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ESTIMATING THE IMPACT OF CONTEXTUAL VARIABLES
ON THE PRODUCTIVITY: AN ENHANCED SLACK-BASED DEA MODEL
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Abstract. The contextual variable is an important issue that makes an indispensable impact on
the productivities of decision making units (DMUs). Analyzing the contribution of such factors to
productivity differences is an intriguing area of research in data envelopment analysis (DEA). We first
investigate whether and how contextual variables impact performances of the DMUs based on slack-
based measurement. We extend the implicit assumption of prior studies and suggest that contextual
variables can be a catalyst to increase the productivity. Impact and error factors, which are derived
from regression analysis and stochastic frontier analysis (SFA), are defined to better represent the
composition of two contradictory impacts, catalyst and depressant, of contextual variables. A statistical
analysis is provided to identify the significance of such impacts and recognize multi-collinearity among
contextual variables. The two factors are also moderated flexibly by decision makers in accordance
with various production scenarios. Accordingly, original inputs and outputs are appropriately adjusted.
Further, modified slack-based DEA models are proposed to incorporate DEA and regression analysis
within an integrated framework. Several properties and propositions are presented to better describe
the characteristics of the models. An empirical example is shown to verify the feasibility of the proposed
approach.
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1. Introduction

Contextual variables, such as the form of ownership, location characteristics, library and government regu-
lations, are important factors which make indispensable impacts on the productivities of decision making units
(DMUs). Analyzing the contribution of such factors to productivity differences is an intriguing content of re-
search in Data Envelopment Analysis (DEA) [5]. Many efforts have been made by researchers to explore whether
the impacts occur when contextual variables, characterized as exogenous or uncontrollable, exist and how their
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effects are imposed on the productive and managerial practice. For example, Ray [23] identified various socio-
economic factors which may influence the performance of school districts, and described the regressed DEA
scores to show the implied effects. Camanho et al. [10] presented an enhanced DEA model to accommodate
non-discretionary inputs and outputs and treated them differently as internal or external to the production
process depending on the classification of these non-discretionary variables. Out of the DEA literature, the
parametric estimator or specific parametric form is suggested to depict the relative performance of production
(see Ref. [18]). Priori information or assumptions are needed to illustrate such parametric environment well.
However, various parametric approaches may influence estimation results of the efficiencies [5]. Especially, when
a priori knowledge is incomplete or deficient, the parametric method may not work well. Contrarily, DEA is an
appropriate approach to deal with such situations. Besides, since contextual variables are exogenous and unable
to be freely and discretionarily controlled by the DMUs, it is desired to incorporate additional considerations
into existing DEA models so as to properly control these factors [3, 4, 11, 26].

As Fried et al. [13] mentioned, the approaches to specific characteristics of the environmental variables are
to regard them as special inputs and outputs, but to restrict the performance evaluation to either inputs or
outputs. Some pre-requirements may be necessary when those approaches are applied. Accordingly, two-stage
or multiple-stage approaches, where efficiency scores are calculated by specific parametric or non-parametric
models in the first stage and the variation of the scores is explained by using the regression analysis on account
of the observed contextual variables in the second or multiple stage, are suggested to well illustrate the influence
of contextual variables on productivity. For example, Pastor [22] introduced DEA into a two-stage framework
where a specific-oriented DEA model is applied in either stage with different data sets and a comparison of the
two efficiency scores depicts the impacts of environmental variables on productivity. Fried et al. [12] extended the
two-stage approach by using Tobit regression analysis in the second stage to obtain a prediction of the impact
of environmental variables. Since the environmental effects are statistically noise, it may not be appropriate
to depict such effects with a deterministic DEA model. Accordingly, Fried et al. [13] expanded prior two-stage
approaches to a three-stage analysis by considering random errors.

Within the framework of two or multiple-stage approaches, the arrangements of the DEA models, regression
approaches and effects of contextual variables on the productivity discussed above raise a number of puzzling
issues and need further consideration. First, does contextual variables affect technical efficiency or non-technical
efficiency or simultaneously? If both, is the selected DEA model in previous researches such as Fried et al. [12,13]
feasible and appropriate to better describe various influences of contextual variables, including technical and
non-technical inefficiencies? If not, which model is a better choice? Second, do contextual variables affect the
DMUs performances in a single and simplified way similar to that previous literature discussed? If not, what
are the real effects of such variables? How do we characterize their positive or negative influences on the
inputs or outputs or simultaneously? Third, which statistical or stochastic regression methods are appropriate
to distinguish the positive and negative effects of the variables? In addition, if multiple contextual variables
influence the productivity simultaneously, whether does multi-collinearity occur? To address these questions, we
incorporate the specific aspects of contextual variables effects on the productivity into an integrated approach
and use it to analyze the complex impacts of the variables to shed light on these empirical puzzles.

