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LOST SALES REDUCTION AND QUALITY IMPROVEMENT WITH VARIABLE

LEAD TIME AND FUZZY COSTS IN AN IMPERFECT PRODUCTION SYSTEM

Hardik N Soni1, Biswajit Sarkar2,∗, Amalendu Singha Mahapatra3 and
S.K. Mazumder4

Abstract. This article investigates the effects of lost sales reduction and quality improvement in
an imperfect production process under imprecise environment with simultaneously optimizing reorder
point, order quantity, and lead time. This study assumes that the demand during lead time follows
a mixture of normal distributions and the cost components are imprecise and vague. Under these as-
sumptions, the aim is to study the lost sales reduction and the quality improvement in an uncertainty
environment. The objective function in fuzzy sense is defuzzified using Modified Graded Mean Integra-
tion Representation Method (MGMIRM). For the defuzzified objective function, theoretical results are
developed to establish optimal policies. Finally, some numerical examples and sensitivity analysis are
provided to examine the effects of non-stochastic uncertainty.
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1. Introduction

In response to significant practical relevance of Japanese Just-in-Time (JIT) philosophy, substantial research
studies have been undertaken on inventory system with controllable lead time and quality improvement. From
production inventory management view point, the ultimate goal of JIT is to produce small lot sizes with perfect
quality products. The goal of JIT is naturally realized if the sufficient investments are made to shorten the
lead time and improve the quality of product. Consequently, many scholars have incorporated these issues for
the development of realistic production inventory models. Liao and Shyu [1] first developed an inventory model
in which lead time is a unique decision variable and the order quantity is predetermined. Subsequently, many
researchers (Ben-Daya and Raouf [2], Ouyang et al. [3], Moon and Choi [4], Hariga and Ben-Daya [5], Ouyang
and Chuang [6], Chu et al. [7], Lee et al. [8], and Lin [9]) discussed several optimal inventory policies with
lead time reduction under different assumptions. In literature, Porteus [10] and Rosenblatt as well as Lee [11]
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are the first, who explored a significant relationship between quality imperfection and lot size. Later, many
scholars, such as Keller and Noori [12], Moon [13], Hong and Hayya [14], Ouyang and Chang [15], further
analyzed inventory model considering this issue. Besides, Ouyang et al. [16] studied the combined effects of lead
time reduction, setup cost reduction, and quality improvement in the lot size reorder point model. Sarkar and
Moon [17] extended their work and investigated the relationship between quality improvement, reorder point,
and lead time with variable backorder rate in an imperfect production process.

During lead time, the demand of different customers is not identical and thereby it is more reasonable to
employ mixture distribution approach to describe the lead time demand than single distribution. This approach
has been utilized by Wu and Tsai [18] to extend the model of Ouyang et al. [3]. Lee [19] developed an inventory
model involving controllable backorder rate and variable lead time demand with mixture of distributions. Later,
Lee et al. [20] extended the model of Wu and Tsai [18] for variable lead time demand with the mixtures of
normal distributions and considered backorder rate as variable. Wu et al. [21] relaxed the assumption in Lee
et al. [20] about the form of the mixture of distribution functions of the lead time demand and considered any
mixture of distribution functions of the lead time demand to establish optimal policies using minmax criterion.
Cobb [22] presented a mixture distribution procedure for the lead time demand in a continuous review inventory
model. Moreover, some authors advocated capital investment to secure more backorders by reducing lost sales
rate. In this context, Lin [23] formulated a continuous review inventory model for mixtures of distributions with
defective goods and analyzed the effects of increasing investment to reduce the lost sales rate.

The cost parameters in aforesaid studies are assumed to be precisely known. However, in reality, precise values
of the cost components are rarely available as they may be vague or imprecise. To cope up it quantitatively
with imprecise available information to manage successful inventory, fuzzy set theory has been widely applied
in the study of various inventory models. The articles presented by Hseish [24], Kao and Hsu [25], Tutuncu
et al. [26], Vijayan and Kumaran [27], Handfield et al. [28], Shah and Soni [29], and Nezhad et al. [30], Kumar
et al. [31], Kumar and Goswami ([32, 33]) are worth mentioning in this regard. Combining randomness and
fuzziness in model formulation, Dey and Chakraborty [34] presented a fuzzy random continuous-review system
wherein investment to reduce the setup cost and improvement of process quality have been incorporated. They
considered complete backorder case with constant lead time. Kumar and Goswami [35] investigated the impact
of a continuous review production-inventory system with finite production rate and stochastic/ fuzzy stochastic
demand rate on the reorder level strategy. Moreover, Kumar and Goswami [36] studied a fuzzy random economic
production quantity model for imperfect quality items with possibility and necessity constraints. We refer the
reader to Wong and Lai [37] in which a survey of the application of fuzzy set theory in production and operations
management has been carried out.

This study extends the work of Wu and Tsai [18] and proposes a model to allow for (1) investments to reduce
lost sales rate and improve the process quality as well as (2) an imprecise cost parameters to tackle the reality
in more effective way. The rest of this paper is organized as follows: Section 2 briefly reviews of basic concepts
about fuzzy set. Section 3 describes a fuzzy expected value model along with solution methodology. Section 4
furnishes numerical examples and discusses the results. Section 5 provides conclusions and further extensions.

2. Notation and assumptions

The following notations are used to develop this model.

2.1. Decision variables

Q Order quantity (units).
r Reorder point.
L Replenishment lead time (days).
ρ Fraction of shortages during the stock out period that will be lost, 0 ≤ ρ ≤ 1.
θ Probability of the production process which may goto out-of-control state during producing a lot.
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2.2. Parameters

D Expected demand per year (units).

Ã Ordering cost per order which is TFN represented by Ã = (A− δA1 , A,A+ δA2 ) ($/order).

µ Mean of the lead time demand.

σ Standard deviation of the lead time demand.

p Weight of the component distributions, 0 ≤ p ≤ 1.

h̃ Holding cost per unit per year which is TFN represented by h̃ = (h− δh1 , h, h+ δh2 ) ($/unit/unit time).

s̃ Cost of defective items per unit which is imprecise in nature and characterized by s̃ = (s− δs1, s, s+ δs2)
($/defective item).

