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A STOCHASTIC APPROACH FOR FAILURE MODE AND EFFECT ANALYSIS
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Abstract. This study presents a novel approach combining Failure Mode and Effect Analysis (FMEA)
and Multi-Attributive Border Approximation Area Comparison (MABAC) method based on a stochas-
tic evaluation process to prioritize potential failure modes (FMs) in an assembly line. The aim of the
proposed approach is to improve the performance of FMEA by eliminating its shortcomings addressed
in the study. In this context, firstly the risk factor (RF) importance weights and the performance values
of the FMs for the RFs are determined by generating random numbers having uniform distribution
in a range of minimum and maximum value of a limited number of expert evaluations. In this wise,
the number of experts are increased to improve effectiveness of the risk evaluation process. Diverse
opinions of experts are also assessed more precisely. Secondly, the priorities of the FMs are identified
by implementing MABAC method. MABAC is a practical and reliable tool which provides stability
for solutions. Finally, a comparative analysis is implemented to confirm the effectiveness of Stochastic
FMEA-MABAC approach.
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1. Introduction

The FMEA is a powerful proactive tool that aims to provide systematic determination of the possible root
causes and the failure modes (FMs) relevant to a product, system or service for the purpose of limiting or
avoiding their relative risks by prioritizing them systematically. It was first developed by NASA in 1963. Since
then, it has been widely used as a risk assessment tool in different industries such as aerospace, nuclear,
automotive, electronics, mechanical and medical industries [1–4] etc. FMEA specifies the key service, system
or product characteristics that should be controlled more carefully and it defines improvement areas for these
characteristics to increase their performance [5]. FMEA offers an easy and useful approach for users to implement
their view points and knowledge in a formalized manner [6].

For risk assessment in FMEA the risk priority number (RPN), which is a product of three risk factors (RFs)
named as occurrence (O), severity (S), and detection (D) is computed. RPN quantifies “how dangerous” a FM
is by identifying a rank of risk priorities of FM. RPN values vary between 1 and 1000. A higher RPN value
implies that the related FM has a higher degree of risk and priority.

FMEA procedure has a multi-criteria decision making (MCDM) structure. MCDM is a discipline that provides
a logical and scientific framework regarding different opinions of decision makers (DMs) in decision making
environments of multiple criteria [7, 8]. Similarly FMEA is a group decision making process which considers

Keywords. FMEA, Stochastic, MABAC, Uniform Distribution, MCDM.

1 Department of Industrial Eng., Ataturk University, 25240, Erzurum, Turkey elif.kdelice@atauni.edu.tr
2 Department of Industrial Eng., Baskent University, 06810, Ankara, Turkey. gfcan@baskent.edu.tr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2017010
http://www.rairo-ro.org
http://www.edpsciences.org
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more than one RF related to relative risk of FMs and makes assessment for more than one failure in a system,
product or service and cannot be performed on an individual basis [9]. As a result of FMEA, preventive-corrective
measures are prioritized according to the team decision. Because of suitable structure of FMEA for MCDM,
various MCDM approaches can be implemented in FMEA. In this way, FMEA can overcome some deficiencies
that decrease its performance.

First of all, there are only three RFs (O, S, and D) considered in risk assessment with traditional FMEA.
By using MCDM approach FMs can be evaluated in terms of various factors [10]. In this way, FMs can be
ranked better and distinguished more clearly from one another. In traditional FMEA, the RPN is computed
with respect to different combinations of O, S, and D factors. However, these different combinations usually
result in the same RPN values for different FMs [11–13]. Nonetheless, it does not mean that the risk levels of
these failures are the same. By using aggregation techniques of MCDM approaches to combine O, S, D and
the other RFs in a systematic way, it is almost impossible to obtain the same RPN values for the different
FMs [14–17]. What is more FMEA assumes that O, S, D have the same importance weights for risk evaluation.
According to this, it neglects human/expert knowledge [14–20]. However, MCDM approaches allow for different
importance weights thus it is possible to make the assessment more precise and more reliable [8,13,21]. Besides,
FMEA has an ordinal valued scale for three factors. These values preserve rank but the distance between the
values cannot be known since a distance computation is not performed. Therefore, FMEA cannot represent
the differentiation of expert evaluations [20]. Some of MCDM approaches can utilize distance computation
such as MABAC, VIKOR, TOPSIS etc. for overcoming this deficiency. In addition, the mathematical way for
computing RPN is questionable. It is very sensitive to variations in RF evaluations [15,16,19]. By using MCDM
approaches this shortcoming is also eliminated due to the related implementing procedures. Finally; many of
the RPN numbers in the range of 1-1000 cannot be obtained by multiplication of O, S, and D as FMEA has a
discrete scale. Only 120 of the 1000 numbers can be generated from the product of O, S, and D.

However, MCDM approaches have many advantages to overcome these shortcomings mentioned above; these
approaches have also a disadvantage. In decision making process, there are a few experts who assess the relevant
subject, because the number of experts having sufficient level of knowledge and experience related to the
problem is insufficient. Additionally, these experts may come from different departments and have different
backgrounds, levels of knowledge and experiences. For these reasons, there are many different opinions related
to FM evaluation which have an effect on risk assessment process. In this context, if the numbers of experts
increase, the performance of evaluation process also increases. This situation necessitates incorporation of more
experts in the risk evaluation process. Besides, in FMEA, experts must determine and evaluate FMs before the
failure occurs. Consequently, expert evaluations are defected with vagueness and imprecision which eventually
results in randomness. Accordingly, evaluations related to the factors and FMs can be increased by using
limited number of expert opinions with the way of generating random numbers via uniform distribution. In
addition, the randomness feature may also be incorporated in the risk evaluation process [22]. It is also possible
to expand the decision matrix related to RFs and FMs without changing maximum and minimum values of
scores given by experts by generating random numbers from uniform distribution in this maximum-minimum
range. The reason for choosing uniform distribution in this process is the equal occurrence probability of each
continuous random variable. In this way, it is provided that there is an equal occurrence probability for generated
evaluations related to weights of RFs and performance values of FMs. Considering all the facts, a Stochastic
FMEA-MABAC approach is proposed for increasing FMEA performance in this study especially in terms of
insufficient number of DMs and randomness feature of risk evaluation process. Besides RPN values are computed
not only considering occurrence, severity and detection factors but also cost, exposure duration and system
safety in this study. These factors are considered risk evaluation for an assembly line. Uniform distribution is
used for computing RF weightings and performance values of FMs to obtain results that are more reasonable.
Consecutively, MABAC procedure is implemented to prioritize the FMs. MABAC is selected in this study for
ranking FMs because it is a reliable and powerful tool for giving logical decisions [23].

The rest of this study is structured as follows; literature related to FMEA and MABAC is given in the second
section, the third section is the method section which includes Traditional FMEA and the proposed Stochastic
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FMEA-MABAC approach. The fourth section consists of a numerical example utilizing the proposed approach.
A comparative analysis is performed in the fifth section. Finally, the sixth section presents the conclusion of the
study.

2. Fmea and mabac literature

To overcome the shortcomings as mentioned in previous section and improve the performance of Traditional
FMEA, researchers have suggested many different risk evaluation and FM prioritization approaches for the
long time. These approaches include uncertainty theories, MCDM techniques, mathematical programming and
artificial intelligence [24]. Studies related to these approaches are given as below.