We first investigate whether and how contextual variables impact technical and non-technical performances
of the DMUs simultaneously. Since the slacks from conventional CCR model can not reflect all the inefficiencies
including non-technical inefficiency and technical inefficiency. Alternatively, we propose slack-based measure
(SBM) to enable such identification of the effects on both technical and non-technical inefficiencies. Next,
different from prior studies which assume contextual variables as part of the inputs and outputs (see Ref. [3]) or
as an increase of them (see Ref. [13]), we make a helpful and feasible attempt to allow contextual variables to be a
catalyst which can increase the productivity and the inputs could be reduced. Besides, we also make a necessary
exploration on whether and how contextual variables have impacts on the outputs. We define impact factor and
error factor on the basis of regression analysis and stochastic frontier analysis to better characterize contradictory
impacts of contextual variables and random errors on various inputs and outputs as well. An appropriate
statistical method is provided to identify the significance of such impacts. Since the regression analysis of multiple
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coefficients can result in the multi-collinearity and gives misleading information of the coefficients effects, we
propose an approach to identify and manage the multi-collinearity in multiple regression analysis when multiple
contextual variables co-exist and influence the productivity simultaneously. Moreover, since contextual variables
and random error may have different importance on the impacts of the productivity, the two factors can be
traded off by the decision maker with his preference and production practice. Accordingly, original inputs
and outputs are moderately adjusted to depict individual inefficiency, contextual and random statistical error
inefficiencies well. Further, we propose modified parametric slack-based DEA models to incorporate DEA and
regression approaches into an integrated framework. Several properties and propositions are presented to better
describe the characteristics of the models.

The paper is organized as follows. In Section 2, we briefly introduce the theoretical background of slack
variables in DEA models and multiple-stage methods incorporating DEA and statistical models. A modified
three-stage framework is proposed to evaluate the impact of contextual variables in Section 3. Section 4 provides
a parametric slack-based DEA model incorporating three stages and Section 5 presents the algorithm of the
method. An empirical example is illustrated in Section 6 to verify the feasibility of the proposed approach.
Conclusions are made in the last section.

2. Theoretical background

2.1. Slacks in DEA models

The traditional CCR model, initiated by Charnes et al. [7], identified the technical efficiency through the
score of θ:

min θ

s.t.
n∑

j=1

λjxij ≤ θxio, i = 1, . . . , m

n∑
j=1

λjyrj ≥ yro, r = 1, . . . , s

λj ≥ 0 (2.1)

A DMU is CCR-efficient if its ratio efficiency θ∗ is equal to 1 and all slacks are equal to 0. Some researches tried
to integrate θ and the slacks into a scalar measure. Charnes et al. [8] proposed an additive DEA model to deal
with slack variables. Subsequent researches made further efforts to better illustrate the additive characteristics
in DEA models (see Ref. [9]).

The efficiency score θ reflects the technical inefficiency and slack variables s−i and s+
r reflect non-technical

inefficiency, such as allocative and managerial inefficiencies of the units. In Fried et al. [13] a CCR model is
proposed to distinguish the slacks which are affected by contextual variables. The slacks they considered are
a reflection of part of the inefficiency, whereas the inefficiency reflected by θ is ignored. In addition, as Aigner
et al. [1] mentioned, errors of observation and measurement only constitute another source of statistical noise.
In this way, Fried et al. [13] can not identify the impact of contextual variables on global productivity. Moreover,
since traditional CCR model is input-oriented or output-oriented, it can only describe the influence of contextual
variables on the inputs or outputs separately. If the inputs and outputs are influenced by contextual variables
simultaneously, their models may not work well and further research is necessary to illustrate such situations.

Since the slacks in various DEA models may imply various inefficiencies, a proper model based on slack-based
measure is suggested to determine various influences of contextual variables on technical and non-technical, i.e.
allocative, and managerial performances. For this reason, the SBM DEA model [19, 27, 28], whose objective is
to maximize the sum of the input and output slacks, is suggested in this study.
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2.2. Multi-stage approaches incorporating DEA and statistical models

The basic idea of a multiple-stage approach identifying the influence of contextual variables is as follows.
In the first phase, a DEA model is proposed to evaluate relative productivities of the observed units. Using
regression analysis, such as ordinary least squares (OLS) proposed by Fried et al. [13], the efficiency scores are
regressed in the second stage and the effects of contextual variables are investigated through the adjustments
of the inputs and outputs. The significance of the influence is evaluated and the extent of such influence is
obtained. The inputs and outputs are replaced with new post-adjusted data. Subsequently in the third stage,
the first-stage model is applied again to acquire a group of new efficiency results eliminating the impact of
contextual variables.

Prior researches focus their attention on two-stage or three-stage approaches to show the influence of con-
textual variables on performance. Ray [23] decomposed the effects with a second-stage regression. Ruggiero [24]
extended traditional models to allow multiple non-discretionary inputs, and three-stage approaches based on
regression analysis were applied to investigate the influences of the non-discretionary factors. Fried et al. [13] di-
vided the slacks into three classifications, managerial inefficiency, the effect of contextual variables, and random
errors, and suggested a three-stage approach incorporating stochastic frontier analysis (SFA) to illuminate the
contextual influence on the performances of the units. Recently, Simar and Wilson [25] described a two-stage
model incorporating data-generating process (DGP) and proposed single and double bootstrap procedures in
the second-stage regression. Garca−Snchez [14] used a three-stage model to separate economic performance into
three components which enables the author to detect specific strengths and weaknesses for each football club.
Banker and Natarajan [5] and McDonald [20] discussed multiple-stage models applied in the analysis of the
influence of contextual variables on performance so as to yield consistent estimators and superior parametric
methods.

