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1. Introduction

Duality theory is an important aspect of optimization theory. Using duality theory a minimization problem
can be related to a corresponding maximization problem in such a way that by solving the latter problem it
is possible to get optimum value of the former problem. Lagrangian methods are a way to solve a constrained
optimization problem by converting it into an unconstrained optimization problem. Under convexity assumptions
a constrained optimum is characterized as a saddle point of the Lagrangian. Saddle points provide a link between
primal and dual problems. For more details refer to [4, 18].

Let F : X ⇒ Y be a set-valued map from a nonempty set X to a real Hausdorff topological vector space Y
and M be a nonempty subset of X. Consider the following set-valued optimization problem

(P) WMin F (x)
subject to x ∈M.

There are two well-known approaches for defining the solution concept of the problem (P). The first approach
is in the vector sense, where a solution concept involves a single element of the image of the solution. In this
approach an element x̄ ∈M is called weak minimal solution of (P) if there exists ȳ ∈ F (x̄) such that

(F (M) − ȳ) ∩ (−intK) = ∅,
where F (M) =

⋃
x∈M F (x), K is a closed convex pointed cone with nonempty interior that induces an ordering

in Y and intK denotes interior of K. The optimality conditions and duality theory using this approach has been
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studied in various papers, for instance [1,2,15,18,20,21]. Corley [1,2] gave optimality conditions and Lagrangian
duality theory for a set-valued maximization problem. Luc [18] introduced the notion of saddle points for the
Lagrangian map of a set-valued optimization problem. Song [20] gave a cone separation theorem between two
subsets of image space and used it to discuss the optimality conditions and duality for set-valued optimization
problem in locally convex spaces. Recently, Long and Peng [17] studied Lagrangian rule and duality results for
set-valued optimization problem with nearly cone-subconvexlike maps.

The second approach was introduced by Kuroiwa [9–13] which is a more appropriate solution concept for a
set-valued optimization problems. Unlike the first approach, this approach requires the comparison of the whole
set F (x̄) if x̄ is a solution of (P). This approach is usually referred to as set optimization approach and the
first approach is referred to as vector approach. In [11], Kuroiwa presented existence and duality results for
a set-valued optimization problem. Using this approach, Hernández and Rodŕıguez-Maŕın [6] established the
duality results, Lagrange multiplier rule, necessary and sufficient conditions for the existence of saddle points
of the Lagrangian map. To establish these results, using the second approach the authors, in [6] considered
Lagrangian map involving continuous affine linear maps. This is in contrast to the traditional method where
the Lagrangian map involves continuous linear maps. Recently, Lagrangian duality for set-valued optimization
problems using complete-lattice theory was studied in [5, 8, 16].

In the recent years there has been a growing interest in the study of approximate solutions of optimization
problems. However, the study has been done only for solutions of vector type. Usually approximate solutions
are obtained on applying iterative algorithms to solve an optimization problem. Kutateladze [14] introduced
the concept of approximate solutions which has been further used to obtain approximate Kuhn–Tucker type
conditions and approximate duality theorems in [3]. Vályi [22] presented different types of nondominated ap-
proximate solutions of vector optimization problem and saddle point theorems corresponding to these solutions.
Rong and Wu [19] extended the results given by Vályi [22] to the case of set-valued optimization problem. They
gave ε-saddle point theorems and ε-duality theorems using ε-Lagrangian multipliers.

The main aim of this paper is to derive approximate Lagrange multiplier rule, duality and saddle point results
for a constrained set-valued optimization problem using the set optimization approach. We consider a notion of
weak approximate solutions in the sense of Kuroiwa [10]. Since in the set optimization approach the whole set
is considered instead of just a point of the set, some strong assumptions are to be assumed while establishing
Lagrangian and duality results. For instance in [6] the authors had to assume a separation condition to establish
Lagrange multiplier. Moreover, the Lagrange map, used to establish Lagrange multiplier rule, duality and saddle
point results involved affine maps rather than linear maps. In this paper we overcome both these issues but in
the process we have to assume that the image set corresponding to the optimal solution has a strong minimum.

