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ANALYSIS OF A TWO-CLASS CONTINUOUS-TIME QUEUEING MODEL
WITH TWO TANDEM DEDICATED SERVERS
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Abstract. Mélange et al. (2016) investigated a continuous-time queueing system with two types of
customers each having their own dedicated server, where the two dedicated servers are in parallel and
have different service rates, meanwhile, the system adopts a global First-Come-First-Served (gFCFS)
service discipline, i.e., all new arrivals queue together in a common FCFS queue, regardless of their
types. In the present paper, we aim to give a further study on this queueing model, in which the two
dedicated servers are accommodated in series. By using matrix analytic method and spectral expansion
method, steady state probabilities are derived to make the straightforward computation of performance
measures and the sojourn time of an arbitrary customer. Finally, some numerical examples are provided
to show the effect of several system parameters on performance measures.

Mathematics Subject Classification. 68M20, 60K20, 90B22.

Received August 29, 2016. Accepted March 2, 2017.

1. Introduction

In most traditional queueing models, a service facility provides exactly one type of service and that all
customers requiring this type of service are accommodated in one common queue. For multi-class customers in
a queueing system, multiple different service facilities are needed to provide service for each type of customers,
and individual queues are formed before these service facilities. In these queueing models, customers are only
blocked by other customers of same type. However, in real life, some queueing systems also adopt a gFCFS
service discipline, i.e., customers requiring different types of service are accommodated in a common queue and
are served in their order of arrival, regardless of the class they belong to. In these models, customers of one
given type are not only hindered by customers of same type, but also hindered by customers of other types.

For this kind of queueing models, Bruneel et al. [1] studied a simple discrete-time queueing model with two
types of customers each having their own dedicated server under a gFCFS discipline, in which the service times
of all customers are deterministically equal to 1 slot each. They also applied the queueing model into practice,
such as security checkpoint in international airports or train stations, switching nodes of telecommunication
networks and traffic junctions in the context of road networks, etc. We refer to Bruneel et al. [1] for more
details of those applications. Then, Bruneel et al. [2] continued to investigate the effect of gFCFS and relative
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load distribution in two-class queues with dedicated servers. In [2], they gave the stability condition of the
system and derived the system size distribution at random slot boundaries. Recently, Mélange et al. [3] went
on considering a continuous-time queueing model with class clustering (customers of the same type having the
tendency to arrive “back-to-back”) and gFCFS policy, where customers of different types have the same service
rate μ, and gave the system size distribution and sojourn time distribution of an arbitrary customer. Next,
Mélange et al. [4] analysed a continuous-time queueing system with two classes of customers each having their
own dedicated server, where the two servers have different service rates, and analysed the blocked impact in this
model, meanwhile, they gave a comparison between two systems: one with block effect and one without block
effect. Lately, Bruneel et al. [5] extended the model in Bruneel et al. [1], where service times are deterministically
equal to s ≥ 1 time slots and arriving customers enter into the system according to a general independent arrival
process.

From these papers, we find that the two dedicated servers in these queueing models are in parallel, however,
in some practical scenarios, such as toll collection systems, we may encounter this situation: the servers are
accommodated in series. Some excellent papers on tollbooth tandem queues can be seen in He and Chao [6],
Chao et al. [7] and Do [8], etc. Actually, two-class queueing model with two tandem dedicated servers also has
important applications in real life, especially in China. Indeed, at highway exit in some cities of China, we
may experience the two dedicated servers are accommodated in series. For example, at a highway exit, if the
vehicles want to enter into downtown, they need to go through tollbooths. Usually, the highway exit consists of
a waiting region and two tollbooth in series, one is for the local vehicles, the other one is for non-local vehicles.
Vehicles receive service from their dedicated tollbooths, and each vehicle receives service from one and only one
tollbooth. From Figure 1a, local vehicles (customer 1) receive service from tollbooth 1 (server 1), and non-local
vehicles (customer 2) have to go through tollbooth 1, and receive service from tollbooth 2 (server 2). After
served by their dedicated tollbooths, they continue to drive along their own exit path into downtown. In this
queueing model, customers are not only blocked by the gFCFS service discipline, but also by the two tandem
servers. It is because that non-local vehicles have to go through tollbooth 1, i.e., if tollbooth 1 is busy and
tollbooth 2 is idle, even if a non-local vehicle situates at the head of the waiting room, it may be blocked to get
service from tollbooth 2 and must wait until the departure of a local vehicle at tollbooth 1.

Motivated by the applications of the servers are accommodated in series, it is crucial to analyse the queueing
model, so, in this paper, we extend the queueing model in Mélange et al. [4]. Different from Mélange et al. [4],
we assume that the two dedicated are accommodated in series. We further investigate two cases (See Figs. 1a
and 1b) by matrix analytic method and spectral expansion method, and give a comparison between the two
cases in terms of some parameters. We hope that our results can provide guidance suggestions on how to keep
the waiting region clear and reduce traffic congestion at the highway exit.

The paper is organized as follows: in Section 2, we give the model description. In Section 3, we obtain the
sufficient and necessary stability condition. Section 4 is devoted to giving the steady state probabilities by matrix
analytic method and spectral expansion method, respectively. Section 5 gives various performance measures and
sojourn time distribution of an arbitrary customer. Numerical examples are presented in Section 6. Section 7 is
the conclusion.

