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Abstract. The purpose of this work is four-fold: (1) We propose a new measure of network resilience
in the face of targeted node attacks, vertex attack tolerance, represented mathematically as τ (G) =

minS⊂V
|S|

|V −S−Cmax(V −S)|+1
, and prove that for d-regular graphs τ (G) = Θ(Φ(G)) where Φ(G) denotes

conductance, yielding spectral bounds as corollaries. (2) We systematically compare τ (G) to known
resilience notions, including integrity, tenacity, and toughness, and evidence the dominant applicability
of τ for arbitrary degree graphs. (3) We explore the computability of τ , first by establishing the

hardness of approximating unsmoothened vertex attack tolerance τ̂ (G) = minS⊂V
|S|

|V −S−Cmax(V −S)|
under various plausible computational complexity assumptions, and then by presenting empirical results
on the performance of a betweenness centrality based heuristic algorithm applied not only to τ but
several other hard resilience measures as well. (4) Applying our algorithm, we find that the random
scale-free network model is more resilient than the Barabasi−Albert preferential attachment model,
with respect to all resilience measures considered.
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1. Introduction

While networks arise ubiquitously from countless and varied disciplines, an important problem relevant to
all types of networks is that of measuring and generating resilience characteristics. Any notion of resilience
must express the relative size of a most critical set of target edges or target vertices whose removal, upon
an attack, would be detrimental to the remaining network and attempt to quantify the amount of resulting
damage. The graph-theoretic network resilience problem in its utmost generality is not new. But, the most
well-studied theoretical machinery to discuss it, namely conductance [9] is more meaningful for networks with
homogeneous degree distributions because it is a fundamentally edge-based notion. Conductance, in its various
normalized and non-normalized forms, is a fundamental property of graphs independent of its applicability to
edge-based resilience or resilience in general and is intimately related to both the mixing times of random walks
on graphs [35] and the eigenvalues of the graph’s adjacency matrix (or normalized adjacency matrix as befits the
situation) [9]. The fundamental importance of conductance to the resilience of homogeneous degree networks
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is well illustrated by the literature on regular expanders [3] which are defined in terms of high conductance and
spectral gap and have become synonymous with extremally resilient families of regular graphs.

However, there is a growing body of work [31] indicating that many real world networks, ranging from
biological networks to online social networks, often exhibit heterogeneous and scale-free degree distributions.
Even in situations where the scale-free nature of a degree distribution may be questioned [12], an assumption
of degree homogeneity would be even more suspect in many networks [2]. Some notable exceptions to this
are, of course, networks whose connection are purely defined by distances in low dimensional space (such
as random ad-hoc networks) as well as networks that have very hard and frugal constraints on the number
of connections their nodes are allowed. In any case, there is a gap between much of the beautiful existing
graph theoretical machinery to analyze resilience in networks based on conductance and the actual resilience,
particularly against node attacks in many actual networks, which have heterogeneous degrees. To illustrate why
degree heterogeneity poses such a problem to the application of any edge-based resilience notion in general and
conductance in particular, consider the case of the Star network of n nodes, an undirected graph G = (V, E)
on n = |V | nodes with a unique designated central node v0 such that node v0 is connected to every other node
v ∈ V − {v0}, and there are no other edges between any other pair of nodes. The conductance of Star(n) is
maximally 1, whereas the star is in fact the least resilient network with respect to targeted node attacks as
the removal of a single node v0 results in n − 1 isolated nodes. A motivation for this work is the search for
a measure that accurately captures resilience against targeted node attacks in both homogeneous degree and
heterogeneous degree networks. In particular, such a measure should behave similarly to conductance for regular
networks, particularly assigning expander high resilience, but should diverge from conductance with respect to
heterogeneous degree networks, particularly assigning the star network the lowest possible resilience. The other
primary motivation for this work is answering what is the actual comparative resilience of different generative
scale-free models?

This work consists of four logical modules. In the first module, we propose our resilience measure, called
vertex attack tolerance (shortened VAT) denoted mathematically by τ(G) = minS⊂V

|S|
|V −S−Cmax(V −S)|+1 , where

Cmax(V − S) is the largest connected component in V − S, and we establish a rigorous relationship between
VAT and conductance and spectral gap in the case of regular graphs. In particular, we prove that 1

dΦ(G) ≤
τ(G) ≤ dΦ(G) if Φ(G) ≤ 1

d2 , and 1
dΦ(G) ≤ τ(G) ≤ d2Φ(G) otherwise. Moreover, applying Cheeger’s inequality,

we obtain the following eigenvalue bounds as a corollaries: given a connected d-regular graph G = (V, E), let
λ2 denote the second largest eigenvalue of G’s normalized adjacency matrix. Then, τ(G)2

2d4 ≤ 1 − λ2 ≤ 2dτ(G).

Moreover, if Φ(G) ≤ 1
d2 , then τ(G)2

2d2 ≤ 1 − λ2 ≤ 2dτ(G).
In our second module, we are concerned with systematic comparison of VAT with several existing resilience

measures in addition to conductance [9, 35] for general graphs: vertex expansion [18, 26], integrity [5], tough-
ness [10], tenacity [27] and scattering number [24]. We exhibit sequences of graph families for which VAT uniquely
captures the inuitive relative ranking of resilience. Our initial comparisons are based on the star, barbell (two
identical cliques joined by a single edge), and apple (a clique adjacent to a single node by a single edge) family of
graphs, for which we desire a measure respecting the following resilience ordering based on the component size
distribution resulting from any frugal attack: Resilience(Star) < Resilience(Barbell) < Resilience(Apple). We
perform further experimental comparisons on several other graphs, including two graphs generated via random
expander families, and present results of our comparisons.

In the third module of our paper we explore computational issues regarding VAT and other resilience
measures. We first establish the approximation-hardness of unsmoothened vertex attack tolerance τ̂(G) =
minS⊂V

|S|
|V −S−Cmax(V −S)| under four separate, plausible computational complexity assumptions. We then

present a greedy, betweenness-centrality (Greedy-BC) based heuristic algorithm to compute τ that is general-
izable to other node-based resilience measures considered. Existing NP-Hardness results for resilience measures
considered in this work include [13] for integrity, [6] for toughness, [28] for tenacity, [8] for scattering number, [34]
for conductance, and [26] for vertex expansion. We perform various empirical comparisons demonstrating the ef-
fectiveness of Greedy-BC in computing VAT, integrity, tenacity, and toughness for realistic graph classes despite
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known hardness results for general graphs. Our experiments also show that hill-climbing with a neighborhood
defined by Hamming distance up to two does not significantly improve accuracy despite being significantly more
inefficient.

The fourth logical module of our paper consists of extensive calculations of τ(G) and other resilience measures
for two important generative models of scale-free graphs: preferential attachment (PA) graphs captured via the
Barabasi−Albert model [4], and random scale-free graphs captured via the PLOD model [33]. We have also
computed the vertex attack tolerance of heuristically-optimized trade-offs graphs referred to as the HOTNet
model [17]. HOTNets, which exhibited the worst vertex attack tolerance on various parameter settings considered
even when controlling for average degree. However, we wish to control for degree distribution in our comparisons,
and HOTNets cannot be tweaked to follow an exact degree distribution. We present extensive simulation results
comparing PA graphs to PLODs of identical degree distribution. For small graph sizes, PA graphs exhibit better
resilience than both PLOD and HOTNet models. However, it is the asymptotic behavior of a graph family that
is statistically relevant. Our results indicate that PLOD graphs with degree distributions identical to PA graphs
of the same size exhibit increasingly better resilience than the PA type graphs, although both graph types
appear surprisingly resilient when the generative PA parameter is m = 2. Our results may be compared and
contrasted with previous claims on the attack tolerance of scale-free networks [1, 2, 12].