Chang et al. [25] developed a novel approach for FMEA to find the RPNs based on fuzzy logic and grey theory.
Chang et al. [26] used the grey theory for computing the degrees of relational through the traditional crisp scores
of FMEA. Also, Pillay and Wang [13], applied Grey Relation Analysis (GRA) method for the prioritization of
FMs. Braglia et al. [19] utilized the The Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) for prioritizing FMs by using Euclidean Distance. Keskin and Ozkan [27] proposed Fuzzy Adaptive
Resonance Theory (Fuzzy ART), one of the ART networks, to compute RPN. Wang et al. [17] defined The
FRPNs as fuzzy weighted geometric means of the fuzzy ratings for O, S and D, and computed using alpha-level
sets and linear programming models. For ranking purpose, they used a new centroid defuzzification formula
based on alpha-level sets. Abdelgawad and Fayek [28] implemented Fuzzy Expert System and Fuzzy Analytic
Hierarchy Process (FAHP) to improve the computation process of RPN. Chang and Cheng [29] developed Fuzzy
Ordered Weighted Averaging (FOWA) and Decision Making Trial and Evaluation Laboratory (DEMATEL) for
evaluating the risk level of FMs. The Fuzzy Evidential Reasoning is integrated with the grey theory for FMEA
implementation by Liu et al. [10]. Geum et al. [30] developed a new approach to determine and evaluate
potential FMs based on service-specific FMEA and GRA method. Zammori and Gabbrielli [31] introduced
an integrated approach by using FMEA and Analytic Network Process (ANP) taking into consideration a
decision structure for computing the RPN. Liu et al. [32] used an Extended Fuzzy VIKOR for FMEA. Hadi-
Vencheh and Aghajani [33] proposed a new Fuzzy Group Decision Making (FGDM) model based on α-level
sets. Adhikary et al. [18] presented the RPN estimation approach by Grey Complex Proportional Assessment
(COPRAS-G) for coal-fired thermal power plants. Ilangkumaran et al. [34] utilized FAHP for risk factor weights
computation and proposed an assessment model integrating FMEA and FAHP to evaluate the risk priority
in a paper industry. Liu et al. [35] proposed a FMEA model based on fuzzy set theory and Multi-objective
Optimization by Ratio Analysis (MULTIMOORA) method. Liu et al. [14] introduced a new risk assessment
model for the risk prioritization based on D numbers and an enhanced GRA method, called Grey Relational
Projection (GRP). Liu et al. [36] proposed a risk assessment approach utilizing the Intuitionistic Fuzzy Hybrid
Weighted Euclidean Distance (IFHWED) operator in FMEA. Liu et al. [37] proposed interval 2-Tuple Hybrid
Weighted Distance (ITHWD) operator for a new risk priority assessment. Helvac lu and Ozen [38] developed an
approach through Fuzzy TOPSIS (FTOPSIS) for yacht system design. Song et al. [16] proposed a new FMEA
approach integrating rough set theory and group TOPSIS. Sharma and Sharma [39], Tsai and Yeh [40], Panchal
and Kumar [41], Zhou and Thai [42] implemented GRA in FMEA. Liu et al. [43] developed a new modified
TOPSIS method, called as Intuitionistic Fuzzy Hybrid TOPSIS, to identify the risk priorities of the FMs. Liu et
al. [15] proposed a new FMEA methodology which includes combination of interval 2-tuple linguistic variables
and GRA. Emovon et al. [20] utilized an improved FMEA approach combining an averaging technique with the
VIÅ¡ekriterijumsko KOmpromisno Rangiranje (VIKOR) for prioritizing FMs for marine machinery systems. Liu
et al. [44] proposed a hybrid MCDM approach combining the VIKOR, DEMATEL, and AHP for risk assessment.
Lolli et al. [45] developed a MCDM approach by using Preference Ranking Organization Method for Enrichment
Evaluations) (PROMETHEE). Hajiagha et al. [8] used fuzzy belief structure based VIKOR method for ranking
delay causes of Tehran metro system. Safari et al. [46] integrated Fuzzy VIKOR (FVIKOR) and FMEA to
assess risks of enterprise architecture. Vahdani et al. [47] integrated Fuzzy Belief Structure and TOPSIS to
improve the performance of Traditional FMEA. Liu et al. [48] applied an ELimination Et Choix Traduisant la
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REalit (ELECTRE) based outranking approach within the interval 2-tuple in linguistic environment for FMEA.
Liu et al. [49] proposed a new model for FMEA by combining Hesitant 2-Tuple Linguistic Term Sets and An
Extended QUALIFLEX approach. Zhao et al. [50] introduced a new FMEA approach based on Interval-Valued
Intuitionistic Fuzzy Sets (IVIFSs) and MULTIMOORA method. Wang et al. [51] used the combined entropy and
expert evaluation method for determining the weight of the risk factors, they utilized DEMATEL to prioritize
the FMs for CNC machining center.

The MABAC method is a new MCDM approach proposed recently by the research center at the University
of Defense in Belgrade [23]. MABAC has a simple mathematical computation and a systematic procedure that
represents the rationale of human decision making. There are a few studies related to MABAC. Pamuar and irovi
proposed DEMATELMABAC approach for forklift selection [23]. Interval-valued Intuitionistic Fuzzy MABAC
(IVIF-MABAC) is performed for determining the best material [52]. Choquet Integral Operator for Pythagorean
Fuzzy Aggregation Operators, such as Pythagorean Fuzzy Choquet Integral Average (PFCIA) Operator and
Pythagorean Fuzzy Choquet Integral Geometric (PFCIG) Operator are used with MABAC method by Peng
and Yang [53]. A new MABAC approach based on the likelihood of interval type-2 fuzzy numbers (IT2FNs) is
proposed for hotel selection from a tourism website [54]. Roy et al. [55] presented a type-2 fuzzy multi-attribute
decision making methodology combining trapezoidal interval type-2 fuzzy numbers and MABAC for evaluation
and selection of the suitable software company. A new assessment method is proposed by integrating rough
number based AHP and rough number based MABAC for selection of the most appropriate cities in India for
medical tourism [56]. Boani et al. [57] combined FAHP and MABAC for selecting locations for the preparation
of laying-up positions.

As seen from the literature fuzzy logic based approaches are widely used for FMEA in fuzzy MCDM and
artificial intelligence. The reason for implementing fuzzy logic in FMEA is to handle the uncertainty in real life
applications. Besides, in terms of applicability of these types of fuzzy evaluation models in real life cases, some
doubts keep.