2. Model description

We investigate a continuous-time queue that consists of two types customers and two tandem dedicated
servers. According to the order of the two servers, we consider two cases of the system (See Figs. 1a and 1b).
The queueing model is described in detail below:

(1) Customers arrive the system according to a Poisson process with arrival rate λ.
(2) The types of consecutive customers are independent, i.e., an arriving customer is of type 1 with probability

p and of type 2 with probability q = 1− p. That is, the arrival rate of the two types customers are denoted
by λ1 and λ2, where λ1 = λp and λ2 = λq.
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(a) Case 1 (b) Case 2

Figure 1. The structure of the queueing system.

(3) Service times follow an exponential distribution with parameter μ1 at server 1 and parameter μ2 at server 2.
The servers are dedicated to a given type of customers, i.e., server 1 only serves type 1 customers and server
2 serves type 2 customers.

(4) There is a waiting room of infinite size in front of server 1 (Case 1) or server 2 (Case 2) and there is no
waiting room between the two servers.

According to the structure of the queueing system, there are two blocking effects in our system. One is the
gFCFS service discipline, which is same with Mélange et al. [4]. The other one is the two tandem servers. Since
we assume that the two servers are in series, in Case 1, type 2 customers need to go through server 1 to receive
service at server 2. Hence, if server 1 is busy and server 2 is idle, even if a type 2 customer situates at the head
of the waiting room, he may be blocked to get service from server 2 and must wait until the departure of type
1 customer at server 1. Oppositely, in Case 2, type 1 customers need to go through server 2 to receive service
at server 1.

In the following part, we focus on the analysis of Case 1, and Case 2 can be analysed with the same method.
So, let N(t) denote the number of customers in the system at time t, I(t) denote the customer type in the first
position of the line at time t, and J(t) denote the customer type in the second position of the line at time t. The
whole system can be described by a continuous-time Markov chain where the state of the system is characterized
by {(N(t), I(t), J(t)), t ≥ 0}, with state space

Ω = {{0} ∪ {(1, 1)} ∪ {(1, 2)} ∪ {(n, i, j), n ≥ 2, i, j = 1, 2}}.

{0} is the state that there are no customers in the system. {(1, 1)} is the state that there is only a customer in
the system, and the first position is type 1 customer. {(1, 2)} denotes the state that there is a customer in the
system, and the first position is type 2 customer. In order to avoid confusion, we give an explicit explanation
on the states as follows: For n ≥ 2,

(1) (n, 1, 1) denotes that there are n customers in the system, the two customers at the front of the line are
both of type 1, that is, the oldest one (in the first position of the line) is served at server 1, the second
oldest one (in the second position of the line or at the head of the waiting room) is waiting at the front of
the waiting room.

(2) (n, 1, 2) denotes that the types of two customers at the front of the line are different, i.e., the oldest one
(in the first position of the line) is type 1, which is in service at server 1, and the second oldest one (in the
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second position of the line or at the head of the waiting room) is type 2, which is blocked to receive service
from server 2.

(3) (n, 2, 1) denotes that both of the servers are busy, i.e., the oldest customer (in the first position of the line)
is type 2, which is in service at server 2, and the second oldest customer (in the second position of the line)
is type 1, which is served at server 1.

(4) (n, 2, 2) denotes that there are n customers in the system, the two customers at the front of the line are
both of type 2, that is, one is served at server 2, the other one is waiting at the head of the waiting room.

3. Stability analysis

In this section, we use the mean drift result of Neuts [9] to obtain the stability condition. By referring to the
continuous-time Markov process, we can obtain the state-transition-rate matrix as follows

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 B1 0 0 0 . . .

B2 A0 A1 0 0 . . .

0 A2 A0 A1 0 . . .

0 0 A2 A0 A1 . . .

0 0 0 A2 A0 . . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.1)

where
B0 = −λ,B1 = (λp, λq),B2 = (μ1, μ2)T ,

A0 =

(−(λ+ μ1) 0

0 −(λ+ μ2)

)
,A1 =

(
λp λq 0 0

0 0 λp λq

)
,A2 =

⎛
⎜⎜⎜⎜⎝
μ1 0

0 μ1

μ2 μ1

0 μ2

⎞
⎟⎟⎟⎟⎠ ,

A0 =

⎛
⎜⎜⎜⎜⎝

−(λ+ μ1) 0 0 0

0 −(λ+ μ1) 0 0

0 0 −(λ+ μ1 + μ2) 0

0 0 0 −(λ+ μ2)

⎞
⎟⎟⎟⎟⎠ ,

A1 =

⎛
⎜⎜⎜⎜⎝
λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

⎞
⎟⎟⎟⎟⎠ ,A2 =

⎛
⎜⎜⎜⎜⎝
pμ1 qμ1 0 0

0 0 pμ1 qμ1

pμ2 qμ2 pμ1 qμ1

0 0 pμ2 qμ2

⎞
⎟⎟⎟⎟⎠ .

Once state-transition-rate matrix is obtained, we can investigate the sufficient and necessary stability condition
of our model in the following theorem.

Theorem 3.1. The system under consideration is stable if and only if

ρ =
λ(pμ2

2 + qμ1μ2 + q2μ1
2)

μ1μ2
2 + qμ1

2μ2
< 1. (3.2)
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Proof. Based on the mean drift result in Neuts [9], the system would be stable and the stationary probability
exists if and only if

xA1e < xA2e,

where e is a column vector with four dimensions and all its elements are equal to one, x = (x̃0, x̃1, x̃2, x̃3) is
the invariant probability vector of A = A0 +A1 +A2, which satisfies xA = 0 and xe = 1. Notice that the
generator A

