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FLUID QUEUE DRIVEN BY A MULTI-SERVER QUEUE
WITH MULTIPLE VACATIONS AND VACATION INTERRUPTION

Senlin yu1, Zaiming liu1 and Jinbiao wu1

Abstract. This paper studies a fluid queue driven by a multi-server queue with multiple working
vacations and vacation interruption. The stationary distribution of the background environment is
obtained after some manipulation. A system of differential equations satisfied by the fluid queue is
presented, by which we gain the matrix-geometric structure of the Laplace transform of the stationary
buffer content. Furthermore, we derive the explicit expression of the mean buffer content. Finally, the
numerical example is employed to illustrate our results.
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1. introduction

In several queueing systems, e.g. production lines, the customer-related processes (arrivals and services)
typically evolve at a much faster time-scale than the machine-related processes (vacations, inspection times,
repairs etc.). It is reasonable to use the fluid queues to analyze these systems. A fluid queue is an input-output
system, where the customers are modeled as a continuous fluid that enters and leaves a storage device, called
a buffer, according to rates that depend on underlying stochastic process that is related to the state of the
machine (on, off, under repair or preventive maintenance etc.). Such fluid queues are motivated as modeling
tools of, for example, high-speed communication networks, transportation systems and production-inventory
systems. The common characteristic of these application areas is that the customer-units are processed very
fast in comparison with changes in the server status. Indeed, the on-off alterations of the independent sources
that occur in fluid queues can be seen as vacations/failures of the server, the gate-keeper or the administrator
of the system.

The first systematic study of the field can be found in Virtamo and Norros [12], they presented a spectral-
decomposition method. Li and Zhao [8] considered a fluid queue driven by a QBD process with either finitely-
many levels or infinitely-many levels. The authors proposed the method of the RG-factorization, which is a
unified approach for studying fluid queues driven by a Markov chain with block-structured transition property.
Mao et al. [9] analyzed a fluid model driven by an M/M/1 vacation queue. Xu et al. [13] studied the fluid queue
driven by an M/M/1 queue with vacation interruption. Recently, Baek et al. [4] analyzed the MAP-modulated
fluid flow queueing system with multiple vacations. Ammar [2, 3] obtained the analytical expressions of the
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stationary distribution of the buffer content by using modified Bessel functions. Economou and Manou [6]
discussed the equilibrium strategies in an observable fluid queue with an alternating service process.

In many situations, the server in the background queueing system may become unavailable for a random
period of time to perform a secondary task when the queue becomes empty. A better modeling assumption
would be to assume that the server works at a slower rate during vacation periods in comparison to that of a
regular working period. Such models are classified as queues subject to working vacations. In some practical
situations, the server can stop the vacation due to some reasons, such as the number of customers achieves a
certain value in the vacation period. The server may take service in the working vacation period with a lower
rate and must return to normal service level at times, or the expense of waiting customers in the vacation
period will be very high. The vacation interruption policy is more reasonable to the queueing system with
vacations. Li et al. [7] studied the equilibrium strategies in the M/M/1 queue with working vacations and
vacation interruption.

Many researchers have presented the background process as an alternating restitution process, dealing with
the successive idle and busy periods of the driving queue. Markov modulated fluid queues are a particular class
of fluid models useful for modeling many physical phenomena and they often allow tractable analysis. Certain
interesting real-world applications of Markov modulated fluid queues can be found in Aggarwal et al. [1] and
Yan and Kularni [14]. More recently, Bosman and Nunez−Queija [5] considered a tandem fluid queue to evaluate
the performance of streaming media over an unreliable network.

The conventional fluid queues have been successfully applied to various real-world systems. However, wider
applications were restricted due to the requirement that the system (server) has to begin to process the fluid as
soon as the fluid level turns to be positive. This limited range of applications due to the lack of server control
can be found. In a production-inventory system, the server needs to delay the production until a certain amount
of raw material is accumulated. From the engineering point of view, delaying the production is meaningful if
the setup cost is very high. By delaying the production, the production cycle becomes longer and it results in a
low average setup cost per time unit. Similar example can be found in a computer and communication network,
in which the system needs a maintenance period whenever there is no workload to be processed. The study of
fluid model driven by vacation queues provides greater flexibility to the design and control of input and output
rates of fluid flow thereby adapting the fluid queues to wider application background.

Due to the inherent complexity of real-world systems, the multi-server background environment is more
reasonable and practicable. This paper presents an analytical solution for the fluid queue driven by a multi-server
queue with multiple working vacations and vacation interruption in stationary regime. When the background
queueing system is empty, the servers will take a working vacation synchronously. During the working vacation
period, when a service is completed and there are customers in the system, the servers resume to a regular
busy period. It is assumed that the fluid in the buffer is increasing when there are customers in the driving
queue. Besides, the buffer content decreases at a constant rate δ0 when the driving queue is empty. The system
of equations governing the process is explicitly solved using the matrix-geometric methodology. The stationary
distribution of the buffer content is thereby obtained in the Laplace domain. Closed-form expressions help to
gain a deeper insight into the model.