In these fuzzy logic related studies, the extension principle and the symbolic methods are utilized. In most of
these studies, it is obligatory to express the results by using an approximation process, because the computation
results generally do not exactly comply with any of the initial linguistic terms. This causes a loss of information
and a lack of precision in the final results. In addition, all fuzzy expert systems include stages as fuzzification,
fuzzy inference and defuzzification. The risk factors are fuzzified by appropriate membership functions to obtain
the degree of membership in each input class in fuzzy FMEA. The obtained fuzzy inputs are assessed in fuzzy
inference engine by using well-defined rule base consisting of if-then rules and fuzzy logic operations to compute
the risk level of the FMs. Then, the fuzzy output is defuzzified to obtain RPN. However, the fuzzy inference
method has been commonly utilized to improve FMEA procedure; it has several limitations [4,19,29]. Firstly, it
is difficult to construct a suitable membership functions for the risk factors and risk priority level. In addition,
any alteration to the linguistic terms, for example, utilizing seven linguistic terms to describe D instead of five,
will require re-evocation of the appropriate membership functions. There is too much information losing in
fuzzy inference process for complex calculations to produce “precise” riskiness level of FMs [15]. If then rules
implementation suffers from the combinatorial rule eruption problem, which causes increasing number of rules
related to computation model of fuzzy RPN. In the if-then rules application, if the number of rules provided by
the experts increase also prediction accuracy of the fuzzy RPN model increases. Besides, the structuring of a
fuzzy if-then rule base is a difficult task which requires experts to make a large number of judgments. Because
of this, construction of if-then rules is not a cost and time-consuming activity. The fuzzy if-then rules which
have the same consequence but different background are not able to be distinguished from one another. For
this reason, the FMs defined by these fuzzy if-then rules will not be able to be prioritized or ranked. Also, to
construct proper software packages to achieve the momentary communication between risk input and output is
a difficult task. For this reason, priority ranking of FMs is also difficult.

Some fuzzy FMEA approaches used a reduced if-then rule base to avoid establishing a big if-then-rule base.
However, this brings with some new problems [17]. Sometimes, two if-then rules with different background can
be combined or reduced. In this situation, the results of these two rules must be the same. Because of these
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same results, the expert cannot distinguish the two different FMs from each other. As mentioned before FMEA
is usually performed by a cross-functional team. The members of the team may have different levels of expertise
and knowledge. As a matter of course, different experts often use different linguistic terms for expressing their
evaluations for a FM according to the certain RF. These evaluations may be precise or imprecise, certain or
uncertain, and complete or incomplete. With reference to this, expert judgments are generally inconsistent.
Therefore, combining and reducing rules is nearly impossible. In addition, if the rules are not reduced from a
whole if-then rule base, rules reduced will be incomplete. Implementing inference process from an incomplete
rule base will be prejudicial or even wrong in as much as some knowledge cannot be obtained from such a
missing rule base. For overcoming this, a complete if-then rule base can be established from expert knowledge.
But this time, FMs should be prioritized into different priority categories. As a result, a full priority ranking is
not obtained. Unfortunately, the practicality of the fuzzy rule-based methods is suspicious because developing
and testing a complete set of fuzzy rules is a cost and time-consuming activity [17]. However, the fuzzy inference
system has many disadvantages; Liu et al. [4] presented that this system can moreover overcome most of the
shortcomings mentioned in the recent literature regarding the Traditional FMEA than a Case Based Reasoning
system (CBR) and a Vector Machine Support method of classification (VMS).

It has highlighted the importance of group decision in the FMEA. It is also important measuring intra-
personal uncertainty and inter-personal uncertainty. Interval type-2 fuzzy sets can deal with both intra and
inter-personal uncertainty. However, this approach does not sort failures into groups for multiple experts. In
addition, as it is based on fuzzy logic, it requires the illustration of membership functions, which is subjective
and difficult [19]. Therefore, the membership function definition may vary from person to person [58]. Generally,
most of the research related to fuzzy FMEA used the same membership function for all members of the expert
team. Also, it is very difficult or impossible to determine membership functions suitable in risk assessment
situations [15]. In addition, results of fuzzy approaches may be very sensitive to the qualitative judgment of the
linguistic variables used. Therefore, validating the doubtful results is difficult [59].

In terms of approaches, combining mathematical programming (MP) and FMEA there are also some disad-
vantages. It is a well-known issue that MP is the use of mathematical models, especially optimizing models,
to support making decisions. Its main feature is finding the best solution of a model by optimization software
automatically. If the model has been well established, the best solution should transform back into the real life
as a good solution for the real life problem. If the model has not been well established, analysis of why it is no
good requires greater understanding of the real life problem. Besides, MP has three main components as the
constraints, the objective function and the relationships constraints. These components change continuously
during the model structuring. However, the procedure of MP includes finding optimum solutions; nobody is
suggesting that the solution is optimum for the real life case. Linear programming (LP) is a widely used MP
approach for FMEA. But in LP approaches all of the variables that need to be considered to solve a problem
cannot be quantified in a linear manner. Therefore, LP assumptions are also unrealistic, due to assumption of
linear relationship. It assumes that factors never really change, when in real life they do. The possible solutions
that are given in the problem are limited by the limiting the range of the problem.

These difficulties mentioned above highlight the need for new models as proposed in our manuscript, which
enable to obtain priority of FMs as both accurate, and as easy as possible. In this manner, this study develops
a Stochastic FMEA-MABAC approach for increasing the performance of FMEA and overcoming limitations
of the fuzzy, MP, artificial intelligence and MCDM approaches. In Stochastic FMEA-MABAC approach, the
requirement of membership function, inference system and rule base are eliminated. The proposed approach
can overcome loss of information or lack of precision. The evaluations can be varied by increasing the number
of experts. Besides, due to its stability (consistency) of its solutions, The MABAC method is a powerful tool for
risk evaluation process [52]. It utilizes the distance function for normalization process of the performance values
of FMs. In this wise, the differences between the opinions of experts can be considered in risk evaluation. It is
also an important research topic to implement MABAC for prioritizing FMs by using the stochastic values.
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Table 1. Severity scale.

Effect Severity of Effect
Numerical

Value

Hazardous Failure is hazardous and occurs without warning. It suspends operation of the system

and/or involves non-compliance with government regulations. 10

Serious Failure involves hazardous outcomes and/or non-compliance

with government regulations or standards 9

Extreme Product is inoperable with loss of primary function. The system is inoperable. 8

Major Product performance is severely affected but functions. The system may not operate 7

Significant Product performance is degraded. Comfort or convince functions may not operate 6

Moderate Moderate effect on product performance. The product requires repair 5

Low Small effect on product performance. The product does not require repair 4

Minor Minor effect on product or system performance 3

Very Minor Very minor effect on product or system performance 2

None No effect 1

Table 2. Occurrence scale.

Probability of Failure Possible Failure Rates Numerical Value
Extremely high: failure almost inevitable ≥1 in 2 10
Very high 1 in 3 9
Repeated failures 1 in 8 8
High 1 in 20 7
Moderately high 1 in 80 6
Moderate 1 in 400 5
Relatively low 1 in 2000 4
Low 1 in 15,000 3
Remote 1 in 150,000 2
Nearly impossible ≥1 in 1,500,000 1

3. Method

3.1. The traditional FMEA procedure

FMEA provides a tool to assign limited resources to most serious FMs by prioritizing them systematically.
FMEA prioritizes FMs according to their RPN values. RPN has three components; O, S, and D as mentioned
in introduction section. “O” presents the frequency that a root cause is likely to occur in a qualitative way.
“S” is defined as the magnitude of the end effect of a FM. “D” is the likelihood of identifying a root cause
before a failure may occurs. These three RFs are individually rated using a numerical scale ranging from “1”
to “10” [60]. Table 1, 2 and 3 represents these RFs and their scoring system [61].