Prior to proceeding, we note that this work contains partial results from the authors’ previous conference
paper [16], preprints [14, 15, 30], and thesis [29]. In particular, VAT was first proposed by the authors in con-
ference paper [16]. Parts of the section comparing resilience measures are also contained in author thesis [29].
Spectral bounds for VAT and relations with conductance are also contained in preprints [14,30]. Computational
complexity results are also in [15]. Preliminary results on the vertex attack tolerance of scale-free models are
found in preprint [30], though the algorithm used there is less accurate and efficient.

2. Definitions and preliminaries

2.1. Definitions

In all following definitions, when given a directed graph G = (V, E) and considering a resilience measure r
on G, the connected components of G refer to the strongly connected components of G. If weakly connected
components are desirable with respect to an application, then one may define the resilience upon the underlying
undirected graph G′ of G instead.

Given a graph G = (V, E), we define vertex attack tolerance (VAT) of G as

τ(G) = min
S⊂V,S �=∅

{ |S|
|V − S − Cmax(V − S)| + 1

}

where Cmax(A) is defined as the largest connected component of A ⊂ V . Note that τ is a smoothened version of
the measure of vertex attack tolerance previously introduced by the authors in [16]. It will also be convenient
to refer to this unsmoothened version of vertex attack tolerance, which we denote as follows:

τ̂ (G) = min
S⊂V,S �=∅

{ |S|
|V − S − Cmax(V − S)|

}

Combinatorial conductance or edge based conductance [9, 35] is defined as

Φ(G) = minS⊂V,Vol(S)≤Vol(V )/2

{ |Cut(S, V − S)|
Vol(S)

}

= minS⊂V,Vol(S)≤Vol(V )/2

{ |Cut(S, V − S)|
δS |S|

}
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where |Cut(S, V −S)| is the size of the cut separating S from V −S, Vol(S) is the sum of the degrees of vertices
in S, and δS is the average degree of vertices in S. Conductance is a normalized form of edge expansion, which
is defined as

εE(G) = min
S⊂V,|S|≤|V |/2

{ |Cut(S, V − S)|
|S|

}

On the other hand, vertex expansion [18, 26] is defined as

εV (G) = min
S⊂V

{
n

|N(S)|
|S||V − S|

}

where N(S) denotes the outer boundary of S, namely N(S) = {i ∈ V − S | ∃u ∈ S,� {u, v} ∈ E}. Integrity [5]
is defined as

Î(G) = min
S⊂V

{|S| + Cmax(V − S)}
However, to compare with other measures, we will also use the normalized version of integrity. Normalized
integrity is defined as

I(G) = min
S⊂V

{ |S| + Cmax(V − S)
|V |

}

Toughness [10] is defined as

t(G) = min
S⊂V

{ |S|
ω(V − S)

}

where ω(V − S) is the number of connected components in V-S. Tenacity [27] is defined as

T (G) = min
S⊂V

{ |S| + Cmax(V − S)
ω(V − S)

}

Scattering number [24] is defined as

sn(G) = max
S⊂V

{ω(V − S) − |S|} (2.1)

However, as higher scattering numbers corresponds to worse resilience, it will be more convenient to discuss
inverse scattering, which we denote

h(G) = 1
sn(G) = min

S⊂V

{
1

ω(V − S) − |S|
}

It is clear that all above notions are defined based on finding some worst case target set of nodes. Therefore,
it will be convenient to directly denote the referenced target set as well as the measure defined conditional upon
a particular target set. For the case of vertex attack tolerance, we denote set-vertex tolerance as

τS(G) =
|S|

|V − S − Cmax(V − S)| + 1

so that clearly τ(G) = minS⊂V τS(G) and correspondingly

S(τ(G)) = argminS⊂V τS(G)

Similarly for set-conductance:

ΦS(G) =
|Cut(S, V − S)|

δS |S|
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so that clearly Φ(G) = minS⊂V,|Vol(S)|≤|Vol(V )|/2 ΦS(G) and correspondingly

S(Φ(G)) = argminS⊂V,|Vol(S)|≤|Vol(V )|/2τS(G)

The pattern is clear for set edge expansion, set vertex expansion, set integrity, set toughness, set tenacity, and
smoothed inverse scattering number, respectively denoted IS(G), tS(G), TS(G), and hS(G). For all such set
resilience measures fS, we may generally denote the target set function as S(f(G)) = argminfS(G).

Having just defined set-vertex attack tolerance and set-resilience in general, we may define vertex attack toler-
ance in expectation, with respect to given probability distribution function P over all possible attack sets S ⊂ V :

τP (G) =
∑
S⊂V

τS(G)P (S)

For any resilience measure r(G) (e.g. r(G) = I(G) in the case of integrity), similarly define for any probability
distribution P over subsets of vertices:

rP (G) =
∑
S⊂V

rS(G)P (S)

It will be convenient to denote the subgraph of a graph G = (V, E) that is induced by a vertex set S ⊂ V as
GS = (S, ES).

The normalized adjacency matrix of a graph G = (V, E) is the |V | by |V | matrix A where Au,v = 0 if
{u, v} /∈ E and Au,v = 1

du
where du is the degree of u otherwise if {u, v} ∈ E. Note that the normalized

adjacency matrix of a graph is identical to the probability transition matrix, or Markov chain, of the natural
random walk.

There are some special infinite families of graphs which we shall refer to in comparing resilience notions. The
star graphs are denoted Star(n) and defined as follows:

Definition 2.1. The star graph Star(n) is an undirected graph G = (V, E) on n = |V | nodes with a unique
designated central node q such that node q is connected to every other node u ∈ V −{q}, and there are no other
edges between any other pair of nodes. Namely, E = {{q, u} | u ∈ V − {q}}. When the labeling of the graph is
arbitrary, we may without loss of generality assume that q = 1.

The barbell graph denoted Barbell(2n) are defined as:

Definition 2.2. The barbell graph Barbell(2n) is an undirected graph G = (V, E) on 2n = |V | nodes created
by joining two Kn cliques by a single edge, which we may refer to as the central edge. We may also sometimes
refer to the two cliques as the left clique and the right clique.

The apple graph denoted Apple(n) is defined as:

Definition 2.3. The apple graph Apple(n) is an undirected graph G = (V, E) on n = |V | nodes created by
joining a Kn−1 clique to a single designated node q by a single edge. When the labeling of the graph is arbitrary,
we may without loss of generality assume that q = 1.