A practical example of the fluid queue arises from health care scenario. We consider a medical service system
staffed with a chief physician (called main server) and a physician assistant (called substitute server). The
physician assistant only provides service to the patients when the chief physician is on vacation (called working
vacation) and the service rate of the physician assistant is usually lower than that of the chief physician. When
the chief physician finds no customer in the waiting line, he will need to rest from his work, i.e., go on a vacation.
During the chief physician is on vacation, the physician assistant will serve the patients, if any, and after his
service completion if there are patients in the waiting line, the chief physician will come back from his vacation
no matter his vacation ends or not, i.e., vacation interruption happens. Meanwhile, if there is no patient when
a working vacation ends, the chief physician begins another vacation, otherwise, the chief physician takes over
the physician assistant. After receiving service from the chief physician or the physician assistant, the patients
need to be in hospital for some time. For simplicity, we assume that the patients are discharged from hospital
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at a constant rate. The number of patients in the hospital under continuous review can be viewed as a fluid
process that fluctuates according to the state of the physician. The input rate to the buffer is determined by
the status of the physician. Such scenario can be modeled as a fluid queue driven by a single-server queue with
multiple working vacations and vacation interruption. In addition, there are many physicians in the hospital
and thus the multi-server modulating queue is more practicable.

The external environment is a level-dependent QBD process and the method used here is neither based
on spectral analysis nor on the use of Bessel functions as done before, we present a direct approach in this
paper. This method is attractive due to the fact that it results in the matrix-geometric structure of the Laplace
transform of the stationary buffer content. The paper is organized as follows. The stationary distribution of the
background environment is given in Section 2. In Section 3, we set up a system of differential equations satisfied
by the fluid queue. In Section 4, the Laplace transform of the stationary distribution of the buffer content is
obtained. Numerical examples and conclusions are given in Section 5.

2. The background queueing system

We study an M/M/c queue with arrival intensity λ and exponential service of rate μb for each of all c servers.
The c servers take a working vacation of random length V synchronously when the queue becomes empty, V
is exponentially distributed with parameter η. During the working vacation period, customers are served at
a lower rate μv < μb. In a working vacation, it is assumed that, when a service is completed and there are
customers in the system, the vacation is interrupted and the servers resume to a regular busy period. Moreover,
if a vacation is completed and there are customers in the system, the c servers begin to serve the customers
with rate μb and a busy period begins. Otherwise, another working vacation is taken. This policy is called the
multiple working vacations and vacation interruption, which has been appropriately analyzed in the literature.

We assume that interarrival times, service times and working vacation times are mutually independent. In
addition, the service discipline is first come first served.

The state of the system can be represented by a pair (L(t), I(t)), where L(t) denotes the queue length at
time t and I(t) represents the state of the system (1: normal working state; 0: working vacation). Clearly, the
stochastic process {(L(t), I(t)), t ≥ 0} is a quasi birth-and-death (QBD) process with state space

Ω = {(0, 0)}
⋃

{(k, i), k ≥ 1, i = 0, 1}.

Using the lexicographical sequence for the states, the q-matrix of the QBD process {(L(t), I(t)), t ≥ 0} is
given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ C01

B10 A1 C
B2 A2 C

. . .
. . .

. . .
Bc−1 Ac−1 C

B A C
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

C01 = (λ, 0), B10 = (μv, μb)T , Bk =
(

0 kμv

0 kμb

)
, 2 ≤ k ≤ c− 1,

Ak =
(−(λ+ kμv + η) η

0 −(λ+ kμb)

)
, 1 ≤ k ≤ c− 1, B =

(
0 cμv

0 cμb

)
,
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A =
(−(λ+ cμv + η) η

0 −(λ+ cμb)

)
, C =

(
λ 0
0 λ

)
.

Theorem 2.1. If the system workload ρ = λ
cμb

< 1, the matrix equation R2B + RA + C = 0 has the minimal
non-negative solution

R =

⎛
⎜⎝ r

r(cμvr + η)
cμb(1 − r)

0 ρ

⎞
⎟⎠,

where r = λ
λ+cμv+η . The solution R is called the rate matrix.

Proof. Since B, A and C are all upper triangular matrices, we can assume that the solution R has the same
structure as

R =
(
R11 R12

0 R22

)
.

Substitution of R into the matrix equation R2B + RA + C = 0 gives

−(λ+ cμv + η)R11 + λ = 0,

cμbR
2
22 − (λ+ cμb)R22 + λ = 0,

cμvR
2
11 + cμb(R11R12 +R12R22) + ηR11 − (λ+ cμb)R12 = 0.

Clearly, R11 = λ
λ+cμv+η = r. To get the minimal non-negative solution, we take R22 = λ

cμb
in the second

equation. Substituting R11 = r and R22 = λ
cμb

into the third equation, the theorem is proved. �

We introduce the following relations:

cμvr + η = (λ + η)(1 − r),

(λ+ η)r = λ− cμvr =
r(cμvr + η)

1 − r
·

After some simplifications, we arrive at

RB + A =
(−(λ+ cμv + η) λ+ η

0 −cμb

)
.

We focus our attention on the stationary distribution of the process {(L(t), I(t)), t ≥ 0}. Let pki be the
stationary probability of the QBD process {(L(t), I(t)), t ≥ 0} in state (k, i), that is,

pki = lim
t→∞P{L(t) = k, I(t) = i}, (k, i) ∈ Ω.