The rest of the paper is organized as follows. Section 2 is devoted to preliminaries which will be required
in the sequel. In Section 3, we establish a Lagrange multiplier rule for the set-valued optimization problem.
In Section 4, we formulate a Lagrangian dual problem and give the notion of approximate solutions for the
dual problem. We then establish the weak and strong duality results in this section. In Section 5, we introduce
the notion of approximate weak saddle point of the Lagrangian map and establish saddle point optimality
conditions.

2. Preliminaries

The dual cone of K is defined as

K+ := {ϕ ∈ Y ∗ : ϕ(k) ≥ 0, ∀k ∈ K},

where Y ∗ denotes the topological dual of Y .
We recall from [21] that a map F is nearly K-convexlike on M, if cl(F (M) + K) is a convex set where cl

denotes the closure of a set. This notion extends the notion of K-convexlikeness as a K-convexlike set-valued
valued map F on M is characterized by the convexity of F (M) +K.

We next recall an alternative theorem which will be required in the sequel.
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Lemma 2.1 ([21]). If F is nearly K-convexlike on X and intK �= ∅, then exactly one of the following statements
holds:

(i) there exists x̄ ∈ X such that F (x̄) ∩ (−intK) �= ∅;
(ii) there exists ϕ ∈ K+\{0} such that ϕ(y) ≥ 0, for all x ∈ X, y ∈ F (x).

Let A be a subset of Y. We recall that an element â ∈ A is a strong minimum of A if A ⊆ â+K.
Throughout the paper we assume that, e ∈ intK is a fixed element and ε ≥ 0.
The vector criterion approach has been considered in literature [17, 19] to define the notions of approximate

solutions. The set of all ε-weak minimal solutions and ε-weak maximal solutions of A are defined as

ε-WMinA := {aε ∈ A : (A− aε + εe) ∩ (−intK) = ∅},

ε-WMaxA := {aε ∈ A : (A− aε − εe) ∩ intK = ∅}.
When ε = 0, we have the set of weak minimal solutions of A which we denote by WMinA.

We recall the following quasi order relations from [6, 7, 9]. Let P(Y ) denote the collection of all nonempty
subsets of Y. If A,B ∈ P(Y ) then

A ≤l B if and only if B ⊆ A+K,

A <l B if and only if B ⊆ A+ intK.

We say that A ∈ [B]l if and only if A ≤l B and B ≤l A. Clearly, A ∈ [B]l if and only if A+K = B +K.
We have a similar characterization for the strict order relation.

Lemma 2.2. Let A,B ∈ P(Y ). Then A <l B and B <l A if and only if A+K = A+ intK = B + intK =
B +K.

We now use the set criterion approach to define approximate solutions.

Definition 2.3. Let S be a subfamily of P(Y ). The set of all ε-l-weak minimal solutions and ε-l-weak maximal
solutions of S are defined as

ε-l-WMin(S) := {A ∈ S : B + εe <l A,B ∈ S ⇒ A <l B + εe},
ε-l-WMax(S) := {A ∈ S : A <l B − εe,B ∈ S ⇒ B − εe <l A}.

Let Z be another real Hausdorff topological vector space and let C be a closed convex pointed cone in Z.
Let G : X ⇒ Z be a set-valued map.

Consider the following set optimization problem

(P) WMin F (x)
subject to x ∈M,

where M = {x ∈ X : G(x) ∩ (−C) �= ∅}.
We say that problem (P) satisfies constraint qualification (CQ) if for every ψ ∈ C+\{0}, there exists x̂ ∈

X, ẑ ∈ G(x̂) such that ψ(ẑ) < 0.
Throughout the paper we assume that F (x) �= ∅ and G(x) �= ∅ for every x ∈ X .
We recall from [19] that an element xε ∈M is an ε-weak minimal solution of (P) if

F (xε) ∩ ε-WMinF (M) �= ∅.
This is equivalent to the fact that there exists yε ∈ F (xε) such that

(F (M) − yε + εe) ∩ (−intK) = ∅.
When ε = 0, this notion reduces to the notion of weak minimal solution.
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In the set criterion sense, we say that xε ∈M is an ε-l-weak minimal solution of (P) if

F (xε) ∈ ε-l-WMin(F),

where F := {F (x) : x ∈M}. This is equivalent to the fact that

F (x) + εe <l F (xε), x ∈M ⇒ F (xε) <l F (x) + εe.