A = A0 +A1 +A2 =

⎛
⎜⎜⎜⎜⎝

−qμ1 qμ1 0 0

0 −μ1 pμ1 qμ1

pμ2 qμ2 −(qμ1 + μ2) qμ1

0 0 pμ2 −pμ2

⎞
⎟⎟⎟⎟⎠

is irreducible, then, an immediate result is that

x̃0 =
p2μ2

2

pμ2
2 + qμ1μ2 + q2μ1

2
, x̃1 =

pqμ2
2

pμ2
2 + qμ1μ2 + q2μ1

2
,

x̃2 =
pqμ1μ2

pμ2
2 + qμ1μ2 + q2μ1

2
, x̃3 =

q2μ1(μ1 + μ2)
pμ2

2 + qμ1μ2 + q2μ1
2
·

So from xA1e < xA2e, we can derive the sufficient and necessary stability condition

λ <
μ1μ2

2 + qμ1
2μ2

pμ2
2 + qμ1μ2 + q2μ1

2
,

which is equivalent to

ρ =
λ(pμ2

2 + qμ1μ2 + q2μ1
2)

μ1μ2
2 + qμ1

2μ2
< 1. �

Actually, using similar method in Mélange et al. [4], we can also obtain the stability condition. The more details
can be seen in Appendix.

If ρ < 1, we continue to give the steady state probabilities for this queueing system. First, define the steady
state probabilities by

π0 = lim
t→∞P (N(t) = 0), π1,k = lim

t→∞P (N(t) = 1, I(t) = k), k = 1, 2,

πn,i,j = lim
t→∞P (N(t) = n, I(t) = i, J(t) = j), n ≥ 2, i, j = 1, 2,

π1 = (π1,1, π1,2),πk = (πk,1,1, πk,1,2, πk,2,1, πk,2,2), k ≥ 2,π = (π0,π1,π2, . . .).

Then, the balance equations can be written as follows.

λπ0 = μ1π1,1 + μ2π1,2, (3.3)

(λ + μ1)π1,1 = μ1π2,1,1 + μ2π2,2,1 + λ1π0, (3.4)

(λ + μ2)π1,2 = μ1(π2,1,2 + π2,2,1) + μ2π2,2,2 + λ2π0, (3.5)

(λ+ μ1)π2,1,1 = λ1π1,1 + pμ1π3,1,1 + pμ2π3,2,1, (3.6)

(λ+ μ1)π2,1,2 = λ2π1,1 + qμ1π3,1,1 + qμ2π3,2,1, (3.7)
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(λ + μ1 + μ2)π2,2,1 = λ1π1,2 + pμ1π3,1,2 + pμ1π3,2,1 + pμ2π3,2,2, (3.8)

(λ+ μ2)π2,2,2 = λ2π1,2 + qμ1π3,1,2 + qμ1π3,2,1 + qμ2π3,2,2, (3.9)

(λ+ μ1)πn,1,1 = λπn−1,1,1 + pμ1πn+1,1,1 + pμ2πn+1,2,1, n ≥ 3, (3.10)

(λ+ μ1)πn,1,2 = λπn−1,1,2 + qμ1πn+1,1,1 + qμ2πn+1,2,1, n ≥ 3, (3.11)

(λ + μ1 + μ2)πn,2,1 = λπn−1,2,1 + pμ1πn+1,1,2

+ pμ1πn+1,2,1 + pμ2πn+1,2,2, n ≥ 3, (3.12)

(λ+ μ2)πn,2,2 = λπn−1,2,2 + qμ1πn+1,1,2

+ qμ1πn+1,2,1 + qμ2πn+1,2,2, n ≥ 3. (3.13)

The normalization equation is

π0 + π1,1 + π1,2 +
∞∑

n=2

(πn,1,1 + πn,1,2 + πn,2,1 + πn,2,2) = 1. (3.14)

4. Steady state probabilities

In this section, we first use matrix analytic method to find the steady state probabilities for the quasi birth-
death (QBD) process. In order to analyse the system effectively by matrix analytic method, we need to derive
the rate matrix R, which is the minimal non-negative solution of

R2A2 +RA0 +A1 = 0. (4.1)

In fact, due to the special structure of matrixA2, it is difficult to obtain the explicit expression of rate matrixR.
However, some existing algorithms such as the monotonic iterative algorithms (Neuts [9]), the matrix continued
fraction approach presented in (Phung−Duc et al. [10]) and more efficient algorithms (Bini et al. [11]) can be
used to compute the rate matrix R.

Here, we use the iterative algorithms in Latouche and Ramaswami [12] to obtain R. Based on the description
of Theorem 8.7.2 in Latouche and Ramaswami [12], if the QBD is recurrent, then the sequences {U(k), k ≥ 1}
and {G(k), k ≥ 1}, where

U(1) = A0 +A1,

G(k) = (−U(k))−1A2,

U(k + 1) = A0 +A1G(k),

for k ≥ 1, are such that U(k) is substochastic and G(k) is stochastic for all k. Further, the two sequences
are monotonically increasing and converge to U and G, respectively. The iterative procedure stops until the
condition

‖G(k + 1) −G(k)‖∞ ≤ ε

satisfied. Then, the rate matrix R can be obtained by

R = A1(−A0 −A1G)−1.

Once R is obtained, according to the matrix analytic method, we have

πk = π2R
k−2, k ≥ 3.
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Finally, the boundary vectors π0,π1,π2 can be obtained by

0 = (π0,π1,π2)B[R], (4.2)

1 = π0 + π1e2 +
∞∑

i=2

πie, (4.3)

where

B[R] =

⎛
⎜⎜⎝
B0 B1 0

B2 A0 A1

0 A2 A0 +RA2

⎞
⎟⎟⎠, e2 = (1, 1)′, e = (1, 1, 1, 1)′.