Let x = (p00, p10, p11, . . . , pc0, pc1), we need to solve the matrix equation xB[R] = 0, where

B[R] =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ C01

B10 A1 C
B2 A2 C

. . . . . . . . .
Bc−1 Ac−1 C

B RB + A

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We introduce a series of recursive relations:

ϕ0 = 1, ϕk =
λ+ η + (c− k)μv

λ
ϕk−1, 1 ≤ k ≤ c− 1.
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Theorem 2.2. If ρ < 1, the stationary distribution of the process {(L(t), I(t)), t ≥ 0} is given by

pk0 =

⎧⎪⎨
⎪⎩
Mϕc−1−k, 0 ≤ k ≤ c− 1,
Mr, k = c,

pc0r
k−c, k > c,

pk1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mλ

μb
ϕc−1 − Mμv

μb
ϕc−2, k = 1,

pc1ρ
k−c +

r(cμvr + η)pc0

cμb(1 − r)

k−c−1∑
b=0

rbρk−c−1−b, k > c,

when 2 ≤ k ≤ c,

pk1 =
M

k!

{(
λ

μb

)k−1 (
λ

μb
ϕc−1 − μv

μb
ϕc−2

)
+

(λ+ η)r
λ

k−1∑
j=1

(
λ

μb

)j

(k − j)!

+
η

λ

k−1∑
j=1

(
λ

μb

)j

(k − j)!
c−1∑

v=k+1−j

ϕc−1−v +
μv

λ

k−1∑
j=1

(
λ

μb

)j

(k − j)!
c∑

b=k+2−j

bϕc−1−b

}
.

Herein M = pc−1,0, the constant M can be determined by the normalization condition
∑∞

k=0 pk0+
∑∞

k=1 pk1 = 1.

Proof. The matrix equation xB[R] = 0 can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λp00 + μvp10 + μbp11 = 0,
ηp10 − (λ+ μb)p11 + 2μbp21 + 2μvp20 = 0,
λpk−1,0 − (λ + η + kμv)pk0 = 0, 1 ≤ k ≤ c− 1,
λpk−1,1 + ηpk0 − (λ+ kμb)pk1 + (k + 1)μbpk+1,1 + (k + 1)μvpk+1,0 = 0, 2 ≤ k ≤ c− 1,
λpc−1,0 − (λ + η + cμv)pc0 = 0,
cμbpc1 − λpc−1,1 = (λ+ η)pc0,

(2.1)

the six equations are named by (2.1.1)−(2.1.6), respectively.
Let pc−1,0 = M , from (2.1.5), we have pc0 = rM . Substitution of this relation into equation (2.1.3) gives

pk0 = Mϕc−1−k, 0 ≤ k ≤ c− 1.

The fact that p11 = Mλ
μb
ϕc−1 − Mμv

μb
ϕc−2 follows from (2.1.1). Combining (2.1.4) and (2.1.6) yields

kμbpk1 = λpk−1,1 + (λ+ η)pc0 + η

c−1∑
v=k

pv0 +
c∑

b=k+1

bμvpb0, 2 ≤ k ≤ c− 1.

After some manipulation, we arrive at

pk1 =
1
k!

{(
λ

μb

)k−1

p11 +
(λ+ η)pc0

λ

k−1∑
j=1

(
λ

μb

)j

(k − j)! +
η

λ

k−1∑
j=1

(
λ

μb

)j

(k − j)!
c−1∑

v=k+1−j

pv0

+
μv

λ

k−1∑
j=1

(
λ

μb

)j

(k − j)!
c∑

b=k+2−j

bpb0

}
, 2 ≤ k ≤ c.
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When k > c, based on matrix-geometric solution method, we have

(pk0, pk1) = (pc0, pc1)Rk−c = (pc0, pc1)

⎛
⎝ rk−c r(cμvr+η)

cμb(1−r)

k−c−1∑
b=0

rbρk−c−1−b

0 ρk−c

⎞
⎠.

Finally, the constant M = pc−1,0 follows from the normalization condition
∑∞

k=0 pk0 +
∑∞

k=1 pk1 = 1. �

Clearly, the QBD process {(L(t), I(t)), t ≥ 0} is stable since the spectral radius of the rate matrix R satisfies
SP (R) = max(r, ρ) < 1 and the matrix equation xB[R] = 0 has a positive solution, as shown in Theorems 2.1
and 2.2.

3. Model description

This section deals with the stationary analysis of the fluid queue driven by a multi-server queue with multiple
working vacations and vacation interruption. Let C(t) be the buffer content (the amount of fluid in the buffer)
at time t, it is a non-negative random variable. We assume that the fluid input rate and the fluid output rate
are modulated by the background environment {(L(t), I(t)), t ≥ 0}, that is,

ν[L(t), I(t), C(t)] =
dC(t)

dt
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ, (L(t), I(t)) = (0, 0), C(t) > 0,
0, (L(t), I(t)) = (0, 0), C(t) = 0,
δ1, (L(t), I(t)) = (k, 0), k ≥ 1,
δ2, (L(t), I(t)) = (k, 1), k ≥ 1,

where δ < 0 and 0 < δ1 < δ2. It is assumed that the buffer capacity is infinite. The buffer content is decreasing
at a rate of |δ| when the driving queue is empty, while the buffer content is increasing at a rate of δ1 (δ2)
when there are customers in the driving system and the driving queue stays in a working vacation period (busy
period). The buffer content cannot decrease whenever the buffer is empty.