For notational convenience throughout the paper we denote ε-l-WMin(F) by ε-l-WMin (F (x) : x ∈M) and
use similar expressions later on. When ε = 0, this notion reduces to the notion of weakly l-minimal solution
given in [7].

It can be easily seen that every ε-weak minimal solution of (P) is an ε-l-weak minimal solution of (P). However
the converse is not true.

Example 2.4. Consider problem (P) with X = R, Y = R2, Z = R,K = R2
+ and C = R+. Let ε = 0.1 and

e = (1, 1). Let F : X ⇒ Y be defined as

F (x) =

⎧⎪⎪⎨
⎪⎪⎩
{(x+ a, 1 + a− x) : a > 0}, if x ∈ ]0, 1],

[(0.2, 1.2), (1.2, 0.2)], if x = 0,

{(2, 2)}, otherwise.

Let G : X ⇒ Z be defined as

G(x) =

{
[−1, 1], if x ∈ [0, 1],

[1, 2], otherwise.

Clearly, M = [0, 1] and the set of ε-l-weak minimal solutions is [0, 1] but the set of ε-weak minimal solutions is
]0, 1].

In fact, if xε is an ε-weak minimal solution of (P) then, by definition, it is clear that there does not exist any
x ∈M such that F (x) + εe <l F (xε).

This fact can be further generalized to the following lemma.

Lemma 2.5. If ε-WMinF (M) �= ∅, then xε is an ε-l-weak minimal (ε-l-weak maximal) solution of (P) if and
only if there is no x ∈M such that F (x) + εe <l F (xε)(F (xε) <l F (x) − εe).

Remark 2.6. The above lemma also holds under the assumption that WMinF (xε) is nonempty instead of the
condition that ε-WMinF (M) is nonempty. Hence, the above lemma holds even if F (xε) has a strong minimum.

3. Lagrangian multiplier rule

In this section we establish Lagrangian multiplier rule for set optimization problem (P). In fact, we establish
a link of the set optimization problem (P) with an unconstrained set-valued problem.

Let � (Z, Y ) denote the space of all continuous linear maps from Z to Y and let

�+(Z, Y ) := {T ∈� (Z, Y ) : T (C) ⊆ K},

where T (C) := ∪c∈CT (c).
Let L : X ×�+(Z, Y ) ⇒ Y be the set-valued Lagrangian map defined as

L(x, T ) = F (x) + T (G(x)).
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In [10], Kuroiwa considered the set-valued Lagrangian map L : X×Z×�+(Z, Y ) ⇒ Y defined as L(x, z, T ) =
F (x) + T (z) where z ∈ G(x). Hernández and Rodŕıguez-Maŕın [6] considered the set-valued Lagrangian map
L : X ×�∗(Z, Y ) ⇒ Y defined as L(x, T ) = F (x) + T (G(x)) where

�∗(Z, Y ) = {T ∈� (Z, Y ) : T (z) = T̄ (z) +m such that T̄ ∈�(Z, Y ) and m ∈ −K}
and� (Z, Y ) is the set of all continuous affine linear maps from Z to Y.

Before establishing the main result of this section we state the the Lagrangian multiplier rule (Thm. 4.1)
given by Hernández and Rodŕıguez-Maŕın [6].

We recall from [6] that problem (P) satisfies generalized Slater’s constraint qualification if there exists x ∈ X
such that G(x) ∩ (−intC) �= ∅.
Theorem 3.1. Let (F,G) be (K×C)-convexlike on X, intC �= ∅ and assume that problem (P) satisfies general-
ized Slater’s constraint qualification. Let x0 be a l-weak minimal solution of (P), WMinF (x0) �= ∅ and F (x0) be
K-bounded. Let B =

⋂
y0∈F (x0)

(y0−K) and let H = {(ϕ, ψ) ∈ K+\{0}×C+ : (ϕ, ψ) separates (F,G)(X) and B×
(−C)}. If H �= ∅ then H contains an element (ϕ0, ψ0) such that inf{(ϕ0, ψ0)(y, z) : (y, z) ∈ (F,G)(X)} =
(ϕ0, ψ0)(y0, z0) for some (y0, z0) ∈ (F,G)(x0). Then there exists A0 ∈�∗(Z, Y ) such that

−A0(G(x0) ∩ (−C)) ⊆ K, (3.1)

and x0 is a l-weak minimal solution of the problem

WMin F (x) +A0(G(x))
subject to x ∈ X.

