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GRAPH COLORING APPROACH WITH NEW UPPER BOUNDS
FOR THE CHROMATIC NUMBER: TEAM BUILDING

APPLICATION

Assia Gueham1,*, Anass Nagih2, Hacene Ait Haddadene3

and Malek Masmoudi4

Abstract. In this paper, we focus on the coloration approach and estimation of chromatic number.
First, we propose an upper bound of the chromatic number based on the orientation algorithm described
in previous studies. This upper bound is further improved by developing a novel coloration algorithm.
Second, we make a theoretical and empirical comparison of our bounds with Brooks’s bound and Reed’s
conjecture for class of triangle-free graphs. Third, we propose an adaptation of our algorithm to deal
with the team building problem respecting several hard and soft constraints. Finally, a real case study
from healthcare domain is considered for illustration.
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1. Introduction

Graph coloring has been considered for many real-world problems looking for a partition of a set of objects
into subsets containing only two-by-two compatible elements e.g. team building [2, 24, 29]. It is an NP-Hard
problem and looks for the smallest number of colors (i.e. chromatic number) needed to color the vertices of a
graph so that no two adjacent vertices share the same color [15]. Several works in literature deal with the problem
of graph coloration [6, 7, 13, 14, 17] and more precisely on the chromatic number estimation [3, 12, 16, 18–21].

In this paper, we provide a novel coloration algorithm, generating a performant estimation to the chromatic
number, and a comparison to existing studies in literature. In addition, an adaptation of our coloration algorithm
to the team building problem and an illustration on the nurses team building problem from healthcare domain
are provided.

Let G(V,E) be a graph, where V is a set of n vertices and E is a set of m edges. A stable S is a subset of
vertices that are not adjacent. Let χ(G) be the chromatic number. It represents the minimum number of colors
such that: for all x, y ∈ V , (x, y) ∈ E, color(x) 6= color(y). Let ω(G) and ∆(G) be the clique number and the
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maximum degree of graph G, respectively. The graph G is called K-colorable if χ(G) = K. For any graph G,
there are common results on the chromatic number and its bounds:

• 1 ≤ χ(G) ≤ n.
• If all vertices form a stable i.e. m = 0, then χ(G) = 1
• If G is bipartite then χ(G) ≤ 2.
• If G is complete then χ(G) = n.
• If G contains a clique of size K then at least K colors are needed for coloring it, so χ(G) ≥ ω(G).
• χ(G) ≤ ∆(G) + 1 (theorem of Brooks [7]).
• χ(G) ≤ dω(G)+∆(G)+1

2 e (conjecture of Reed [27], validated by [3, 18–20] on some classes of graphs).

For the special class of triangle-free graphs that will be considered later in our paper, Reed’s conjecture becomes:

χ(G) ≤
⌈
∆

2

⌉
+ 2 (1.1)

The theorem of Brooks provides an upper bound of the chromatic number for any graph. However, Reed’s
conjecture provides better upper bound than the Brooks’ theorem for special graphs such as line graphs of
multigraphs [19] and quasi-line graphs [18].

We can see that the upper bound of Reed diverges when ∆(G) is large (i.e. G is not dense). As illustration,
see the instances 1, 3, 11, 12 and 14 in Table 2. An upper bound is provided recently in [13] based on the
orientation algorithm. This upper bound is improved in this paper by a new coloration algorithm that we called
block coloration algorithm (detailed in Sect. 2). The used algorithm runs in polynomial time and improves both
upper bounds of Reed and Brooks (explained later in Sect. 3).

2. Block coloration algorithm

The developed coloration algorithm proceeds in 2 steps:

(1) First step: Construction of a directed graph, using the orientation algorithm in[13];
(2) Second step: Construction of vertices groups (block) by applying the Block coloration algorithm.

We recall the principle of the First Step (i.e. the orientation algorithm presented in [13]). We choose a not
yet treated or not yet marked vertex with the highest degree, orient all the corresponding incident edges to
the outside, mark all its neighboring vertices, and consider it as treated. This process is then re-iterated on
the residual partial graph obtained by removing the treated vertex. At the end of this process, all vertices are
marked or treated. However, if there are still undirected edges, the procedure is repeated on the partial subgraph
generated by these edges.