Since the change of the process {C(t), t ≥ 0} depends only on its rate, which in turn changes according to
the QBD process {(L(t), I(t)), t ≥ 0}, it is clear that {(L(t), I(t), C(t)), t ≥ 0} is a Markov process.

As the fluid level varies dynamically, it is necessary that the net effective rate of the fluid remains negative
to ensure the stability of the process in a long run. If the background queueing process {(L(t), I(t)), t ≥ 0} is
stable, let

d = δp00 + δ1

∞∑
k=1

pk0 + δ2

∞∑
k=1

pk1,

the quantity d is referred to as the mean drift of the fluid queue. When the buffer is infinite, the stochastic
process {(L(t), I(t), C(t)), t ≥ 0} is stable if the mean drift d < 0 and ρ < 1. We assume throughout the analysis
that these stability conditions are satisfied.

Define the joint probability distribution functions of the process {(L(t), I(t), C(t)), t ≥ 0} at time t as

Fki(t, x) = P{L(t) = k, I(t) = i, C(t) ≤ x}, x ≥ 0, (k, i) ∈ Ω.

When the process {(L(t), I(t), C(t)), t ≥ 0} is stable, its stationary random vector is given by (L, I, C), let

Fki(x) = P{L = k, I = i, C ≤ x} = lim
t→∞Fki(t, x), x ≥ 0, (k, i) ∈ Ω.

The stationary distribution function of the buffer content is given by

F (x) = lim
t→∞P (C(t) ≤ x) = F00(x) +

∞∑
k=1

Fk0(x) +
∞∑

k=1

Fk1(x).
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To simplify matters, we introduce the vectors Fk(x) = (Fk0(x), Fk1(x)), k ≥ 1. As shown in Mitra [10], the
stationary joint distribution functions of the fluid buffer content satisfy a set of differential equations. Using the
standard probability arguments, we get the following system of differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
dF00(x)

dx
= −λF00(x) + μvF10(x) + μbF11(x),

δ1
dFk0(x)

dx
= −(λ+ kμv + η)Fk0(x) + λFk−1,0(x), 1 ≤ k ≤ c− 1,

δ2
dF11(x)

dx
= −(λ+ μb)F11(x) + ηF10(x) + 2μbF21(x) + 2μvF20(x),

δ2
dFk1(x)

dx
= −(λ+ kμb)Fk1(x) + λFk−1,1(x) + ηFk0(x) +m(x), 2 ≤ k ≤ c− 1,

δ1
dFk0(x)

dx
= −(λ+ cμv + η)Fk0(x) + λFk−1,0(x), k ≥ c,

δ2
dFk1(x)

dx
= −(λ+ cμb)Fk1(x) + λFk−1,1(x) + ηFk0(x) + cμbFk+1,1(x) + cμvFk+1,0(x), k ≥ c,

where m(x) = (k + 1)μbFk+1,1(x) + (k + 1)μvFk+1,0(x).
The boundary conditions are given by

F00(0) = a, Fki(0) = 0, k ≥ 1, i = 0, 1,

where a is referred to as the stationary probability of empty buffer content, the value of a will be given later.
Since we make an assumption that the content of the buffer is increasing when there are customers in the
background queueing system, it is impossible to have the buffer empty when the modulating process is in any
of the states other than (0, 0). However, when the background queueing system is empty, the buffer content
decreases at rate δ and hence with some positive probability, it is possible that the content of the buffer is
empty. Therefore the boundary conditions are valid.

These differential equations are equivalent to the following matrix equation:

d
dx

(F00(x), F1(x), F2(x), . . .)H = (F00(x), F1(x), F2(x), . . .)Q, (3.1)

where H = diag(δ, δ1, δ2, δ1, δ2, . . .), Q is the infinitesimal generator of the QBD process {(L(t), I(t)), t ≥ 0}.
Clearly, these differential equations are resistant to analytical solutions. Let us now examine things from

another angle, we define the Laplace transform of the functions Fki(x) as

F̂ki(s) =
∫ +∞

0

e−sxFki(x)dx, s ≥ 0, (k, i) ∈ Ω,

and F̂k(s) = (F̂k0(s), F̂k1(s)), k ≥ 1. Since the joint distribution functions Fki(x) ((k, i) ∈ Ω) are non-negative,
the variable s is real and s ≥ 0, see Rozovsky [11]. The use of Laplace transforms for real arguments is very
common in Applied Probability.

The Laplace transform of the stationary distribution of the buffer content is given by

F̂ (s) =
∫ +∞

0

e−sxF (x)dx, s ≥ 0.