For T ∈�+(Z, Y ) we consider the following set optimization problem

(UP)T WMin L(x, T )
subject to x ∈ X.

We recall that xε ∈ X is an ε-l-weak minimal solution of (UP)T if

L(x, T ) + εe <l L(xε, T ), x ∈ X ⇒ L(xε, T ) <l L(x, T ) + εe. (3.2)

The following Lagrangian multiplier rule establishes that an ε-l-weak minimal solution of (P) is an ε-l-weak
minimal solution of the unconstrained problem (UP)T for some T ∈�+(Z, Y ).

Theorem 3.2. Let (F,G) be nearly (K ×C)-convexlike on X, intC �= ∅ and assume problem (P) satisfies CQ.
If xε is an ε-l-weak minimal solution of (P) and F (xε) has a strong minimum then there exists Tε ∈�+(Z, Y )
such that

− Tε(G(xε) ∩ (−C)) ⊆ (intK ∪ {0})\(εe+ intK), (3.3)

and xε is an ε-l-weak minimal solution of (UP)Tε .

Proof. Let ŷε be a strong minimum of F (xε). Define Q : X ⇒ Y × Z as

Q(x) = (F (x) + εe− ŷε, G(x)).

Clearly, Q is nearly (K × C)-convexlike on X .
We will show that Q(X) ∩ (−int(K × C)) = ∅. If (y′, z′) ∈ Q(X) ∩ (−int(K × C)) then there exists x′ ∈ X

such that y′ ∈ (F (x′)+ εe− ŷε) ∩ (−intK) and z′ ∈ G(x′)∩ (−intC). Hence, x′ ∈M and there exists y ∈ F (x′)
such that

y + εe− ŷε ∈ −intK.
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Let yε ∈ F (xε). As ŷε is a strong minimum of F (xε), we have ŷε = yε − k for some k ∈ K. Hence,

y + εe− yε + k ∈ −intK,

which implies that
yε ∈ y + εe+ intK ⊆ F (x′) + εe+ intK.

Therefore,

F (xε) ⊆ F (x′) + εe+ intK, (3.4)

which contradicts the fact that xε is an ε-l-weak minimal solution of (P).
Hence, by Lemma 2.1 there exists (ϕ, ψ) ∈ (K+ × C+)\{(0, 0)} such that

ϕ(y + εe− ŷε) + ψ(z) ≥ 0, (3.5)

for all x ∈ X, y ∈ F (x) and z ∈ G(x). If ϕ = 0 then ψ(z) ≥ 0, for all x ∈ X and z ∈ G(x). Since (P) satisfies
CQ, there exists x̂ ∈ X such that ψ(ẑ) < 0 for some ẑ ∈ G(x̂) which is a contradiction. Thus, ϕ ∈ K+\{0}.
Define Tε : Z → Y as

Tε(z) = ψ(z)k̄,

where k̄ ∈ intK is such that ϕ(k̄) = 1. Clearly, Tε ∈�+(Z, Y ).
Suppose xε is not an ε-l-weak minimal solution of (UP)Tε , then there exists x̄ ∈ X such that

F (xε) + Tε(G(xε)) ⊆ F (x̄) + Tε(G(x̄)) + εe+ intK.

Hence, for zε ∈ G(xε) ∩ (−C), we have

ŷε + Tε(zε) ∈ ȳ + Tε(z̄) + εe+ intK,

for some ȳ ∈ F (x̄) and z̄ ∈ G(x̄). Therefore,

ŷε + Tε(zε) − ȳ − Tε(z̄) − εe ∈ intK,

which implies that
ϕ(ȳ + εe− ŷε) + ϕ(Tε(z̄) − Tε(zε)) < 0.

Since zε ∈ −C we have
ϕ(Tε(zε)) = ψ(zε) ≤ 0.