Therefore, the following notations can be considered:

• Go(V,A) is the associated graph to G(V,E), according to the orientation algorithm;
• The transition of the vertex v denoted Tr(v) is the number of outgoing arcs;
• The incidence of the vertex v denoted I(v) is the number of incoming arcs;

In this study, we define a lexicographical order on graph vertices L by contracting the sets of vertices that
have the same incidence Li, where Li are built by classifying the graph vertices in the increasing order of
their incidence degrees. L is the union of the subsets Li, and the vertices of the same set Li are classified in a
decreasing order of their transition degrees.
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Figure 1. An illustration graphic of the block coloration algorithm.

Below the second step (i.e. block coloration algorithm):

Algorithm 1. Step 2: Block coloration.
Require: Graph Go(V,A), where A is a set of arcs
Ensure: C, set of colors Ci

Begin
k ← 0;
Ck ← {L(1)};
for v ← L(2) to L(n) such that n = |V | do
j ← 0;
affect← false;
while affect = false do

if (x, v) 6∈ A, ∀x ∈ Cj then
Cj ← Cj ∪ {v};
affect← true;

else
if j = k then
k ← k + 1, j ← k;
Cj ← {v};
affect← true;

end if
end if
j ← j + 1;

end while
end for
End.

It should be noted that L0 = {v ∈ V such that I(v) = 0} and C0 = L0 at the end of the block coloration
algorithm.

The complexity of our block coloration algorithm depends on the complexity of the First step which
is polynomial [13]. The developed coloring algorithm gives a proper coloring which respects all adjacency
constraints.

The Figure 1 illustrates an example of a graph and the result of our coloration algorithm.
From the lexicographical order, we have L0 = {v4, v1, v6, v7}, L1 = {v2, v3}, L2 = {v5} which defined the

treated set L such that L ← L0 ∪ L1 ∪ L2, L = {v1, v4, v6, v7, v2, v3, v5}. Furthermore, the block coloration
algorithm gives C0 = {v1, v4, v6, v7} and C1 = {v2, v3, v5}.
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To prove the efficiency of our algorithm regarding the respect of all constraints, three lemmas are provided
and validated. Moreover, three consequences about the performance of our algorithm are deduced:

Lemma 2.1. Vertices of set L0 are not adjacent.

Proof. By using the orientation algorithm (First step), all edges incident to the initial treated vertex are oriented
to the outside so their incidence is equal to 0. The next vertex that can be treated is an unmarked vertex (not
connected to a treated vertex). Hence, its incidence is also equal to 0. We continue the process until all vertices
are either marked or treated. Hence, the set of treated vertices, which are represented by the set L0 are not
adjacent.

Consequence 2.1. ∀v ∈ V \ L0,∃v̀ ∈ L0 such that (v̀, v) ∈ A.

Lemma 2.2. If ∃v1, v2 ∈ V \ L0 such that (v1, v2) ∈ E then either Tr(v1) > 0 or Tr(v2) > 0.

Proof. By using the orientation algorithm and at iteration k all vertices are either marked or treated. If |E| 6= |A|,
there exist not yet oriented edges incident to marked vertices. We consider the partial subgraph generated by
the not yet oriented edges. Thus, if ∃v1, v2 ∈ V \ L0 such that (v1, v2) ∈ E then (v1, v2) has an orientation in
any direction, either (v1, v2) ∈ A or (v2, v1) ∈ A, and this according to their degree in the graph G. Therefore,
Tr(v1) > 0 or Tr(v2) > 0.

Consequence 2.2. ∀v1, v2 ∈ V \ L0 such that Tr(v1) = Tr(v2) = 0 then (v1, v2) /∈ E. Thus, v1 and v2 can
have the same color.

Lemma 2.3. All vertices of a set Ci are not adjacent.

Proof. According to the condition “while” of the algorithm, two neighboring vertices of the same incidence can
not be in the same set Ci.

Consequence 2.3. Each block of vertices Ci is a stable set.

3. Two upper bounds for the chromatic number

In this section, we provide two Theorems (3.1) and (3.2) based on new upper bounds for the chromatic
number χ(G), and two others showing the performance of these upper bounds.

Theorem 3.1. For any graph G, we have:

χ(G) ≤ max
v∈V

(I(v)) + 1.