By using these scoring system RPN is computed as in equation (3.1)

RPN = O × S × D; RPN ∈ [1, 1000] (3.1)

3.2. The proposed stochastic FMEA-MABAC approach

The steps of the proposed Stochastic FMEA-MABAC approach are presented in this section. The proposed
approach for prioritization of FMs consists of three main stages: determining the RFs and FMs, generating
the weights of the RFs and the performance values of FMs, and obtaining the rankings of the FMs. Figure 1
delineates the flowchart of the proposed Stochastic FMEA-MABAC approach.
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Table 3. Detection scale.

Detection Criteria: likelihood of detection by design control Numerical value

Absolute uncertainty
Design control does not detect a potential cause of failure
or subsequent failure mode; or there is no design control 10

Very remote
Very remote chance the design control will detect
a potential cause of failure or subsequent failure mode 9

Remote
Remote chance the design control will detect a potential
cause of failure or subsequent failure mode 8

Very low
Very low chance the design control will detect a potential
cause of failure or subsequent failure mode 7

Low
Low chance the design control will detect a potential
cause of failure or subsequent failure mode 6

Moderate
Moderate chance the design control will detect
a potential cause of failure or subsequent failure mode 5

Moderately high
Moderately high chance the design control will
detect a potential cause of failure or subsequent failure mode 4

High
High chance the design control will detect a potential
cause of failure or subsequent failure mode 3

Very high
Very high chance the design control will detect
a potential cause of failure or subsequent failure mode 2

Almost certain
Design control will almost certainly detect
a potential cause of failure or subsequent failure mode 1

Step 1. Form the expert group, record all potential FMs and determine the relevant RFs.
The FMs are denoted as FMi: ith failure mode; (i = 1, . . . , m) and the RFs are denoted as RFJ : jth risk

factor; (j = 1, . . . , n). These RFs and FMs are determined from k experts Ek;(k = 1 . . . , l).

Step 2. Determine the weights of RFs using importance scale.
l experts evaluate n RFs (xj ; j = 1, . . . , n) with respect to their importance by using scale depicted in Table 4.
The evaluation related to certain RF is denoted as xkj . xkj values form the RF evaluation matrix RF as

shown below.

RF =

E1

E2

...
El

⎡
⎢⎢⎣
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xl1 xl1 · · · xln

⎤
⎥⎥⎦ (3.2)

Step 3. Construct the performance value matrix of FMs.
According to n RFs for each of the l experts, performance value matrix of FMs FM;(FMi; i = 1, . . . , m) is

formed as given below.

FM =

FM1

FM2

...
FMm

⎡
⎢⎢⎣

(x11)k (x12)k · · · (x1n)k

(x21)k (x22)k · · · (x2n)k

...
...

. . .
...

(xm1)k (xm2)k · · · (xmn)k

⎤
⎥⎥⎦ (3.3)

where; (xij)k= The evaluation of ith FM of kth expert for the jth RF.

Step 4. Identify the minimum and maximum importance values of the RFs.
For jth RF, minimum and maximum values of the expert evaluations are identified. These values are denoted

as below.
min{xkj} = aj and max{xkj} = bj ; j = 1, . . . , n (3.4)
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Figure 1. Flowchart of Stochastic FMEA-MABAC approach.
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Table 4. Importance Scale of factors.

Score Linguistic Terms
1 The least unimportant
2 Quite unimportant
3 Highly unimportant
4 Unimportant
5 Somewhat important
6 A little more important
7 Important
8 Highly important
9 Quite important
10 The most important

Step 5. Generate the random numbers for importance weights of RFs in a minimum-maximum
range and compute the row summation.
N numbers are generated from U(aj , bj); j = 1, . . . , n distribution for each RF. Row summation is computed
as
∑n

j=1 ytj for each row t; t = 1, . . . , N ; y = (xkj)i; i = 1, . . . , m.

Step 6. Implement the row normalization.
Row normalization is utilized via using equation (3.5).

ytj
′ =

ytj∑n
j=1 ytj

; t = 1, . . . , N, j = 1, . . . , n (3.5)

Step 7. Compute the importance weights of the RFs by using average of the column values.
For jth RF, the average of the column values are computed to obtain the weights of the RFs (wj ; j = 1, . . . , n)

as shown in equation (3.6) and the RF weight vector W = [W1 . . . Wn] is constructed.

wj =
∑N

t=1 ytj
′

N
, j = 1, . . . , n (3.6)

Step 8. Identify the minimum and maximum performance values of each FM.
For each expert, k numbers of minimum and maximum values of expert evaluations are determined and

denoted as in equation (3.7) and (3.8).

min
k

{(xij)1 . . . (xij)l} = aij
′ (3.7)

max
k

{(xij)1 . . . (xij)l} = bij
′ (3.8)

Step 9. Generate the random numbers in a minimum and maximum range for obtaining perfor-
mance values of each FM.

For m alternatives, N random numbers are generated from U(aij
′, bij

′) related to each of n RF.

Step 10. Compute the average of N numbers generated for each FM for each RF.
The averages of N random numbers based on each RF for each FM xij

′ are computed by equation (3.9) and
FM matrix is constructed.

xij
′ =

∑N
t=1(vtj)i

N
; t = 1, . . . , N ; j = 1, . . . , n; v = (xij)k; k = 1, . . . , l (3.9)
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FM ′ =

FM1

FM2

...
FMm

⎡
⎢⎢⎣

x11
′ x12

′ · · · x1n
′

x21
′ x22

′ · · · x2n
′

...
...

. . .
...

xm1
′ xm2

′ · · · xmn
′

⎤
⎥⎥⎦ (3.10)

Step 11. Normalize initial matrix for the MABAC process.
FM ′ matrix is accepted as the initial matrix and normalized by using equation (3.11) and (3.12).

nij =
xij

′ − x−
i

x+
i − x−

i

for benefit RFs (3.11)

nij =
xij

′ − x+
i

x−
i − x+

i

for cost RFs (3.12)

Where; x+
i = max(xij

′) and x−
i = min(xij

′); i = 1, . . . , m and j = 1, . . . , n
x+

i and x−
i values are obtained from initial decision matrix. The normalized matrix N is given below.

N =

⎡
⎢⎢⎣

n11 n12 · · · n1n

n21 n22 · · · n2n

...
...

. . .
...

nm1 nm2 · · · nmn

⎤
⎥⎥⎦ (3.13)

Step 12. Construct the weighted normalized matrix.
The weighted normalized matrix V is formed by using equation (3.14) and (3.15), and shown as below.

vij = wj(nij + 1) (3.14)

V =

⎡
⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w1(n11 + 1) w2(n12 + 1) · · · wn(n1n + 1)
w1(n21 + 1) w2(n22 + 1) · · · wn(n2n + 1)

...
...

. . .
...

w1(nm1 + 1) w2(nm2 + 1) · · · wn(nmn + 1)

⎤
⎥⎥⎦ (3.15)

Step 13. Determine the border approximation area (BAA) matrix.
The BAA matrix G is computed by using equation (3.16) and it is formed as an nx1 vector as seen in

equation (3.17).

gj =

(
m∏

i=1

vij

)1/m

(3.16)

G = (g1 g2 . . . gn) (3.17)

where gj=BAA for each RF.

Step 14. Calculate the distance of the FMs from the BAA.
The distance of the FMs from the BAA (qij) is calculated as the difference between vij in [V] and gj in [G]

as seen in equation (3.18).