However, few researches take into account the complex impacts of contextual variables on the productivity,
or consider an explicit illustration of the positive and negative influences simultaneously. Take Fried et al. [13]
as an example, they proposed a situation where all the inputs are increased to yield the outputs given that
the least favorable environment is taken as the base. Contrarily in production practice, contextual variables
can affect the productivity in different ways. For some DMUs, the variables accelerate the production process
and the inputs can be decreased to yield the desired outputs. Moreover, the outputs can also be affected by
contextual variables in a positive or negative way. In this perspective, previous approaches should be extended
to well illustrate the complex influences on both inputs and outputs.

3. Evaluating the impact of contextual variables in a three-stage framework

In an extension of Fried et al. [13], we first identify the slacks which include technical and non-technical by
using slack-based measure (SBM). Incorporating stochastic frontier analysis (SFA) and maximum likelihood
estimation (MLE), the slacks are classified into individual slacks, contextual slacks and random statistical
error slacks. A statistical method is applied to detect multi-collinearity of independent variables and reflect
the correlation between contextual variables and the input-output bundles. In addition, regression analysis is
employed to determine the composite impacts of contextual variables. Subsequently, impact factor (IF) and error
factor (EF) are defined to represent the effects of contextual variables and random errors on the productivity
respectively. Further, a modified slack-based model is proposed to better incorporate DEA and regression
analysis in an integrated framework.

3.1. Slack-based measure (SBM)

Considering n decision-making units (DMUs) with m inputs, s outputs and p contextual variables, the vectors
xj = (x1j , . . . xmj), yj = (y1j , . . . ysj) and zj = (z1j , . . . zpj) denote the inputs, outputs and contextual variables
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of DMUj, j = 1, . . . n, respectively. The slack-based measure proposed by Tone [27] is as follows:

min ρ =
1 − 1

m

m∑
i=1

s−i
xio

1 +
1
s

s∑
r=1

s+
r

yro

s.t.
n∑

j=1

λjyro − s+
r = yro, r = 1, . . . , s

n∑
j=1

λjxio + s−i = xio, i = 1, . . . , m

λj , s
+
r , s−i ≥ 0 (3.1)

Let ρ = q, λj = Λj/t, s−i = S−
i /t and s+

r = S+
r /t, model (3.1) can be transformed into a linear form:

min q = t − 1
m

m∑
i=1

S−
i

xio

s.t. t +
1
s

s∑
r=1

S+
r

yro
= 1

n∑
j=1

Λjxij + S−
i = txio, i = 1, . . . , m

n∑
j=1

Λjyrj − S+
r = tyro, r = 1, . . . , s

Λj , S
+
r , S−

i ≥ 0 (3.2)

According to the theorem of Tone [27], a DMU is CCR-efficient if and only if it is SBM-efficient and the
optimal SBM q∗ is not greater than the optimal CCR θ∗, which reflects the fact that SBM accounts for all
inefficiencies whereas θ∗ accounts only for purely technical inefficiencies. In our study, the efficiency score and
slacks are based on model (3.2).

The optimal solutions of model (3.2) provide m+s slack variables for the evaluated unit which is subscripted
as “o”. Accordingly, these slack variables can explain the overall invalid degree of the units well. It is desirable
to divide them into various effects, i.e. individual inefficiencies, contextual inefficiencies, and statistical noise,
which are emphasized in the next stage.

3.2. Stochastic frontier analysis (SFA)

In the second stage, we use SFA to regress slack variables obtained in the first stage and divide them into
various classifications to depict the influences of the observed contextual variables and error noise.

Initiated by Aigner et al. [1], the stochastic frontier production function is specified as:

tj = f(zj; β) + uj + vj (3.3)

where uj and vj represent individual inefficiency and statistical noise inefficiency respectively, and f(zj ; β) are
deterministic feasible slack frontiers with parameter vector β to be estimated. In an economic logic, this specifi-
cation implies that the production process is subject to two economically distinguishable random disturbances
with different characteristics.
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For the ith input of DMU j , replace f(zj ; β) and tj with zjβ
i and sij from model (3.2) in the first stage, and

we can get the general form of SFA regressions:

sij = zjβ
i + uij + vij , i = 1, . . . , m, j = 1, . . . , n (3.4)

Similarly, the general form of SFA regressions for the r th output of DMU j is as follows:

srj = zjβ
r + urj + vrj, r = 1, . . . , s, j = 1, . . . , n (3.5)

In this study, regression analysis incorporating SFA has several significant advantages. First, the inefficiency
of a unit can be attributed to contextual inefficiency, individual inefficiency and statistical noise inefficiency. A
more comprehensive understanding of the inner causes which may account for inefficiency is obtained. Second, no
matter whether the impact of contextual variable on the performance is positive or negative, it can be determined
by the estimated regression parameters without any priori information or analysis. Such incorporation simplifies
our analysis, and the significance of contextual impacts can also be easily obtained by applying conventional
likelihood ratio tests.