π̃ Shortage cost per unit short which is TFN defined by π̃ = (π − δπ1 , π, π + δπ2 ) ($/unit shortage).

π̃0 Marginal profit (i.e., cost of lost demand) per unit which is TFN defined by π̃0 = (π0− δπ0
1 , π0, π0 + δπ0

2 )
($/unit).

ρ0 Original fraction of shortages that will be lost.

θ0 Initial probability of the production process which may go to out-of-control state during producing a
lot.

α Annual fractional cost of capital investment per unit per order, 0 < α < 1 ($/unit/order).

I(ρ, θ) Lost sales reduction and capital investment required to reduce the lost sales fraction from ρ0 to ρ and
the out-of-control probability from θ0 to θ.

Li Length of the lead time with components i = 1, 2, . . . , n (days).

ui Component of the lead time with ui as the minimum duration (days).

vi Component of the lead time with vi as normal duration (days).

ci Component of the lead time with ci as crashing cost per unit time ($/unit time).

E(.) Mathematical expectation of (.).

x+ max{x, 0}

The following assumptions are considered to develop this model.

(1). We consider that the lead time demand X follows the mixture of normal distributions (Lee [38]) with
probability density function given by

f(x) = p
1√

2πσ
√
L

e
− 1

2 (
x−µ1L
σ
√
L

)2
+ (1− p) 1√

2πσ
√
L

e
− 1

2 (
x−µ2L
σ
√
L

)2
(2.1)

where µ1 − µ2 = ησ
√
L, η > 0, x ∈ <, 0 ≤ p ≤ 1, σ > 0. However, the mixture of normal distributions is

hold for all p if (µ1 − µ2)2) < 27σ2/8L (or 0 < η <
√

27/8) (Everitt and Hand [39]).

(2). The lead time L has n mutually independent components, each having a different crashing cost for reducing
lead time. The ith component has a normal duration vi and the minimum duration ui with crashing cost
per unit time ci with c1 ≤ c2 ≤ c3 ≤ . . . ≤ cn. The lead time demand X follows a mixture of normal
distribution.

(3). Let L0 =
∑n
j=1 vj and Li be the length of the lead time with components 1, 2, . . . , i crashed to their

minimum duration. Then, Li is assumed as Li = L0 −
∑i
j=1(vj − uj) and the lead time crashing cost per

cycle R(L) is expressed as R(L) = ci(Li − L) +
∑i−1
j=1 cj(vj − uj) for i = 1, 2, 3, . . . ., n.

(4). The reorder point r = expected demand during the lead time + safety stock (SS) and SS = k(standard
deviation of the lead time demand) in which k is a safety factor, where r = µ∗L + kσ∗

√
L and µ∗ =

pµ1 + (1− p)µ2, σ∗ =
√

1 + p(1− p)η2σ, µ1 = µ∗ + (1− p) ησ√
L

, µ2 = µ∗ − pησ√
L

.

(5). Logarithmic expressions are used for both quality improvement and lost sales reduction.
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3. Model formulation

This study extends the work of Wu and Tsai [18] for variable lead time demand with mixture of normal
distribution. Based on Wu and Tsai [18], the associated cost of the model is

C(Q, r, L) = ordering cost + holding cost + stock out cost + lost sales cost + crashing cost

=
AD

Q
+ h

(
Q

2
+ σ
√
L

{
p

[
r1Φ

(
µ∗
√
L

σ
+ (1− p) η

)
− φ

(
µ∗
√
L

σ
+ (1− p) η

)]

+(1− p)

[
r2Φ

(
µ∗
√
L

σ
− pη

)
− φ

(
µ∗
√
L

σ
− pη

)]}
+ (1− β)E(X − r)+

)

+
[π + π0(1− β)]D

Q
E(X − r)+ +

D

Q
R(L) (3.1)

where the expected shortage at the end of the cycle length is given by

E(X − r)+ =

∫ ∞
r

(x− r)f(x)dx = σ
√
LΨ(r1, r2, p) (3.2)

where Ψ(r1, r2, p) = p{φ(r1)− r1[1− Φ(r1)]}+ (1− p){φ(r2)− r2[1− Φ(r2)]}, r1 = r−µ1L

σ
√
L

= r−µ∗L
σ
√
L
− (1− p)η

and r2 = r−µ2L

σ
√
L

= r−µ∗L
σ
√
L

+ ηp; φ and Φ denote the standard normal p.d.f and cumulative distribution function

(c.d.f), respectively.
After the incorporation of defective item cost, (Sarkar et al. [40]), the expected number of defective items in a

lot size Q is {Q− θ̂(1−θ̂Q)
θ } (See for instance Appendix A).

Then, the expected annual total cost can be expressed as

M(Q, r, L) = C(Q, r, L) +
sDQθ

2
· (3.3)

For notational convenience, we denote the lost sales rate by ρ(= 1 − β). Moreover, we consider the following
logarithmic investment function for investment in quality improvement which was introduced by Porteus [10]

I(θ) = b ln

(
θ0
θ

)
for 0 < θ ≤ θ0

and for lost sales reduction

I(ρ) = V ln

(
ρ0
ρ

)
for 0 < ρ ≤ ρ0

Hence, the total investment for quality improvement and lost sales reduction becomes as follows:

I(ρ, θ) = I(θ) + I(ρ) = U − b ln θ − V ln ρ

where U = b ln(θ0) + V ln(ρ0).

