its due date, p, shows that
when r increases, more activities would crash. Meanwhile, when p and r are both positive, the same scheduling
of when only r itself is positive will be obtained. However, when only p is positive, the project will progress in
the direction ending in d. The reason behind this is to prevent penalty. Furthermore, by increasing the holding
costs, the value of the target function will increase, resulting in reduction of the project time.

Figures 2 and 3 depict the converging diagram of problem A30410 (30 activities, 4 equipment, and 10 activities
requiring equipment) in random breakdown and non-random breakdown states, respectively.
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Figure 2. A30410 Without failure.

Figure 3. A30410 Without failure.

5. Conclusions and recommendations for future research

The contributions of this paper were mainly threefold: first, a new closer to reality problem that had not
been addressed in the literature was introduced in this paper. This problem, which was the project-scheduling
problem with simultaneous equipment planning, had two types of complexities: algorithmic complexity, and
structural and functional complexity. Second, due to the structural and functional complexity of the potential
problem, a simulator was used to simulate the problematic space of the problem. To solve the problem, some
characteristics of the proposed algorithm were used including the new coding method, employed operators,
hybrid algorithm, and high convergence speed of the algorithm in finding a near-optimal solution. Third, by
using an experimental design and an ideal fuzzy scheduling model, the fitness and the CPU time performances
were optimized simultaneously.
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Future research in this area can be divided into two categories: The first is related to the problem formulation,
and the other is involves the solving approach. Future research works related to the problem formulation are
recommended as follows:

• Focusing on other characteristics of the failure event like non-resumable mode to continue processing after
stopping due to random breakdowns

• Using other probability distributions to determine the time between two failures and repair time (such as
geometric, binomial, etc.)

• Considering more than one type of equipment
• Using GPR instead of AON network
• Considering fuzzy parameters
• Considering preventive repair and maintenance

The main reasons for using meta-heuristic approaches were the efficiency and flexibility in practical situations.
Future works about the solving approach are recommended as follows:

• Using other competing algorithms such as imperialist competitive algorithm, Tabu search, ant colony, etc
• Using another hybrid algorithm such as the resolution recovery

Acknowledgements. The authors are thankful for constructive comments of the anonymous reviewers. Taking care of the
comments significantly improved the presentation.
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