Taking the Laplace transform on both sides of (3.1), then

(F̂00(s), F̂1(s), F̂2(s), . . .)(Q− sH) = (−aδ, 0, 0, . . .), (3.2)

the right hand side of (3.2) comes from the boundary conditions.
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4. Stationary analysis

The stationary distribution of the fluid queue plays an important role in our analysis. In this section, the
expressions for the Laplace transform of the joint stationary distribution of the fluid queue are proved to be of
matrix factorial form. Based on this fact, we can get the analytical expression for the Laplace-Stieltjes transform
of the stationary distribution of the buffer content.

For s ≥ 0, we introduce the matrix

A(s) =
(−(λ+ cμv + η + sδ1) η

0 −(λ+ cμb + sδ2)

)
.

Theorem 4.1. For s ≥ 0, the matrix equation

R2(s)B + R(s)A(s) + C = 0

has the minimal non-negative solution

R(s) =

⎛
⎜⎝ r(s)

r(s)(cμvr(s) + η)
cμb(h1(s) − r(s))

0 h(s)

⎞
⎟⎠,

the expressions of r(s), h(s) and h1(s) will be given in the proof.

Proof. The proof is similar to that exhibited in Theorem 2.1. Since B, A(s) and C are all upper triangular
matrices, we can assume that the solution R(s) has the same structure as

R(s) =
(
R11(s) R12(s)

0 R22(s)

)
.

In an analogous fashion, we find

−(λ+ cμv + η + sδ1)R11(s) + λ = 0,

cμvR
2
11(s) + cμb(R11(s)R12(s) +R12(s)R22(s)) + ηR11(s) − (λ + cμb + sδ2)R12(s) = 0, (4.1)

cμbR
2
22(s) − (λ+ cμb + sδ2)R22(s) + λ = 0. (4.2)

It is clear that R11(s) = r(s) = λ
λ+cμv+η+sδ1

and 0 < r(s) < 1. The quadratic equation (4.2) possesses two roots
h(s) and h1(s):

h(s)(h1(s)) =
1

2cμb

(
λ+ cμb + sδ2 ∓

√
(λ+ cμb + sδ2)2 − 4cμbλ

)
.

Since ρ = λ
cμb

< 1, then (cμb − λ+ sδ2)2 < (λ+ cμb + sδ2)2 − 4cμbλ < (λ+ cμb + sδ2)2, s ≥ 0. Substituting
this inequality into the expressions of h(s) and h1(s), we find 0 < h(s) < 1 and h1(s) ≥ 1, s ≥ 0. In addition,
h(0) = ρ, h1(0) = 1 and h(s) < h1(s).

To get the minimal non-negative solution, we take the minimal solution to the equation (4.2), that is, R22(s) =
h(s). Note that h(s) + h1(s) = λ+cμb+sδ2

cμb
, we can get the expression of R12(s) through setting R11(s) = r(s)

and R22(s) = h(s) in (4.1), then

R12(s) =
r(s)(cμvr(s) + η)
cμb(h1(s) − r(s))

·

This completes the proof. Note that R(0) = R, the root R(s) plays an important role in the following
analysis. �
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In the following theorem, we will show that the Laplace transform of the joint stationary distribution
{F̂k(s), k ≥ c} are of matrix factorial form. We introduce a series of recursive relations:

ψ0(s) = 1, ψk(s) =
λ+ η + (c− k)μv + δ1s

λ
ψk−1(s), 1 ≤ k ≤ c− 1.

Theorem 4.2. If d < 0 and ρ < 1, then the expressions of F̂00(s) and {F̂k(s), k ≥ 1} are satisfied with the
following relations {

F̂k0(s) = M0(s)ψc−1−k(s), 0 ≤ k ≤ c− 1,

(F̂k0(s), F̂k1(s)) = (M0(s),M1(s))Rk−c+1(s), k ≥ c,
(4.3)

where (M0(s),M1(s)) = (F̂c−1,0(s), F̂c−1,1(s)). Moreover, {F̂k1(s), 1 ≤ k ≤ c − 2} can be expressed by M0(s)
and M1(s), the related computation is omitted since we only need to calculate

∑c−2
k=1 F̂k1(s).

Proof. Clearly, the matrix equation (3.2) can be equivalently written as the following system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− (λ+ sδ)F̂00(s) + μvF̂10(s) + μbF̂11(s) = −aδ,
ηF̂10(s) − (λ+ μb + δ2s)F̂11(s) + 2μbF̂21(s) + 2μvF̂20(s) = 0,

λF̂k−1,0(s) − (λ+ kμv + η + δ1s)F̂k0(s) = 0, 1 ≤ k ≤ c− 1,

λF̂k−1,1(s) + ηF̂k0(s) − (λ+ kμb + δ2s)F̂k1(s) +m(s) = 0, 2 ≤ k ≤ c− 1,

(F̂k−1,0(s), F̂k−1,1(s))C + (F̂k0(s), F̂k1(s))A(s) + (F̂k+1,0(s), F̂k+1,1(s))B = (0, 0), k ≥ c,

(4.4)

where m(s) = (k+1)μbF̂k+1,1(s)+(k+1)μvF̂k+1,0(s). The five equations in (4.4) are named by (4.4.1)−(4.4.5),
respectively.

