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OPTIMAL ASSIGNMENT OF SELLERS IN A STORE WITH A RANDOM
NUMBER OF CLIENTS VIA THE ARMED BANDIT MODEL ∗
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Abstract. The technique of Dynamic Programming for Armed Bandits is employed for solving the
problem of maximizing the randomly depreciated gains of a store with unknown (finite random) number
of clients with fixed (finite) number of sellers which skills are also random and will be represented as
probability distributions which are themselves random. Hence, Armed Bandits’s framework will be
considered with horizon being a random variable with a finite support, that far as the authors know,
it has not yet been discussed. In addition, numerical examples are detailed in order to illustrate the
versatility and practical implementation of the approach presented in this paper in two general contexts,
given by the number of available products: one product only, such situation coincides with that in which
the number of sales needs to be maximized. And, more than one product, in this case, the amount of
sales is not necessarily ruled by a Bernoulli distribution.
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1. Introduction

Maximizing gains is one of the most important objectives for every store, however, randomness may cause
this labor harder since several levels of uncertainty may be considered:

(1) Known number of clients and amount of sales beforehand (non random),
(2) sellers with random sales with known distribution, and
(3) sellers with random sales with unknown distribution.

If such store can only provide service to one client at a time (this assumption remains valid in all the sequel)
then the strategy is clear: you may have a lot of employees but you will always “use” the best one of them.
But, what if we do not know which one is the best seller? In case 2, some appropriated stochastic order may be
considered in determining the “best seller”.

Case 3 is, in some how, more complicated since certain distribution is considered in the set of probability
distributions of the total amount sold by every employee, we will assume that such distribution is known and
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1 Facultad de Ciencias F́ısico Matemáticas, Benemérita Universidad Autónoma de Puebla, San Claudio y 18 sur. San Manuel,
72570, Puebla, Mexico. vvazquez@fcfm.buap.mx

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2017015
http://www.rairo-ro.org
http://www.edpsciences.org
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that such knowledge comes from the product prices, an analysis of their “résumés”, the interview prior the
engagement, the training period, etc. (this may happen is the sellers are new at the store).

We may consider another random factor: the number of clients. In case 1 this randomness is not considered,
but, in situations 2 and 3 it may be incorporated, then it seems reasonable that a discrete random variable with
a finite support can be used to model this random factor.

Finally, random discount factors may be taken into account in order to consider the depreciation of money.
In economic and financial models, the discount factor is determined by interest rates (r): ( 1

1+r ), which in turn
are uncertain. This uncertainty in various situations is due to external random noises.

We will consider then, a store with k sellers for whom probability distribution of their sales are themselves
random as well as the number of clients and the discount factors.

The store’s manager needs to design an assignment strategy in order to distribute each of the customers that
will arrive at the store among his personal for maximizing the randomly discounted sum of gains. After a certain
number of clients have arrived, such strategy might be based on:

(1) The distribution of the probability distribution of sales of each seller,
(2) The previous selections, and
(3) The observed performances.

The approach that we will discuss is the one offered by the Armed Bandit model and the Dynamic Programming
technique [1], since an Armed Bandit problem is related to sequential selections from k stochastic processes
(known as arms, and in the context of this paper as sellers) characterized by parameters typically unknown.
From the context of the assignment problem, we observe that both time and horizon (number of clients) may
be considered finite, and hence the Dynamic Programming technique is a suitable tool.

To the best of our knowledge, the Armed Bandit model with random horizon has not been explored yet and
we consider that the previous assignment problem is an intuitive way for its motivation. Of course that the
considerations on the random components of the problem and the problem itself may be extrapolated to more
complex situations.

The distribution of this paper is as follows: Section 2 is devoted to the Armed Bandit Model as well as its
mathematical definition considering randomness in discount sequence and the horizon. Section 3 deals with an
appropriate version of the Dynamic Programming technique that in Section 4 will be useful for solving some
examples of the assignment problem. Finally, a conclusion and some references are provided.