Hence,
ϕ(ȳ + εe− ŷε) + ψ(z̄) < 0,

which contradicts (3.5).
For zε ∈ G(xε) ∩ (−C) we have ψ(zε) ≤ 0 and Tε(zε) = ψ(zε)k̄ which implies that

−Tε(zε) ∈ intK ∪ {0}.

In particular taking x = xε, y = ŷε, z = zε in (3.5) we get

ψ(zε) ≥ −ϕ(εe),

which implies that −Tε(zε) /∈ εe+ intK. Thus

−Tε(G(xε) ∩ (−C)) ⊆ (intK ∪ {0})\(εe+ intK). �
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Remark 3.3. In the set criterion approach, the order relation is between two sets, unlike the vector approach
where the relation is between a point of a set and another set. Hence, in the proof of the above theorem in (3.4),
we require the entire set F (xε) to lie in the set F (x′) + εe+ intK, unlike the vector approach where only one
element of F (xε) is required to be in the set F (x′)+εe+intK. Due to this reason we assume a strong condition,
namely, the existence of a strong minimum of F (xε).

Remark 3.4. We now investigate the above theorem for the case ε = 0. Under the assumptions of the above
theorem if x0 is an l-weak minimal solution of (P) and F (x0) has a strong minimum, then there exists T0 ∈
�+(Z, Y ) such that

T0(G(x0) ∩ (−C)) = {0}
and x0 is an l-weak minimal solution of (UP)T0 . Even though we have to assume the existence of a strong
minimal solution, we do not impose any separation condition as imposed in Theorem 4.1 of [6]. The proof is
simplified and we have established the existence of a continuous linear map T instead of the existence of a
continuous affine linear map in the formulation of the unconstrained optimization problem. Moreover, we have
established the theorem under a generalized notion of cone convexlikeness.

We now give an example to illustrate the above result.

Example 3.5. Consider problem (P) with X = R, Y = R2, Z = R,K = R2
+ and C = R+. Let 0 ≤ ε < 1, e =

(1, 1) and let F : X ⇒ Y be defined as

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

[(1, 1), (0, 2)], if x ≥ 0, x �= 1,

[0, 1] × [0, 1], if x = 1,

{(1, 1)}, if x < 0.

Let G : X ⇒ Z be defined as

G(x) =

⎧⎪⎪⎨
⎪⎪⎩

[−1, 1], if x ∈ [0, 2],

{1, 2}, if x > 2,

{−x}, if x < 0.

Clearly, M and the set of ε-l-weak minimal solutions is [0, 2], (F,G) is nearly (K × C)-convexlike on X and
problem (P) satisfies constraint qualification CQ. For x̂ε = 1, we observe that F (x̂ε) has a strong minimum at
(0, 0). Define the linear map Tε : Z → Y as Tε(z) = (ε2z, ε2z). Then

Tε(G(x̂ε) ∩ (−C)) = {(−t,−t) : 0 ≤ t ≤ ε2}.
Clearly, Tε satisfies (3.3) and x̂ε is an ε-l-weak minimal solution of (UP)Tε .

Remark 3.6. We reinforce that we have imposed the condition that F (xε) has a strong minimum in the above
theorem. However, in the above example we observe that for x̄ε = 2, F (x̄ε) does not have a strong minimum
Tε satisfies (3.3) and x̄ε is an ε-l-weak minimal solution of (UP)Tε .

4. Lagrangian duality

The aim of this section is to present a dual problem (D) corresponding to the problem (P) and establish weak
and strong duality results.

We define a dual map Φ :�+(Z, Y ) ⇒ P(Y ) as

Φ(T ) := ε-l-WMin(L(x, T ) : x ∈ X),
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and associate the following dual problem corresponding to (P)

(D) WMax Φ(T )

subject to T ∈�+(Z, Y ).

Since Φ(T ) ∈ P(P(Y )) the notion of ε-l-weak maximal solution of the dual problem needs to be modified
accordingly.

Definition 4.1. A pair (xε, Tε) ∈ X ×�+(Z, Y ) is a feasible pair of (D) if L(xε, Tε) ∈ Φ(Tε).

We denote the set of feasible pairs of (D) by Nε.

Definition 4.2. An element Tε ∈�+(Z, Y ) is said to be an ε-l-weak maximal solution of (D) if

ε-l-WMax(L(xε, Tε) : (xε, Tε) ∈ Nε) �= ∅.