Q =

⎡
⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

g1 g2 · · · gn

g1 g2 · · · gn

...
...

. . .
...

g1 g2 · · · gn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q11 q12 · · · q1n

q21 q22 · · · q2n

...
...

. . .
...

qm1 qm2 · · · qmn

⎤
⎥⎥⎦ (3.18)
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Figure 2. Upper, lower and border approximation areas [52].

FMi may belong to the BAA [G], that is, FMi ∈ {G ∨ G+ ∨ G−}. Here, G+ is the upper approximation
area and G− is the lower approximation area. G+ includes the ideal FM (FM+), while the G− contains the
anti-ideal FM(FM−) as shown in Figure 2.

The belonging of alternative FMi to G, G+ or G− is determined by equation (3.19):

FMi ∈

⎧⎪⎨
⎪⎩

G+ if qij > 0

G if qij = 0

G− if qij < 0

⎫⎪⎬
⎪⎭ (3.19)

Step 15. Rank the FMs.
FMs are ranked for the descending order of Si values. The final values of the RF functions for the FMs are

obtained by calculating the sum of the row elements of [Q] as in equation (3.20).

Si =
n∑

j=1

qij j = 1, . . . , n; i = 1, . . . , m (3.20)

The most risky FM is the one having the highest Si value.

4. Numerical example

The numerical example is related to the high voltage assembly line in an electro-mechanic systems manufac-
turing firm. The FMs of the high voltage assembly line are determined through brainstorming and the use of
techniques such as root cause analysis and fault tree analysis. This assembly line was newly established and risk
evaluation related to occupational health and safety had not been performed. In this context, it was decided to
implement FMEA based risk evaluation to this line by using the proposed approach step by step.

Step 1. Form the expert group, record all potential FMs and determine the relevant RFs.
The FMEA team consists of three experts (Ek; k = 1, 2, 3). The first expert is a mechanical engineer who has

a 15 years of working experience related to electro-mechanic systems. Second expert is an electronic engineer
who has a 12 years of experience related to high voltage cell manufacturing. He works as a production manager
in high voltage cell manufacturing workshop. The third expert is an electronic engineer who has a 10 years of
working experience and he is an A class occupational health and safety expert.
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Risk priority 

Occurrence 

Severity 

Detection 

Cost 

Exposure time 

System safety 

Repetitive movements 

Awkward working postures 

Disorganization of working area 

Manual handling heavy materials 

Weathered and worn hand tools 

Noisy production area 

Insufficient general lighting 

Exposure to hand vibration 

Undefined material transfer path 

Warm production area 

Uncontrolled possession of chemicals 

Narrow working area 

Figure 3. Hierarchical structure of risk assessment.

The twelve FMs (FMi; i = 1, . . . , 12)related to assembly line are determined by three experts. These FMs
are repetitive movements (FM1), awkward working postures (FM2), disorganization of working area (FM3),
manual handling heavy materials (FM4), weathered and worn hand tools (FM5), noisy production area (FM6),
insufficient general lighting (FM7), exposure to hand vibration (FM8), undefined materials transfer path (FM9),
warm production area (FM10), uncontrolled possession of chemicals (FM11), narrow working area (FM12).
Additionally, six RFs (RFj ; j = 1, . . . , 6) are identified by same team for evaluation of FMs. These are occurrence
(RF1), severity (RF2), detection (RF3), cost (RF4), exposure time (RF5), system safety (RF6). The hierarchical
structure related to risk prioritization is shown in Figure 3.

Step 2. Determine the weights of RFs using importance scale.

Three experts evaluated the six RFs with respect to their importance by using the scale depicted in Table 4.
Importance evaluations of experts are given in Table 5.

Step 3. Construct the performance value matrix of FMs.

For each of the three experts, the performance value matrix of the twelve FMs is constructed according to
the six RFs. To construct performance value matrix, scales depicted in Tables 6, 7, 8 are used for cost, exposure
time and system safety factors respectively. The scales for S, O and D risk factors are given in order of Table 1, 2
and 3.

For the first expert, performance value matrix of the FMs is given in Table 9 as an example.
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Table 5. Relative importance of the RFs for three experts.

RFs

Experts
E1 E2 E3

x1j x2j x3j

RF1 7 6 8
RF2 5 6 7
RF3 4 5 6
RF4 7 8 9
RF5 7 9 9
RF6 7 8 10

Table 6. Scale for cost factor.

Linguistic value Definition of system safety Numerical Value

Very low The cost of corrective and preventive measure is very low. 1,2

Low The cost of corrective and preventive measure is low. 3,4

Moderate The cost of corrective and preventive measure is moderate. 5,6,7

High The cost of corrective and preventive measure is high. 8,9

Very high The cost of corrective and preventive measure is very high. 10

Table 7. Scale for exposure time factor.

Linguistic value Definition of system safety Numerical Value

Instant exposure There is an instant exposure to failure mode. 1

Very short term exposure There are a few seconds exposure to failure mode. 2,3

Short term exposure There are a few minutes exposure to failure mode. 4,5

Long term exposure There are a few hours exposure to failure mode. 6,7

Very long term exposure There is a half shift exposure to failure mode. 8,9

Continuous exposure There is a shift exposure to failure mode. 10

Table 8. Scale for system safety factor.

Linguistic value Definition of system safety Numerical Value

Very low The effect of corrective-preventive measure is very low to increase system safety 9,10

Low The effect of corrective-preventive measure is low to increase system safety. 7,8

Moderate The effect of corrective-preventive measure is moderate to increase system safety. 4,5,6

High The effect of corrective-preventive measure is high to increase system safety. 2,3

Very high The effect of corrective-preventive measure is very high to increase system safety. 1

Step 4. Identify the minimum and maximum importance values of the RFs.
For each of the six RFs, minimum and maximum values of the expert evaluations are found using in equa-

tion (3.4). These values are shown in Table 10.

Step 5. Generate the random numbers for importance weights of RFs in a minimum-maximum
range and compute the row summation.

30 numbers having uniform distribution are generated for each RF and the row summation is computed. The
generated numbers and row summation values are depicted in Table 11.

Step 6. Implement the row normalization.
The normalization is implemented by using equation (3.5) and the normalized values are depicted in Table 12.
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Table 9. The performance values of the FMs for the first expert.

FMs
RFs

RF1 RF2 RF3 RF4 RF5 RF6

(xi1)1 (xi2)1 (xi3)1 (xi4)1 (xi5)1 (xi6)1
FM1 9 8 1 6 7 6

FM2 7 7 1 6 10 7

FM3 6 6 3 7 10 7

FM4 7 6 4 8 10 9

FM5 10 8 1 9 10 8

FM6 5 6 3 6 6 5

FM7 9 6 2 5 10 4

FM8 7 7 3 8 7 4

FM9 10 9 4 3 9 7

FM10 7 6 1 8 8 9

FM11 10 10 1 9 6 9

FM12 6 6 1 8 9 8

Table 10. The minimum and maximum values of the expert evaluations for the importance
weight of RFs.

RFs
Minimum Value Maximum Value

aj bj

RF1 6 8

RF2 5 7

RF3 4 6

RF4 7 9

RF5 7 9

RF6 7 10

Step 7. Compute the importance weights of the RFs by using average of the column values.
For each of the six RF, the average of the column values are computed to obtain the weight of the RFs,

wj (j = 1, . . . , n) as in equation (3.6) and the RF weight vector W is constructed.