When the lost sales rate and probability of out-of-control state in (3.3) are considered to be one of the decision
variables rather than given, we seek to minimize the sum of investment for quality improvement and lost sales
reduction and associated inventory cost as defined in (3.3). That is, for the inventory model associated with
investment in lost sales reduction and quality improvement, the cost function for new model can be formulated
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as

E(Q, r, θ, ρ, L) =α(U − b ln θ − V ln ρ) + (A+R(L))
D

Q

+ h

(
Q

2
+ σ
√
L

{
p

[
r1Φ

(
µ∗
√
L

σ
+ (1− p) η

)
− φ

(
µ∗
√
L

σ
+ (1− p) η

)]

+(1− p)

[
r2Φ

(
µ∗
√
L

σ
− pη

)
− φ

(
µ∗
√
L

σ
− pη

)]}
+ ρσ

√
LΨ(r1, r2, p)

)

+
[π + π0ρ]D

Q
σ
√
LΨ(r1, r2, p) +

sDQθ

2
·

(3.4)

Therefore, crisp optimization problem for the new model can be defined as

Minimize E(Q, r, θ, ρ, L)

subject to 0 < θ ≤ θ0 and 0 < ρ ≤ ρ0. (3.5)

3.1. Model under fuzzy cost parameters

This article considers cost parameters of the model as imprecise in nature. When parameters
A, h, π, π0, and s treated as triangular fuzzy numbers (as per assumptions), the above cost function de-
fined in (3.4) becomes TFN. Thus, the problem defined in (3.5) can be constructed under fuzzy framework as
follows:

Minimize Ẽ(Q, r, θ, ρ, L)

subject to 0 < θ ≤ θ0 and 0 < ρ ≤ ρ0 (3.6)

where Ẽ(Q, r, θ, ρ, L) = (E1, E2, E3). Here, E1, E2 and E3 are all positive real valued functions of (Q, r, θ, ρ, L)
satisfying the condition

E1(Q, r, θ, ρ, L) ≤ E2(Q, r, θ, ρ, L) ≤ E3(Q, r, θ, ρ, L)

Using Function Principle (see, Chen [41]) the values of Ei(Q, r, θ, ρ, L) for i = 1,2, and 3 are as follows:

E1(Q, r, θ, ρ, L) =α(U − b ln θ − V ln ρ) + (A− δA1 +R(L))
D

Q

+ (h− δh1 )

(
Q

2
+ σ
√
L

{
p

[
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(
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√
L

σ
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)
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(
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√
L

σ
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+(1− p)

[
r2Φ

(
µ∗
√
L

σ
− pη

)
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(
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√
L

σ
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)]}
+ ρσ

√
LΨ(r1, r2, p)

)

+
[π − δπ1 + (π0 − δπ0

1 )ρ]D

Q
σ
√
LΨ(r1, r2, p) +

(s− δs1)DQθ

2
, (3.7a)

E2(Q, r, θ, ρ, L) =α(U − b ln θ − V ln ρ) + (A+R(L))
D

Q

+ h

(
Q

2
+ σ
√
L

{
p

[
r1Φ

(
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√
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σ
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)
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(
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√
L

σ
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+(1− p)

[
r2Φ

(
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√
L

σ
− pη

)
− φ

(
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√
L

σ
− pη

)]}
+ ρσ

√
LΨ(r1, r2, p)

)

+
[π + π0ρ]D

Q
σ
√
LΨ(r1, r2, p) +

sDQθ

2
, (3.7b)
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E3(Q, r, θ, ρ, L) =α(U − b ln θ − V ln ρ) + (A+ δA2 +R(L))
D

Q

+ (h+ δh2 )

(
Q

2
+ σ
√
L

{
p

[
r1Φ

(
µ∗
√
L

σ
+ (1− p) η

)
− φ

(
µ∗
√
L

σ
+ (1− p) η

)]

+(1− p)

[
r2Φ

(
µ∗
√
L

σ
− pη

)
− φ

(
µ∗
√
L

σ
− pη

)]}
+ ρσ

√
LΨ(r1, r2, p)

)

+
[π + δπ2 + (π0 + δπ0

2 )ρ]D

Q
σ
√
LΨ(r1, r2, p) +

(s+ δs2)DQθ

2
· (3.7c)

3.2. Defuzzification by modified graded mean integration representation

Suppose ξ = (a, b, c) be a triangular fuzzy number. Then, according to Chen and Hsieh [42], the modified
graded mean integration representation of ξ is given by

P (ξ) =
λa+ 2b+ (1− λ)c

3
(3.8)

where λ ∈ [0, 1] is called decision maker’s attitude or optimism parameter. The value of λ closer to 0 implies
that the decision maker is more pessimistic, whereas the value of λ closer to 1 means that the decision maker
is more optimistic.

Hence, the fuzzy cost function with decision maker’s λ-preference is represented by Pλ(Ẽ(Q, r, θ, ρ, L)) and is
obtained by the formula (3.8), which is as follows:

Pλ(Ẽ(Q, r, θ, ρ, L)) =
λE1 + 2E2 + (1− λ)E3

3
· (3.9)

Thus, the optimization problem addressed in this paper is

Minimize Pλ(Ẽ(Q, r, θ, ρ, L))

subject to 0 < θ ≤ θ0 and 0 < ρ ≤ ρ0. (3.10)

From here, we first ignore the constraints and solve the non-linear program with an analytical method and
calculate all the partial derivatives of the Pλ(Ẽ(Q, r, θ, ρ, L)) with respect to decision variables. After that, we

incorporate the restrictions. By taking partial derivatives of Pλ(Ẽ(Q, r, θ, ρ, L)) with respect to Q,L, r, ρ, θ, we
have

∂Pλ(Ẽ(Q, r, θ, ρ, L))

∂Q
= − DA

3Q2
+
h

6
− Dσ

√
LΨ(r1, r2, p)

3Q2
π +

Dθs

6
(3.11)

∂Pλ(Ẽ(Q, r, θ, ρ, L))

∂r
=
h

3

{
pΦ

(
µ∗
√
L

σ
+ (1− p)η

)
+ (1− p)Φ

(
µ∗
√
L

σ
− pη

)}
+

[G∗(r)− 1]

3

[
ρh+

Dπ

Q

]
(3.12)

∂Pλ(Ẽ(Q, r, θ, π0, L))

∂θ
= − αb

θ
+
DQs

6
(3.13)

∂Pλ(Ẽ(Q, r, θ, ρ, L))

∂ρ
= − αV

ρ
+
Dσ
√
L

3Q
Ψ(r1, r2, p)π0 +

σ
√
L

3
Ψ(r1, r2, p)h (3.14)
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∂Pλ(Ẽ(Q, r, θ, ρ, L))

∂L
= −ciD

Q
+

σh

6
√
L

[
p

{
r1Φ

(
µ∗
√
L

σ
+ (1− p)η

)
− φ

(
µ∗
√
L

σ
+ (1− p)η

)}

+(1− p)

{
r2Φ

(
µ∗
√
L

σ
− pη

)
− φ

(
µ∗
√
L

σ
− pη

)}]

+
µ∗h

6

[
p
{
r1 +

µ∗
√
L

σ
− pη

}
φ

(
µ∗
√
L

σ
+ (1− p)η

)

+ (1− p)

{
r2 +

µ∗
√
L

σ
− pη

}
φ

(
µ∗
√
L

σ
− pη

)]
+
σΨ(r1, r2, p)

6
√
L

[
ρh+

Dπ

Q

]
(3.15)

where G∗(r) = pΦ(r1) + (1− p)Φ(r2) and [See Appendix for A, π, π0, h, s].