This is equivalent to the fact that Tε ∈�+(Z, Y ) is an ε-l-weak maximal solution of (D) if there exists xε ∈ X
such that (xε, Tε) ∈ Nε and

L(xε, Tε) <l L(x̄ε, T̄ε) − εe, (x̄ε, T̄ε) ∈ Nε ⇒ L(x̄ε, T̄ε) − εe <l L(xε, Tε).

We observe that if xε is an ε-l-weak minimal solution of (UP)Tε then L(xε, Tε) ∈ Φ(Tε), that is, (xε, Tε) ∈ Nε.
We now prove the weak duality theorem and establish the relationship between the primal and the dual

problem.

Theorem 4.3. Let uε ∈M and (xε, Tε) ∈ Nε. If

F (xε) + Tε(G(xε)) ≮l F (uε) + εe, (4.1)

then
F (uε) + εe ≮l F (xε) + Tε(G(xε)).

Proof. As uε ∈M , there exists zε ∈ G(uε) ∩ (−C) which implies Tε(zε) ∈ −K as Tε ∈�+(Z, Y ). Hence,

K ⊆ Tε(zε) +K ⊆ Tε(G(uε)) +K, (4.2)

and

intK ⊆ Tε(zε) + intK ⊆ Tε(G(uε)) + intK. (4.3)

Suppose (4.1) holds and to the contrary

F (uε) + εe <l F (xε) + Tε(G(xε)).

Then, using (4.3) we get

F (xε) + Tε(G(xε)) ⊆ F (uε) + Tε(G(uε)) + εe+ intK.

Hence,

F (uε) + Tε(G(uε)) + εe <l F (xε) + Tε(G(xε)). (4.4)

Since (xε, Tε) ∈ Nε, therefore
L(xε, Tε) ∈ Φ(Tε).
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Hence, from (4.4) it follows that

F (xε) + Tε(G(xε)) <l F (uε) + Tε(G(uε)) + εe. (4.5)

Using Lemma 2.2 it follows from (4.4) and (4.5) that

F (uε) + Tε(G(uε)) + εe+K = F (xε) + Tε(G(xε)) + intK. (4.6)

Now using (4.2) and (4.6) we have

F (uε) + εe ⊆ F (uε) + εe+K

⊆ F (uε) + Tε(G(uε)) + εe+K

= F (xε) + Tε(G(xε)) + intK,

which contradicts (4.1). �
Remark 4.4. For ε = 0, if u0 ∈M and (x0, T0) ∈ Nε and

F (x0) + T0(G(x0)) ≮l F (u0),

then
F (u0) ≮l F (x0) + T0(G(x0)).

This result is similar to Proposition 2.1 of [10] with the Lagrangian given by L(x, z, T ) = F (x) + T (z) where
z ∈ G(x).

Corollary 4.5. If uε ∈M and (xε, Tε) ∈ Nε such that

F (uε) ≤l F (xε) + Tε(G(xε)), (4.7)

then uε is an ε-l-weak minimal solution of (P) and Tε is an ε-l-weak maximal solution of (D).

Proof. Suppose there exists ūε ∈M such that

F (ūε) + εe <l F (uε).

Using (4.7), we have
F (ūε) + εe <l F (xε) + Tε(G(xε)).

Since (xε, Tε) ∈ Nε, using Theorem 4.3, we get

F (xε) + Tε(G(xε)) <l F (ūε) + εe.

Again using (4.7), we have
F (uε) <l F (ūε) + εe.

Therefore, uε is an ε-l-weak minimal solution of (P).
Suppose there exists a feasible pair (x̄ε, T̄ε) such that

L(xε, Tε) <l L(x̄ε, T̄ε) − εe.

Using (4.7), we obtain
F (uε) + εe <l F (x̄ε) + T̄ε(G(x̄ε)).