Suppose v follows a normal distribution with a two-sided error term, i.e. vij ∼ N(0, σ2
vi), vrj ∼ N(0, σ2

vr),
and u follows the same distribution with a one-sided error term, i.e. uij ∼ N+(0, σ2

ui), urj ∼ N+(0, σ2
ur) [16],

equations (3.4) and (3.5) are regressed m + s times for each input and output using maximum likelihood tech-
niques. FRONTIER 4.1 (see Ref. [6]) is applied and the results are obtained. In each regression, the parameters
are estimated as (βi, σ2

vi, σ
2
ui) and (βr, σ2

vr , σ
2
ur).

From the above discussion, the error term in the stochastic frontier model follows the form εij = uij +vij and
εrj = urj + vrj, representing the errors of inputs and outputs respectively. uij and urj are non-negative error
terms representing individual inefficiency, and vij and vrj are normal error terms representing pure randomness.
vij and uij are distributed independently of each other, which is the same as vrj and urj [16]. The decomposition
of error terms is to separate individual inefficiency and the normal error term, so as to clarify the real causes
which affect the production process.

Given the error term ε, let us consider the conditional distribution of u. For notational simplicity, we ignore
the subscript of ε, u and v, i.e. ε = u + v, and σ2, u∗ and σ2

∗ are defined as σ2 = σ2
u + σ2

v, u∗ = σ2
uε/σ2 and

σ2∗ = σ2
uσ2

v/σ2. According to Jondrow et al. [16], the conditional distribution of u given ε follows a N(u∗, σ2∗)
distribution which is truncated at zero. Thus we obtain:

E(u|v + u) = σ∗

[
f(ελ/σ)

1 − F (ελ/σ)
−

(
ελ

σ

)]
(3.6)

where λ = σu/σv, u∗/σ∗ = ελ/σ and f(·) and F (·) are standard normal density and distribution functions
respectively.

Equation (3.6) can be converted to:

E(u|v + u) = σ∗

⎡
⎢⎢⎢⎣ exp(ελ/σ)2

√
2π − ∫ ελ/σ

−∞ e
−

x2

2 dx

−
(

ελ

σ

)
⎤
⎥⎥⎥⎦ (3.7)

Thus, conditional estimators of vij and vrj in equations (3.4) and (3.5) are obtained and equations (3.4) and
(3.5) can be converted to the following:

E[vij |vij + uij ] = sij − zjβ̂
i − E[uij |vij + uij ], i = 1, . . . , m, j = 1, . . . , n (3.8)

E[vrj |vrj + urj] = srj − zj β̂
r − E[urj |vrj + urj], r = 1, . . . , s, j = 1, . . . , n (3.9)

Horsky and Nelson [15] proposed parameter significance tests to evaluate (3.8) and (3.9) and demonstrated
that they are solvable when estimating the parameters. Subsequently, error terms are separated into two com-
ponents, v and u.
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3.3. Identifying multicollinearity in multiple regression analysis

In statistics, the greater the number of independent variables, the less discerning the analysis results of the
multiple regression analysis is [17]. When two or more explanatory variables in a multiple regression model
are highly correlated with one another, multi-collinearity often occurs among the variables. In practice, multi-
collinearity can cause strange results when attempting to study how well individual independent variables
contribute to a deep understanding of the impacts of the dependent variables. Once the collinear variables are
identified, it can be helpful to study whether there is a causal link among the variables.

Mathematically, a set of independent variables zt = (zt1, zt2, . . . , ztn), t = 1, . . . , p is perfectly multi-collinear
if there exists one or more exact linear relationships among some of the variables.

λ0 + λ1z1j + λ2z2j + . . . + λpzpj = 0

It holds for all observations j, j = 1, . . . , n where λt are constant and ztj is the jth observation on the tth
explanatory variable. However, in most applications, perfect multi-collinearity is usually unpractical. So we
obtain a modified form of the equation with an error term bj as follows:

λ0 + λ1z1j + λ2z2j + . . . + λpzpj + bj = 0

If the error term bj is sufficient small for some set of the values, the variables zt, t = 1, . . . , p are assumed nearly
perfectly multi-collinear. Some authors have suggested a formal detection-tolerance or the variance inflation
factor (VIF) for multi-collinearity (see Ref. [21]) as follows:

tolerance = 1 − R2
t

V IF =
1

tolerance

where R2
t is the coefficient of a regression of independent variable t on all the other independent variables. The

bigger R2
t , the bigger the standard error is, and the more zt is correlated with the other independent variables.

O’Brien [21] also gives the criterion for multi-collinearity problem that a tolerance less than 0.10 (or a VIF no
less than 10) indicates that multi-collinearity problem may have a significant impact on the results.

One of the simplest ways to resolve multi-collinearity problems is to reduce the number of collinear variables.
According to Jenkins and Anderson [17], if the independent variables zt, t = 1, . . . , p, are highly correlated, some
of the variables can be omitted appropriately without loss of much information. The process is characterized
simply as follows. First, the variables are normalized to have a mean of 0 and a variance of 1, which can
make each variable selected equally important and have a total combined variance p. Second, denote σtt,t′

as the conditional variance of a variable representing the variance remaining in variable t when the effect of
variable t′ is removed. If variable t is perfectly correlated with t′, then σtt,t′ = 0. Third, if t = 1, . . . , k variables
are perfectly correlated with t = k + 1, . . . , p, then the variance of variable set zk+1, zk+2, . . . , zp conditioning
on z1, z2, . . . , zk is equal to zero. Thus, variables z1, z2, . . . , zk can be omitted with least loss of information.
Since perfect correlation does not exist in any real data, a small error term bt �= 0 may always occur, and the
residual variance in the conditioned variables can be easily detected as well. Thus it is easy to decide which
variables can reasonably represent the information in all p variables by the residual variance.