It is to be noted that Pλ(Ẽ(Q, r, θ, ρ, L)) is convex with respect to ρ, keeping other variables fixed, as

∂2Pλ(Ẽ(Q, r, θ, ρ, L))

∂ρ2
=
αV

ρ2
> 0. (3.16)

Also, by calculating the 2nd order sufficient conditions, it can be shown that Pλ(Ẽ(Q, r, θ, ρ, L)) is not a

convex function for L because 2nd order partial order derivative of Pλ(Ẽ(Q, r, θ, ρ, L)) with respect to L is

negative. That is, Pλ(Ẽ(Q, r, θ, ρ, L)) is concave in L ∈ [Li, Li−1] for fixed (Q, r, θ, ρ).

As

∂2Pλ(Ẽ(Q, r, θ, ρ, L))

∂L2
= −

[
σh

12L
3
2

{
p

(
r1Φ

(
µ∗
√
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σ
+ (1− p)η

)
− φ
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√
L

σ
+ (1− p)η

))

+ (1− p)

(
r2Φ

(
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√
L

σ
− pη

)
− φ

(
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√
L

σ
− pη

))}

+
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12L
φ

(
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√
L

σ
+ (1− p)η

){
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√
L

σ

(
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√
L

σ
+ (1− p)η

)

×

(
r1 +

µ∗
√
L

σ
+ (1− p)η

)
−

(
r1 +

2µ∗
√
L

σ
+ (1− p)η
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+
µ∗(1− p)h

12L
φ

(
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√
L

σ
− pη

){
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√
L

σ

(
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√
L

σ
− pη

)

×

(
r2 +

µ∗
√
L

σ
− pη

)
−

(
r2 +

2µ∗
√
L

σ
− pη
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+
σΨ(r1, r2, p)

12L
3
2

(
ρh+

Dπ

Q
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< 0, if
µ∗
√
L

σ
− pη >

√
2. (3.17)
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Thus, the optimal value of Pλ(Ẽ(Q, r, θ, ρ, L)) occurs at the end points of the interval [Li, Li−1]. On equating
first three partial derivatives equal to zero, one can obtain

Q =
√

2D
[
A− σ

√
LΨ(r1, r2, p)π

] 1
2
[
h+Dθs

]− 1
2

(3.18)

[1−G∗(r)] =h

{
pΦ

(
µ∗
√
L

σ
+ (1− p)η

)
+ (1− p)Φ

(
µ∗
√
L

σ
− pη

)}

×
[
ρh+

Dπ

Q

]−1
(3.19)

θ =
6αb

DQs
· (3.20)

It is to be noted that for fixed L, the convexity of Pλ(Ẽ(Q, r, θ, ρ, L)) is not guaranteed for the point (Q, r, θ, ρ).
However, for fixed (ρ, L) we can establish following lemma.

Lemma 3.1. For fixed ρ and L ∈ [Li, Li−1], the Hessian matrix for Pλ(Ẽ(Q, r, θ, L)) is always positive definite
at the optimal values (Q∗, r∗, θ∗).

Proof. See Appendix B.

From last equations, it is clear that the value of θ is positive. Based on the restrictions on θ and ρ, we have
four conditions for a given L ∈ [Li, Li−1] as

(1). If θ∗ < θ0 and ρ∗ < ρ0, then (Q∗, r∗, θ∗, ρ∗, L∗) is an optimal solution.

(2). If θ∗ ≥ θ0 and ρ∗ < ρ0, then it is not profitable to invest in the quality improvement process, i.e., θ∗ = θ0.

(3). If θ∗ < θ0 and ρ∗ ≥ ρ0, then the initial setup cost is an optimal setup cost, i.e., ρ∗ = ρ0.

(4). If θ∗ ≥ θ0 and ρ∗ ≥ ρ0, then we do not consider any investment to reduce setup cost or to improve quality,
i.e., and ρ∗ = ρ0.

Consequently, we can establish following algorithmic procedure to identify the optimal point (Q∗, r∗, θ∗, ρ∗, L∗).

Algorithm

Step 1. For each Li, i = 0, 1, . . . , n, perform (i) to (ii).

(i) For a given lost sales rate ρ0, we divide the interval (0, ρ0] into m equal subintervals, where m is large
enough and let ρj,Li = ρ0 − jρ0/m

(ii) For each ρj,Li , j = 0, 1, . . . ,m, execute (iii) to (vii).

(iii) Set rj1 = 0.

(iv) Substitute rj1 and θ from (3.20) into (3.18) to determine the value of Qj1.

(v) Use Qj1 to obtain values of rj2 and θj1.

(vi) Repeat (iv) and (v) until no change occurs in the values of Qj , rj and θj .

(vii) Set (Qρj ,Li , rρj ,Li , θ
′

ρj ,Li
) = (Qj , rj , θj).

Step 2. Set θρj ,Li = min{θ0, θ
′

ρj ,Li
}.

Step 3. Compute corresponding Pλ(Ẽ(Qρj ,Li , rρj ,Li , θρj ,Li , ρj , Li)) from (3.9) for j = 0, 1, . . . ,m.

Step 4. Set Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li)) = min
j=0,1,...,m

Pλ(Ẽ(Qρj ,Li , rρj ,Li , θρj ,Li , ρj , Li))

Step 5. Compute corresponding Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li)) from (3.9) for i = 0, 1, . . . , n.