2. The armed bandit model

2.1. Introduction

In this section, Armed Bandit model will be presented in detail. In addition, some ideas will be considered
initially for the case in which the number of clients (horizon) is known beforehand (there exists an appointment
system) and discount factors are deterministic, then it will be shown that if the number of customers is not
random and the discount sequence is random non-observable (or observable as in the particular case presented
in Sect. 2.3) there are no additional complications in its solution. Finally, a random number of clients will
be considered and will be demonstrated that the initially explored ideas remain valid. Therefore, the most
general case considered in this paper (random distributions of amount of sales, random number of clients and
random discount factors) will be solved via a version of Dynamic Programming for Armed Bandits with finite
deterministic horizon and deterministic discount factors after making some adjustments.

In a Bandit Problem, we must consider k stochastic processes from which one of them must be selected
sequentially at some points of time in order to observe certain numerical characteristic. Even at each time of
observation only one process is selected, we assume that the non observed processes produce also the numerical
characteristic of interest and hence, we may consider a total of k sequences of random variables. In other words,
an observation in any particular sequence is made when the corresponding process is selected, in addition the
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classical objective is to maximize the expected value of the discounted payoff
∑n

m=1 αmZm where Zm is the
observed variable at stage m, (αm) is a sequence of non-negative random variables known as the discount factor
sequence and n is the horizon of the bandit. At this point, we consider that horizon of the bandit is not random
and finite.

We write D for representing the space of probability distributions on R together with the topology of con-
vergence in distribution. This space is: separable, locally compact, metrizable and complete [6].

The space Dk of order k-tuples of members of D will be considered with the corresponding product topology.
The component Qi of (Q1, Q2, . . . , Qk) ∈ Dk governs observations in arm i. An element G ∈ D(Dk) represents
the prior knowledge on the k arms.

It can be shown [3] that there exist a probability space (Ω,F , P) such that

{Xim : 1 ≤ i ≤ k, m = 1, 2, . . . , n} (2.1)

is an independent family of random variables, where Xim represent result of arm i at stage m.

2.2. Discount sequences

Let us consider the space A of all the deterministic discount sequences and a probability distribution H on A,
such distribution represents the prior knowledge of the decision maker about the discount sequence. In addition,
we assume that

E

[
n∑

m=1

αm

∣∣∣∣∣ H

]
< ∞,

and that arms are independent of the discount sequence.
In this paper, we will notice three different approaches on the discount sequence:

(1) Random Non observable,
(2) Random Observable, and
(3) Deterministic.

On the one hand, in the non observable case, the discount factors are not observed and, hence, arm selected
at any time do not depend on them. On the other hand, in the observable case arms selected may depend on
previous discount factors as well as on previous observations.

The deterministic sequences correspond to a degenerated case in which probability distribution H = δA with
A ∈ A; i.e., the discount sequence is known and the selections may be considered as non dependent on the
discount sequence.

2.3. Strategies

In this section we will consider a non observable discount sequence and, at its final part we will discuss the
observable case in a particular context. A strategy τ assigns to each partial history of observations an integer
between 1 and k, which indicates the arm that will be selected at next stage. Thus, τ(φ) indicates the arm
selected initially when strategy τ is followed, τ(z1) indicates the arm that will be chosen at stage two, given
that z1 was observed initially, τ(z1, z2) is the arm selected at stage three given that at stage one was observed
z1 while at stage two z2 was observed, etc. We have then, that the sequence of observed random variables is
recursively defined by

Z1 = Xτ(φ),1, (2.2)
Zm = Xτ(Z1,...,Zm−1),m, 1 < m ≤ n. (2.3)

In addition, we will assume that each component Qi of (Q1, Q2, . . . , Qk) ∈ Dk has a finite first absolute moment
with G-probability one and that this moment at the same time has finite G-expectation.
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We have then that Zm is integrable since

|Zm| ≤ ∨k
i=1 |Xi| ≤

k∑
i=1

|Xi| (2.4)

and for each strategy τ∣∣∣∣∣Eτ

[
n∑

m=1

αmZm

∣∣∣∣∣ G, H

]∣∣∣∣∣ ≤ Eτ

[
k∑

i=1

|Xi|
∣∣∣∣∣ G

]
E

[
n∑

m=1

αm

∣∣∣∣∣ H

]
< ∞, (2.5)

where the subscript τ indicates the dependence of the expectation on the strategy τ .
The number Eτ [

∑n
m=1 αmZm|G, H ] is called the worth of strategy τ and will be denoted by W (G,H, τ).

Hence, we have the following definition.