Step 8. Identify the minimum and maximum performance values of each FM.
For each E, k numbers of minimum and maximum evaluation values are determined as in equation (3.7) and

(3.8). The minimum and maximum values of expert evaluations for FMs for the RFs are presented in Table 14.

Step 9. Generate the random numbers in a minimum and maximum range for obtaining perfor-
mance values of each FM.

For twelve FMs, 30 random numbers in uniform distribution are generated for each of the six RFs. 30 random
numbers generated for FM1 are given in Table 15 as an example.

Step 10. Compute the average of N numbers generated for each FM for each RF.
The averages of 30 random numbers according to each of the six RFs for each of the twelve FMs are computed

by equation (3.9) and FM ′ matrix is constructed. The average values of FMs with respect to RFs are given in
Table 16.

Step 11. Normalize initial matrix for the MABAC process.
For the normalization of [FM ′], Equation (3.11) is used for benefit RFs (RF3, RF6) and equation (3.12) is

used for cost RFs (RF1, RF2, RF4, RF5). The normalized matrix [N ] is given in Table 17.
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Table 11. Generated numbers and row summation values.

Experts RFs
∑n

j=1 ytj

(Ek; k = 1 . . . , 30) RF1 RF2 RF3 RF4 RF5 RF6 t = 1, . . . , 30

E1 6,578 5,563 4,697 7,940 7,730 9,720 42,227

E2 6,629 6,864 5,104 8,932 8,719 7,552 43,799

E3 7,029 5,862 5,216 7,704 8,537 9,245 43,593

E4 6,720 6,403 4,343 7,418 8,496 7,879 41,258

E5 6,496 5,370 4,167 7,590 7,174 9,112 39,909

E6 6,165 5,407 4,398 7,388 7,424 9,272 40,054

E7 6,767 6,043 4,796 8,393 8,315 8,151 42,466

E8 7,818 6,818 5,556 7,265 7,865 8,545 43,866

E9 7,131 5,374 4,216 7,590 7,440 7,649 39,400

E10 7,090 6,221 5,776 8,752 8,193 8,291 44,322

E11 6,849 5,937 5,561 7,364 7,179 7,459 40,349

E12 7,838 5,719 4,187 7,670 8,550 9,523 43,487

E13 6,330 5,220 4,327 7,886 7,185 8,736 39,684

E14 6,650 6,921 5,748 8,063 8,717 7,141 43,241

E15 6,908 6,962 5,127 8,728 7,659 8,341 43,724

E16 6,135 6,775 4,218 7,779 7,471 8,318 40,695

E17 7,253 6,105 4,229 8,392 7,893 7,274 41,147

E18 6,516 6,411 4,068 8,469 8,513 9,139 43,116

E19 7,045 6,999 5,678 8,625 8,556 8,011 44,913

E20 6,888 6,177 4,887 8,126 7,473 8,222 41,773

E21 6,215 6,043 4,263 8,203 8,044 7,961 40,730

E22 6,187 6,695 5,512 7,279 7,214 8,868 41,755

E23 6,446 5,494 5,097 8,642 7,185 8,255 41,119

E24 7,284 6,577 4,168 8,169 7,988 8,069 42,254

E25 7,018 6,354 5,994 8,450 8,572 9,172 45,560

E26 7,699 5,304 5,053 7,781 8,196 9,199 43,231

E27 6,292 6,915 5,450 8,061 8,163 7,940 42,822

E28 7,928 6,834 5,297 7,664 8,653 7,226 43,603

E29 6,404 5,089 4,661 7,901 7,183 9,232 40,470

E30 6,086 6,164 5,501 7,957 8,302 7,103 41,114

Step 12. Construct the weighted normalized matrix.
[V] is constructed by multiplying the weight of the RFs (wj) given in Table 13 by the elements of the [N ]

seen in Table 17 by using equation (3.14). [V ] is depicted in Table 18.

Step 13. Determine the border approximation area (BAA) matrix.
[G] is obtained by geometrically averaging the performance values of the FMs in Table 18 with equation (3.16).

[G] is given in Table 19.

Step 14. Calculate the distance of the FMs from the BAA.
In this step, the distance of a FM from the BAA is determined using equation (3.18) as in Table 20.

Step 15. Rank the FMs.
The values of the RF functions for the FMs are the sum of each row of elements from matrix Q using

equation (3.20) and the obtained rank of the FMs is given in Table 21. As seen from Table 21 due to the highest
Si value FM4 is the most risky FM.
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Table 12. Normalized values.

Experts RFs

(Ek; k = 1 . . . , 30) RF1 RF2 RF3 RF4 RF5 RF6

E1 0,156 0,132 0,111 0,188 0,183 0,230

E2 0,151 0,157 0,117 0,204 0,199 0,172

E3 0,161 0,134 0,120 0,177 0,196 0,212

E4 0,163 0,155 0,105 0,180 0,206 0,191

E5 0,163 0,135 0,104 0,190 0,180 0,228

E6 0,154 0,135 0,110 0,184 0,185 0,231

E7 0,159 0,142 0,113 0,198 0,196 0,192

E8 0,178 0,155 0,127 0,166 0,179 0,195

E9 0,181 0,136 0,107 0,193 0,189 0,194

E10 0,160 0,140 0,130 0,197 0,185 0,187

E11 0,170 0,147 0,138 0,183 0,178 0,185

E12 0,180 0,132 0,096 0,176 0,197 0,219

E13 0,160 0,132 0,109 0,199 0,181 0,220

E14 0,154 0,160 0,133 0,186 0,202 0,165

E15 0,158 0,159 0,117 0,200 0,175 0,191

E16 0,151 0,166 0,104 0,191 0,184 0,204

E17 0,176 0,148 0,103 0,204 0,192 0,177

E18 0,151 0,149 0,094 0,196 0,197 0,212

E19 0,157 0,156 0,126 0,192 0,190 0,178

E20 0,165 0,148 0,117 0,195 0,179 0,197

E21 0,153 0,148 0,105 0,201 0,198 0,195

E22 0,148 0,160 0,132 0,174 0,173 0,212

E23 0,157 0,134 0,124 0,210 0,175 0,201

E24 0,172 0,156 0,099 0,193 0,189 0,191

E25 0,154 0,139 0,132 0,185 0,188 0,201

E26 0,178 0,123 0,117 0,180 0,190 0,213

E27 0,147 0,161 0,127 0,188 0,191 0,185

E28 0,182 0,157 0,121 0,176 0,198 0,166

E29 0,158 0,126 0,115 0,195 0,177 0,228

E30 0,148 0,150 0,134 0,194 0,202 0,173

Table 13. Weights of the RFs.

Weights
w1 w2 w3 w4 w5 w6

0,161 0,146 0,116 0,190 0,188 0,198

5. Comparative analysis

The aim of the comparative analysis is to further demonstrate the effectiveness of the proposed Stochastic
FMEA-MABAC approach. We used the example above to compare the rankings of Stochastic FMEA-MABAC,
Classical FMEA-MABAC and Traditional FMEA approaches. The Classical FMEA-MABAC and Traditional
FMEA approaches are computed for all FMs and the results are depicted for three approaches in Table 22.