By using the censoring technique and referring to Li [13], we construct the UL-type RG-factorization for B[R]
to derive the expressions of π0,π1,π2. First, we write the U -measure as

U2 = RA2 +A0,U1 = A0 +A1(−U2)−1A2, U0 = B0 +B1(−U1)−1B2,

where Uk is the infinite generator obtained by Censoring technique for 0 ≤ k ≤ 2, and from [13], the Markov
chain Uk is transient, and thus the matrix Uk is invertible for 1 ≤ k ≤ 2. While the Markov chain U0 is positive
recurrent if and only if the Markov chain B[R] is positive recurrent. Based on the U -measure, we can define
the UL-type R-measure and G-measure as follows:

R1 = A1(−U2)−1,R0 = B1(−U1)−1,

G1 = (−U1)−1B2,G2 = (−U2)−1A2.

Note that the matrix R0,R1 and G1,G2 satisfy

B1 +R0A0 +R0R1A2 = 0,

and
A1G2G1 +A0G1 +B2 = 0,

with the boundary conditions
R1 = A1(−U2)−1,G2 = (−U2)−1A2.

Then, we have
R0 = −B1(A0 +R1A2)−1,

and
G1 = −(A1G2 +A0)−1B2.

The UL-type RG-factorization of B[R] is given by

B[R] = (I −RU )UD(I −GL),

where

RU =

⎛
⎝0 R0 0

0 0 R1

0 0 0

⎞
⎠, GL =

⎛
⎝ 0 0 0
G1 0 0

0 G2 0

⎞
⎠, UD = diag(U0,U1,U2),

with U0 = 0 and U1,U2 are invertible. Finally, the steady state probabilities can be obtained by the following
theorem.
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Theorem 4.1. If ρ < 1, the stationary state probabilities are given as follows:

π0 = K,πk = K

k−1∏
i=0

Ri, 1 ≤ k ≤ 2,πk = π2R
k−2, k ≥ 3, (4.4)

where K = (1 +R0e2 +R0R1(I −R)−1e)−1.

Proof. Substituting the UL-type RG-factorization of B[R] into (π0,π1,π2)B[R] = 0, we have

(π0,π1,π2)(I −RU )UD(I −GL) = 0.

From the definition of GL, we know that I −GL is invertible and

(π0,π1,π2)(I −RU )UD = 0.

Let
(Y0,Y1,Y2) = (π0,π1,π2)(I −RU ),

using the properties of the U -measure, we have

YkUk = 0, 0 ≤ k ≤ 2,

and {
Y0 = π0,
Yk = πk − πk−1Rk−1, 1 ≤ k ≤ 2.

Since U0 = 0 and the matrix Uk is invertible for 1 ≤ k ≤ 2, then, we have Y0 �= 0 and Yk = 0, i.e.,
πk = πk−1Rk−1, 1 ≤ k ≤ 2. Let Y0 = K, we have

π0 = K,πk = K
k−1∏
i=0

Ri, 1 ≤ k ≤ 2,πk = π2R
k−2, k ≥ 3.

Using the normalization condition π0 + π1e2 +
∞∑

i=2

πie = 1, we have

K = (1 +R0e2 +R0R1(I −R)−1e)−1.

Then, the steady state probabilities can be obtained. �

The expected number of customers in the system can be obtained by

E[L] = π1e2 +
∞∑

k=2

kπke = KR0e2 +KR0R1[(I −R)−1 + (I −R)−2]e. (4.5)

Next, an alternate method called spectral expansion method is applied to find the steady state probabilities for
this queueing system. From πQ = 0, we have

πi−1A1 + πiA0 + πi+1A2 = 0, i ≥ 3. (4.6)

This is a homogeneous vector difference equation of order 2, with constant coefficients. Associated with it is the
characteristic matrix polynomial, Q(x) = A1 +A0x+A2x

2. Following Mitrani and Chakka [14], Chakka [15]
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and Do [8], if the system is stable, the number of eigenvalues in unit cycle of the characteristic polynomial Q(x)
is four, so we could write the steady state probabilities as follows:

πi =
4∑

k=1

akx
i−2
k ψk, i ≥ 2, (4.7)

where xk are the eigenvalues inside the unit circle, ψk are corresponding left eigenvectors, and coefficients ak

can be determined from the balance equations and the normalization equation. The eigenvalue-eigenvector pairs
(xk,ψk) of Q(x) satisfy

ψkQ(xk) = 0, det(Q(xk)) = 0, k = 1, 2, 3, 4.

In the present paper, Q(x) has the following the structure:

Q(x) = A1 +A0x+A2x
2 =

⎛
⎜⎜⎜⎜⎝
f1(x) qμ1x

2 0 0

0 f2(x) pμ1x
2 qμ1x

2

pμ2x
2 qμ2x

2 f3(x) qμ1x
2

0 0 pμ2x
2 f4(x)

⎞
⎟⎟⎟⎟⎠ ,

where
f1(x) = λ− (λ+ μ1)x + pμ1x

2, f2(x) = λ− (λ+ μ1)x,

f3(x) = λ− (λ+ μ1 + μ2)x+ pμ1x
2, f4(x) = λ− (λ + μ2)x+ qμ2x

2.

From the expression Q(x), we conclude that Q(x) has seven eigenvalues. Referring to Proposition 2 in [14], if
the system is stable, the number of eigenvalues of Q(x) strictly inside the unit disk is equal to the degree of
Q(x), i.e., Q(x) should have four eigenvalues that are inside the unit circle, denoted by x1, x2, x3, x4. Then, by
ψkQ(xk) = 0, we can derive the eigenvectors corresponding to x1, x2, x3, x4:

ψk = (1, ψk,2, ψk,3, ψk,4), (4.8)

where

ψk,2 =
q

p
, ψk,3 = − f1(xk)

pμ2xk
2
, ψk,4 =

q[λ− (λ+ μ1 + μ2)x]
p[λ− (λ+ μ2)x]

ψk,3, k = 1, 2, 3, 4.