Definition 2.1. The value of the (G,H)-bandit is given by

V (G,H) = sup
τ

W (G,H, τ) (2.6)

= sup
τ

Eτ

[
n∑

m=1

αmZm

∣∣∣∣∣ G, H

]
. (2.7)

A strategy τ for which V (G,H) is attained is called optimal.

Since arms are independent of the discount sequence, we have for each τ that:

W (G,H, τ) = Eτ

[
n∑

m=1

αmZm

∣∣∣∣∣ G, H

]

=
n∑

m=1

E [αm|H ] Eτ [Zm|G] (2.8)

= Eτ

[
n∑

m=1

E [αm|H ] Zm

∣∣∣∣∣ G

]
.

If for simplicity βm := E [αm|H ] then

W (G,H, τ) = Eτ

[
n∑

m=1

βmZm

∣∣∣∣∣ G

]
. (2.9)

In addition, if we consider the non random discount sequence B = (β1, β2, . . . , βn) ∈ A then, we observe that

W (G, δB, τ) = Eτ

[
n∑

m=1

βmZm

∣∣∣∣∣ G

]
(2.10)

or in the simpler way

W (G, B, τ) = Eτ

[
n∑

m=1

βmZm

∣∣∣∣∣ G

]
. (2.11)

We may conclude that in the non observable case, discount sequence (αm) may be replaced by the deterministic
one (βm), to be more specific:

W (G, H, τ) = W (G, E [A|H ] , τ) (2.12)
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and
V (G, H) = V (G, E [A|H ]) . (2.13)

If we consider a sequence of independent random variables (Ui) with corresponding distributions H1, H2, . . .
which may themselves be random with distributions η1, η2, . . . then we have that

E [Ui] =
∫
D

E [Ui|Hi] ηi(dHi) (2.14)

hence, if αm = Πm
i=1Ui then E [αm] = Πm

i=1E [Ui]. In addition, if the random variables U1, U2, . . . have the same
mean μ (for example, if all of them have the same distribution) then E [αm] = μm.

The observable case is simplified in the sense that the random discount sequence can be replaced by the
deterministic sequence (E [A|H ]) if the latter context is held [2, 3].

Hence, we may consider the random non observable and the observable cases in the multiplicative context
exposed above as equivalent to a bandit with non random discount sequence. Henceforth, we will assume that
discount sequences are non random by virtue of the last discussion; i.e. in an implicit way, we will work with
random non observable, deterministic or random observable (only in the special case previously presented) dis-
count sequences. Then, we will refer to the (G, A)-bandit, the worth of strategy τ will be denoted by W (G, A, τ),
the value of the (G, A)-bandit will be given by V (G, A) and in the conditional expectations the dependence on
H will be removed.

Hence, if we consider that the horizon is a finite discrete random variable T [5] with probability mass function
ρk = P[T = k] for k = 1, 2, . . . , N then, we must find

W (G, A, τ) = Eτ

[
T∑

m=1

αmZm

∣∣∣∣∣ G

]
, (2.15)

in addition, if we assume independence between T and the observed sequence Z1, Z2, . . . , ZN then [4]

W (G, A, τ) = Eτ

[
T∑

m=1

αmZm

∣∣∣∣∣ G

]

= E

[
Eτ

[
N∑

m=1

αmZm

∣∣∣∣∣ G, T

]]

=
N∑

n=1

Eτ

[
n∑

m=1

αmZm

∣∣∣∣∣ G

]
ρn

=
N∑

m=1

N∑
n=m

Eτ

[
αmZm

∣∣∣∣∣ G

]
ρn

= Eτ

[
N∑

m=1

αmPmZm

∣∣∣∣∣ G

]
,

where Pm = P(T ≥ m) for m = 1, 2, . . . , N . With this discussion, we have seen that the assignment problem
with random horizon may be transformed into another one with finite (non random) horizon with discount
sequence γk = αkPk for k = 1, 2, . . . , N and γk = 0 for k ≥ N + 1.

In summary, we may work with a bandit problem with a random non-observable (or observable in the case
discussed earlier) discount sequence and a finite random horizon and reduce it into a problem with deterministic
finite horizon and a deterministic discount sequence. This is the main reason for which the following section
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deals with the technique of Dynamic Programming for bandits with finite horizon and deterministic discount
sequence.