Again by Theorem 4.3, we have
F (x̄ε) + T̄ε(G(x̄ε)) <l F (uε) + εe,

which together with (4.7) implies that

L(x̄ε, T̄ε) − εe <l L(xε, Tε),

and thus, Tε is an ε-l-weak maximal solution of (D). �
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Remark 4.6. For ε = 0, if u0 ∈M and (x0, T0) ∈ Nε and (4.7) holds, that is, F (u0) ≤l F (x0)+T0(G(x0)) then
u0 is an l-weak minimal solution of (P) and T0 is an l-weak maximal solution of (D). This result improves the
Corollary 3.1 of [6]. We have proved the result under the assumption of the quasi order relation (4.7) whereas
in [6] to prove the same result authors assume the condition

F (u0) ∈ [F (x0) + T0(G(x0))]l.

In the following example we show that F (u0) ≤l F (x0)+T0(G(x0)) holds and hence Corollary 3.1 can be applied
but the reverse relation F (x0)+T0(G(x0)) ≤l F (u0) does not hold. Hence, Corollary 3.1 of [6] is not applicable.

Example 4.7. Consider problem (P) with X = R, Y = Z = R2 and K = C = R2
+. Let 0 ≤ ε < 1, e = (1, 1)

and let F : X ⇒ Y be defined as

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

[(x, 0), (0, x)], if x ∈ (0, 2],

{(−10, 0), (0, 0)}, if x = 0,

{(0, 0)}, otherwise,

and let G : X ⇒ Z be defined as

G(x) =

{{(−x, 0)}, if x ∈ [0, 1],

[(1, 1), (2, 2)], otherwise.

Here, M and the set of ε-l-weak minimal solutions is [0, 1]. Let Tε : Z → Y be defined as Tε(z1, z2) = (z1, z2)
and let xε = 1. Then (xε, Tε) ∈ Nε, uε = 0 ∈M and (4.7) holds, where

F (xε) + Tε(G(xε)) = [(−1, 1), (0, 0)].

Hence, by Corollary 4.5, uε is an ε-l-weak minimal solution of (P) and Tε is an ε-l-weak maximal solution of (D).
Clearly,

F (xε) + Tε(G(xε)) �l F (uε).

Hence, the Corollary 3.2 of [6] cannot be applied here for ε = 0.

We next give the strong duality result for the problems (P) and (D).

Theorem 4.8. If xε is an ε-l-weak minimal solution of (P), G(xε) ⊆ C and the assumptions in Theorem 3.2
hold then there exists Tε ∈�+(Z, Y ) such that Tε is an ε-l-weak maximal solution of (D).

Proof. Let xε be an ε-l-weak minimal solution of (P). Then by Theorem 3.2, there exists Tε ∈�+(Z, Y ) such
that xε is an ε-l-weak minimal solution of (UP)Tε . Hence, (xε, Tε) is a feasible pair of (D). Using G(xε) ⊆ C we
have

F (xε) + Tε(G(xε)) ⊆ F (xε) +K,

that is,
F (xε) ≤l F (xε) + Tε(G(xε)).

Now using Corollary 4.5, it follows that Tε is an ε-l-weak maximal solution of (D). �

Remark 4.9. As mentioned in Remark 3.3, in set criteria we need to compare two sets unlike the vector
approach where only one element in the intersection is sufficient. Due to this we impose a strong condition
G(xε) ⊆ C instead of the assumption of the form G(xε) ∩ C �= ∅, in the vector approach. This condition has
also been considered in Theorem 3.3 in [6].
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5. ε-l-weak saddle points

In this section we introduce the concept of ε-l-weak saddle points of the set-valued Lagrangian map L and
give saddle point optimality conditions.

Definition 5.1. An ordered pair (xε, Tε) ∈ X × �+(Z, Y ) is said to be an ε-l-weak saddle point of the
Lagrangian map L, if

(i) L(xε, Tε) ∈ ε-l-WMin(L(x, Tε) : x ∈ X);
(ii) L(xε, Tε) ∈ ε-l-WMax(L(xε, T ) : T ∈�+(Z, Y )).

Let L(xε,�+(Z, Y )) := ∪T∈�+(Z,Y )L(xε, T ).
We now give sufficient saddle point optimality conditions for the primal and dual problems.

Theorem 5.2. Let (xε, Tε) be an ε-l-weak saddle point of L such that

ε-WMaxL(xε,�+(Z, Y )) �= ∅, (5.1)

and WMinL(xε, Tε) �= ∅. Then

(i) G(xε) ∩ (−C) �= ∅;
(ii) −Tε(zε) /∈ εe+ intK, for every zε ∈ G(xε);
(iii) (xε, Tε) ∈ Nε.