According to the rankings of Stochastic FMEA-MABAC and Classical FMEA-MABAC approaches, manual
handling of heavy materials (FM4) is at the first rank and narrow working area (FM12) is at the second rank.
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Table 14. Minimum-maximum values of experts evaluations for FMs for the each of RF.

RFs

FMs RF1 RF2 RF3 RF4 RF5 RF6

ai1
′ bi1

′ ai2
′ bi2

′ ai3
′ bi3

′ ai4
′ bi4

′ ai5
′ bi5

′ ai6
′ bi6

′

FM1 5 9 6 8 1 3 6 7 7 10 6 9

FM2 7 9 7 9 1 2 5 8 7 10 5 8

FM3 6 8 4 6 1 3 7 9 9 10 4 7

FM4 7 10 4 6 3 4 3 9 6 10 4 9

FM5 7 10 6 8 1 2 8 9 7 10 7 8

FM6 5 10 6 9 1 3 6 9 6 10 5 9

FM7 6 9 6 8 1 4 5 8 9 10 4 9

FM8 7 9 5 7 3 5 6 8 7 10 4 8

FM9 5 10 7 9 2 4 6 9 7 10 4 7

FM10 5 7 4 6 1 2 7 8 8 10 7 9

FM11 8 10 6 10 1 2 6 9 6 10 7 9

FM12 4 6 6 7 1 2 6 9 6 10 8 9

Exposure to hand vibration (FM8) is at the fifth rank for both of these approaches. However, the rankings for the
rest of FMs are different for these two approaches. According to Classical FMEA-MABAC, noisy assembly area
(FM6) is at the third rank while the same rank is occupied by repetitive movements (FM1) in Stochastic FMEA-
MABAC. Interviews with the workers revealed that repetitive movements were found to be more reasonable for
this rank. Workers expressed their feeling of tiredness because of the same movements they have to perform all
the time during a shift. They only make the same assembly operations with insignificant changes for the same
product.

Disorganization of working area (FM3) is at the final rank in the Stochastic FMEA-MABAC, which is an
acceptable result for high voltage assembly line working conditions. There are more important and compelling
FMs than disorganization of working area. This FM is at the tenth rank in Classical FMEA-MABAC, which is
unreasonable as uncontrolled possession of chemicals (FM11) occupying at eleventh rank is expected to have a
higher rank. Weathered and worn hand tools (FM5) is also expected to have a higher rank than (FM3). As a
result, the effects of damage resulting from (FM11) and (FM5) will be greater than disorganization of working
area.

As seen from Table 22, there are many differences between ranking orders obtained by Traditional FMEA
and the other two approaches. Since, the Traditional FMEA has the limitations mentioned in the introduction
section, in determination of the FM priorities the ranking results obtained from this approach is inconsistent.
For example, based on the Traditional FMEA approach undefined material transfer path (FM9) is at the first
rank and manual handling heavy materials (FM4) is ranked behind undefined material transfer path (FM9).
However in reality, (FM4) is more important, and the result of the proposed approach shows that FM4 has a
higher priority in comparison with FM9. In assembly line, workers must handle high voltage cell separator (150
kg.) manually as seen in Figure 4. This part is too heavy to physically deal with, potentially posing the risk of
musculoskeletal disorders and possibility of losing working ability for the workers.

Interestingly, narrow working area (FM12) turned out to be the least critical FM in Traditional FMEA,
while in the proposed approach and Classical FMEA-MABAC it takes the second rank. This rank obtained
from Stochastic FMEA-MABAC and Classical FMEA-MABAC approaches is more reasonable result than the
rank of the Traditional FMEA as the workers have to work in a small area in the cell having a narrow internal
volume as shown in Figure 5. This situation limits the movement of workers.

Besides, Spearmans rank correlation coefficients (rs) are measured to illustrate the similarity between these
three different ranking approaches. Table 23 shows rs values for the three approaches.
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Table 15. 30 random numbers for FM1.

Experts RFs

(Ek; k = 1 . . . , 30) RF1 RF2 RF3 RF4 RF5 RF6

E1 6,759 7,488 2,061 6,634 7,824 8,351

E2 7,554 7,066 2,092 6,765 9,506 7,676

E3 5,189 6,080 1,349 6,255 8,907 8,729

E4 5,276 7,483 1,650 6,136 7,079 8,064

E5 5,769 6,332 1,612 6,141 7,496 6,326

E6 8,525 6,623 2,143 6,120 9,766 8,867

E7 5,148 7,076 2,163 6,935 7,394 7,685

E8 8,377 7,418 2,290 6,436 8,794 7,981

E9 7,574 7,763 2,341 6,085 9,875 7,802

E10 7,308 6,763 2,740 6,665 7,886 7,653

E11 6,535 6,825 1,274 6,175 9,308 6,628

E12 7,914 6,558 2,060 6,121 7,900 8,524

E13 7,210 7,467 1,504 6,881 9,338 8,933

E14 7,572 7,519 1,121 6,197 9,845 8,058

E15 6,284 6,974 2,213 6,600 8,047 8,912

E16 5,820 7,216 2,102 6,494 7,221 6,914

E17 7,810 6,737 1,180 6,807 8,947 8,517

E18 7,088 7,465 2,136 6,898 9,728 6,003

E19 5,936 6,710 2,175 6,867 8,880 8,837

E20 7,287 6,255 1,218 6,629 8,798 6,812

E21 6,856 6,100 1,630 6,839 9,972 6,394

E22 7,191 6,362 1,686 6,237 8,009 8,978

E23 8,917 7,494 2,512 6,699 7,445 7,064

E24 8,576 7,641 1,071 6,274 7,435 7,239

E25 6,831 7,794 1,831 6,958 7,823 6,761

E26 7,158 7,082 1,714 6,528 8,001 8,301

E27 7,298 6,991 1,269 6,169 7,275 8,814

E28 6,185 6,039 2,587 6,294 7,625 8,205

E29 7,467 6,109 1,224 6,671 9,648 7,757

E30 8,497 7,372 2,767 6,432 9,809 6,559

Considering rs values, it is clear that, Stochastic FMEA-MABAC approach has the similarity of %88,1 with
the Classical FMEA-MABAC approach in terms of ranking. There is no correlation between the rankings of
Traditional FMEA and the other two approaches. Due to the shortcomings mentioned in the introduction section,
rankings provided by Traditional FMEA are not reasonable. In addition, Classical FMEA-MABAC approach
has a disadvantage in terms of limited number of experts. Results obtained from Stochastic FMEA-MABAC
approach are more reasonable than Classical FMEA-MABAC because of the increased numbers of experts and
considered randomness. Therefore, evaluations can be made more precisely with the proposed approach.

6. Conclusions

This paper proposes a Stochastic FMEA-MABAC approach to prioritize potential FMs in an assembly line.
The Stochastic FMEA method is used to determine the weights of the risk factors, and Stochastic MABAC
which is a new MCDM method, is implemented to prioritize the FMs. In the proposed new approach, weights
of the RFs and the performance values of FMs are determined by using random numbers generated in uniform
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Table 16. The average values of FMs with respect to RFs.