2.2. Generalizations and variations of VAT

A generalization of vertex attack tolerance which allows us to discuss a type of vertex-weighted graph G which
has costs c(x) and values v(x) associated with each vertex x ∈ V . Specifically, the graph context concerned here
is that of graphs G = (V, E, c, v) such that c, v are positive real-valued functions on the vertex set V . If c is
specified without v being specified, then we will assume that c = v, and similarly for the case that v is specified
without c being specified. If neither c nor v are specified, then the assumption is that c(x) = v(x) = 1 for all
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x ∈ V . Having clarified the context of such cost-value node-weighted graphs G, the following is the appropriate
generalization of VAT:

τ(G) = min
S⊂V,S �=∅

{ ∑
x∈S c(x)

1 +
∑

y∈V v(y) − ∑
y∈S+Cmax(V −S) v(y)

}

A parametrized generalization of vertex attack tolerance which allows for linear weighting parameters α, β is
the following, which we call (α, β)-vertex attack tolerance:

τ(G, α, β) = min
S⊂V,S �=∅

{
α|S| + β

|V − S − Cmax(V − S)| + 1

}

= min
S⊂V,S �=∅

{
β + α

∑
x∈S c(x)

1 +
∑

y∈V v(y) − ∑
y∈S+Cmax(V −S) v(y)

}

Clearly VAT is identical to (1, 0)-VAT. There exist situations in which (1, 1)-VAT, which nominally appears
quite similar to VAT, may be more appropriate [29]. The relative appropriateness of a weighted measure depends
upon the relative frugality one wishes to assign to vertex attacks.

In our last variation of vertex attack tolerance, we consider that there may be applications in which we wish
to assign a non-zero resilience to an already disconnected network by considering the resilience of each individual
component. Recall that otherwise, the resilience of a disconnected graph G is zero, for all measures considered.
Therefore, we may define the vector τ (G) as follows. Let G = (V, E) be a graph with k strongly connected
components C1, C2, . . . Ck such that |C1| ≥ |C2| ≥ . . . |Ck−1| ≥ |Ck|. Then, letting Gi denote the subgraph of G
induced by component Ci, we may define the vector τ (G) as follows:

τ (G) = 〈τ(G1), τ(G2), . . . , τ(Gk)〉

Note that this variation naturally extends to all other resilience measures considered in this work as well, so
that one may define vectors I(G), t(G), T (G), h(G) similarly when given disconnected G and non-zero resilience
is desired.

2.3. Mathematical preliminaries

Conductance is arguably the most important and well-studied resilience notion in the context of d-regular
connected graphs. Part of the reason for the importance of conductance is in the intimate relationship it shares
with spectral gap and mixing time. One of the most important such relationships is Cheeger’s inequality [9,35]:

Theorem 2.4. Given a connected d-regular, undirected graph G = (V, E), let λ2 denote the second largest
eigenvalue of G’s normalized adjacency matrix. Then,

Φ(G)2

2
≤ 1 − λ2 ≤ 2Φ(G) (2.2)

Let us note the following preliminary observation:

Remark 2.5. For undirected, connected G = (V, E) with |V | ≥ 2, 0 < τ(G) ≤ 1, and Cmax(V − S(τ(G))) 	= ∅.
The first bound follows from the non-emptiness of S by definition of τ , in addition to the fact that, for any

vertex v ∈ V , τ(G) ≤ τ{v}(G) = 1
|V −{v}−Cmax|+1 ≤ 1. The non-emptiness of the largest remaining connected

component follows from the fact that the only way that Cmax can be empty is by taking S = V , but such S
cannot achieve as low a set-VAT as that achieved by a single node, and therefore cannot be the set corresponding
to VAT.
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Moreover,

Lemma 2.6. For any connected, undirected graph G = (V, E) on n = |V | ≥ 3 nodes, τ(G) ≥ 1
n−1

Proof of Lemma 2.6. Because G is connected, at least one node must be attacked in order to result in any
disconnection, so that the minimum achievable value of the numerator of the τ function is 1. Considering the
maximum possible denominator of τ , namely the maximum achievable |V − S − Cmax| + 1, we claim that it
is n − 1. Because we already argued that |S| ≥ 1, it suffices to show that Cmax 	= 0 for this situation, as
n− 1− 1 + 1 = n− 1 then yields the desired lower bound. But, Cmax cannot be zero unless V = S (or else some
node would remain), and taking V = S gives a VAT of 1 >> 1

n−1 for n ≥ 3. �

The following bound is well-known for conductance:

Remark 2.7. For undirected, connected G = (V, E) with |V | ≥ 2, 0 < Φ(G) ≤ 1.

For the proofs in the next section, the following inequality will prove useful:

∀a, b, x, y > 0,
a

x
<

b

y
→ a

x
<

a + b

x + y
<

b

y
(2.3)

Even more useful is a corollary of this inequality that follows by induction:

Corollary 2.8. Let n > 0 be a natural number, and for each natural number i from 1 to n, let positive numbers
ai and bi be given. Moreover, let c be any real number that satisfies c ≤ min1≤i≤n

ai

bi
. Then, the following is

true:

c ≤
∑

1≤i≤n ai∑
1≤i≤n bi

(2.4)

3. Spectral bounds for VAT in regular graphs

As stated, conductance is a very important and well-studied resilience notion in the context of d-regular
connected graphs. The two main results of this section are the following theorems which state that the vertex
attack tolerance and conductance of the same graph are within a factor d of each other as long as the conductance
is not too high and the unsmoothened VAT exists. The first theorem upper bounds VAT via conductance, and
the second theorem lower bounds the unsmoothened version of VAT via conductance:

Theorem 3.1. For undirected, connected, d-regular G = (V, E) with |V | ≥ 2, if Φ(G) ≤ 1
d2 then τ(G) < dΦ(G),

and τ(G) < d2Φ(G) otherwise.

Theorem 3.2. For undirected, connected, d-regular G = (V, E) with |V | ≥ 2, Φ(G) < dτ(G).

Applying Cheeger’s inequality to these theorems results in the following corollary:

Corollary 3.3. Given a connected d-regular graph G = (V, E), let λ2 denote the second largest eigenvalue of
G’s normalized adjacency matrix. Then,

τ(G)2

2d4
≤ 1 − λ2 ≤ 2dτ(G) (3.1)

Furthermore, if Φ(G) ≤ 1
d2 , then

τ(G)2

2d2
≤ 1 − λ2 ≤ 2dτ(G) (3.2)



1062 J. MATTA ET AL.

In proving Theorem 3.1 we shall use the following lemma regarding conductance in d-regular graphs:

Lemma 3.4. Given a connected, undirected d-regular graph G = (V, E), there exists a set S such that S =
S(Φ(G)) and the induced subgraph GS is connected.

Now we demonstrate the proofs of the theorems and lemma:

Proof of Theorem 3.1. First note that the bound for the case that Φ(G) > 1
d2 simply follows from both con-

ductance and VAT being normalized measures in (0, 1]. So, WLOG assume that Φ(G) ≤ frac1d2. Let set
S = S(Φ(G)) such that the induced subgraph GS is connected, realizing the existence of such non-empty S via
Lemma 3.4. Let Sout denote the vertex boundary of S that is outside of S, also called the outer vertex boundary
of S and precisely being Sout = {v ∈ V − S | ∃e = {u, v} ∈ Cut(S, V − S)}. We may lower bound and upper
bound Sout as follows:

(1) |Cut(S, V − S)| ≤ d|Sout|.
(2) |Sout| ≤ |Cut(S, V − S)|.
Combining bound (2) above with the fact that |Cut(S,V −S)|

d|S| = Φ(G) ≤ 1
d2 we have that

|Sout| ≤ |Cut(S, V − S)| ≤ |S|
d

Now, consider the structure of G upon the removal of nodes Sout. As Sout ⊂ V − S, and removal of Sout

also removes edges along Cut(S, V − S), we know that at least S would remain as a connected component.
There are two possible situations: either (i) S would be the largest connected component in which case |V −
Sout − Cmax(V − Sout)| = |V − S − Sout| or, (ii) S is not the largest connected component in which case
|V − Sout − Cmax(V − Sout)| ≥ |S|.