Step 6. Set Pλ(Ẽ(Q∗, r∗, θ∗, ρ∗, L∗)) = min
i=0,1,...,n

Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li)), then (Q∗, r∗, θ∗, ρ∗, L∗) is the

optimal solution.
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4. Numerical examples

Example 4.1. To illustrate the above solution procedure, we consider the following parametric values as:
D = 600 units per year, A = $200/order, δA1 = 20, δA2 = 30, h = $20/unit, δh1 = 5, δh2 = 7, π = $50/unit,

δπ1 = 7, δπ2 = 5, π0 = $150/unit, δπ0
1 = 20, δπ0

2 = 12, s = $75/unit, δs1 = 12, δs2 = 9, σ = 7 µ = 11, η = 0.6,
b = 100, V = 125, ρ = 1, θ = 0.002, λ = 0.5 α = 0.1 and the lead time has three components with data as
shown in Table 1.

We assume ρj,Li = ρ0−jρ0/m, j = 0, 1, 2, . . . ,m and take m = 1000. Applying the procedure of the proposed
algorithm for p = {0, 0.25, 0.5, 0.75, 1} , the optimal solution is listed in Table 2.

From Table 2, the optimal inventory policy can easily be determined by comparing
Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li)), i = 0, 1, 2, 3. Moreover, it is to be noted that the model considers only one kind of
customers’ demand whenever p = 0 or 1, while the model considers two kinds of customers’ demand whenever
0 < p < 1. It implies that Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li)) for two kinds of customers’ demand is higher than that
of one kind of customers’ demand. The results obtained in Table 2 reflect this feature. That is, as p increases
Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li)) increases and then decreases.

Example 4.2. In this example, we study the effects of investing in lost sales rate reduction. We fix p = 0.5
and consider the same set of data as in Example 1. Applying the procedures as proposed in the algorithm, the
optimal results are shown in Table 3. Furthermore, we list the optimal results of the no-investment policy (fixed
lost sales rate) in the same table to demonstrate the effects of investment in lost sales rate reduction. Based on
the computational results shown in Table 3, we can observe that the savings, ranges from 0.87 to 3.62%, can be
achieved by controlling the lost sales rate through investment.

Example 4.3. This example studies the effect of decision maker’s attitude or optimism parameter, λ. All
the parameters are identical to those in Example 2. Computational results are summarized in Table 4 for
λ ∈ {0, 0.25, 0.50, 0.75, 1}.

From Table 4, it can be observed that as λ increases the optimal reorder point (r∗), the optimal order quantity
(Q∗), the optimal lost sales rate (ρ∗), and the optimal out-of-control probability (θ∗) increase whereas annual

total cost Pλ(Ẽ(Q∗, r∗, θ∗, ρ∗, L∗)) decreases. These results suggest when the attitude of the decision maker is
towards optimistic, i.e., when decision maker takes risks, the total cost incurred by an inventory system reduces.

Example 4.4. This example assesses the impact of the extent of impreciseness in systems parameters over the
decision variables. For this, let us first consider the crisp inventory model with parametric values defined in
Example 1 with p = 0.5 and setting δA1 = δA2 = 0, δh1 = δh2 = 0, δπ1 = δπ2 = 0, δπ0

1 = δπ0
2 = 0 and δs1 = δs2 = 0.

For these input data, the crisp model gives the optimal result as Q∗ = 121.63, r∗ = 64.24, θ∗ = 0.00000365,
ρ∗ = 0.0346, L∗ = 4 and associated cost E(Q∗, r∗, θ∗, ρ∗, L∗) = 2981.98.

The sensitivity analysis is carried out by changing the level of impreciseness in each parameter at a time and
keeping the remaining parameters as crisp, whose values are defined in the above crisp model. This scenario
is suitable, when the decision maker does not find uncertainty in particular system parameter(s) then he/she
can treat that parameter(s) as crisp. The different degree of impreciseness in each parameter resulted in −40%,
−20%, 0%, 20%, and 40% of its defuzzified values (applying (3.8) for λ = 0.5) from the corresponding crisp
values. The percentage changes from optimal crisp solution are determined using the measurement of ∆r

rc
%,

∆Q
Qc

%, ∆ρ
ρc

%, ∆θ
θc

% and ∆Pλ(Ẽ(.))

Pλ(Ẽ(.))c
%. The measurement can be explained as follows: for the measure of ∆Q

Qc
%,

where ∆Q = Qf −Qc, Qf and Qc denote optimal order quantity in fuzzy and crisp sense, respectively. Hence,
∆Q
Qc

% denotes the change in order quantity and can be used to measure this parameter’s sensitivity. Similarly,

the measures of ∆r
rc

%, ∆ρ
ρc

%, ∆θ
θc

%, ∆L
Lc

% and ∆Pλ(Ẽ(.))

Pλ(Ẽ(.))c
% indicate sensitivity on reorder point r, lost sales rate

ρ, out-of-control probability θ, lead time L, and total annual cost, respectively.
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Table 1. Lead time data.

Lead time Normal duration Minimum duration Unit crashing
component i vi (days) ui (days) cost ci ($/day)

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

Table 2. Summary of the optimal procedure solution (Li in weeks).

p Li rLi QLi ρLi θLi Pλ(Ẽ(QLi , rLi , θLi , ρLi , Li))

0.00

8 116.53 117.77 0.0242 0.00000379 3104.26
6 90.80 117.98 0.0284 0.00000378 3030.75
4 64.22 120.88 0.0355 0.00000370 2993.70
3 50.23 128.69 0.0413 0.00000347 3089.17

0.25

8 117.48 118.20 0.0232 0.00000379 3132.90
6 91.63 118.35 0.0271 0.00000378 3055.60
4 64.90 121.17 0.0337 0.00000369 3013.75
3 50.80 128.94 0.0394 0.00000347 3105.83

0.5

8 117.73 118.16 0.0232 0.00000378 3137.17
6 91.85 118.31 0.0272 0.00000377 3059.26
4 65.08 121.14 0.0340 0.00000370 3016.52
3 50.96 128.91 0.0396 0.00000347 3107.77

0.75

8 117.37 117.98 0.0237 0.00000379 3125.85
6 91.53 118.16 0.0277 0.00000378 3049.41
4 64.82 121.02 0.0347 0.00000369 3008.31
3 50.75 128.81 0.0404 0.00000347 3100.38

1

8 116.53 117.77 0.0242 0.00000379 3104.25
6 90.80 117.98 0.0284 0.00000378 3030.67
4 64.22 120.88 0.0355 0.00000370 2992.99
3 50.23 128.69 0.0413 0.00000347 3087.14

Table 3. Optimal solution with and without investment in lost sales reduction for different
values of ρ.