3.4. Input and output adjustments

From the above analysis, we obtain a decomposition of the performance into three parts and the adjustments
of the inputs are:

xA
ij = xij +

[
max

j
(zj β̂

i) − zjβ̂
i

]
+

[
max

j
(υ̂ij) − υ̂ij

]
, i = 1, . . . , m, j = 1, . . . , n (3.10)
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where xij and xA
ij are the observed and adjusted inputs, respectively. The formulas maxj(zj β̂

i) − zjβ̂
i and

maxj(υ̂ij)− υ̂ij represent the effects of contextual variables and random errors on the inputs respectively. Since
maxj(zj β̂

i) − zj β̂
i and maxj(υ̂ij) − υ̂ij are no less than zero, Equation (3.10) makes it desirable to increase

observed inputs. Such idea has been applied in several previous researches.
However, contextual variables may affect the inputs and outputs in various ways. Fried et al. [13] depicted a

situation where the least favorable operating environment as the base to adjust the inputs. In this case, the data
are adjusted by increasing the input levels for DMUs if contextual variables do not work. Contrarily, another
situation may exist where contextual variables accelerate the production process and the inputs may be flexibly
decreased to yield the desired outputs. Moreover, the outputs can also be affected by contextual variables in a
positive or negative way. In this perspective, equation (3.10) is not appropriate to illustrate various influences
of the inputs and outputs simultaneously.

In order to better depict the potential positive and negative influences of contextual variables on the inputs
and outputs, and to avoid the possibility that some extremely disadvantaged (advantaged) contextual variables
might have some inputs (outputs) adjusted downward as to become negative as well, we introduce two factors,
impact factor and error factor, to represent the effects of contextual variables and random errors.

Definition 3.1. Impact factor (IF) is defined as the ratio estimator of input and output adjustment, which
reflects the extent of how contextual variables impact them. It is influenced by the value of zjβ

i or zjβ
r derived

from the result of regression analysis. Based on the values of zjβ
i, the impact factor of input i is formulized as

follows:
If minj(zjβ

i) is not less than zero,

IF i =
zjβ

i − minj(zjβ
i)

maxj(zjβi) − minj(zjβi)
(3.11)

If minj(zjβ
i) is less than zero and maxj(zjβ

i) is not less than zero,

IF i =
zjβ

i

maxj(zjβi) − minj(zjβi)
(3.12)

If maxj(zjβ
i) is less than zero,

IF i =
zjβ

i − minj(zjβ
i)

maxj(zjβi) − minj(zjβi)
(3.13)

The impact factor of output r is given by replacing the superscript i with r in equation (3.11) to (3.13).

Definition 3.2. Error factor (EF) is defined as the ratio estimator of input and output adjustment which
reflects the extent of how random errors impact them. The value of vij or vrj is obtained from the result of
regression analysis. Based on various values of vij , the error factor of input i is formulized as follows:

If minj(vij) is not less than zero, then

EF i =
vij − minj(vij)

maxj(vij) − minj(vij)
(3.14)

Otherwise,

EF i =
vij

maxj(vij) − minj(vij)
(3.15)

The error factor of output r is given by replacing the subscript i with r in equation (3.14) to (3.15).
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Since the impact factor is defined as the proportional distance of zjβ between the evaluated DMU and the
reference DMUs, it can illustrate the influence of contextual variables on the units. In this perspective, it is
feasible as an estimator to reasonably measure such influences. Similarly, the error factor is defined as the
proportional distance of vij between evaluated DMU and the reference DMUs, it is applicable as an estimator
to measure the overall errors.

In models (3.11), (3.12) and (3.13), if IF i in the three models are less than zero, the inputs may be increased,
indicating that contextual variables can benefit the unit and the inputs are consumed in a better way. In other
words, contextual variables accelerate the productivity of the unit in a positive manner. Contrarily, if IF i is
greater than zero, it implies the inputs may be reduced, indicating that contextual variables be a detriment to
the unit and consequently the inputs are consumed in a wasteful way. That is, contextual variables decelerate
the productivity of the unit in a negative manner. A special case is that IF i in the three models is equal
to 0, which implies that contextual variables have no influence on the productivity. In addition, the statistical
randomness can affect the outputs in a similar way.