Once the eigenvalues and corresponding left eigenvectors are obtained, we can compute the coefficients ai by
the balance equations and the normalization condition. With the aid of the balance equations (3.3)-(3.5), the
probability vectors π0,π1 can be obtained in terms of π2:

π0 = (μ1π1,1 + μ2π1,2)/λ, (4.9)

π1,1 =
(λ+ pμ2)A+ pμ2B

λ2 + λ(pμ2 + qμ1)
, (4.10)

π1,2 =
(λ+ qμ1)B + qμ1A

λ2 + λ(pμ2 + qμ1)
, (4.11)

where
A = μ1π2,1,1 + μ2π2,2,1, B = μ1π2,1,2 + μ1π2,2,1 + μ2π2,2,2.

Substituting (4.7) into (3.6)−(3.9), and (4.7), (4.9)−(4.11) and (4.8) into (3.14) (it is not difficult to find that
there are four independent linear equations), we can derive the four unknown coefficients a1, a2, a3, a4. After
the coefficients are obtained, all the steady state probabilities can be derived.

By using this method, the expected number of customers in the system can be obtained by

E[L] = π1e2 +
∞∑

i=2

iπie = π1e2 +
4∑

k=1

ak

(
1

1 − xk
+

1
(1 − xk)2

)
ψke.
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5. Some performance measures and sojourn time

From the obtained steady state probabilities, in this section, we first give some performance measures.
The probability that both servers are idle (the system is empty):

Pe = π0.

The probability that server 1 is busy and server 2 is idle:

P1,b = π1,1 +
∞∑

n=2

(πn,1,1 + πn,1,2).

The probability that server 2 is busy and server 1 is idle:

P2,b = π1,2 +
∞∑

n=2

πn,2,2.

The probability that both servers are busy:

Pb =
∞∑

n=2

πn,2,1.

Next, considering a tagged customer, we derive the Laplace-Stieltjes transforms (LST) of the stationary
sojourn time distribution of an arbitrary customer, where the sojourn time is the period from the epoch at
which he enters the system to the epoch at which he leaves the system. Let W and W ∗(s) respectively denote
the sojourn time of a customer and its corresponding LST. For n ≥ 2, define Wn,i,j and W ∗

n,i,j(s) as the
conditional remaining sojourn time of a customer given that the customer sees the state (n, i, j), i, j = 1, 2 upon
arrival and its corresponding LST. By conditioning on the next future event (first-step analysis) and using the
strong Markov property, after some computations, we have

W ∗
n,1,1(s) =

μ1

μ1 + s
(pW ∗

n−1,1,1(s) + qW ∗
n−1,1,2(s)), n ≥ 3, (5.1)

W ∗
n,1,2(s) =

μ1

μ1 + s
(pW ∗

n−1,2,1(s) + qW ∗
n−1,2,2(s)), n ≥ 3, (5.2)

W ∗
n,2,1(s) =

μ1(pW ∗
n−1,2,1(s) + qW ∗

n−1,2,2(s))
μ1 + μ2 + s

+
μ2(pW ∗

n−1,1,1(s) + qW ∗
n−1,1,2(s))

μ1 + μ2 + s
, n ≥ 3, (5.3)

W ∗
n,2,2(s) =

μ2

μ2 + s
(pW ∗

n−1,2,1(s) + qW ∗
n−1,2,2(s)), n ≥ 3, (5.4)

with the boundary conditions

W ∗
0 (s) =

μ1p

μ1 + s
+

μ2q

μ2 + s
,

W ∗
1,1(s) = p

(
μ1

μ1 + s

)2

+ q
μ1μ2

(μ1 + s)(μ2 + s)
,
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W ∗
1,2(s) = p

μ1

μ1 + s
+ q

(
μ2

μ2 + s

)2

,

W ∗
2,1,1(s) = p

(
μ1

μ1 + s

)3

+ q

(
μ1

μ1 + s

)2
μ2

μ2 + s
,

W ∗
2,1,2(s) = p

(
μ1

μ1 + s

)2

+ q
μ1

μ1 + s

(
μ2

μ2 + s

)2

,

W ∗
2,2,1(s) = p

(
μ1

μ1 + μ2 + s

μ1

μ1 + s
+

μ2

μ1 + μ2 + s

(
μ1

μ1 + s

)2
)

+ q

(
μ2

μ1 + μ2 + s

μ1μ2

(μ1 + s)(μ2 + s)
+

μ1

μ1 + μ2 + s

(
μ2

μ2 + s

)2
)
,

W ∗
2,2,2(s) = p

μ1μ2

(μ1 + s)(μ2 + s)
+ q

(
μ2

μ2 + s

)3

,

where W0(s), W1,1 and W1,2 denote that the conditional remaining sojourn time of a customer given that the
customer sees the state {0}, {(1, 1)} and{(1, 2)} upon arrival. Define

Hj(s) = ajx
−2
j (ψj,1M

j
1,1(s) + ψj,2M

j
1,2(s) + ψj,3M

j
2,1(s) + ψj,4M

j
2,2(s)), j = 1, 2, 3, 4,

where

M j
1,1(s) =

∞∑
n=2

W ∗
n,1,1(s)x

n
j ,M

j
1,2(s) =

∞∑
n=2

W ∗
n,1,2(s)x

n
j ,

M j
2,1(s) =

∞∑
n=2

W ∗
n,2,1(s)x

n
j ,M

j
2,2(s) =

∞∑
n=2

W ∗
n,2,2(s)x

n
j .