Model with lost sales reduction investment Model without lost sales reduction investment

ρ L∗ r∗ Q∗ ρ∗ θ∗ Pλ(Ẽ(Q∗, r∗, θ∗, ρ∗, L∗)) L r∗ Q∗ θ∗ Pλ(Ẽ(Q∗, r∗, θ∗, ρ0, L
∗)) Saving (%)

0.2 4 65.08 121.15 0.0339 0.00000369 2996.40 4 67.92 120.66 0.00000370 3022.83 0.87

0.4 4 65.08 121.14 0.0340 0.00000370 3005.07 4 70.15 120.32 0.00000371 3061.74 1.85

0.6 4 65.08 121.15 0.0339 0.00000369 3010.14 4 71.75 120.10 0.00000372 3089.87 2.58

0.8 4 65.08 121.15 0.0340 0.00000369 3013.73 4 72.98 119.94 0.00000373 3111.78 3.15

1.0 4 65.08 121.14 0.0340 0.00000370 3016.52 4 73.98 119.81 0.00000373 3129.67 3.62

Table 4. Computation results for λ.

λ L∗ r∗ Q∗ ρ∗ θ∗ Pλ(Ẽ(Q∗, r∗, θ∗, ρ∗, L∗))
0.00 4 64.78 118.00 0.0305 0.00000362 3225.57
0.25 4 64.92 119.51 0.0321 0.00000365 3121.33
0.50 4 65.08 121.14 0.0340 0.00000370 3016.52
0.75 4 65.24 122.92 0.0360 0.00000372 2911.07
1.00 4 65.42 124.87 0.0383 0.00000376 2804.91
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Table 5. Sensitivity analysis when one parameter is imprecise (p = 0.5).

Parameter Fuzzy Numbers P (.) % Change ∆L
Lc

% ∆r
rc

% ∆Q
Qc

% ∆ρ
ρc

% ∆θ
θc

% ∆Pλ(Ẽ(.))

Pλ(Ẽ(.))c
%

Ã

(100, 114, 170) 121.0 −40 0 2.45 −18.89 4.95 23.32 −14.43

(146, 156, 198) 161.3 −20 0 1.09 −08.73 2.27 09.48 −06.69
(180, 200, 220) 200.0 0 0 0 0 0 0 0
(188, 246, 280) 242.0 +20 0 −1.01 08.66 −1.76 −07.91 06.66
(220, 289, 318) 282.3 +40 0 −1.85 16.35 −3.45 −14.16 12.59

h̃

(8, 11.3, 20) 12.2 −40 0 3.92 26.00 90.49 −20.75 −23.57
(12, 15.9, 22) 16.3 −20 0 1.61 10.09 30.21 −09.27 −10.70
(15, 20, 25) 20.0 0 0 0 0 0 0 0

(18, 24.6, 30) 24.4 +20 0 −1.53 −08.75 −21.79 09.53 11.61
(21, 28.7, 35) 28.5 +40 0 −2.73 −14.96 −35.25 17.52 21.62

π̃

(20, 29.7, 40) 29.8 −40 0 −6.75 0.65 −47.06 −0.74 −2.15
(28, 40.6, 48) 39.7 −20 0 −2.87 0.26 −24.31 −0.31 −0.93
(45, 50, 55) 50.0 0 0 0 0 0 0 0

(50, 60.65, 65) 59.6 +20 0 2.09 −0.17 23.74 0.08 0.68
(56, 70.8, 78) 69.5 +40 0 3.85 −0.32 48.83 0.34 1.25

π̃0

(70, 86.3, 120) 089.2 −40 0 0 −0.01 65.44 −0.08 −0.21
(90, 119.65, 145) 118.9 −20 0 0 0 25.44 −0.09 −0.09
(130, 150, 170) 150.0 0 0 0 0 0 0 0

(160, 177.6, 200) 178.4 +20 0 0 0.01 −15.44 −0.10 0.07
(185, 203.45, 250) 208.1 +40 0 0 0.01 −27.24 −0.05 0.13

s̃

(39, 42.3, 60) 044.7 −40 0 0 0 0.15 67.77 −0.17
(45, 60.65, 70) 059.6 −20 0 0 0 0.21 25.90 −0.08

(65, 75, 85) 75.0 0 0 0 0 0 0 0
(70, 89.1, 110) 089.4 +20 0 0 0 0.13 −16.13 0.06
(90, 100.2, 135) 104.3 +40 0 0 0 0.14 −28.20 0.11

The results of sensitivity analysis are shown in Tables 5 and 6. A careful study based on the computational
results shown in Table 5 reveals the following points:

(1). As the degree of impreciseness of ordering cost (A) varies, the optimal order quantity (Q), the out-of-control
probability (θ) and associated cost in fuzzy sense are highly sensitive whereas reorder point (r), and lost
sales rate (ρ) are moderately sensitive.

(2). The percentage changes in the level of fuzziness in the holding cost (h) causes significant changes in the
total cost and θ whereas, the values of Q and ρ show noticeable negative variations in the optimal results.

(3). The variations in the degree of fuzziness in π and π0 resultes in positive and negative variations in the
value of ρ, respectively.

(4). Higher sensitivity has been observed in the value of θ as the degree of impreciseness of s varies.

Moreover, Table 6 shows variations in the optimum decision variables and the optimal cost due to impreciseness
in all cost components of the model with absolutely pessimistic (λ = 0), neutral (λ = 0.5), and absolutely
optimistic (λ = 1) attitude level.

It can be observed, irrespective the value of λ, that ρ and θ show remarkable negative variations with respect
to variations in the level of fuzziness of all the parameters, the optimal cost register noteworthy changes in the
same directions with respect to increase in the level of fuzziness of all components. This is a realistic outcome as
the fuzzy annual cost considers uncertainty due to lack of information. Hence, if the uncertainties are accounted
for in apt manner the fuzzy annual cost increases as compared to the crisp case.

Furthermore, significant difference in the percentage changes from crisp case can be observed for absolute
pessimistic and optimistic decision policy. The results under absolute pessimism show that percentage changes
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Table 6. The percentage change in optimal policy from the crisp case when all parameters are
Fuzzy (p = 0.5).