First consider case (i): by definition of Φ, S cannot contain a strict majority of nodes of V , and therefore,
|V − S| ≥ |S| is known. Combining this with |Sout| ≤ |S| 1d implies that

|V − Sout − Cmax(V − Sout)| = |V − S − Sout| ≥ |S|d − 1
d

Further combining this with bound (2) above, we have that

τSout =
|Sout|

|V − Sout − Cmax(V − Sout)| + 1

≤ (d − 1)|Cut(S, V − S)|
d|S| + 1

< (d − 1)Φ(G) < dΦ(G)

finishing the proof for case (i), because τ(G) ≤ τSout < dΦ(G).
In the second case (ii), we also obtain that τSout(G) ≤ dΦ(G): due to the previously established facts |Sout| ≤

|Cut(S, V − S)| and |V − Sout − Cmax(V − Sout)| ≥ |S| we have

τSout =
|Sout|

|V − Sout − Cmax(V − Sout)| + 1

<
|Cut(S, V − S)|

|S|
= dΦ(G)

finishing the proof. �
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Proof of Theorem 3.2. Let S = S(τ(G)), which is non-empty by definition. Furthermore, let T = Cmax(V − S),
which is also non-empty by Remark 2.5. Consider the set conductance of T , namely ΦT (G). There are two
situations which we must consider separately:

(1) |T | >
|V |
2

·

(2) |T | ≤ |V |
2

·

Let us first consider the first situation. In that case, ΦT (G) = |Cut(T,V −T )|
d|V −T | . However, because all edges of

Cut(T, V − T ) must be adjacent to S, we know that |Cut(T, V − T )| ≤ d|S|. Moreover, clearly, |V − T | ≥
|V − S − T + 1|. Combining these facts, we obtain that:

Φ(G) ≤ ΦT (G) ≤ d|S|
|V − S − T + 1| = dτ(G) (3.3)

This finishes the proof for the case that T is the majority of the nodes. Therefore, let us finally consider the
case that T does not comprise the majority of the vertices:

Let us denote q as the number of connected components of the induced subgraph GV −S−T , and, furthermore,
denote each such remaining component by Ci, ∀1 ≤ i ≤ q. Because T itself is the largest connected component
of induced subgraph GV −S by definition, and T < |V |

2 by assumption, we know further that each |Ci| < |V |
2 . It

will be convenient to denote Cq+1 = T . Therefore,

∀1 ≤ i ≤ q + 1, ΦCi(G) =
|Cut(Ci, V − Ci)|

d|Ci| (3.4)

Now, note the following facts due to the action of S and the definition of connected components:

(1) d|S| ≥ |Cut(T, V − T )| + ∑q
i=1 |Cut(Ci, V − Ci)| =

∑q+1
i=1 |Cut(Ci, V − Ci)|.

(2) |V − S − T + 1| ≤ |V − S| = |T | + ∑q
i=1 |Ci| =

∑q+1
i=1 |Ci|.

The second fact is clear from the definition of connected components as a partition. The first fact follows from
the action of S: all edges crossing the boundary of a connected component must be adjacent to S. Combining
the two facts, we obtain that

τ(G) = d
|S|

d|V − S − T + 1| ≥
∑q+1

i=1 |Cut(Ci, V − Ci)|∑q+1
i=1 d|Ci|

(3.5)

Now, note that each term of the sum in the numerator is a numerator of ΦCi(G) whereas each term of the sum
in the denominator is a corresponding denominator of ΦCi(G). Applying Corollary 2.8 with c = Φ(G), with
ai = |Cut(Ci, V − Ci)|, and with bi = d|Ci|, we obtain that τ(G) ≥ Φ(G), completing the proof. �

Proof of Lemma 3.4. Let S = S(Φ(G)), and assume that GS can be partitioned into two subgraphs that are
disconnected from each other, namely G1 = (S1, E1) and G2 = (S2, E2) such that S2 = S−S1 and E2 = ES−E1.
Therefore, the edge boundary or S is correspondingly partitioned such that

|Cut(S, V − S)| = |Cut(S1, V − S)| + |Cut(S2, V − S)|
For convenience, denote a = |Cut(S1, V − S)| = |Cut(S1, V − S1)|, b = |Cut(S2, V − S)| = |Cut(S2, V − S2)|,
and c = |Cut(S, V − S)| = a + b,. Furthermore, denote x = |S1|, y = |S2|, and z = |S| = x + y. Now, consider
the relative set conductances of S1 and S2, and without loss of generality, assume that ΦS1(G) ≤ ΦS2(G). Then,
because the normalization factor d is lost from both sides we have:

a

x
≤ b

y
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But, due to the minimality of the conductance achieved by S, we have

a + b

x + y
≤ a

x
≤ b

y

But, by equation 2.3, this can only be satisfied when

a + b

x + y
=

a

x
=

b

y

And, in that case, S1 or S2 also achieve the conductance of G. However, we did not assume that either of
them are connected. Nonetheless, it is clear that as long as one of them is disconnected, the same argument as
above can be applied to get another partition into two smaller sets yet which each achieve the conductance Φ.
However, due to the finiteness of G, this cannot continue ad infinitum, and there must exist a set Si such that
ΦG = ΦSi(G) and induced subgraph GSi is connected. �

4. Comparison of resilience notions for general graphs

In contrast to the situation of regular graphs, here we first consider the extent to which conductance fails to
capture node-based resilience in the case of heterogeneous degree graphs. We note the following immediately:
there exists an infinite graph family, namely the star graphs Star(n) such that a targeted attack against the
central node results in a maximal disconnection of the graph into n − 1 isolated nodes. Yet, the following are
the conductance and vertex attack tolerance of Star(n) respectively, for n ≥ 3:

(1) Φ(Star(n)) = 1·
(2) τ(Star(n)) =

1
n − 1

·

In other words, there is an infinite graph family which is maximally intolerant against a targeted node attack.
The conductance of this family is maximal, whereas the vertex attack tolerance of this family is minimal,
amongst all possible graphs. We prove this introductory observation as follows: let q be the designated central
node in Star(n). First, let us bound Φ(Star(n)): let S = S(Φ(Star(n))). First consider the case that q  S. In
that case, all degrees of nodes in S are one, and each node in S is adjacent only to q which is not in S. Therefore,
|Cut(S, V − S)| = |S| = |Vol(S)|, proving that Φ(Star(n)) = 1 for this case. In the other case that q  S, note
that the volume constraint in the definition of conductance restricts us to sets S that do not exceed half of the
total volume of V . The volume of q alone is proportional to its degree n − 1, whereas there are exactly n − 1
other nodes whose total volume is exactly n − 1. Therefore, in the case that q ∈ S, it must be that S = {q}
alone. In this situation, Cut(S, V − S) is exactly all the n − 1 edges of G, and so calculating for conductance
again yields ΦS(Star(n)) = n−1

n−1 = 1. Now we consider τ(Star(n)). As intuitively clear, first consider τS(Star(n))
for S = {q}, namely a targeted attack of the central node. Because removal of q results in only isolated nodes,
|Cmax| = 1. Moreover, |S| = 1. Therefore, τS(Star(n)) = 1

n−1 . By Lemma 2.6, no other set can achieve a lower
VAT value, and so τ(Star(n)) = 1

n−1 .
Having established that the minimally resilient graph with respect to targeted vertex attacks indeed achieves

minimal VAT as well while achieving maximal conductance, we wish to further compare both against other
resilience notions and against the barbell and apple families as well. We explicitly axiomatize the following in
our comparisons:

Remark 4.1. Any measure of network resilience Resilience(G) which is based upon an attacker model that
targets a critical set of nodes whose removal causes a proportionally severe disconnection in the resulting network
must be consistent with the following relative ranking of resilience for any even n > 3:

Resilience(Star(n)) < Resilience(Barbell(n)) < Resilience(Apple(n)) (4.1)
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Table 1. Resilience measures for 3 families of graphs.