Multiplying the equations by xn
j and summing over n from 3 to ∞, we have

(μ1 + s)[M j
1,1(s) −W ∗

2,1,1(s)x
2
j ] = μ1[pxjM

j
1,1(s) + qxjM

j
1,2(s)],

(μ1 + s)[M j
1,2(s) −W ∗

2,1,2(s)x
2
j ] = μ1[pxjM

j
2,1(s) + qxjM

j
2,2(s)],

(μ1 + μ2 + s)[M j
2,1(s) −W ∗

2,2,1(s)x
2
j ] = μ1[pxjM

j
2,1(s) + qxjM

j
2,2(s)]

+μ2[pxjM
j
1,1(s) + qxjM

j
1,2(s)],

(μ2 + s)[M j
2,2(s) −W ∗

2,2,2(s)x
2
j ] = μ2[pxjM

j
2,1(s) + qxjM

j
2,2(s)].
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Multiplying above equations with ajx
−2
j ψj,1, ajx

−2
j ψj,2, ajx

−2
j ψj,3 and ajx

−2
j ψj,4, summing over them yields

sHj(s) − aj [(μ1 + s)ψj,1W
∗
2,1,1(s) + (μ1 + s)ψj,2W

∗
2,1,2(s)

+ (μ1 + μ2 + s)ψj,3W
∗
2,2,1(s) + (μ2 + s)ψj,4W

∗
2,2,2(s)]

= ajx
−2
j M j

1,1(s)[−μ1ψj,1 + μ1pxjψj,1 + μ2pxjψj,3]

+ ajx
−2
j M j

1,2(s)[−μ1ψj,2 + μ1qxjψj,1 + μ2qxjψj,3]

+ ajx
−2
j M j

2,1(s)[−(μ1 + μ2)ψj,3 + μ1pxjψj,3 + μ1pxjψj,2 + μ2pxjψj,4]

+ ajx
−2
j M j

2,2(s)[−μ2ψj,4 + μ2qxjψj,4 + μ1qxjψj,2 + μ1qxjψj,3]. (5.5)

According to the balance equations for n ≥ 3, equation (5.5) can be simplified as

sHj(s) − aj [(μ1 + s)ψj,1W
∗
2,1,1(s) + (μ1 + s)ψj,2W

∗
2,1,2(s)

+ (μ1 + μ2 + s)ψj,3W
∗
2,2,1(s) + (μ2 + s)ψj,4W

∗
2,2,2(s)]

= ajx
−3
j M j

1,1(s)[λ(xj − 1)]ψj,1 + ajx
−3
j M j

1,2(s)[λ(xj − 1)]ψj,2

+ ajx
−3
j M j

2,1(s)[λ(xj − 1)]ψj,3 + ajx
−3
j M j

2,2(s)[λ(xj − 1)]ψj,4,

then, Hj(s) can be obtained by

Hj(s) =
aj

s− λ(1 − x−1
j )

[(μ1 + s)ψj,1W
∗
2,1,1(s) + (μ1 + s)ψj,2W

∗
2,1,2(s)

+ (μ1 + μ2 + s)ψj,3W
∗
2,2,1(s) + (μ2 + s)ψj,4W

∗
2,2,2(s)].

Finally, the LST of an arbitrary customer’s sojourn time can be obtained by

W ∗(s) =π0W
∗
0 (s) + π1,1W

∗
1,1(s) + π1,2W

∗
1,2(s)

+
∞∑

n=2

[πn,1,1W
∗
n,1,1(s) + πn,1,2W

∗
n,1,2(s) + πn,2,1W

∗
n,2,1(s) + πn,2,2W

∗
n,2,2(s)]

= π0W
∗
0 (s) + π1,1W

∗
1,1(s) + π1,2W

∗
1,2(s) +

4∑
j=1

Hj(s).

6. Numerical examples

In this section, we provide a set of numerical examples to show the effect of system parameters on π0 and
E[L], and give comparisons between Case 1 and Case 2. First, we give the state-transition-rate matrix of Case 2.

Q∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B
∗
0 B

∗
1 0 0 0 . . .

B
∗
2 A

∗
0 A

∗
1 0 0 . . .

0 A
∗
2 A

∗
0 A

∗
1 0 . . .

0 0 A∗
2 A

∗
0 A

∗
1 . . .

0 0 0 A∗
2 A

∗
0 . . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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Table 1. A comparison of two method in computing the steady state probabilities.

πk RG-factorization Spectral Expansion Method
π0 0.445417 0.445367

π1,1 0.140959 0.140945
π1,2 0.132493 0.132476
π2,1,1 0.043321 0.043322
π2,1,2 0.028880 0.028883
π2,2,1 0.029717 0.029709
π2,2,2 0.033679 0.033671
π3,1,1 0.021965 0.021997
π3,1,2 0.014643 0.014665
π3,2,1 0.012770 0.012749
π3,2,2 0.020020 0.019994

...
...

...

where
B

∗
0 = B0 = −λ,B∗

1 = B1 = (λp, λq),B
∗
2 = B2 = (μ1, μ2)T ,

A
∗
0 =

(−(λ+ μ1) 0
0 −(λ+ μ2)

)
,A

∗
1 =

(
λp λq 0 0
0 0 λp λq

)
,A

∗
2 =

⎛
⎜⎝
μ1 0
μ2 μ1

μ2 0
0 μ2

⎞
⎟⎠,

A∗
0 =

⎛
⎜⎝

−(λ+ μ1) 0 0 0
0 −(λ+ μ1 + μ2) 0 0
0 0 −(λ+ μ2) 0
0 0 0 −(λ+ μ2)

⎞
⎟⎠,

A∗
1 = A1 =

⎛
⎜⎝
λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

⎞
⎟⎠,A∗

2 =

⎛
⎜⎝
pμ1 qμ1 0 0
pμ2 qμ2 pμ1 qμ1

pμ2 qμ2 0 0
0 0 pμ2 qμ2

⎞
⎟⎠.