Optimal strategy in a random horizon situation is ready for making N assignments, however, given the
random nature of the horizon (number of clients), it is possible that not all of them have to be made.

For a given discount sequence A = (α1, α2, . . . , αn), we denote by A(m) to the sequence (αm+1, αm+2, . . . , αn).
At the second stage, the decision maker will be faced with a bandit characterized by the discount sequence A(1)

and the posteriori distribution of (Q1, . . . , Qk). For indicating the dependence of this posteriori distribution
on the observation at stage one, the symbol (x)iG will be used for denoting the conditional distribution of
(Q1, . . . , Qk) given observation of x in arm i.

In the case that G = F1 × . . . × Fk we have that:

(x)iG = (x)i(F1 × . . . × Fk) = (F1 × . . . (x)Fi × . . . × Fk),

where (x)Fi is the conditional distribution of Qi given the observation of x in arm i.

3. Dynamic programming for finite horizon

The following theorem contains the Dynamical Programming technique for armed bandits which will be used
in order to solve our assignment problem.

Theorem 3.1. There exists a strategy τG,A for every A ∈ A with finite horizon and every G ∈ D(Dk) such
that {

(G, A, z1, . . . , zm−1) : τ(G,A)(z1, . . . , zm−1) = i
}

is a measurable set of D(Dk) ×A× R
m−1 for every i = 1, 2, . . . , k and m = 1, 2, . . . and that is optimal for the

(G, A)-bandit. In addition, the function
(G, A) → V (G, A) (3.1)

is measurable and satisfies

V (G, A) = ∨k
i=1E

[
α1Xi1 + V ((Xi1)iG, A(1)|G)

]
. (3.2)

The proof is made via mathematical induction on the horizon of the bandit and may be found in [3].
For computational purposes we write (3.2) as follows:

V (G, A) = ∨k
i=1

∫
Dk

∫
R

[α1x + V ((x)iG, A)] Qi(dx)G (d(Q1, . . . , Qk)) (3.3)

= ∨k
i=1

∫
D

∫
R

[α1x + V ((x)iG, A)] Qi(dx)Fi(dQi). (3.4)

In order to simplify expressions, we will write G(m) for representing conditional distributions in Dk after
stage m.

If the (G, A)-bandit has horizon one then, since horizon of A(1) is zero, we have that for any distribution G(1)

V (G(1), A(1)) = 0, (3.5)

hence (3.3) simplifies to:

V (G, (α1, 0, . . .)) = α1 ∨k
i=1

∫
Dk

∫
R

xQi(dx)G (d(Q1, . . . , Qk)) (3.6)

= α1 ∨k
i=1

∫
D

∫
R

xQi(dx)Fi(dQi). (3.7)

An optimal selection is any arm for which the maximum is attained.



RANDOM CLIENTRY AND BANDITS 1125

If the (G, A)-bandit has horizon 2, in order to use (3.3) we need the values of the bandits having A(1) as
discount sequence. We observe that we only need to consider distributions of the form (x)iG for some possible
observation x in arm i, the values V ((x)iG, A(1)) are obtained with (3.6). When (3.3) is used for finding V (G, A),
the optimal initial selections are those indicated by the i’s for which the maximum in (3.3) is attained.

In general, when we are in the presence of a (G, A)-bandit with horizon n < ∞ the first step is to calculate all
the possible conditional distributions G(m) of (Q1, . . . , Qk) given the corresponding observations. Since A(n−1)

has horizon one, every V (G(n−1), A(n−1)) is obtained via (3.6). Next, every V (G(n−2), A(n−2)) is calculated by
(3.3). This process may be repeated until V (G, A) is found.

4. Dynamic programming and the seller’s assignment problem

In this section we will apply the Dynamic Programming technique to our problem of maximizing the randomly
discounted gains of a store with a random number of clients. For this, we will consider two cases:

(1) There is only one product available at the store.
(2) There are many products for selling.

4.1. One product only

When there is only one product in the store, but sales are not sure (seller must convince to customer of
buying the product), the price of such product (P ) is not so important if we are only interested in optimal
selections and not in the optimal gain. In this case the problem of making the biggest gain coincides with the
problem of maximizing the number of sales.