Graph Type VAT I(G) t(G) T(G) h(G) εV (G) Φ(G)

Star
1

n− 1

2

n

1

n− 1

2

n− 1

1

n− 1

4

n
, n even;

4n

n2 − 1
, n odd

1

Barbell
2

n

1

2
+

1

n

1

2

n + 2

4

1

2

4

n

2

n

Apple
1

2

n− 1

n

1

2

n− 1

2

1

2

n

n− 1
1

Table 2. Comparison of measures on 7 graphs.

Graph Type VAT I(G) T(G)
Star .043 .083 .087
Tree .063 .292 .467
Barbell .083 .541 6.500
C3 .200 .417 .833
Apple .500 .958 11.500
3-Regular .538 .500 1.400
Cayley 1.000 .583 2.333

We have already established why the star graph is maximally vulnerable against a targeted node attack: the
size of the critical node set attacked is minimal (1) while the resulting disconnection is maximal in that all
components are isolated nodes. For the case of both the apple and the barbell, it is clear that a single node
attack results in two cliques: for apple, those two cliques are of size n − 1 and 1, whereas for barbell they
are each of size n

2 . Because a clique is a maximally connected graph, there can be no further attack that is
critical in the sense that the cost of the attack justifies the amount of damage that can result. Therefore, the
unique critical attack for the apple results in almost all nodes remaining connected to each other, whereas the
barbell attack creates the worst case separation into two components possible as it minimizes the total number
of connected pairs of nodes possible subject to the total node and component constraints. Therefore, we have
justified Remark 4.1.

In Table 1 we exhibit our resilience computations for the star, barbell, and apple, for the following measures:
VAT, normalized integrity (I(G)), toughness (t(G)), tenacity (T (G)), smoothed inverse scattering (h(G)), ver-
tex expansion (εV (G)), and conductance (Φ(G)). Explanations for the computations of Table 1 may be found
in author John Matta’s thesis [29]. Amongst the resilience notions considered, it can be seen that only VAT, in-
tegrity, and tenacity respect the ordering stated by Remark 4.1. Therefore, in further experimental comparisons,
we restrict ourselves to VAT, integrity, and tenacity.

Experiments were conducted on the following seven graphs of Figure 1, each having exactly 24 nodes: the tree
is generated randomly according to the HOTNet algorithm given in [17], resulting in a graph with a scale-free
degree distribution. The C3 graph was adapted from a graph used in [11], with some nodes removed to yield
24 nodes, and is chosen to represent the case where a multiple-vertex bottleneck would intuitively divide a
graph into three components. Both the random 3-regular graph [21,22] and the random Cayley graph [32] are
representative of expander families of graphs, whose extremely high resilience is well-established. Furthermore,
the number of generators for the random Cayley graph are chosen to guarantee greater expansion properties
than the random 3-regular graph with high probability.

Table 2 summarizes the resilience measures on the seven representative graphs. All measures are exactly
computed via branch-and-bound methods. A striking aspect of the results are in the relatively high values
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(a) Star (b) Tree (c) Barbell (d) C3

(e) Apple (f) Random 3-
Regular Expander

(g) Random Cayley
Expander

Figure 1. The graphs used in our comparisons.

accorded to the barbell graph via both integrity and tenacity. In particular, the tenacity of the barbell graph
is significantly higher than both expander graphs, while the integrity of the barbell is higher than the 3-regular
expander and very close to the integrity of the Cayley expander. In fact, the integrity of the Cayley expander
and the integrity of the barbell are closer to each other than any other pair of integrity values for the seven
graphs considered. Moreover, the second two closest pair of integrity values is for the C3 graph and the 3-
regular expander. Vertex attack tolerance, on the other hand, is unique in its ranking of the expander families
as exhibiting the highest resilience, clearly separated from all other graphs except possibly for the apple graph.
We understand that different measures may certainly be more useful depending on other contexts. However,
VAT is unique amongst all measures considered in simultaneously satisfying Remark 4.1 and the according
relatively high resilience to expander families, particularly when compared against a maximally bottlenecked
graph such as the barbell.

5. Computational aspects of VAT

The results of the previous section used an exact branch and bound algorithm that is infeasible for significantly
larger graphs. In this section we first prove the hardness of approximating unsmoothened VAT (UVAT) τ̂ under
various plausible computational complexity hypothesis, and then empirically investigate the performance of a
greedy betweenness centrality based algorithm to compute not only VAT but also other resilience measures.

5.1. Hardness of approximating UVAT

Our reduction extends the techniques for the NP-Hardness proof for the vertex integrity of co-bipartite graphs
presented in [13]. Similarly, our computational hardness results for UVAT involves reductions with the Balanced
Complete Bipartite Subgraph problem (BCBS). The BCBS problem is defined as:

Definition 5.1. Instance: A balanced bipartite graph G = (V1, V2, E) with n = |V1| = |V2| and an integer
0 < k ≤ n. Question: Does there exist A ⊂ V1 and B ⊂ V2 such that |A| = |B| = k and (A, B) form a k × k
complete bipartite graph?
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The maximization version of the problem can be referred to as MAX-BCBS. The following three theorems
regard the hardness of approximating MAX-BCBS under various plausible complexity theoretic assumptions:

Theorem 5.2 [20]. It is NP-hard to approximate the MAX-BCBS problem within a constant factor if it is NP-
hard to approximate the maximum clique problem within a factor of n/2c

√
log n for some small enough c > 0.

Theorem 5.3 [25]. Let ε > 0 be an arbitrarily small constant. Assume that SAT does not have a probabilistic
algorithm that runs in time 2nε

on an instance of size n. Then there is no polynomial time (possibly ran-
domized) algorithm for MAX-BCBS that achieves an approximation ratio of N ε′ on graphs of size N where
ε′ = 1

2O(1/ε log (1/ε)) .

Theorem 5.4 [23]. MAX-BCBS is R4SAT-Hard2 to approximate within a factor of nδ where n is the number
of vertices in the input graph, and 0 < δ < 1 is some constant. More specifically, under the random 4-SAT
hardness hypothesis: there exists two constants ε1 > ε2 > 0 such that no efficient algorithm is able to distinguish
between bipartite graphs G = (V1, V2, E) with |V1| = |V2| = n which have a clique of size ≥ (n/16)2(1 + ε1) and
those in which all bipartite cliques are of size ≤ (n/16)2(1 + ε2).