Proof. There are three possible cases:

Case 1. We suppose that the vertex with maximum incidence is a vertex of an odd hole1 with size 2k + 1,
let Ghole(Vhole, Ehole) be the hole. It exists a unique x ∈ Vhole such that I(x) = 2, then IG(x) = 2 + a,
where a corresponds to the outsides incidences. Thus, max

v∈V
(I(v)) ≥ IG(x) = 2 + a. This implies that

χ = 3 ≤ 2 + 1 + a.
Case 2. We suppose that the vertex of maximum incidence is a vertex of an odd anti-hole2 of size 2k + 1, let

Ganti−hole(Vanti−hole, Eanti−hole) be the anti-hole. By using the orientation algorithm, it exists a unique
x ∈ Vanti−hole such that I(x) = 2k − 2, then IG(x) = 2k − 2 + a, where a corresponds to the outside
incidences. Thus, max

v∈V
(I(v)) + 1 ≥ 1 + IG(x) = 2k − 1 + a ≥ χ = k + 1.

1A hole is a cycle, its length is greater or equal to 4.
2An anti-hole is the complement of a hole.
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Case 3. We suppose that G is a Berge3 graph; ω(G) = χ(G). By using the theorem1 [13], ω(G) ≤ max
v∈V

(I(v)) + 1

and since ω(G) = χ(G) then χ(G) ≤ max
v∈V

(I(v)) + 1.

Theorem 3.2. For any graph G, we have: χ(G) ≤ |C|

|C| ≤ max
v∈V

(I(v)) + 1
(3.1)

Proof. The expression (1) is obvious. For the expression (2), here is the proof:
From the block coloration algorithm, the sets Lj are the sets of vertices of the same degree of incidence. Then

L0 = {v ∈ V such that I(v) = 0}.
Let ρ = {j ≤ max

v∈V
(I(v));∃x ∈ Lj such that Γ (x) ∩ Lj 6= ∅}, where Γ (x) = {y ∈ V |(y, x) ∈ E}.

If ρ = ∅, then the blocks Cj are constructed from the sets Lj as follows:

C0 = L0

Cj = L′j ∪Bj |L′j = Lj −
[(
∪j−1
i=0Bi

)
∩ Lj

]
,

Bj =
{
x ∈ ∪ni=j+1Li|Γ (x) ∩ L′j = ∅

}
;

B0 = ∅, n ≥ j ≥ 1.

Where n = |L| − 1 and Cj nonempty. Thus, |C| = i+ 1 ≤ n+ 1 = |L|, such that i represents the number of
blocks Cj . Which gives |C| ≤ max

v∈V
(I(v)) + 1.

If ρ 6= ∅, then we set h = min{j ∈ ρ}.
It is obvious that |ρ| > 0. Thus, we can consider that 1 6∈ ρ.
Let V1 = {v ∈ Lh|ILh(v) 6= 0}. For any v ∈ V1, IG(v) = h = ILh(v) + I∪h−1

i=0 Li
(v) + I∪ni=h+1Li

(v). Thus, ∀v ∈
V1, either∃(h− j) sets that can receive v or ∃(h− j) blocks that can be created.

Hence, |C| ≤ max
v∈V

(I(v)) + 1.

To evaluate the efficiency of our bounds, we made a formal comparison to classical bounds; theorem of Brooks
and conjecture of Reed.

In the following theorem, we provide a first new upper bound for the chromatic number χ(G) based on the
orientation algorithm. In addition, we show the performance of this upper bound and make a comparison with
the upper bound of Brooks:

Theorem 3.3. For any graph G, we have:

max
v∈V

(I(v)) + 1 ≤ ∆(G) + 1.

Proof. As the vertex of maximum degree, ∆(G), is the first vertex which can be treated while orienting the
incident edges to the outside. Thus, ∀v ∈ V, d(v) ≤ ∆(G) this implies that max

v∈V
(I(v)) ≤ ∆(G) then, max

v∈V
(I(v)) +

1 ≤ ∆(G) + 1.

Knowing the fact that Reed provided a conjecture with a better upper bound than the upper bound of
brooks [27], in the following theorem, we provide a second new upper bound for the chromatic number χ(G)

3A Berge graph does not contain odd hole and odd anti-hole as induced subgraph.
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Table 1. Comparison between |C| and RC for instances of small sizes.