The stochastic process {(L(t), I(t), C(t)), t ≥ 0} has a unique joint stationary distribution {Fki(x), (k, i) ∈ Ω},
thus there exists a unique solution to the above system of equations. We only need to verify that the expressions
in Theorem 4.2 are satisfied with (4.4).

For k ≥ c, substitution of (F̂k0(s), F̂k1(s)) = (F̂c−1,0(s), F̂c−1,1(s))Rk−c+1(s) into (4.4.5) gives

(F̂k−1,0(s), F̂k−1,1(s))C + (F̂k0(s), F̂k1(s))A(s) + (F̂k+1,0(s), F̂k+1,1(s))B

= (F̂c−1,0(s), F̂c−1,1(s))Rk−c(s)[R2(s)B + R(s)A(s) + C] = (0, 0).

Let (F̂c−1,0(s), F̂c−1,1(s)) = (M0(s),M1(s)), we find

(F̂k0(s), F̂k1(s)) = (M0(s),M1(s))Rk−c+1(s).

When k = c, the second branch of (4.3) reduces to

F̂c0(s) = M0(s)r(s), F̂c1(s) = M0(s)
r(s)(cμvr(s) + η)
cμb(h1(s) − r(s))

+M1(s)h(s). (4.5)

From (4.4.3), we can express F̂k0(s) (0 ≤ k ≤ c− 1) in terms of F̂c−1,0(s), that is,

F̂k0(s) = M0(s)ψc−1−k(s), 0 ≤ k ≤ c− 1.

In addition, we do not pursue the expressions of {F̂k1(s), 1 ≤ k ≤ c − 2} since we only need to calcu-
late

∑c−2
k=1 F̂k1(s). The expressions of M0(s) and M1(s) can be derived from equations (4.4.1) and (4.4.2). �
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The computation is fairly delicate and lengthy. To get the Laplace transform of the stationary buffer content,
it only remains to calculate

∑c−2
k=1 F̂k1(s). Taking sum on both sides of (4.4.4) from 2 to c− 1, then

λ

c−1∑
k=2

F̂k−1,1(s) + η

c−1∑
k=2

F̂k0(s)−
c−1∑
k=2

(λ+ kμb + δ2s)F̂k1(s) +
c−1∑
k=2

(k + 1)μbF̂k+1,1(s) +
c−1∑
k=2

(k + 1)μvF̂k+1,0(s) = 0.

After some manipulation, we find

η
c−1∑
k=2

F̂k0(s) +
c∑

k=3

kμvF̂k0(s) − δ2s
c−1∑
k=2

F̂k1(s) + λF̂11(s) − λF̂c−1,1(s) − 2μbF̂21(s) + cμbF̂c1(s) = 0. (4.6)

Summing up (4.6) and (4.4.2), we can get the expression of
∑c−1

k=1 F̂k1(s), that is,

δ2s

c−1∑
k=1

F̂k1(s) = η

c−1∑
k=1

F̂k0(s) +
c∑

k=2

kμvF̂k0(s) − μbF̂11(s) − λF̂c−1,1(s) + cμbF̂c1(s).

Clearly, F̂11(s) can be eliminated from (4.4.1), that is,

F̂11(s) =
−aδ + (λ+ sδ)M0(s)ψc−1(s) − μvM0(s)ψc−2(s)

μb
·

Note that F̂c0(s) = M0(s)r(s), the expression of
∑c−2

k=1 F̂k1(s) is given by

c−2∑
k=1

F̂k1(s) =
M0(s)
δ2s

[
η

c−1∑
k=1

ψc−1−k(s) − (λ+ sδ)ψc−1(s) + μvψc−2(s) +
r(s)(cμvr(s) + η)
h1(s) − r(s)

+
c−1∑
k=2

kμvψc−1−k(s) + cμvr(s)

]
+
M1(s)[cμbh(s) − (λ+ δ2s)]

δ2s
+

aδ

δ2s
·

We continue by examining the Laplace transform of the stationary buffer content, based on the total proba-
bility formula, we have

F̂ (s) =
∫ +∞

0

e−sxF (x)dx =
c−2∑
k=0

F̂k0(s) +
c−2∑
k=1

F̂k1(s) +
∞∑

k=c−1

(F̂k0(s), F̂k1(s))e

= M0(s)
c−2∑
k=0

ψc−1−k(s) +
c−2∑
k=1

F̂k1(s) + (M0(s),M1(s))(I − R(s))−1e.