As the hardness of random 3-SAT would imply the hardness of random 4-SAT, it follows that MAX-BCBS is
R3SAT-Hard to approximate with same setting of parameters. Nonetheless, we mention the following previous
result of [19] in which some parameters differ:

Theorem 5.5 [19]. MAX-BCBS is R3SAT-Hard to approximate within a factor of nδ where n is the number of
vertices in the input graph, and 0 < δ < 1 is some constant. For every ε > 0, it is R3SAT-Hard to approximate
MAX-BCBS within a factor of 1/2 + ε. More specifically, it is R3SAT-hard to distinguish between the cases
k > (1/4 − ε)n and k < (1/8 + ε)n.

Our main hardness result is as follows:

Theorem 5.6. All of the following statements hold even when UVAT is restricted to co-bipartite graphs.

(I) It is NP-Hard to approximate UVAT within a constant factor if it is NP-hard to approximate the maximum
clique problem within a factor of n/2c

√
log n for some small enough c > 0.

(II) Let ε, ε′ be as in Theorem 5.3. If SAT has no probabilistic algorithm that runs in time 2nε

on instances
of size n, then there is no polynomial time (possibly randomized) algorithm for UVAT that achieves an
approximation ratio of N ε′ on graphs of size N

(III) UVAT is R4SAT-Hard (and, therefore, R3SAT-Hard) to approximate within a factor of nδ where n is the
number of vertices in the input graph, and 0 < δ < 1 is some constant.

The theorem follows directly from part (III) of the following Lemma and Theorems 5.2−5.5.

Lemma 5.7. Let G = (V1, V2, E) with |V1| = |V2| = n be a bipartite graph with E 	= ∅, and let G = (V1, V2, E)
be the co-bipartite complement of G. Let BK(G) = {(A, B)|A × B is a bipartite clique in G with |A| ≤ |B|}.
Moreover, let BBK(G) = {(A, B) ∈ V1 × V2|A × B is a bipartite clique of G with |A| = |B|}, and let (Â, B̂) =
argmax(A,B)∈BBK(G)|A| be the maximum balanced bipartite clique of G with corresponding size k = |Â|. Then,
the following hold:

(I) τ̂ (G) = min(A,B)∈BK(G)
2n−|A|−|B|

|A| = min(A,B)∈BK(G)
2n−|B|

|A| − 1
(II) n

k − 1 ≤ τ̂(G) ≤ 2(n
k − 1)

(III) If UVAT can be approximated to factor α in polynomial time, then MAX-BCBS can be approximated to
factor 2α in polynomial time, even when restricted to co-bipartite graphs.

2R4SAT-Hard and R3SAT-Hard refer to hardness under the assumption that random 4-SAT and random 3-SAT are NP-Hard
respectively.
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Proof of Lemma 5.7. Let S = S(τ(G)), U = S(τ̂ (G)), R = S(I(G)), and C = S(T (G)) be the critical attack
sets corresponding to τ , τ̂ , I, and T for G, respectively. Furthermore, let Si = Vi ∩ S, Ui = Vi ∩U , R = Vi ∩R,
and Ci = Vi ∩ C. For X ∈ {S, U, R, C}, let AX = min{V1 − X1, V2 − X2} and BX = max{V1 − X1, V2 − X2}.

Note that G is not a clique as E 	= ∅. Moreover, because V1 and V2 must both be cliques in G, AX and BX

must each be cliques in G, for any X ∈ {S, U, R, C}. Namely, the removal of X results in exactly two cliques
AX and BX in G. Clearly, there can be no edge between AX and BX in G as such an edge would have remained
upon the removal of X . Therefore, (AX , BX) forms a bipartite clique in G. Part (I) of the lemma now follows
from the definitions of τ̂ and the fact that |AX | ≤ |BX |.

Now note that for any (A, B) ∈ BK(G), any subset BA ⊂ B such that |BA| = |A| forms a balanced bipartite
clique with A. Also clearly, BBK(G) ⊂ BK(G). Therefore, by (I) and fact that |AX | ≤ |BX | ≤ n, (II) follows
as well.

For part (III): let M be an algorithm that gives a constant factor approximation for UVAT with approximation
factor α > 1. Let q such that τ̂ (G) ≤ q ≤ ατ̂ (G) be the approximation to τ̂ computed via M on the input.
Simplifying and rearranging Lemma 5.7 part (II.b):

n

q + 1
≤ k ≤ n

1 + q/(2α)
(5.1)

Similarly, let r = ( n
q+1 )/( n

1+q/(2α) ) denote the ratio between the right hand side and left hand side of the
inequality, so:

r =
q + 1

1 + q/(2α)
(5.2)

If r > 2α then 1 > 2α resulting in a contradiction. Therefore,

n

q + 1
≤ k ≤ 2α

n

q + 1
(5.3)

And, n
q+1 is thus a 1

2α approximation for the MAX-BCBS problem with corresponding approximation ra-
tio 2α. �

Given the varied evidence for the approximation hardness of UVAT based on plausible complexity assump-
tions, we conjecture that both VAT and UVAT are at least NP-hard to compute:

Conjecture 5.8. VAT and UVAT are NP-Hard.

5.2. An algorithmic paradigm: Performance of Greedy-BC

Based on the approximation hardness of UVAT, the following conjectured hardness of VAT, and previously
existing NP-Hardness results for all other resilience measures considered in this work, we investigate use of a
greedy heuristic to approximately compute values not only for VAT, but also for integrity, toughness, tenacity
and scattering number. The algorithm, called Greedy-BC, is implemented using fast betweenness centrality [7]
for unweighted graphs. The algorithm is shown in Figure 2. With the fast betweenness centrality implementation,
the overall running time of Greedy-BC is O(|V |2|E|).

VAT, integrity, toughness, tenacity and smoothed inverse scattering number are all minimization problems,
whose objective functions involve similar calculations of component orders and numbers. The main difference
between these resilience measures is the objective itself. Therefore, our Greedy-BC algorithm can be used to
calculate any of the resilience measures. At each step of the algorithm we choose the remaining node with the
highest betweenness centrality, add it to the attack set S, and remove the node from the graph. We calculate and
record the resilience measure’s value at that configuration. At the end of the algorithm we choose the set S that
minimizes the desired resilience measure. We then optionally run a hill climbing procedure on the resulting S,
to attempt further convergence to the true value of the resilience measure.
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heuristic Greedy-BC(G, res) is
input: G, a graph with vertices, V

res, a resilience measure
output: S, a critical attack set of nodes
S0 ← betweennessApprox(G, res)
S ← hillclimb(G, S0, res)
return S

end heuristic
procedure betweennessApprox(G)

resbest ←∞
Sbest ← Scur ← ∅
for n = 0 to |V | do

BC[ ]← BrandesBetweennessCentrality(G)
Vmax ← max(BC)
Scur ← Scur ∪ Vmax

if res(Scur) < resbest then
Sbest ← Scur

resbest ← res(Scur)
end if
G← G− Vmax

end for
return Sbest

end procedure

Figure 2. Greedy-BC Method with optional hill-climbing to approximate different resilience
Measures.

Table 3. Correctness of Greedy-BC algorithm on 24-node graphs before hill climbing. The
number shown is the percentage error of the calculation. Zero indicates that the true value was
determined by the algorithm. A score greater than 0 indicates a percentage over the true value.