Instances ∆ na da RC |C|
Instances1 5 8.5 0.413 4 Average = 2.88

min = 2; max = 4
Instances2 6 9.5 0.387 5 Average = 3.87

min = 2; max = 5
Instances3 7 10.5 0.358 5 Average = 3.83

min = 2; max = 5
Instances4 8 11.5 0.325 6 Average = 4.03

min = 2; max = 6
Instances5 9 12.5 0.332 6 Average = 3.86

min = 2; max = 6
Instances6 10 13.5 0.321 7 Average = 3.8

min = 2; max = 7
Instances7 11 14.5 0.302 7 Average = 4

min = 2; max = 7
Instances8 12 15.5 0.323 8 Average = 4.66

min = 2; max = 8
Instances9 13 16.5 0.307 8 Average = 4.63

min = 2; max = 8

based on the block coloration algorithm (Second Step). Moreover, we show the performance of this second upper
bound, which will be compared to the upper bound of Reed for a specific classes of graphs (triangle-free):

Theorem 3.4. For any triangle-free graph, as ∆(G) ≤ 4:

χ(G) ≤ |C| ≤
⌈
∆

2

⌉
+ 2.

Proof.

If ∆(G) = 1, then |C| = 2 < d∆(G)
2 e+ 2 = 3;

If ∆(G) = 2, then
(1) For a Berge graph we have |C| = 2 < d∆(G)

2 e+ 2 = 3;
(2) For a not Berge graph we have |C| = 3 = d∆(G)

2 e+ 2.
If ∆(G) = 3, then

(1) Either |C| = 2 < d∆(G)
2 e+ 2 = 4;

(2) Or |C| = 3 < d∆(G)
2 e+ 2 = 4.

If ∆(G) = 4, then
(1) Either |C| = 2 < d∆(G)

2 e+ 2 = 4;
(2) Or |C| = 3 < d∆(G)

2 e+ 2 = 4.
(3) Or |C| = 4 = d∆(G)

2 e+ 2 (case of chvàtal graphs).

It is concluded that |C| ≤ d∆2 e+ 2 for ∆(G) ≤ 4.

In absence of formal proof for ∆ ≥ 5, we propose an empirical comparison based on instances that are
generated randomly.

Note that na, da and RC are respectively, the average number of vertices, average density and bound of
Reed’s conjecture for triangle-free graphs, which is d∆2 e+ 2.
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Table 2. Comparison between |C| and RC for instances of large sizes.

Instance n m ∆(G) RC |C| Instance n m ∆(G) RC |C|
Instance1 100 235 80 42 9 Instance26 200 860 43 24 22
Instance2 100 230 75 40 40 Instance27 200 1100 39 22 20
Instance3 100 240 85 45 9 Instance28 200 1226 37 21 20
Instance4 100 254 99 52 10 Instance29 200 1400 40 22 21
Instance5 100 368 16 10 10 Instance30 200 1500 43 24 21
Instance6 100 380 20 12 11 Instance31 400 720 280 142 9
Instance7 100 520 30 17 13 Instance32 400 849 390 197 12
Instance8 100 550 36 20 15 Instance33 400 830 360 182 10
Instance9 100 620 33 19 16 Instance34 400 800 320 162 10
Instance10 100 647 39 22 16 Instance35 400 1000 37 21 17
Instance11 150 275 70 37 7 Instance36 400 1500 46 25 22
Instance12 150 280 76 40 7 Instance37 400 3800 76 40 39
Instance13 150 320 100 52 11 Instance38 400 6500 80 42 40
Instance14 150 300 90 47 8 Instance39 400 7000 82 43 40
Instance15 150 400 40 22 13 Instance40 400 7500 88 46 41
Instance16 150 580 33 19 17 Instance41 500 690 310 157 8
Instance17 150 610 38 21 19 Instance42 500 750 380 192 9
Instance18 150 789 41 22 22 Instance43 500 780 380 192 10
Instance19 150 1200 40 22 20 Instance44 500 800 400 202 9
Instance20 150 1330 42 23 20 Instance45 500 810 395 200 10
Instance21 200 206 199 102 5 Instance46 500 824 405 205 10
Instance22 200 600 32 18 16 Instance47 500 5500 76 40 33
Instance23 200 690 35 20 16 Instance48 500 6300 81 43 37
Instance24 200 790 42 23 20 Instance49 500 7800 78 41 38
Instance25 200 800 48 26 20 Instance50 500 8000 85 47 40

In Table 1, we present 9 sets of instances. Each row in this table represents the average of 6 sets of 5 instances
(a total of 30 instances), having the same characteristics (same ∆ and same number of vertices).