Further, if Tε(G(xε)) ⊆ K then xε is an ε-l-weak minimal solution of (P) and Tε is an ε-l-weak maximal
solution of (D).

Proof. We first show that G(xε) ∩ (−C) �= ∅. Suppose that G(xε) ∩ (−C) = ∅. Hence, any zε ∈ G(xε) is such
that zε /∈ −C. Since C = C++ we have that there exists ψ ∈ C+ such that ψ(zε) > 0. Let k̄ ∈ intK be
fixed and define Tn: Z → Y as Tn(z) := nψ(z)k̄, for every z ∈ Z and n ∈ N. Clearly, Tn ∈ �+(Z, Y ) and
Tn(zε) ∈ Tn(G(xε)) ∩ intK. For any Tε ∈�+(Z, Y ) and y ∈ F (xε)

nψ(zε)k̄ − Tε(zε) − εe ∈ F (xε) + Tn(zε) − (y + Tε(zε)) − εe

⊆ L(xε, Tn) − (y + Tε(zε)) − εe

⊆ L(xε,�+(Z, Y )) − (y + Tε(zε)) − εe.

For sufficiently large n we have

(L(xε,�+(Z, Y )) − (y + Tε(zε)) − εe) ∩ intK �= ∅.

As y + Tε(zε) ∈ L(xε, Tε), hence

(L(xε,�+(Z, Y )) − L(xε, Tε) − εe) ∩ intK �= ∅

for every Tε ∈�+(Z, Y ), which contradicts (5.1). Hence, G(xε) ∩ (−C) �= ∅ and xε ∈M.
Since (xε, Tε) is an ε-l-weak saddle point of L, therefore by definition

L(xε, Tε) ∈ ε-l-WMax{L(xε, T ) : T ∈�+(Z, Y )}

where

ε-l-WMax{L(xε, T ) : T ∈�+(Z, Y )} := {L(xε, Tε) :

L(xε, Tε) <l L(xε, T )− εe, T ∈�+(Z, Y ) ⇒ L(xε, T ) − εe <l L(xε, Tε)}.
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Hence by Lemma 2.5 we observe that, for every T ∈�+(Z, Y ),

F (xε) + T (G(xε)) − εe � F (xε) + Tε(G(xε)) + intK.

In particular, for T ≡ 0 we have

F (xε) − εe � F (xε) + Tε(G(xε)) + intK,

which further implies that −T (zε) /∈ εe+ intK, for every zε ∈ G(xε). Also, by the definition of ε-l-weak saddle
point we have

L(xε, Tε) ∈ ε-l-WMin(L(x, Tε) : x ∈ X).

Thus, (xε, Tε) ∈ Nε.
Further, if Tε(G(xε)) ⊆ K, then the result follows from Corollary 4.5. �

Remark 5.3. If we take ε = 0, we obtain sufficient l-weak saddle point optimality conditions for the primal and
dual problems. This result generalizes the corresponding result given by, Hernández and Rodŕıguez-Maŕın [6] in
terms of l-saddle points.

We now give sufficient conditions for existence of an ε-l-weak saddle point of the Lagrangian map L. The
proof follows on the lines of Theorem 5.2 in [6].

Theorem 5.4. If ε > 0 and (xε, Tε) ∈ Nε is such that Tε(G(xε)) ⊆ K then (xε, Tε) is an ε-l-weak saddle point
of L.

6. Conclusions

The set criterion approach introduced by Kuroiwa [10, 13] is more relevant in the study of set-valued opti-
mization problem. During the last few years the focus has shifted to the study of set-valued optimization using
this approach. Moving further in this direction, we have considered approximate Lagrangian function involving
continuous linear maps and established Lagrangian multiplier rule and duality results. We established Lagrange
multiplier rule under the assumption of the existence of a strong minimum. It would be of interest to investigate
if such a strong minimality condition could be relaxed to establish Lagrange multiplier rule. We also introduced
the notion of approximate weak saddle point of the Lagrangian map and established saddle point optimality.
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