Graph Type VAT I(G) t(G) T(G) h(G)

Star 0 0 0 0 0
Tree 0 0 17% 0 0
Barbell 0 0 0 0 0
C3 7% 0 71% 2% 20%
Apple 0 0 0 0 0
3-Regular 0 0 60% 34% 0
Cayley 9% 0 200% 0 0

We investigated the accuracy of the greedy heuristic compared to both optimal and hill-climbing results,
for each resilience measure. The comparison with the hill-climbing results was performed due to the extra
computational overhead of hill-climbing, so that we could determine if hill-climbing was worthwhile empirically.
To compare to the exact optimal results, Greedy-BC was first run on the seven original 24-node graphs, for
which the exact values of all resilience measures are known.

As can be seen in Table 3 the heuristic did very well in calculating the resilience measures for the 24-node
graphs considered. Values for Star, Barbell and Apple were calculated correctly for all measures. The largest
error in calculating VAT was 9% for the Cayley expander graph. The worst results were obtained for toughness,
where four out of seven results were off by more than 10%. Overall, results are perfect for integrity, and very
good for VAT, tenacity and scattering number.
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procedure hillclimb(G, S, res, hd)
input: G, a graph with vertices, V

res, a resilience measure
hd, a Hamming distance

output: S, a critical attack set of nodes
changed = true
while changed do

changed = false
for each S0 a Hamming distance of hd from S do

if res(S0) < res(S) then
S ← S0

changed = true
end if

end for
end while
return S

end procedure

Figure 3. 1D Hill climbing.

Table 4. Improvement from 1-D hillclimbing on 24-node graphs. The number shown is the
percentage of improvement over the original calculation. Zero indicates no improvement.

Graph Type VAT I(G) t(G) T(G) h(G)

Star 0 0 0 0 0
Tree 0 0 0 0 0
Barbell 0 0 0 0 0
C3 0 0 14% 0 0
Apple 0 0 0 0 0
3-Regular 0 0 7% 7% 0
Cayley 0 0 0 0 0

The second question considered is whether results are improved by hill climbing. Specifically, results must
be improved enough to warrant the increased computational complexity. We tested two different forms of hill
climbing, 1-D and 2-D. 1-D hill climbing is based on a neighborhood Hamming distance of 1. The membership
status of one vertex in |S| is changed, and results are moved in the direction of the largest improvement. 2-D hill
climbing uses a Hamming distance of two: the membership of two vertices is changed. All combinations with
Hamming distance of 2 are tested. In both cases, if a change will improve the score, the modified set with
the lowest resilience measure is chosen and the process is repeated. Algorithms for hill climbing are given in
Figure 3.

As shown in Table 4, improvement from 1-D hill climbing is very small. In most cases the algorithm has
calculated the correct measure without hill climbing, and therefore no improvement is possible. Improvement
was only possible in 9 of 35 cases, and only actually occurred in 3 of the nine. As hill climbing potentially
imposes a high cost in terms of computational complexity, the improvement from hill climbing does not seem
to be worth the cost. Improvement from 2-D hill climbing also remains small, and is shown in Table 5. 2-D hill
climbing caused an improvement of results in only 5 cases, at a high computational cost.

In order to further examine the usefulness of hill climbing we tested it on 18 larger graphs, 9 preferential
attachment (BA) graphs, and 9 PLOD graphs with the same degree structure. These graphs are large enough
that calculating the resilience measures with branch and bound methods is infeasible. For each graph, we have
three values: the initial resilience calculation using only betweenness centrality, the improvement from 1-D hill
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Table 5. Improvement from 2-D hillclimbing on 24-node graphs. The number shown is the
percentage of improvement over the original calculation. Zero indicates no improvement.

Graph Type VAT I(G) t(G) T(G) h(G)
Star 0 0 0 0 0
Tree 0 0 17% 0 0
Barbell 0 0 0 0 0
C3 0 0 71% 2% 19%
Apple 0 0 0 0 0
3-Regular 0 0 0 20% 0
Cayley 0 0 0 0 0

Table 6. Correctness of Greedy-BC algorithm on 24-node graphs. Three numbers given are
the percentage error without hill climbing, the percentage improvement from 1-D hill climbing,
and the percentage improvement from 2-D hill climbing. An initial zero indicates that the
true value was determined by the algorithm. Improvement scores greater than 0 indicates a
percentage over the original computation.

Graph Type VAT I(G) t(G) T(G) h(G)
Star 0 0 0 0 0
Tree 0 0 17%/0/17% 0 0
Barbell 0 0 0 0 0
C3 7%/0/0 0 71%/14%/71% 2%/0/2% 20%/0/19%
Apple 0 0 0 0 0
3-Regular 0 0 60%/7%/0 34%/7%/20% 0
Cayley 9%/0/0 0 200%/0/0 0 0

Table 7. Improvement from 1-D and 2-D hillclimbing on larger graphs. The number shown is
the percentage of improvement over the original calculation. Zero indicates no improvement.

VAT integrity toughness tenacity scattering

BA graphs 1D 2D 1D 2D 1D 2D 1D 2D 1D 2D
Barabasi−Albert Graphs
AVG 2 2 2 3 6 6 2 3 0 5
MAX 18 19 7 7 11 14 11 11 4 29

MED 0 0 0 3 5 5 1 3 0 1
PLOD Graphs
AVG 2 3 0 0 4 4 1 3 7 27
MAX 9 9 1 1 7 7 5 11 39 89
MED 3 3 0 0 3 3 1 3 0 25

climbing, and the improvement from 2-D hill climbing. The results of the average, maximum and median
improvements for 1-D and 2-D hill climbing are shown in Figure 7.

Average improvement for VAT was only 2−3%, for both 1-D and 2-D hill climbing. In fact, five of nine
Barabasi−Albert graphs did not show any improvement from hill climbing, and only one showed an improvement
of more than 2%. The same-degree PLOD graphs showed equally unimpressive improvement. Hill climbing did
not improve any by PLOD result by more than 9%. Combined with the previous results showing the heuristic’s
good accuracy in calculating VAT, we determine that the improvement resulting from hill climbing is not worth
the cost.
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As can be seen in Table 7, hill climbing improvements for integrity were a maximum of 7%, and had the same
low 2−3% average as VAT. The max improvement for toughness was only 14%, and the max improvement for
tenacity was only 11%. These results imply a large robustness for Greedy-BC in calculating all these resilience
measures. Hill climbing was more effective with scattering number. The PLOD graphs showed an average
improvement of 29%, and a maximum improvement of 89%. The average improvement with the Barabasi−Albert
graphs, even with 2-D hill climbing, was still only a small 5%.

Given the aforementioned hardness results concerning every one of the resilience measures considered, our
Greedy-BC heuristic gives an effective way to estimate their value and determine the corresponding attack set.

6. VAT of scale-free networks

In this final module, we investigate the vertex attack tolerance of scale-free networks. The specific models
under consideration are the Barabasi−Albert preferential attachment (PA or BA) model and the random scale
free PLOD model. The results obtained by running our hill-climbing (1-D) algorithm on the preferential attach-
ment based Barabasi−Albert graphs [4] (with m = 2 neighbors chosen for each entering vertex) and the random
scale-free graphs of the same degree distribution can be seen in the plots of Figure 4. The degree distribution of
the random scale-free graphs were generated by the corresponding preferential attachment graph. Because we
are interested in how the topological generative properties affects the resilience of different scale-free models,
we felt it is particularly important to control for degree distribution as much as possible. Moreover, because a
random graph of any given degree distribution can be defined, it is appropriate in this case to first generate
the PA graph and then feed its degree distribution into the random scale-free graph generator. We note further
that our random scale-free graph generator is thus identical to the PLOD model [33] except for our explicit
input of the degree distribution. Unfortunately, for HOTNets we cannot guarantee generating a HOTnet with
an exactly pre-specified degree distribution.