In Table 2, we present the experimental results on randomly generated instances of triangle-free graphs,
where the vertices number n and ∆ are sufficiently large.

We note that the numerical tests confirm the dominance of our bound in front of Reed’s bound.

4. Block coloration with limited cardinality for the team
building problem

Team building has attracted the attention of researchers in different domains; healthcare [1, 4], sports [11],
education [29], military [10], etc. Team Building is the problem of composing high-performing teams respecting
a set of hard and soft constraints e.g. predefined team size, skills and complementarity between team members.
It is an NP-Hard problem [4].

The modeling of the team building problem has been achieved in literature using graph theory [2, 23, 29].
In [29] the authors modeled the team building problem as a weighted graph and provided a heuristic based on
vertex contraction technique to solve the considered problem. In [2, 23], the authors provided greedy algorithms
for graph coloring to deal with the team building problem where the vertices represent the teams members and
the edges represent the adjacency relationships.

Teams have generally predefined cardinalities. Thus, to deal with the team building problem, we propose
a modified version of our block coloration algorithm where the stables have fixed cardinalities (identical or
non-identical).
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To create stables with fixed identical cardinalities, p, or fixed non identical cardinalities, p[j], the following
condition “(x, v) /∈ A, ∀x ∈ Cj” in the block coloration algorithm becomes “(x, v) /∈ A, ∀x ∈ Cj and Cj ≤ p (or
Cj ≤ p[j])”, where p[j] depends on the characteristics of block Cj”.

In the team building problem, the resources can be classified into a set of categories according to their skills.
Ideally, team members have complementary skills, and each resource belongs to one of these categories. For
what follows, we consider T the set of h categories of resources Tt (T = ∪ht=1Tt). Usually, among the h available
categories, a set of b categories (b ≤ h) are considered critical owing to the necessity to have members from
these categories in each team, e.g. head of department, supervisor. This presents a hard constraint in the team
building problem (see constraint 2).

The objective of our work is to build coherent teams Ci respecting the following constraints:

(1) ∀Ci: |Ci| ≤ p (or |Ci| ≤ p[i]); this means that each team must have at most p elements;
(2) ∀Ci: Ci ∩ (∪bt=1Tt) 6= ∅ where Tt represents the set of vertices (elements) of the same category t; this means

that each team must have at least one element from ∪bt=1Tt;
(3) The number of teams, q ≤

∑b
t=1 |Tt|; this means that the number of teams is less than the number of

elements in ∪bt=1Tt;
(4) Hard constraints correspond to edges of type (Tt, Tt), t = 1, . . . , b; i.e. edges between vertices of the same

category;
(5) Soft constraints correspond to all edges except those of type (Tt, Tt), t = 1, . . . , b;

Using the above constraints and modifications on our block coloration algorithm, we get an algorithm adapted to
stables with limited cardinality that is adapted to the team building problem. At the end of this block coloration
algorithm with limited cardinality, the configuration that we obtained is not necessarily complete4, this is due
to the fact that two vertices v1, v2 ∈ V |(v1, v2) ∈ (×bt=1Tt), (v1, v2) 6∈ E can be in the same team, which can give
the teams Ci such that ∀v ∈ Ci, v 6∈ (∪bt=1Tt). A complete configuration is deductible with possible permutation.

Proposition 4.1. For any initial solution configuration, provided by the block coloration algorithm of limited
cardinality, a complete configuration is deductible with possible permutation.