We have arrived at a critical point. Note that R(s) is an upper triangular matrix and the spectral radius
SP [R(s)] = max(r(s), h(s)) < 1, thus the matrix I − R(s) is invertible, in addition,

(I − R(s))−1 =

⎛
⎜⎝

1
1 − r(s)

r(s)(cμvr(s) + η)
cμb(h1(s) − r(s))(1 − r(s))(1 − h(s))

0 1
1−h(s)

⎞
⎟⎠ ·
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After some simplifications, the Laplace transform of the stationary buffer content is given by

F̂ (s) =M0(s)
c−2∑
k=0

ψc−1−k(s) +
M0(s)

1 − r(s)
+

M0(s)r(s)(cμvr(s) + η)
cμb(h1(s) − r(s))(1 − r(s))(1 − h(s))

+
aδ

δ2s

+
M0(s)
δ2s

[
η

c−1∑
k=1

ψc−1−k(s) − (λ + δs)ψc−1(s) + μvψc−2(s) +
r(s)(cμvr(s) + η)
h1(s) − r(s)

+
c−1∑
k=2

kμvψc−1−k(s) + cμvr(s)
]

+M1(s)
[
cμbh(s) − λ

δ2s
+

h(s)
1 − h(s)

]
·

We are in a position to get the expectation of the stationary buffer content. To achieve this goal, we define
the Laplace-Stieltjes transform of the joint probability distribution function Fki(x) as

f∗
ki(s) =

∫ +∞

0

e−sxdFki(x), (k, i) ∈ Ω.

Let f∗(s) be the Laplace-Stieltjes transform of the stationary distribution of the buffer content, it follows that

f∗(s) =
∫ +∞

0

e−sxdF (x) = sF̂ (s).

We can now evaluate the explicit expression of a from the normalization condition lim
s→0

f∗(s) = lim
s→0

sF̂ (s) = 1,

the constant a = F00(0) is called the stationary probability of empty buffer content, then

a =
δ2
δ

+
M0(0)
δ

[
λψc−1(0) − μbψc−2(0) − η

c−2∑
k=0

ψk(0) −
c−1∑
k=2

kμvψc−1−k(0) − cμvr + rη

1 − r

]
, (4.7)

where M0(0) = M0(s)|s=0 and ψk(0) = ψk(s)|s=0, 1 ≤ k ≤ c− 1.
It remains to calculate E(C), the expectation of the stationary buffer content. From Theorem 4.1, we have

h(s) + h1(s) =
λ+ cμb + δ2s

cμb
, h(s)h1(s) =

λ

cμb
, r(s) =

λ

λ+ cμv + η + sδ1
·

Note that h(0) = ρ and h1(0) = 1, then

h′(0) =
−δ2ρ

cμb(1 − ρ)
, h′1(0) =

δ2
cμb(1 − ρ)

, r′(0) =
−δ1r2
λ

·

It is well known that E(C) = − lim
s→0

d
dsf

∗(s) = − lim
s→0

d
dssF̂ (s), after some manipulation, we eventually arrive

at

E(C) =
M0(0)
δ2

[
δψc−1(0) + λψ′

c−1(0) − μvψ
′
c−2(0) − δ2

c−1∑
k=1

ψk(0) −
c−1∑
k=2

kμvψ
′
c−1−k(0) − cμvr

′(0)

− r′(0)(1 − r)(η + 2rcμv) − r(η + cμvr)(h′1(0) − r′(0))
(1 − r)2

− δ2
1 − r

− δ2r(cμvr + η)
(cμb − λ)(1 − r)2

− η

c−2∑
k=0

ψ′
k(0)

]
+
M ′

0(0)
δ2

[
λψc−1(0) − μvψc−2(0) − η

c−2∑
k=0

ψk(0) −
c−1∑
k=2

kμvψc−1−k(0) − cμvr

− r(η + cμvr)
1 − r

]
−M1(0)

[
cμbh

′(0)
δ2

+
ρ

1 − ρ

]
,
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where M ′
i(0) = M ′

i(s)|s=0, i = 1, 2, ψ′
k(0) = ψ′

k(s)|s=0, 1 ≤ k ≤ c− 1.
The present paper aims to exhibit the art of computation. Comparing to the classical single-server driving

queues discussed in the literature, the computations become much more involved if the underlying stochastic
environment is a multi-server vacation queue. The multi-server driving queue is an essential generalization and
thus these results are not surprising.

5. Numerical examples and conclusions

In the fluid queues, the fluid input rate and the fluid output rate depend on the background queueing process
that is related to the state of the server (working vacations, under repair and preventive maintenance etc.).
Consider a production-inventory model operating in a random environment. The inventory level increases when
the production rate exceeds the demand rate and decreases otherwise. The inventory level under continuous
review can be viewed as a fluid process that fluctuates according to the evolution of the underlying background
environment. For example, consider a machine shop with c servers. When the servers are busy, items are
produced continuously at a rate r for each server and if they are idle, there is no production. However, for all
practical reasons, the servers might decide to take a working vacation for a random period of time to perform
a secondary task. The servers can be substituted by laymen to meet the ongoing demands during the working
vacation period. By adopting the working vacation policy, the production cycle becomes larger and it results in
a low average setup cost per time unit. During the working vacation period, items are produced continuously at
a rate r′ for each server and r′ < r. Further, by offering service at a reduced rate, the servers may interrupt the
vacation and continue the busy period due to certain unforeseen reasons, like a sudden increase in the demand.
The demand rate is assumed to vary from time to time at the rate δt independent of the state of the underlying
queueing process. The level of inventory thus oscillates among cr − δt, cr′ − δt and −δt depending on the state
of the background queueing system. This model reflects situations in which the production and demand rates
undergo recurring changes in a stochastic fashion, and can be modeled as Markovian. Such scenario can be
approximated by the fluid queue driven by a multi-server queue with multiple working vacations and vacation
interruption.