We have that the corresponding element G ∈ D(Dk) is supported by a subset of

(Bernoulli distributions) × . . . × (Bernoulli distributions),

i.e., we may consider that each Qi is a Bernoulli distribution (since every sale may or may not be made) with
unknown associated parameter θi. Hence, for simplicity we may say that G is a distribution on [0, 1]k.

Because of the arm’s nature, we will write (1)i for representing a success in arm i (seller i succeeded in its
sale) and (0)i for a failure in arm i (seller i did not make the sale).

Next, we present some examples of particular choices of G for illustrative purposes:

1) Non independent arms. Let us assume that after an evaluation of the “résumés” of two sellers who used
to work together in another store, the interview prior the engagement and the training period, the manager
concludes that both are excellent or very bad sellers and suppose also that the manager thinks that is much
more probable the second possibility. Explicitly

G =
4
5
δ(1/10,15/100) +

1
5
δ(9/10,8/10). (4.1)

If we assume that only two customers will arrive at the store and that distribution H assigns probability 1
2 to

the discount sequences (1, 1) and (.9, .81) then E [A|H ] = (19
20 , 181

200 ).
First of all, we find posteriori distributions G(2) through the likelihood function and the prior distribu-

tion G [7]. Let us make only the details for finding (1)1G. We must find a, b ∈ R such that:

(1)1G = aδ(1/10,15/100) + bδ(9/10,8/10). (4.2)

We have from Bayes’ law that

a = P

[
θ1 =

1
10

, θ2 =
15
100

|(1)1

]
=

1
10

4
5

1
10

4
5 + 9

10
1
5

=
4
13

,
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hence

(1)1G =
4
13

δ(1/10,15/100) +
9
13

δ(9/10,8/10). (4.3)

Via similar arguments we find that

(0)1G =
36
37

δ(1/10,15/100) +
1
37

δ(9/10,8/10) (4.4)

(1)2G =
3
7
δ(1/10,15/100) +

4
7
δ(9/10,8/10) (4.5)

(0)2G =
17
18

δ(1/10,15/100) +
1
18

δ(9/10,8/10). (4.6)

From (3.6), it can be seen that

200
181

V ((1)1G, A(1)) =
(

4
13

1
10

+
9
13

9
10

)
∨
(

4
13

15
100

+
9
13

8
10

)
=

85
130

∨ 132
130

200
181

V ((0)1G, A(1)) =
(

36
37

1
10

+
1
37

9
10

)
∨
(

36
37

15
100

+
1
37

8
10

)
=

45
370

∨ 62
370

200
181

V ((1)2G, A(1)) =
(

3
7

1
10

+
4
7

9
10

)
∨
(

3
7

15
100

+
4
7

8
10

)
=

39
70

∨ 365
700

200
181

V ((0)2G, A(1)) =
(

17
18

1
10

+
1
18

9
10

)
∨
(

17
18

15
100

+
1
18

8
10

)
=

26
180

∨ 335
1800

·

Through (3.3), we find that

V (G, A) =
579
968

∨ 401
869

=
579
968

·

Then, the optimal strategy is as follows

τ(φ) = 1 (4.7)

and

τ(z1) =

{
2 z1 = (1)1

2 z1 = (0)1.

In other words, seller number one must be chosen initially and no matter what his performance was, the second
client will be assigned to seller number two even if he makes a sale. Then, in some sense in this example the
optimal strategy does not depend on the observed performances.

2) Arms with uniform distributions. Let us consider the following example considered in [3]: now assume
that there are three sellers at the store. Suppose in addition that third seller is known in the sense that we know
his skills; i.e. θ3 is known, for example θ3 = 8/15. Prior distribution of other two sellers is uniform in [0, 1]2, this
may be seen as the situation in which no prior information about the skills of such sellers is available. Then,
we have that G = F1 × F2 × F3 where F1 and F2 are uniform distributions on [0, 1] and F3 = δ8/15. Finally,
suppose that the number of customers which arrive at the store is three. In order to keep this example as simple
as possible, we assume that the discount sequence is non observable or observable in the multiplicative case
explained in Section 2.3 and that E [A|H ] = (1, 1, 1).