Since IF and EF are obtained from regression analysis incorporating SFA, the influences of contextual variables
on the inputs and outputs are made clear from the above analysis. The adjustment of the inputs can be
reformulated as follows:

xA
ij =

{
xij(1 − α · IF i − (1 − α) · EF i) if maxj(zjβ

i) ≥ 0
xij(1 + α · IF i − (1 − α) · EF i) otherwise

∀i, j (3.16)

where α is a parameter whose purpose is to adjust the extent of various influences by contextual variables
and random statistical errors. In some situations, statistical errors can impose a relatively significant impact
on the inputs and outputs. Contrarily, the impact of statistical errors can be less significant than that of
contextual variables. Decision makers could make a rational and flexible decision on the extents the two factors
are contributing to the production process. In this perspective, α reflects a feasible trade-off between the two
influences and is preliminarily given by decision makers. The first adjustment on the right side of equation (3.16)
puts all production units into a common external environment and the second adjustment puts all production
units into a common state of nature.

Apply equation (3.16) and xij is adjusted to xA
ij . Correspondingly, the adjustment of outputs can be formulized

similarly:

yA
rj =

{
yrj(1 + α · IF r + (1 − α) · EF r) if maxj(zjβ

r) ≥ 0
yrj(1 − α · IF r + (1 − α) · EF r) otherwise

∀r, j (3.17)

Using equation (3.17), yrj is adjusted to yA
rj. If yA

rj is larger than yrj , it implies that contextual variables have
a positive impact on output r and the adjustment zjβ̂ is not less than zero.

Equations (3.16) and (3.17) have the following properties.

Property 1. If maxj(zjβ
i) is not less than zero, then xA

ij changes with IF i − EF i and α.

(1) When IF i − EF i is greater than 0, xA
ij is decreasing in α.

(2) When IF i − EF i is less than 0, xA
ij is increasing in α.

(3) When IF i − EF i is equal to 0, xA
ij remain unchanged in α.

Proof. If maxj(zjβ
i) is not less than 0, the adjustment of xA

ij is as follows:

xA
ij = xij(1 − α · IF i − (1 − α) · EF i) = xij{[1 − EF i] − α · [IF i − EF i]}

Since IF i and EF i are obtained from regression analysis, they remain unchanged in model (3.16). If IF i−EF i

is greater than 0, xA
ij is decreasing in α. If IF i −EF i is less than 0, xA

ij is increasing in α. If IF i −EF i is equal
to 0, xA

ij remain unchanged in α.
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Property 2. If maxj(zjβ
r) is not less than zero, the adjusted output yA

rj will change with IF r − EF r and α.

(1) When IF r − EF r is greater than 0, yA
rj is increasing in α.

(2) When IF r − EF r is less than 0, yA
rj is decreasing in α.

(3) When IF r − EF r is equal to 0, yA
rj remain unchanged in α.

The proof is similar to that of Property 1.
Properties 1 and 2 imply that the adjustments of the inputs and outputs are influenced by the difference

between IF and EF and the preference of decision makers, i.e. the parameter α.

Proposition 3.3. If minj(zjβ
i) ≥ 0, then IF i > 0. When EF i < 0, xA

ij is decreasing in α.

Proof. From Property 1, xA
ij is influenced by IF i − EF i.

When minj(zjβ
i) ≥ 0,

IF i =
zjβ

i − minj(zjβ
i)

maxj(zjβi) − minj(zjβi)
≥ 0

If EF i < 0, then IF i − EF i is greater than 0. According to Property 1, xA
ij is decreasing in α.

Proposition 3.4. If minj(zjβ
r) ≥ 0, then IF r > 0. When EF r < 0, yA

rj is increasing in α.

Proof. From Property 2, yA
rj is influenced by IF r − EF r.

When minj(zjβ
r) ≥ 0,

IF r =
zjβ

r − minj(zjβ
r)

maxj(zjβr) − minj(zjβr)
≥ 0

If EF r < 0, IF r − EF r is greater than 0. According to Property 2, yA
rj is increasing in α.

Following Propositions 3.3 and 3.4, decision makers can have a clear estimation of how to choose an appro-
priate α to reflect the effects of contextual variables and random errors on the adjustments of the inputs and
outputs.

3.5. A modified slack-based DEA model

Based on regression analysis, original inputs and outputs are adjusted and slack-based approach is applied
again to obtain the efficiencies of the units.

In order to better illustrate the adjustment of the regression results, we propose a modified slack-based DEA
model as follows:

min ρ =
1 − 1

m

m∑
i=1

sM−
i

xA
io

1 +
1
s

s∑
r=1

sM+
r

yA
ro

s.t.
n∑

j=1

λjy
A
rj − sM+

r = yA
ro, r = 1, . . . , s

n∑
j=1

λjx
A
ij + sM−

i = xA
io, i = 1, . . . , m

λj , s
M+
r , sM−

i ≥ 0, j = 1, . . . , n (3.18)
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Similar to the transformation of model (3.1), model (3.18) can also be transformed into a linear form:

min q = t − 1
m

m∑
i=1

SM−
i

xA
io

s.t. 1 = t +
1
s

s∑
r=1

SM+
r

yA
ro

n∑
j=1

Λjx
A
ij + SM−

i = txA
io, i = 1, . . . , m

n∑
j=1

Λjy
A
rj − SM+

r = tyA
ro, r = 1, . . . , s

Λj, S
M+
r , SM−

i ≥ 0, j = 1, . . . , n (3.19)

Where ρ = q, λj = Λj/t, sM−
i = SM−

i /t and sM+
r = SM+

r /t. In addition, xA
io and yA

ro are adjusted input and
output quantities, respectively.