Corollary 6.1. In this case, the sufficient and necessary stability condition is

λ <
μ2

1μ2 + pμ1μ
2
2

pμ1μ2 + p2μ2
2 + qμ2

1

·

Proof. The proof of this corollary is similar to the proof of Theorem 3.1, and we do not explain it here any
more. �

Similar to the analysis in Case 1, if the stability condition is satisfied, we can obtain the steady state
probabilities and sojourn time in Case 2.

Now, we first provide a table (see Tab. 1) to show the stationary probabilities π0 and πk, k ≥ 1 obtained by
using UL-type RG-factorization and spectral expansion method, where λ = 2, μ1 = 3.5, μ2 = 3 and p = 0.6. By
using the two method to calculate the steady state probabilities πk, we find that spectral expansion method
offers considerable advantages in efficiency, and it has a faster speed than RG-factorization in computing the
stationary probabilities.

Next, based on the theoretical framework given by the above analysis, we present some figures below to
study the impact of the parameters on π0 and E[L] under stability condition. Without loss of generality, we
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(f) E[L] vs. λ(μ1 = 3.5, μ2 = 4.5, p = 0.6)

Figure 2. π0 and E[L] versus λ for different cases.

first assume μ1 = 3.5, p = 0.6, μ2 = 2.5, 3.5, 4.5, and plot the trend of the change for π0 and E[L] as arrival
rate λ increases from 0.5 to 1.5.

Clearly, from Figure 2, we find that π0 decreases with the increase of λ and E[L] increases with the increase
of λ, which are identical to the intuitive expectations. Actually, higher arrival rate λ leads to more customers
staying in the system. From Figures 2a and 2d, we also find that if λ is fixed, Case 1 has a bigger value π0 and
a smaller value E[L] than Case 2, i.e., under this assumption, Case 1 has a greater ability to reduce congestion.
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(b) E[L] vs. μ1 and μ2(λ = 1.5, p = 0.3)

Figure 3. π0 and E[L] versus μ1 and μ2 for Case 1.
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(b) E[L] vs. μ1 and μ2(λ = 1.5, p = 0.3)

Figure 4. π0 and E[L] versus μ1 and μ2 for Case 2.

From Figures 2e and 2f, we find that if λ is fixed, Case 2 has a bigger value π0 and a smaller value E[L] than
Case 1.

In Figures 3 and 4, we assume λ = 1.5, p = 0.3, and investigate the values π0 and E[L] regarding the
combinations of the values μ1 and μ2 under the two cases, respectively. As expected, from Figure 3, for Case 1,
π0 increases as μ1 increases and increases as μ2 increases. Conversely E[L] decreases with the increase of μ1 and
decreases with the increase of μ2. From Figure 4, for Case 2, we find that π0 and E[L] have the same variation
trend as that for Case 1.

In Figure 5, we pay attention to the curves of π0 and E[L] with the change of p with λ = 1.5, μ1 = 4 and
μ2 = cμ1. From Figure 5a, we find that, For c = 3/2, 4/3, i.e., μ2 > μ1, π0 decreases with the increase of p. For
c = 1, i.e., μ1 = μ2, π0 increases with the increase of p from 0 to 0.5, and decreases as p increases from 0.5 to 1.
For c = 2/3, 1/2, i.e., μ1 > μ2, π0 increases with the increase of p. It is also obvious that, if p fixed, the larger c
is, i.e., the bigger μ2 is, the larger π0 becomes. We also find that, as p approaches to 1, π0 tends to a fix value
no matter the values c. It is reasonable that when p reaches to 1, the queue reduces to a classic M/M/1 queue
with arrival rate λ and service rate μ1, and μ2 has no impact on π0. From Figure 5b, we find that E[L] has the
opposite variation trend to π0.
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Figure 5. π0 and E[L] versus p for Case 1 of different values c.

In order to further explore the impact of value c on E[L] and π0, we assume c = 0.9, 0.95, 1, 1.05, 1.1 and
investigate the variation trend of π0 and E[L] with the change of p. As expected, from Figures 5c and 5d, we
find that π0 has a maximum for p that is not in the extreme (1 or 0) and E[L] has a minimum for p that is
not in the extreme (0 or 1). Hence, we can make a guess that if c ∈ [1 − δ, 1 + δ], E[L] has a minimum for p
that lies in the interval (0, 1), if c < 1 − δ, E[L] has a minimum for p that is in the extreme 1, and if c > 1 + δ,
E[L] has a minimum for p that is in the extreme 0, where δ is a given relatively small constant. In my opinion,
this may be because, when c ∈ [1 − δ, 1 + δ], i.e., μ2 is approximately equal to μ1, as p increases, server 1 can
share the workload and serve type 1 customers, which leads to the reduction of the number of customers. As p
continues to increase, more and more customers belong to type 1, whether server 2 is also active or not, is not
very relevant, that is, at this moment, server 2 plays a relatively minor role in reducing the number of customers.
So, if c ∈ [1− δ, 1+ δ], E[L] has a minimum for p that lies in the interval (0, 1). When c > 1+ δ, i.e., μ2 is larger
than μ1, when p = 0, server 2 plays a dominant role in reducing the number of customers, as p increases, the
role of server 2 is weaken and the role of server 1 is enhanced, which leads to more customers stays in system, so
E[L] has a minimum for p at 0. Similarly, when c < 1− δ, that is sever 1 has a faster service rate than server 2,
so, as p increases, the number of type 1 customers increases and server 1 plays a dominant role in reducing the
number of customer, which leads to more customers leaving the system, so E[L] has a minimum for p at 1.