λ % change in all parameters ∆L
Lc

% ∆r
rc

% ∆Q
Qc

% ∆ρ
ρc

% ∆θ
θc

% ∆Pλ(Ẽ(.))

Pλ(Ẽ(.))c
%

0

−40 0 −0.17 −1.02 49.53 57.19 −28.75
−20 0 −0.12 −1.73 13.88 20.01 −11.32

0 0 −0.70 −2.98 −11.93 −00.91 08.17
+20 0 −0.79 −2.08 −26.63 −20.38 28.16
+40 0 −0.71 −2.79 −37.92 −31.12 48.07

0.5

−40 50 41.56 −2.28 40.26 71.68 −36.71
−20 0 −00.06 0.65 26.27 24.97 −17.65

0 0 −00.25 −0.40 −01.69 01.25 01.16
+20 0 −00.37 −1.10 −19.82 −15.26 19.92
+40 0 −00.46 −1.61 −32.19 −27.04 38.66

1

−40 50 42.35 1.36 71.51 79.61 −44.86
−20 0 0.04 3.48 42.08 30.70 −24.02

0 0 0.28 2.66 10.72 02.92 −05.94
+20 0 0.10 0.04 −11.54 −9.39 11.66
+40 0 −0.17 −0.24 −25.31 −22.45 29.23

in fuzzy cost is significantly higher than that of crisp case. This result suggests that if the decision maker has
less information about system parameters and outcomes, it is worthwhile to select optimistic decision policy
(0.5 < ρ ≤ 1) for decision making.

5. Conclusions

The model extended the work of Wu and Tsai [18] by considering imprecise cost components. This paper
considered the logarithmic investment functions for lost sales reduction and quality improvement with two
restrictions. The fuzzy cost function was defuzzified using MGMIRM. By analyzing the defuzzified cost function,
a lemma was developed to identify the optimum value of decision variables. An efficient algorithm was designed
to obtain the numerical results. Finally, some numerical examples were provided to illustrate the proposed
model. Numerical results indicated that the saving of total cost were obtained through lostsales reduction. The
effect of impreciseness on the optimal solution was examined through numerical example. Higher sensitivity in
decision variables and associated cost function has been observed due to impreciseness of ordering and holding
cost. Moreover, decision variables and cost function were found highly sensitive whenever all system parameters
exhibit fuzziness simultaneously where, optimistic decision strategy was more advantageous than pessimistic
decision strategy. The proposed model and results of this model could help the decision maker in seeking business
edge in an uncertain environment depending on his risk attitude. While this research generalized the inventory
model by Wu and Tsai [18], further investigations may be conducted in a number of directions. For instance,
we may extend the proposed model to allow for vendor-buyer, multi-vendor, multi-buyer, and multi-product
problems under fuzzy environment. Also, it would be interesting to examine the difference between different
defuzzification techniques within these assumptions like quality improvement [43,55], fuzzy demand [44], delay-
in-payments [46], service label constraints [47], imperfect production system [45,48–54].
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Appendix A.

As θ̂ = 1− θ is approximately 1, we use the Taylor series expansion of θ̂Q and obtain

θ̂Q = e(ln θ̂)Q ∼= 1 + (ln θ̂)Q+
[(ln θ̂)Q]2

2

Hence, we have the number of defective items

= Q− θ̂(1− θ̂Q)

θ

= Q−
1− 1− (ln θ̂)Q− (ln θ̂)2Q2

2

θ

= Q−
θ
θ̂
Q− θ2

2θ̂2
Q2

θ

= Q−
θQ− θ2Q2

2

θ

=
θQ2

2
·

The expected annual defective cost is

= sD − sDθ̂(1− θ̂Q)

θQ

= sD −
sD
(

1− 1− (ln θ̂)Q− (ln θ̂)2Q2

2

)
θQ

×

[
since θ̂ = 1− θ ∼= 1 and θ̂Q = e(ln θ̂)Q ∼= 1 + (ln θ̂)Q+

[(ln θ̂)Q]2

2

]

= sD −
sD
(
θ
θ̂
Q− θ2

2θ̂2
Q2
)

θQ

= sD −
sD
(
θQ− θ2Q2

2

)
θQ

= sD − sD
(

1− θQ

2

)
=
sDQθ

2
·
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Appendix B.

Proof of Lemma 1

We compute the Hessian matrix at the optimal values for a given L ∈ [Li, Li−1] and fixed ρ, as follows:

H33 = det



∂2PλẼ∗(·)
∂Q∗2

∂2PλẼ∗(·)
∂Q∗∂r∗

∂2PλẼ∗(·)
∂Q∗∂θ∗

∂2PλẼ∗(·)
∂r∗∂Q∗

∂2PλẼ∗(·)
∂r∗2

∂2PλẼ∗(·)
∂r∗∂θ∗

∂2PλẼ∗(·)
∂θ∗∂Q∗

∂2PλẼ∗(·)
∂θ∗∂r∗

∂2PλẼ∗(·)
∂θ∗2


where PλẼ∗(·) = PλẼ∗(Q

∗, r∗, θ∗, L). The second order partial derivatives at the optimal values are

∂2PλẼ∗(Q
∗, r∗, θ∗, L)

∂Q∗2
=

[
2D

3Q∗3

] [
A+ σ

√
LΨ(r1, r2, p)π

]
∂2PλẼ∗(Q

∗, r∗, θ∗, L)

∂r∗2
=

1

3σ
√
L

[
ρh+

Dπ

Q∗

] [
pφ(r1) + (1− p)φ(r2)

]
∂2PλẼ∗(Q

∗, r∗, θ∗, L)

∂θ∗2
=

αb

θ∗2

∂2PλẼ∗(Q
∗, r∗, θ∗, L)

∂Q∗∂r∗
=
∂2PλẼ∗(Q

∗, r∗, θ∗, ρ∗, L)

∂r∗∂Q∗
=

[1−G∗(r)]Dπ
3Q∗2

∂2PλẼ∗(Q
∗, r∗, θ∗, L)

∂Q∗∂θ∗
=
∂2PλẼ∗(Q

∗, r∗, θ∗, ρ∗, L)