4. A parametric slack-based DEA model incorporating three stages

In an effort to better describe slack-based approach and regression analysis, we attempt to unify the three
stages in an aggregated model.

min ρ = (1 − k)
1 − 1

m

m∑
i=1

s−i
xio

1 +
1
s

s∑
r=1

s+
r

yro

+ k

1 − 1
m

m∑
i=1

sM−
i

xA
io

1 +
1
s

s∑
r=1

sM+
r

yA
ro

s.t.
n∑

j=1

λj [(1 − k)yrj + kyA
rj] − [(1 − k)s+

r + ksM+
r ] = (1 − k)yro + kyA

ro, r = 1, . . . , s

n∑
j=1

λj [(1 − k)xij + kxA
ij ] + [(1 − k)s−i + ksM−

i ] = (1 − k)xio + kxA
io, i = 1, . . . , m

ks−i = k · (zj β̂
i + ûij + v̂ij)

ks+
r = k · (zj β̂

r + ûrj + v̂rj)

λj , s
M+
r , sM−

i , s−i , s+
r ≥ 0, j = 1, . . . , n, k = {0, 1} (4.1)

where s−i and s+
r are slacks obtained from model (3.1), and k is a predefined parameter changing with various

stages. model (4.1) represents parametric slack-based DEA model incorporating three stages.
In the first stage, k is set to be 0 and model (4.1) is equivalent to the slack-based model by Tone [27]. In the

third stage, k is set to be 1 and model (4.1) is the same as model (3.18).
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5. Algorithm

(1) Solve model (3.1) and calculate the slacks of the units;
(2) Quantify contextual variables if qualitative;
(3) Estimate whether contextual variables affect input and output variables with t-ratio analysis, and regress

various effects of the contextual variables using FRONTIER software and MATLAB;
(4) Adjust the inputs and outputs through equations (3.16) and (3.17);
(5) Calculate model (3.18) and the efficiency is obtained by considering the impact of contextual variables.

6. An empirical example

In an effort to validate the feasibility of the proposed approach, we conduct simulations to estimate the
impact of contextual variables on the scientific research performances of the universities in China (see Ref. [2]).

6.1. Data description

Data of 30 universities are collected where the inputs are Fixed Assets (10 000 Yuan) (x1), Researchers (x2),
and Graduate Students (x3), and the outputs are SCI Papers (y1) and SCI Citation (y2). The contextual
variables are Size of University 10 000 square meters (z1) and Research Funding (10 000 Yuan) (z2). Their
summary statistics are presented in Table 1.

6.2. Simulation process

The initial efficiencies of 30 universities are calculated by applying model (3.2), and the input and output
slacks are listed in Table 2. The initial DEA model does not provide a good measure of managerial performance. It
may penalize the departments who operate in an unfavorable external environment and reward the departments
who operate in a favorable external environment.

FRONTIER software is applied to proceed SFA, and the variables in equations (3.4) and (3.5) are obtained.
Taking input and output slacks as dependent variables and contextual variables as independent variables, t-ratio
analysis is followed to test the significance of contextual effects on the inputs and outputs. The results represented
in Table 3 imply that contextual variables affect the inputs and outputs simultaneously, and all of them should
be adjusted.

In order to detect multi-collinearity among independent variables, we conducted a multi-collinearity test by
computing the tolerance and the variance inflation factor (VIF) for multi-collinearity as shown in Table 4.

Take the variable z1 as an example. It has a tolerance of 0.863, which means that if running a multiple
regression on z1 as the dependent variables and z2 as the independent variables, the R-square value is 0.137.
As shown in Table 4, multi-collinearity does not appear to be a significant problem in our dataset. Since there
are two contextual variables in our case, the results of the tolerance and VIF are the same.

The statistical results of regression analysis are summarized in Table 5. The statistical properties “MAX”
and “MIN” reports the upper and lower bounds of IF and EF. β is the estimated parameter vector and σ2 is the
covariance of combination error. Since the values of γ are very small, it suggests that the contextual variables

Table 1. Descriptive statistics.

Variables Mean Std.Dev Max Min

x1 255037.25 100971.49 540411.95 110783.23
Inputs x2 2915.90 1053.61 5135.00 1428.00

x3 11967.40 4017.43 21252.00 5310.00

Outputs
y1 1023.97 715.39 3034.00 71.00
y1 3053.40 2744.75 8647.00 187.00
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Table 2. Input and output slacks.