Then, we assume λ = 1.5, μ1 = 4 and μ2 = cμ1 and present a comparison between the two cases. In Figure 6,
we plot the trend of the change for E[L] as p from 0 to 1. From Figure 6a, if c = 1/2, we find that E[L] decreases



ANALYSIS OF A TWO-CLASS CONTINUOUS-TIME QUEUEING MODEL WITH TWO TANDEM DEDICATED SERVERS 961

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

 p

 E
[L

]
case 1
case 2

(a) E[L] vs. p (λ = 1.5, μ1 = 4, μ2 = 1
2
μ1)

0 0.2 0.4 0.6 0.8 1
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

 p

 E
[L

]

case 1
case 2

(b) E[L] vs. p (λ = 1.5, μ1 = 4, μ2 = μ1)

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 p

 E
[L

]

case 1
case 2

(c) E[L] vs. p (λ = 1.5, μ1 = 4, μ2 = 3
2
μ1)

Figure 6. E[L] versus p of different cases for different values c.

with the increase of p. From Figure 6b, if c = 1, i.e., μ1 = μ2, we find that E[L] first decreases with the increase
of p and then increases with the increase of p. From Figure 6c, if c = 3/2, an increase in p results in the increase
of E[L]. We also find that, from Figure 6a, if p is fixed, Case 2 has a bigger value than Case 1, i.e., Case 1 has a
greater ability to reduce congestion. From Figure 6b, we find that when p increases from 0 to 0.5 and for fixed p
in this interval, Case 1 has a bigger value than Case 2, when p increases from 0.5 to 1 and for fixed p in [0.5, 1],
Case 2 has a bigger value than Case 1. From Figure 6c, if p is fixed, Case 1 has a bigger value than Case 2. It
is worth noting that, as p approaches to 0 or 1, for both cases, the values E[L] are equal. It is because that, as
p reaches to 0, the queues of both cases reduce to a classic M/M/1 queue with arrival rate λ and service rate
μ2. Similarly, as p reaches to 1, the queues of both cases reduce to a classic M/M/1 queue with arrival rate λ
and service rate μ1.

Finally, we provide a comparison between the queueing model in consideration and the queueing model in [4]
and show what the exact influence of the servers in series is. Assume that μ1 = 3.5, μ2 = 3, and p = 0.6. From
Figures 7a and 7b, as λ increases, the values E[L] of the queueing model that the servers in parallel and the
queueing model that the servers in series have the same variation trend. We also find that, for a fixed λ, the
value E[L] of the queueing model in consideration is larger than the queueing model in [4], moreover, the larger
λ is, the greater difference between the two models becomes, that is, the block effect caused by the two tandem
servers can make a main influence on the number of customers in the system especially when λ is large.
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Figure 7. π0 and E[L] versus λ for the servers in parallel and in series.

The numerical examples indicates that if we want to reduce congestion and improve the service ability, we
need to choose a suitable case on the basis of the customer types. We hope the results can be applied to more
practical queueing systems.

7. Conclusion

In this paper, we investigated a two-class continuous-time queueing model with two tandem dedicated servers.
We established the theoretical foundations for applications and obtained the explicit computation expressions
for the performance measures. By using mean drift result, we first gave the stability condition for the system.
Then, in terms of matrix analytic method and spectral expansion method, we respectively obtained the steady
state probabilities. Further, we provided the elaborate analysis of the stationary sojourn time of an arbitrary
customer. Finally, we presented some numerical examples to show the impact of parameters on the performance
measures and gave a comparison between the two cases. We expect that the results can be applied to more
practical queueing systems.

Appendix A.

First, we introduce the average amount of work (of type 1 and type 2) that enters the system per unit time:

ρ∗ = ρ1 + ρ2 =
λp

μ1
+
λq

μ2
·

So, the stability condition can be expressed as

ρ∗ < t1 + t2 + 2t,

where t1 denotes the fraction of time when only server 1 is busy, t2 denotes the fraction of time when only
server 2 is busy, t is the fraction of time both the two servers are busy. Assuming the system is continuously
provided with new arrivals and there are always at least two customers in the system. The system is stable if
ρ∗ < t1 + t2 + 2t is satisfied. Since [4] has given a detail explanation on this expression, we don’t explain it
any more. In order to derive the fractions of time t0, t1 and t2, we note that the busy servers form a simple
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four-state Markov chain with the state space {(1,1), (1,2), (2,1), (2,2)}. Then we have

t1,1 =
μ2

2p
2

μ2
2p+ μ1μ2q + μ2

1q
2
, t1,2 =

μ2
2pq

μ2
2p+ μ1μ2q + μ2

1q
2
,

t2,1 =
μ1μ2pq

μ2
2p+ μ1μ2q + μ2

1q
2
, t2,2 =

μ1q
2(μ1 + μ2)

μ2
2p+ μ1μ2q + μ2

1q
2
,

where t1 = t1,1 + t1,2, t2,1 = t, t2,2 = t2. Then after some algebraic computations, the expression ρ∗ < t1 + t2+2t
translates into

λ <
μ1μ2

2 + qμ1
2μ2

pμ2
2 + qμ1μ2 + q2μ1

2
,

which is the stability condition of the system, which is accordance with Theorem 3.1.
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