Proof. We suppose that the initial solution is not complete, thus ∃i ∈ {1, . . . , k} such that Ci does not satisfy
the condition (2), and both conditions (3) and (4) are satisfied, then ∃ at least j ∈ {1, . . . , k}, j 6= i such that
Cj ∩ (∪bt=1Tt) = b, thus, for v ∈ Ci and y ∈ Cj such that y ∈ (∪bt=1Tt), If (∀v1 ∈ Cj − {y}, (v1, v) 6∈ E) and
(∀v2 ∈ Ci−{v1}, (v2, y) 6∈ E), then Cj ← (Cj−{y})∪{v} and Ci ← (Ci−{v})∪{y}, else if ∃h ∈ {1, . . . , k}, h 6=
i, j such that for y2 ∈ Ch|y2 ∈ (∪bt=1Tt), (∀v3, v1, v2 ∈ Ch −{y2}, Cj −{y}, Ci −{v}, (y, v2), (v, v1), (y, v3) 6∈ E),
then Ch ← (Ch−{y2})∪{y}, Cj ← (Cj −{y})∪{v} and Ci ← (Ci−{v})∪{y2}, else Cancel soft edges between
the vertex v and the set Cj , and pose Cj ← (Cj − {y}) ∪ {v} and Ci ← (Ci − {v}) ∪ {y}.

To improve team performance, two strategies are proposed for choosing the vertex v that can leave its block:

Strategy 1. Give preferential treatment to a vertex of lower transition. This vertex presents a high probability
in a move without giving conflict.
Strategy 2. Let f be a preference function defined on closed interval which associates a weight w for any
preferably edge, such that f(xi, xj) = w ≥ 1|(xi, xj) ∈ E. It is to be noted that if the degree of conflict is very
low then w = 1. Our aim is to build coherent team (i.e. teams with low weight). Thus, we choose the vertex v
with the lowest weight transition.

The block coloration algorithm of limited cardinality allows to respect the maximum cardinality teams while
respecting the wishes of the employees (vertices). Hence, it guarantees all the conditions except the condition
(2). However, with a possible permutation, the algorithm generates a solution that respects all the conditions
except the condition (5), it should be noted that the permutation never exceeds

∑b
t=1 |Tt|.

4A complete configuration is a set of teams having at least one vertex v ∈ V such that v ∈ (∪b
t=1Tt).
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Our approach is generic. Strategy 1 or strategy 2 is selected according to the relevant application, in the
case where the solution found by the block coloration algorithm of limited cardinality is not complete. In the
following, we provide an illustration of our algorithm to the team building problem from the healthcare domain;
nurses team building in a surgical service of a clinic from Tunisia.

4.1. Illustration to Nurses team building

Nurses team building and rostering problems have attracted much research attention [1, 4, 8, 9]. It is defined
as the Operational Research problem composing nurses teams and assigning teams to shifts, (e.g. {day, night} [5]
or {early, late, night} [30]), typically with a set of hard and soft constraints.

In the following, we give an illustration of our algorithm on the problem of nurses team building. The
assignment of teams to shifts is also provided.

The surgery service of the Clinic of Soukra, in Tunis (Tunisia) is working with two shifts {day, night} per 24
hours and 4 nursing teams. Nurses are classified into 7 classes according to their skills and experiences:

• Student Nurse (SN): from 0 to 2 y of experiences.
• Nurse (N): from 0 to 5−10 y of experiences. The main resource who made the nursing work.
• Principal Nurse (PN): more that 5 y of experience. Responsible of the coordination between the members

of the nursing team.
• Secondary Overseer Nurse (SON): principal Nurse with several managerial and social skills. He (she) is

always available and replace the Principal Nurse when he (she) is absent.
• Overseer Nurse (ON): more than 5 y of experience as Secondary Overseer Nurse.
• Night General Overseer (NGO): overseer Nurse with managerial skills.
• General Overseer (GO): overseer Nurse with a global vision on pathologies, high management level,

admission management, polyvalent, good relationship.

The General Overseer controls all nursing teams services and works from 7a.m. to 4p.m.. For each service,
nursing teams are controlled by an Overseer Nurse who is available each day from 6a.m. to 3p.m.. The nursing
teams are composed of 3 possible categories of employees:

• T1 represents the set of Secondary Overseer Nurses;
• T2 represents the set of Principal Nurses;
• T3 represents the set of Nurses and Student Nurses.