It can be seen that the random scale-free graphs have consistently better vertex attack tolerance than the
preferential attachment based Barabasi−Albert graphs for the parameter m = 2. We also computed VAT
values for various HOTnets, and all appeared significantly less resilient than the PA and random scale-free
graphs of corresponding size and same average degree. We computed PA graphs with parameter m = 1 as
well and discovered that such PA graphs were significantly non-resilient, with easily identifiable hubs whose
removal causes severe disruption, yielding very low VAT values. We had difficulty in generating identical degree
PLOD graphs from PA graphs with m = 1 due to the preponderance of degree one nodes. Additionally the
generated PLOD graphs tended not to be connected, so that the VAT value was trivially zero3. Therefore, we
include the results for the m = 2 PA graphs and their corresponding degree PLOD counterparts only, noting
that such graphs remain relatively resilient despite doubling of graph sizes. However, the corresponding PLOD
graphs remain consistently more resilient than the PA graphs of identical degree distribution, provided they are
connected (which happens in likelihood given m = 2).

In addition to the actual computed VAT values, one may view the worst-case disruptions caused by the
critical attack sets of the PA graph and the identically sized and degree distributed PLOD graph of 1000 nodes
respectively in Figure 5. The severity of the disruption caused despite the relatively high VAT values is due
to the large size of the attack set required. The ability to discover such a large and effective attack set is
further indicative of the quality of our algorithm. Indeed, the attack sets discovered by other algorithms we
have previously attempted, such as genetic algorithms and simulated annealing approaches, on the same graphs
resulted in slightly higher VAT values and much smaller attack sets yielding far less disruption, particularly
for the PLOD graph. The critical attack of the PA graph resulted in 142 components, the largest component
of which had 64 nodes, whereas the critical attack of the PLOD graph of identical degree distribution resulted
in 66 components, the largest component of which had 69 nodes, illustrating that the disruption caused to the
PA graph was more severe. Moreover, the size of the attack set required for the PLOD was significantly higher

3While the vector τ over VAT values over all components could be considered, different component size distributions would also
have affected the meaningfulness of such comparisons.
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(a) VAT as a function of Graph Size

(b) Relative improvement of PLOD VAT vs. PA VAT

Figure 4. VAT Comparisons of PA and PLOD graphs.

than the size of the attack set required for the PA graph, further illustrating the higher resilience of the random
scale free networks. We reiterate, in the spirit of [2], that the resilience of a scale-free graph is highly dependent
on the exact generative model, even when two graphs have identical degree distributions. And, just as many
expander families known to exhibit high resilience are based on random constructions, random scale-free graphs
also appear to be amongst the more resilient graphs satisfying the scale-free property.

Finally, we confirm our results concerning the relatively greater resilience of PLOD graphs compared to BA
graphs by measuring resilience with respect to integrity, toughness, tenacity, and scattering number as well.
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(a) PA Attack (b) PLOD Attack

Figure 5. PA and PLOD attack visualization. Nodes in the center of the visualization form a
group of isolated nodes not belonging to any non-trivial component.

Table 8. Resilience of Barabasi−Albert preferential attachment graphs as compared to same-
degree randomly generated PLOD graphs. Number shown is B-A resilience/ PLOD resilience.
A number greater than one indicates that the resilience of the PLOD graph is greater.

Nodes VAT I(G) t(G) T(G) h(G)
35 0.833 1.000 1.072 1.000 0.751
40 1.110 1.000 1.310 1.303 2.252
45 1.130 1.133 1.460 1.199 4.000
50 1.144 1.067 1.610 1.491 5.495
100 1.152 1.192 1.425 1.332 3.571
250 1.209 1.164 1.782 1.677 13.157
500 1.315 1.123 1.601 1.585 4.500
1000 1.209 1.159 1.581 1.570 3.800
2500 1.322 1.235 1.678 1.664 6.141

This pattern of greater resilience for random PLOD graphs continues with the other resilience measures, as
well. In Table 8, we give the ratio of each resilience measure for PA versus PLOD, for graphs of increasing size.
It can be seen that, in almost every case, the PLOD graph has a higher resilience, no matter which resilience
measure is used. It is also interesting to notice that the ratio of the resiliences of the two graphs generally
increases as the size of the graph increases. That is to say, the PLOD graphs become not only more resilient,
but also proportionally more resilient, as the size of the graph increases.

7. Conclusion

In this work we have considered mathematically robust notions of node-based resilience for complex, scale-free
networks with the aim of comparing the resilience of different scale-free models. We have sought a resilience
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measure that not only acts provably similar to conductance in the case of regular degree graphs but also cor-
rectly captures intuitive resilience orderings comparing various graph families of arbitrary degree distributions,
including the strict inequalities Resilience(Star) < Resilience(Barbell) < Resilience(Apple). With such motiva-
tion, we have proposed vertex attack tolerance τ(G): we have proved that indeed τ(G) = Θ(Φ(G)) for undi-
rected d-regular graphs, yielding spectral bounds as corollaries. Furthermore, not only is τ(Star) < τ(Barbell) <
τ(Apple), but also τ is unique in capturing the resilience orderings for the graphs of Table 2 when compared with
other well-known measures such as integrity, tenacity, toughness, conductance, vertex expansion, and scattering
number.

Towards the purpose of actual measurement, we have explored computational questions concerning vertex
attack tolerance with mixed results: On the one hand, we have proved that unsmoothened vertex attack tolerance
τ̂ (G) is hard to approximate under any of four different plausible computational complexity hypotheses even
when restricted to co-bipartite graphs. On the other hand, we have also proposed a novel greedy betweenness
centrality based heuristic Greedy-BC to empirically approximate not only vertex attack tolerance, but all other
considered resilience measures, which are known to be NP-Hard in general graphs. The Greedy-BC heuristic did
very well in calculating the resilience measures for all 24-node graphs considered, with perfect results achieved for
integrity, and approximation factors within 1.1 achieved for VAT, tenacity, and scattering number. Furthermore,
for the much larger scale-free graphs for which it was infeasible to calculate the measures exactly, we found
that hill-climbing with a neighborhood defined by Hamming distance up to two does not significantly improve
accuracy despite being significantly more inefficient. These results support the practical use of Greedy-BC for
all of the resilience measures considered on various realistic network classes.

Finally, we applied our Greedy-BC and hillclimbing algorithms to compute every resilience measure for
the preferential attachment Barabasi−Albert [4] (BA) networks, random scale-free [33] (PLOD) networks, and
heuristically-optimized trade-offs [17] (HOTNet) networks. HOTNets exhibited the worst vertex attack tolerance
on various parameter settings considered even when controlling for average degree. As we wished to control for
degree distribution in our comparisons, and HOTNets cannot be tweaked to follow an exact degree distribution,
we focused on extensively comparing BA networks to PLOD networks of identical degree distributions: our
results indicate that PLOD graphs with degree distributions identical to PA graphs of the same size exhibit
increasingly better resilience than the PA type graphs asymptotically and across all resilience measures, although
both graph types appear surprisingly resilient when the generative PA parameter is m = 2. Our results may
be compared and contrasted with previous claims [1, 2, 12] regarding the resilience or lack thereof of various
scale-free networks.
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