RFs

FMs RF1 RF2 RF3 RF4 RF5 RF6

xi1
′ xi2

′ xi3
′ xi4

′ xi5
′ xi6

′

FM1 7,064 6,960 1,857 6,498 8,519 7,778

FM2 7,898 7,927 1,420 6,595 8,523 6,532

FM3 7,033 5,023 2,063 7,952 9,508 5,099

FM4 8,484 5,037 3,459 6,091 7,989 6,727

FM5 8,912 6,938 1,479 8,598 8,550 7,411

FM6 7,797 7,621 2,133 7,475 7,960 6,956

FM7 7,595 6,839 2,570 6,425 9,497 6,626

FM8 7,960 6,007 3,944 6,947 8,504 5,557

FM9 7,502 7,922 2,818 7,235 8,486 5,767

FM10 6,037 4,856 1,476 7,582 9,107 7,973

FM11 9,044 8,197 1,459 7,681 8,170 8,021

FM12 5,043 6,433 1,506 7,324 8,266 8,433

Table 17. The normalized matrix [N ].

RFs

FMs RF1 RF2 RF3 RF4 RF5 RF6

Min Min Max Min Min Max

FM1 0,495 0,370 0,173 0,837 0,639 0,804

FM2 0,286 0,081 0,000 0,799 0,636 0,430

FM3 0,503 0,950 0,255 0,258 0,000 0,000

FM4 0,140 0,946 0,808 1,000 0,982 0,488

FM5 0,033 0,377 0,023 0,000 0,619 0,694

FM6 0,312 0,172 0,282 0,448 1,000 0,557

FM7 0,362 0,407 0,456 0,867 0,007 0,458

FM8 0,271 0,655 1,000 0,659 0,648 0,137

FM9 0,385 0,082 0,554 0,544 0,660 0,200

FM10 0,752 1,000 0,022 0,405 0,259 0,862

FM11 0,000 0,000 0,015 0,366 0,865 0,877

FM12 1,000 0,528 0,034 0,508 0,803 1,000

distribution, which eliminates the uncertainties in risk evaluation process to some extent. Many real life risk
assessment cases feature uncertainty which results in randomness. This study demonstrates that the proposed
approach is an effective and useful tool to determine the priorities of potential FMs in risk assessment problems
considering randomness and uncertainty.

Compared with the other approaches integrated with FMEA, Stochastic FMEA-MABAC has the following
advantages:

• By applying stochastic MCDM structure to FMEA, the ranking results of FMs obtained are more reasonable
because randomness and uncertainty in real life can be reflected and modeled in risk evaluation process.

• The proposed approach has the capability of determining the objective weights of RFs via increasing the
number of DMs through random number generation in uniform distribution.

• FMs can be evaluated according to six different RFs where FMEA uses only O, S and D.
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Table 18. Weighted normalized matrix [V ].

FMs
RFs

RF1 RF2 RF3 RF4 RF5 RF6

FM1 0,241 0,200 0,136 0,349 0,309 0,358

FM2 0,208 0,158 0,116 0,341 0,308 0,283

FM3 0,243 0,284 0,146 0,239 0,188 0,198

FM4 0,184 0,284 0,210 0,380 0,373 0,295

FM5 0,167 0,201 0,119 0,190 0,305 0,336

FM6 0,212 0,171 0,149 0,275 0,377 0,309

FM7 0,220 0,205 0,169 0,354 0,190 0,289

FM8 0,205 0,241 0,232 0,315 0,311 0,225

FM9 0,224 0,158 0,181 0,293 0,313 0,238

FM10 0,283 0,292 0,119 0,267 0,237 0,369

FM11 0,161 0,146 0,118 0,259 0,351 0,372

FM12 0,323 0,223 0,120 0,286 0,340 0,396

Table 19. Border approximation area matrix [G].

BAA
RFs

RF1 RF2 RF3 RF4 RF5 RF6

gj 0,218 0,208 0,147 0,291 0,293 0,299

Table 20. Distances of the FMs from the BAA matrix [Q].

FMs
RFs

RF1 RF2 RF3 RF4 RF5 RF6

FM1 0,023 −0,008 −0,011 0,058 0,016 0,058

FM2 −0,011 −0,050 −0,031 0,051 0,015 −0,016

FM3 0,024 0,077 −0,001 −0,052 −0,105 −0,101

FM4 −0,034 0,076 0,063 0,089 0,080 −0,004

FM5 −0,052 −0,007 −0,028 −0,101 0,012 0,036

FM6 −0,007 −0,037 0,002 −0,016 0,084 0,009

FM7 0,002 −0,003 0,022 0,064 −0,103 −0,010

FM8 −0,013 0,034 0,085 0,024 0,018 −0,074

FM9 0,005 −0,050 0,033 0,002 0,020 −0,061

FM10 0,064 0,084 −0,028 −0,024 −0,056 0,070

FM11 −0,057 −0,062 −0,029 −0,031 0,058 0,073

FM12 0,105 0,015 −0,027 −0,004 0,047 0,097

• With the proposed approach, priority ranking of FMs is determined by employing MABAC which is more
applicable, easy to implement and provides consist ranking results.

• The proposed approach is more suitable to cope with the risk evaluation problem under the lack of sufficient
number of experts. Thus, the outcome of the criticality analysis will provide more reasonable and effective
information for the risk evaluation process.

• The required computations of the proposed approach are straightforward and the approach is easy-to-use in
real-life risk evaluation applications.
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Table 21. Rankings of FMs.

FMs Si Rank

FM1 0,136 3

FM2 −0,042 8

FM3 −0,158 12

FM4 0,270 1

FM5 −0,139 11

FM6 0,036 6

FM7 −0,029 7

FM8 0,073 5

FM9 −0,051 10

FM10 0,110 4

FM11 −0,048 9

FM12 0,232 2

Table 22. Rankings of the FMs for three different approaches.

FMs
Stochastic FMEA-MABAC Classical FMEA-MABAC Traditional FMEA

Si Ranking Si Ranking RPN Ranking

FM1 0,136 3 0,152 4 36 902 9

FM2 −0,042 8 −0,078 9 33 778 10

FM3 −0,158 12 −0,119 10 38 174 8

FM4 0,270 1 0,195 1 62 578 2

FM5 −0,139 11 −0,128 12 51 333 6

FM6 0,036 6 0,175 3 51 202 7

FM7 −0,029 7 −0,004 8 53 331 4

FM8 0,073 5 0,097 5 52 752 5

FM9 −0,051 10 0,009 7 68 210 1

FM10 0,110 4 0,052 6 30 884 11

FM11 −0,048 9 −0,125 11 59 718 3

FM12 0,232 2 0,190 2 24 937 12

Table 23. rs values for rankings of three different approaches.

Approaches
Stochastic Classical

Traditional RPN
FMEA based MABAC FMEA based MABAC

Stochastic FMEA based MABAC − 0,8811

Classical FMEA based MABAC 0,8811 −
Traditional FMEA −

1Correlation is significant at the 0,01 level (2-tailed).

For the future studies, the proposed approach can be used to prioritize FMs in other sectors. Results obtained
by the proposed approach in this study can be compared with other MCDM methods such as VIKOR, TOPSIS
or PROMETHEE etc. Another possible future research may be related to RFs relationship. By considering the
relationships between the RFs, FMEA can be implemented in a stochastic manner. Finally, different RFs may
be considered for risk evaluation in FMEA.
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Figure 4. Manual handling of high voltage cell separator.

Figure 5. Narrow working area.
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