For being able to find the distributions G(2), we note that both θ1 and θ2 have Beta posterior distribu-
tions [7]. Let us illustrate the calculations for one of the values of V (G(2), A(2)); for example, in order to find
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(0)1 (1)1 (0)1 (0)1 (0)1 (1)1 (1)1 (1)1

(1/2,1/2,8/15) (1/3,1/2,8/15) (2/3,1/2,8/15) (1/4,1/2,8/15) (1/2,1/2,8/15) (3/4,1/2,8/15)
(0)2 (1/2,1/3,8/15) (1/3,1/3,8/15) (2/3,1/3,8/15)
(1)2 (1/2,2/3,8/15) (1/3,2/3,8/15) (2/3,2/3,8/15)

(0)2 (0)2 (1/2,1/4,8/15)
(0)2 (1)2 (1/2,1/2,8/15)
(1)2 (1)2 (1/2,3/4,8/15)

Figure 1. m = 2.

(0)1 (1)1

(198/180,198/180,192/180) (156/180,198/180,192/180) (242/180,210/180,216/180)
(0)2 (198/180,156/180,192/180)
(1)2 (210/180,242/180,216/180)

Figure 2. m = 1.

V
(
(1)1(1)1G, A(2)

)
we must calculate and compare the following three integrals:

V
(
(1)1(1)1G, A(2)

)
=

Γ (4)Γ (2)
Γ (3)Γ (1)3

∫ 1

0

∫ 1

0

θ3
1dθ1dθ2

∨ Γ (4)Γ (2)
Γ (3)Γ (1)3

∫ 1

0

∫ 1

0

θ2
1θ2dθ1dθ2

∨
∫

R

xdδ8/15

=
3
4
∨ 1

2
∨ 8

15

In addition, we observe the following commutativity:

V
(
(a)i(b)jG, A(2)

)
= V

(
(b)j(a)iG, A(2)

)
,

for a, b = 0, 1 and i, j = 1, 2, 3. In addition, if first two clients are assigned to seller three then
V
(
(a)3(b)3G, A(2)

)
= 1

2 ∨ 1
2 ∨ 8

15 = 8
15 , this can be seen in the blue cell in Figure 1. Green cells at the

same figure help us to find V
(
(a)3(b)iG, A(2)

)
, for a, b = 0, 1 and i = 1, 2.

We may find now V (G(1), A(1)). For example, for V
(
(1)1G, A(1)

)
we have that

V
(
(1)1G, A(1)

)
=
(

2
∫ 1

0

[
0 + V

(
(0)1(1)1G, A(2)

)]
(1 − θ1) +

[
1 + V

(
(1)1(1)1G, A(2)

)]
θ1dθ1

)

∨
(∫ 1

0

[
0 + V

(
(0)2(1)1G, A(2)

)]
(1 − θ1) +

[
1 + V

(
(1)2(1)1G, A(2)

)]
θ1dθ1

)

∨
(

7
15

[
0 + V

(
(0)3(1)1G, A(2)

)]
+

8
15

[
1 + V

(
(1)3(1)1G, A(2)

)])

=
242
180

∨ 210
180

∨ 216
180

=
242
180

·

In Figure 2 we observe every value of V (G(1), A(1)) where again, blue cell correspond to V ((1)3G, A(1)) and
V ((0)3G, A(1)).
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Figure 3. Optimal strategies with τ(φ) = 1.

 

 

 

 

 

  

    

Figure 4. Optimal strategies with τ(φ) = 2.

Finally:

V (G, A) =
∫ 1

0

[(
0 + V ((0)1G, A(1))

)
(1 − θ1) +

(
1 + V ((1)1G, A(1))

)
θ1

]
dθ1

∨
∫ 1

0

[(
0 + V ((0)2G, A(1))

)
(1 − θ2) +

(
1 + V ((1)2G, A(1))

)
θ2

]
dθ2

∨ 7
15

(
0 + V ((0)3G, A(1))

)
+

8
15

(
1 + V ((1)3G, A(1))

)
=

310
180

∨ 310
180

∨ 294
180

·

We have then, two optimal initial selections: τ(φ) = 1 and τ(φ) = 2. In Figures 3 and 4 we observe the
resulting optimal strategies that, unlike the previous example, they depend on the performances of sellers.

For example, if seller number one is chosen for attending to first client and he makes a sale, then the second
one will be assigned to the same seller but, if he does not make a second sale the third customer will be assigned
to seller three.