∂θ∗∂Q∗
=
Ds

6

∂2PλẼ∗(Q
∗, r∗, θ∗, L)

∂r∗∂θ∗
=
∂2PλẼ∗(Q

∗, r∗, θ∗, L)

∂θ∗∂r∗
= 0

where

A = λ(A− δA1 +R(L)) + 2(A+R(L)) + (1− λ)(A+ δA2 +R(L))

π = λ(π − δπ1 + (π0 − δπ0
1 )ρ) + 2(π + π0ρ) + (1− λ)(π + δπ2 + (π0 + δπ0

2 )ρ)

h = λ(h− δh1 ) + 2h+ (1− λ)(h+ δh2 )

π0 = λ(π0 − δπ0
1 ) + 2π0 + (1− λ)(π0 + δπ0

2 )

s = λ(s− δs1) + 2s+ (1− λ)(s+ δs2)

The first principal minor at the optimal values are

det(H11) = det
(
∂2PλẼ∗(Q

∗,r∗,θ∗,ρ∗,L)
∂Q∗2

)
=

2D

3Q∗3

[
A+ σ

√
LΨ(r1, r2, p)π

]
> 0
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Figure 1. The behaviour of Ψ(k, p, η) for different values of p and η.

This first principal minor is greater than zero because all terms are positive.

det(H22) = det

 ∂2PλẼ∗(·)
∂Q∗2

∂2PλẼ∗(·)
∂Q∗∂r∗

∂2PλẼ∗(·)
∂r∗∂Q∗

∂2PλẼ∗(·)
∂r∗2


= ωτ − ν2

where

ω =
2D

3Q∗3

[
A+ σ

√
LΨ(r1, r2, p)π

]
τ =

1

3σ
√
L

[
ρh+

Dπ

Q∗

] [
pφ(r1) + (1− p)φ(r2)

]
ν =

[
Dπ{1−G∗(r)}

3Q∗2

]
.

After some simplifications, we obtain

det(H22) =
2DA

9σ
√
LQ∗3

[
ρh+

Dπ

Q∗

] [
pφ(r1) + (1− p)φ(r2)

]
+

2ρDπh

9Q∗3
Ψ(r1, r2, p)

[
pφ(r1) + (1− p)φ(r2)

]
+
D2π2

9Q∗4

{
2Ψ(r1, r2, p)

[
pφ(r1) + (1− p)φ(r2)

]
−
[
G∗(r)− 1

]2}
.

As r1 = k
√

1 + p(1− p)η2 − (1 − p)η and r2 = k
√

1 + p(1− p)η2 + pη, we can write Ψ(r1, r2, p) ≡ Ψ(k, p, η).
The behaviour of Ψ(k, p, η) is shown in Figure 1. It is to be noted from the Figure 1 that Ψ(k, p, η) is de-
creasing function of k and increasing function of η for fixed p. Moreover, Ψ(k, p, η) > 0 (by examining stan-

dard normal table) for all k ∈ [0,∞), p ∈ [0, 1] and η ∈
(

0,
√

27
8

)
Besides the behaviour of ξ1(k, p, η) ≡
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Figure 2. The behaviour of ξ1(.), ξ2(.) and ξ3(.)

2Ψ(k, p, η)[pφ(r1) + (1−p)φ(r2)], ξ2(k, p, η) ≡ [pΦ(r1)+(1−p)Φ(r2)−1]2 and ξ3(k, p, η) ≡ ξ1(k, p, η)−ξ2(k, p, η)
is depicted in Figure 2 for fixed p. Note that Figure 2 shows that though the values of ξ1(k, p, η), ξ2(k, p, η) and
ξ3(k, p, η) are small (< 0.40), they are positive, and as k → 0, ξ1(k, p, η), ξ2(k, p, η) and ξ3(k, p, η) approaches to
0+. Hence, det(H22) > 0.

det(H33) = det



∂2PλẼ∗(·)
∂Q∗2

∂2PλẼ∗(·)
∂Q∗∂r∗

∂2PλẼ∗(·)
∂Q∗∂θ∗

∂2PλẼ∗(·)
∂r∗∂Q∗

∂2PλẼ∗(·)
∂r∗2

∂2PλẼ∗(·)
∂r∗∂θ∗

∂2PλẼ∗(·)
∂θ∗∂Q∗

∂2PλẼ∗(·)
∂θ∗∂r∗

∂2PλẼ∗(·)
∂θ∗2


=

2D

3Q∗3

[
A+ σ

√
LΨ(r1, r2, p)π

]
× αb

3σ
√
Lθ∗2

[
ρh+

Dπ

Q∗

] [
pφ(r1) + (1− p)φ(r2)

]

− αb

θ∗2

[
Dπ{1−G∗(r)}

3Q∗2

]2
− D2s2

36

× 1

3σ
√
L

[
ρh+

Dπ

Q∗

] [
pφ(r1) + (1− p)φ(r2)

]
=

(
αb

θ∗2
ω − D2s2

36

)
τ − αb

θ∗2
ν2.

Therefore, it is enough to show (
αb

θ∗2
ω − D2s2

36

)
τ >

αb

θ∗2
ν2.
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Now(
αb

θ∗2
ω − D2s2

36

)
τ =

[
αb

θ∗2

{
2D

3Q∗3

(
A+ σ

√
LΨ(r1, r2, p)π

)}
− D2s2

36

]
τ

>
αb

θ∗2

[
2D

3Q∗3

(
A+ σ

√
LΨ(r1, r2, p)π

)
− αb

Q∗3

]
τ

>
αb

θ∗2

[
2D

3Q∗3
σ
√
LΨ(r1, r2, p)π −

αb

Q∗3

]
τ

>
αb

θ∗2
D2π2

9Q∗4
2Ψ(r1, r2, p)

[
pφ(r1) + (1− p)φ(r2)

]
if (2DA > 3αb)

>
αb

θ∗2
D2π2

9Q∗4
[1−G∗(r)]2 since 2Ψ(r1, r2, p)

[
pφ(r1) + (1− p)φ(r2)

]
> [1−G∗(r)]2

>
αb

θ∗2
ν2

Hence PλẼ∗(Q
∗, r∗, θ∗, L) is a convex function for a given L ∈ [Li, Li−1] and fixed ρ.
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