Fluid queues are quite useful as approximate models for certain queueing and inventory systems where the
flow consists of discrete entities, but the individual units of traffic have less impact on the performance of the
system. We present a numerical example to illustrate our results.

We consider a set of parameters as follows: λ = 1, c = 3, μb = 1, μv = 0.2, η = 0.2, δ2 = 1, δ1 = 0.5
and δ = −4. Note that the stability conditions must be satisfied, i.e., ρ < 1 and d < 0. Clearly, we have
ψ1(s) = 1.6 + 0.5s, ψ2(s) = 2.24 + 1.5s + 0.25s2, h(s) = 2

3 + 1
6s − 1

6

√
4 + 8s+ s2 and r(s) = 10

18+5s . Thus
h(0) = 1

3 , h′(0) = − 1
6 , h′1(0) = 1

2 and r′(0) = − 25
162 .

From Theorem 4.2, we have F̂00(s) = (2.24+1.5s+0.25s2)M0(s), F̂10(s) = (1.6+0.5s)M0(s), F̂20(s) = M0(s),
F̂30(s) = 10

18+5sM0(s) and F̂21(s) = M1(s). Based on equation (4.5), we have

F̂31(s) =
(192 + 20s)M0(s)

(18 + 5s)2[4 + s+
√

4 + 8s+ s2] − 1280 − 300s
+M1(s)h(s).

Similarly, from (4.4.4), we find

F̂11(s) =
(

1 +
1
2
s+

1
2

√
4 + 8s+ s2

)
M1(s) −

(
0.2 +

6
18 + 5s

+
576 + 60s
f(s)

)
M0(s),

where f(s) = (18 + 5s)2[4 + s+
√

4 + 8s+ s2] − 1280 − 300s.
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Now, we present the expression of F̂ ′
11(s),

F̂ ′
11(s) = −

[ −30
(18 + 5s)2

+
60f(s) − (576 + 60s)g(s)

f2(s)

]
M0(s) +

[
1
2

+
8 + 2s

4
√

4 + 8s+ s2

]
M1(s)

−
[
0.2 +

6
18 + 5s

+
576 + 60s
f(s)

]
M ′

0(s) +
[
1 +

1
2
s+

1
2

√
4 + 8s+ s2

]
M ′

1(s),

where

g(s) = (180 + 50s)
(
4 + s+

√
4 + 8s+ s2

)
+ (18 + 5s)2

(
1 +

8 + 2s
2
√

4 + 8s+ s2

)
− 300.

The expressions of M0(s) and M1(s) can be derived from equations (4.4.1) and (4.4.2), then

(4s− 1)F̂00(s) + 0.2F̂10(s) + F̂11(s) = 4a, (5.1)

0.2F̂10(s) − (2 + s)F̂11(s) + 2F̂21(s) + 0.4F̂20(s) = 0. (5.2)

We do not pursue the expressions of M0(s) and M1(s) since we only need to calculate Mi(0) and M ′
i(0), i = 0, 1.

For equations (5.1) and (5.2), by letting s = 0, we obtain

−3.12M0(0) + 2M1(0) = 4a, 3.66M0(0) − 2M1(0) = 0.

Hence, M0(0) = 7.4074a and M1(0) = 13.5556a, where a is the stationary probability of empty buffer content.
Substitution of M0(0) into (4.7) gives a = 0.1824. Thus M0(0) = 1.3514 and M1(0) = 2.4730.

In an analogous fashion, by differentiating equations (5.1) and (5.2) with respect to s and substituting s = 0,
we arrive at

4F̂00(0) − F̂ ′
00(0) + 0.2F̂ ′

10(0) + F ′
11(0) = 0,

0.2F̂ ′
10(0) − F̂11(0) − 2F̂ ′

11(0) + 2F̂ ′
21(0) + 0.4F̂ ′

20(0) = 0.

That is,
8.935M0(0) + 1.5M1(0) − 3.44M ′

0(0) + 2M ′
1(0) = 0,

−1.45M0(0) − 5M1(0) + 2.72M ′
0(0) − 2M ′

1(0) = 0,

we find M ′
0(0) = 2.0273 and M ′

1(0) = −4.4054.
The expressions of F̂ (s), (I − R(s))−1 and f∗(s) are not given here. Finally, after some manipulation, we

eventually arrive at E(C) = 15.4776.
It is clear that the numerical computation of E(C) is rather complicated when c is large. We do not pursue

the effect of several system parameters on the mean buffer content due to its complexity. If the background
environment is a multi-server vacation queue, the computations become much more involved.

Markov modulated fluid queues are a class of fluid models wherein the rates at which the content of the fluid
buffer varies are modulated by the background Markov process. This paper studies a fluid queue driven by a
multi-server queue with multiple working vacations and vacation interruption. Comparing to the classical fluid
model driven by a single-server queueing system, the multi-server driving queue is an essential generalization.
The differential equations satisfied by the fluid queue are presented, by which we gain the matrix-geometric
structure of the Laplace transform of the stationary buffer content. Closed-form solutions help to gain a deeper
insight into the model. The expectation of the stationary buffer content is given. Finally, we present a numerical
example to illustrate our results.
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