4.2. More than one product

Let us present now some examples in which there is more than one product in stock; in other words, distri-
butions Qi are not necessarily of Bernoulli type.
1) Consider that we have two employees and that seller number one, always make a sale with the known
probability mass function

Q1 =
3
4
δ3 +

1
4
δ5 (4.8)

and consequently F1 = δQ1 . For seller number two, let us consider that his sales follow a Binomial distribution
with parameters 4 and θ, where θ is a uniform random variable over (0, 1) (no information about his skills is
available). Finally, we assume that G = F1 × F2 and that n = 3.
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In this case, we consider the random observable discount sequence

(U1, U1U2, U1U2U3) ,

with U1, U2 and U3 independent random variables with corresponding distributions H1, H2 and H3 where H1

is the Binomial(3, 1/4) distribution (η1 has a point of mass one), H2 is a Bernoulli distribution uniformly
distributed on the set of all Bernoulli distributions (η2 may be seen as uniform on (0, 1)) and H3 has the
following distribution:

η3 =
1
2
δ1
H1

+
1
2
δ2
H1

,

with
H1

1 =
1
3
δ1 +

2
3
δ2 and H2

1 = δ 1
3
.

After some calculations, it may be found that E[A|H ] = (3
4 , 1

2 , 19
12 ).

In order to find the values of V ((k)i(r)jG, A(2)), we may consider the following cases:

Case 1. Both outcomes come from seller number two; i.e., we must find V ((k)2(r)2G, A(2)), for k, r = 0, 1, 2, 3, 4.
In this case, we may see that (k)2(r)2F2 is Beta with parameters k + r + 1 and 9 − k − r [7]. Hence we must
contrast the following integrals:

19
12

[
3 × 3

4
+ 5 × 1

4
∨ 1

B(k + r + 1, 9 − k − r)

∫ 1

0

8θ2θ
k+r
2 (1 − θ2)8−k−rdθ2

]
=

133
24

∨ 19
15

(k + r + 1),

where B(·, ·) stands for the Beta function. Hence, V ((k)2(r)2G, A(2)) = 133
24 ∨ 19

15 (k+r+1). We may easily conclude
that if the sum of sales made by seller number two is at least $4 then the maximum in (3.6) corresponds to
him/her.

Case 2. If there is one assignation to each seller, then we must find

V ((k)1(r)2G, A(2))

for r = 0, 1, 2, 3, 4 and k = 3, 5. In this case:

V ((k)1(r)2G, A(2)) =
133
24

∨ 19
12

× 1
B(r + 1, 5 − r)

∫ 1

0

4θ2θ
r
2(1 − θ2)4−rdθ2 =

133
24

∨ 19
18

(r + 1),

we conclude then, that the maximum in (3.6) always is attained by arm one.

Case 3. If both observed results come from arm one, we have to find

V ((k)1(r)1G, A(2))

for k, r = 3, 5. We observe that

V ((k)1(r)1G, A(2)) =
133
24

∨ 19
12

×
∫ 1

0

4θ2dθ2 =
133
24

·

In other words, if only arm one is observed, then the maximum in (3.6) is again reached by the arm one.
The above discussion may be summarized in Figures 5 and 6, where we omit the comparison between arms

since the value associated with arm one is always the same (133/24). In addition, green cells represent those
situations in which the maximum is reached by the arm one, and brown cells to those in which the value
associated with arm two is bigger.
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(0)2 (1)2 (2)2 (3)2 (4)2 (0)2(0)2 (0)2(1)2 (0)2(2)2 (0)2(3)2 (0)2(4)2

(3)1 19/18 38/18 57/18 76/18 59/18 19/15 38/15 57/15 76/15 95/15
(5)1 19/18 38/18 57/18 76/18 59/18

(3)1(3)1 19/6
(5)1(5)1 19/6
(3)1(5)1 19/6

Figure 5. m = 2.

(1)2(1)2 (1)2(2)2 (1)2(3)2 (1)2(4)2 (2)2(2)2 (2)2(3)2 (2)2(4)2 (3)2(3)2 (3)2(4)2 (4)2(4)2

57/15 76/15 95/15 114/15 95/15 114/15 133/15 133/15 152/15 171/15

Figure 6. m = 2.