The related soft and hard constraints (e.g. mix of nurses qualifications for a particular shift, maximum work-
ing hours allowed for nurses, individual nurses preferences for shifts and for working with other persons) are
expressed as follows:

• number of shifts per day (e.g. two shifts {day, night});
• number of nurses per shift (e.g. for the medical service, 4 at day (from 7a.m. to 7p.m) and 3 to 4 at night

(from 7p.m. to 7a.m)), this is expressed by |Ci| ≤ p[i];
• number q of teams (q = 4), q ≤ |T1|+ |T2|;
• one Principal Nurse (PN) at least at night, that results in ∀Ci : Ci ∩ (T2) 6= ∅ and 6 ∃v1, v2 ∈ T2 such that
v1 and v2 can be in the same team;

• one Secondary Overseer Nurse (SON) works the day shift and can replace a Principal Nurse (PN), it
implies that ∀Ci : Ci ∩ (T1 ∪ T2) 6= ∅ and 6 ∃v1, v2 ∈ T1 × T2 such that (v1, v1) and (v2, v2) can be in the
same team. It also implies that ∃v1, v2, v3 ∈ T1 × T2 × T3 such that (v1, v2), (v1, v3), (v2, v3) and (v3, v3)
can be in the same team where |T1| ≤ |T2|.

Using the adjacency matrix in Table 3, a graph G is constructed by taking nurses as vertices. Our Graph
contains |V | = 14 vertices (4 teams, p = [4, 4, 3, 3], i.e. a team of 4 nurses at day shift and a team of 3 nurses at
night, a team works every other day).
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Table 3. Adjacency matrix (conflicts between nurses).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

v1 0 1 0 0 0 1 1 0 0 0 0 0 0 0
v2 1 0 1 0 0 0 0 0 0 0 0 0 0 0
v3 0 1 0 1 1 0 0 0 1 0 1 0 0 0
v4 0 0 1 0 1 0 0 0 0 0 0 0 1 1
v5 0 0 1 1 0 0 0 0 0 0 0 0 1 1
v6 1 0 0 0 0 0 0 0 1 0 0 0 0 0
v7 1 0 0 0 0 0 0 0 1 0 0 0 0 0
v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v9 0 0 1 0 0 1 1 0 0 1 1 0 0 0
v10 0 0 0 0 0 0 0 0 1 0 0 0 0 0
v11 0 0 1 0 0 0 0 0 1 0 0 0 0 0
v12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v13 0 0 0 1 1 0 0 0 0 0 0 0 0 0
v14 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 2. Graph G shows the model and result of our modified block coloration algorithm.

If a specific constraint is present between two nurses, corresponding vertices are joined using an edge. Thus,
they are considered adjacent and are colored using different colors.

Let {v1, v2} be the set of Secondary Overseer Nurses (SON), {v3, v4, v5} the set of Principal Nurses (PN),
{v6, . . . , v12} be the set of Nurses (N) and {v13, v14} the set of Student Nurses (SN).

The result of our coloration algorithm of limited cardinality for the data presented in Table 3 is shown in
Figure 2.

The teams composition given by block coloration algorithm of limited cardinality represents a complete
configuration, as shown in Table 4.

Teams 1 and 2, containing particularly Secondary Overseer Nurses (SON), are assigned to day shifts (D),
and Teams 3 and 4 are assigned to night shifts (N).

Each nurse is already assigned to one of the four teams and works according to the four-day basic pattern
reported in Table 5. The pattern is cyclically repeated.
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Table 4. Teams obtained by the modified block coloration algorithm.

Team 1 Team 2 Team 3 Team 4

v3, v1, v10, v9, v11, v7, v5, v8,
v13, v14 v2, v6 v4 v12
1 SON 1 SON 1 PN 1 PN
1 PN 3 N 2 N 2 N
2 SN

Table 5. Four-day pattern for Nurses teams.

Day 1 2 3 4

Team 1 D − D −
Team 2 − D − D
Team 3 N − N −
Team 4 − N − N

5. Conclusion

In this paper, we proposed two efficient upper bounds for the chromatic number. The first one is based on
the orientation method cited in [13] and the second one is the result of the block coloration algorithm. It has
been found that the second bound is more accurate.The efficiency of these bounds is proved theoretically and
empirically in comparison with the bound of Brooks [7] for any graph, and the conjecture of Reed [27] for
triangle-free graphs.

To provide stables with predefined cardinality to deal with the team building problem, a modified block
coloration algorithm is generated based on our graph coloring algorithm. For illustration, this new algorithm is
applied to nurses team building for the surgery service of a private hospital (Clinic of Soukra in Tunis, Tunisia).

For the future research, we plan to adapt our graph coloration algorithm to deal with weighted graphs and
apply the new algorithm to nurses scheduling problem, and the assignment of patients to nurses.
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