In order to find V ((k)iG, A(1)) for i = 1, 2 via (3.3), we find after some calculations that:

V ((k)1G, A(1)) =
175
24

∨
∫ 1

0

4∑
j=0

[
j/2 + V

(
(j)2(k)1G, A(2)

)](4
j

)

θj
2(1 − θ2)4−jdθ2 =

175
24

∨ 154
24

=
175
24

·

In addition, we also have that

V ((k)2G, A(1)) =
175
24

∨
∫ 1

0

4∑
j=0

[
j/2 + V

(
(j)2(k)2G, A(2)

)](4
j

)
θk+j
2 (1 − θ2)8−k−jdθ2

=

⎧⎪⎪⎨
⎪⎪⎩

175
24

if k = 0, 1, 2

9.7966 if k = 3

12.2037 if k = 4.

We may deduce that if, seller number one is observed at stage one then, posterior customer has to be assigned
to the same seller, but if we observed seller 2, we will continue with this arm only if a sale of $3 or $4 is made.

Finally, we find V (G, A) from (3.3) as follows:

V (G, A) =
[
3
3
4

+ V ((3)1G, A(1))
](

3
4

)
+
[
5
3
4

+ V ((5)1G, A(1))
](

1
4

)

∨
∫ 1

0

4∑
j=0

[
j
3
4

+ V ((j)2G, A(1))
](

4
j

)
θj
2(1 − θ2)4−jdθ2

= 10.2751∨ 9.9167 = 10.2751.

From previous discussion, we find that the only optimal strategy is to choose arm one at every stage.

2) Let us now consider a store with three employees and assume that the number of customers that may come
into the store is 1, 2, 3 or 4, all of them with probability 1/4 of occurrence. In addition, the discount sequence
is deterministic with

A =

(
9
10

,
4
3

(
9
10

)2

, 2
(

9
10

)3

, 4
(

9
10

)4
)

hence, the modified discount sequence is ( 9
10 ,
(

9
10 )2, ( 9

10

)3
,
(

9
10

)4).
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We may assume that sale’s distribution is known for sellers one and two. On the one hand, seller number one
makes no sale with probability 1/2, and with identical probability he makes a sale of $3; i.e.

Q1 =
1
2
δ0 +

1
2
δ3

and, on the other hand seller number two always earns $2 for the store: Q2 = δ2.
Sales distribution of employee three is similar to the seller’s one in the sense that they are either $3 or $0.

But, the probability of making no sale (p) follows the distribution

2
3
δ1/2 +

1
3
δ4/5,

in other words,

F3 =
2
3
δQ1

3
+

1
3
δQ2

3
,

with
Q1

3 =
1
2
δ0 +

1
2
δ3 and Q2

3 =
4
5
δ0 +

1
5
δ3·

Intuitively, there is a direct competition between sellers one and three that is won by the first one, since his
probability of making a sale of $3 is greater or equal than both options for seller number one. Then, there will
be no surprises if optimal selections do not include seller number one. Hence, the real competition is between
sellers one and two because there is not (at least at first sight) a clear winner.

Via Theorem 1 and a short recursive code (written, for example, in R) we find that at any stage, no matter
what the observed results are and where they come from, the optimal strategy is always to choose seller number
two. In particular, the optimal strategy selects all the to time to employee two.

However, if we set:
Q2 = δ1

then all decisions are in favor of seller number one. But, what if we keep with this choice of Q2 but the
distribution of p is now

2
3
δ1/2 +

1
3
δ1/5,

we observe that the probability of making a sale of $3 is now 4/5 with probability 1/3. However, even that there
are cases in which optimal selection is seller number one, the optimal strategy always selects to seller number
two.

Finally, if we reconsider the distribution Q2 = δ2 for seller number two and assume that parameter p is
distributed according to

1
3
δ1/2 +

2
3
δ1/5,

then the only optimal initial selection is seller three. In Figure 7, we present the optimal strategy if his initial
sale is $3.

If initially, seller three can not make a sale, then optimal strategy is: choose seller number two for attending
next two customers and then assign the last one’s attention to seller number three.

5. Conclusions

Machinery offered by the Dynamic Programming technique in the context of Armed Bandits has been ex-
ploited, in order to give a solution for an assignment problem concerning with sellers in a store, when all we
know is the distribution of the distributions of sales associated with each seller. The goal is to maximize the
randomly discounted gains with a random number of clients. Some examples are detailed in order to illustrate
its utility.
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Figure 7. Optimal strategy when initial sale is $3.
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