DMUs s−1 s−2 s−3 s+
1 s+

2

1 0.0 0.0 0.0 0.0 0.0
2 141826.5 1069.0 0.0 242.9 7755.8
3 34990.7 0.0 3142.4 875.7 5313.0
4 0.0 820.3 2629.7 236.2 271.5
5 0.0 0.0 0.0 0.0 0.0
6 35643.0 743.3 0.0 611.6 9136.7
7 0.0 324.3 1507.9 612.7 5774.8
8 0.0 1292.0 34.3 1670.6 9138.0
9 0.0 1457.9 4337.6 2417.0 12797.2
10 0.0 2224.0 9105.6 1184.2 7315.4
11 0.0 722.3 2613.2 494.9 3881.0
12 37979.5 41.4 0.0 1765.9 10184.4
13 0.0 2355.2 9855.8 287.0 3120.9
14 0.0 1441.8 4406.6 1783.0 10634.4
15 22682.0 0.0 1305.0 2075.0 14310.0
16 0.0 1013.8 4134.7 246.8 4262.2
17 0.0 1023.5 3290.0 1245.0 8669.3
18 0.0 621.9 3759.2 571.4 5152.8
19 0.0 1287.3 5408.8 1257.1 8687.7
20 0.0 646.4 1169.9 759.0 6028.2
21 0.0 39.0 1519.4 986.4 6534.3
22 0.0 890.5 2716.8 1030.3 6875.2
23 0.0 254.9 1162.3 1559.4 7847.8
24 0.0 127.6 1234.1 775.0 5368.9
25 0.0 786.5 2530.1 1720.8 10024.3
26 0.0 1589.0 722.5 1256.3 7601.6
27 0.0 754.3 1763.8 1311.4 7659.9
28 19327.5 166.3 0.0 1495.7 8446.8
29 3864.5 252.8 0.0 1064.4 5943.5
30 0.0 637.7 961.9 552.8 3800.4

Table 3. T-ratio analysis of the impacts of contextual variables.

t-ratio x1 x2 x3 y1 y2

β1 5.75E +04 −1.25E +01 −8.93 −1.29E +01 −1.91
β2 2.36E +04 1.02E +01 4.52 8.54 9.09E + 01

Table 4. The results of collinearity statistics.

Coefficients(a)

Model
Collinearity Statistics
Tolerance VIF

1
(Constant)

z1 0.863 1.159
z2 0.863 1.159

a. Dependent Variable: s
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Table 5. Statistical properties of the result of regression analysis.

Item Statistical
Dependent Variable

property FA(x1) R(x2) GS(x3) SP(y1) SC(y2)
MAX 72677.16 1060.93 1961.38 991.66 6596.47

Independent MIN 6819.76 −296.83 −1507.23 −200.14 298.34
Variable β1 57462.39 −1119.56 −3164.22 −958.65 −2372.94

z β2 23646.53 1276.92 2572.07 1180.12 7103.89
σ2 522740560 311960.01 5720151.80 313692.42 12142585
γ 0.04 0.03 0.02 0.04 0.50

Random noises MAX 79231.54 2021.94 9533.65 1971.06 5561.84
v MIN −67916.76 −883.50 −1565.32 10.08 −466.05

Table 6. Comparison results of statistical properties of different weights.

Weights 0.5 0.6 0.7 0.8 0.9

Mean efficiency 0.3725 0.3753 0.3814 0.4077 0.4229
StDev. 0.2545 0.2574 0.2646 0.3052 0.3274
Max. 1.0000 1.0000 1.0000 1.0000 1.0000
Min. 0.0308 0.0293 0.0278 0.0262 0.0247

and statistical noise explain virtually all of the variations in the input and output slacks, and consequently
the selected regression analysis method is remarkable. Table 5 also illustrates that input and output slacks are
attributable to both contextual variables and statistical random error.

6.3. Discussion

As mentioned above, various values of α depict the trade-off of decision makers between contextual inefficiency
and random statistical error inefficiency. The proposed model allows decision makers to set prior weights on the
basis of their preferences or specific production processes. In an effort to better depict how the weights may
influence adjustments of the inputs and outputs and the efficiencies of the DMUs, five weights are randomly
chosen and the efficiency scores with different weights are listed in Tables 6 and 7. Table 6 reflects the variance of
efficiency scores for different α and Table 7 depicts the detailed efficiencies and ranks of the DMUs. Obviously,
the efficiency score changes as the weight of the impact factor alters, which illustrates that the impacts of
contextual variables and random errors on the efficiency are related to the importance of contextual variables
and random errors.

Figure 1 shows an obvious trend between the weights and the variation of mean efficiency of the DMUs.
Figure 2 shows the changes of randomly chosen DMUs with the variance of the weights. Obviously, the weights

have various impacts on the DMUs. Consequently, the rankings of the efficiency scores are shown in Figure 3.
Intuitively, the efficiency rankings of some DMUs change greatly, which implies that contextual variables impose
a significant catalyst or depressant on inputs consumption and outputs production.

With the increase of parameter α, input adjustment on account of random errors is getting smaller, and
efficiency scores of the DMUs change distinctly. Contrary to prior researches where the impacts of contextual
variables and random errors are equally important implicitly, our approach can trade off the influences of
contextual variables and random errors and thus shows more flexibility.

Table 8 represents the difference of the impact between input or output adjustment individually and their
joint adjustment, through which significant differences can be seen among the various adjustment methods. As a
result of considering the contextual variables and statistical errors, both the average efficiency and the standard
deviation of the efficiency score increased. The increase of average efficiency suggests that without controlling
for the contextual variables and statistical errors, the penalty to the DMUs under unfavorable circumstances is



THE IMPACT OF CONTEXTUAL VARIABLES ON PRODUCTIVITY 917
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Table 7. Efficiency scores with various weights.

DMUs
α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

efficiency rank efficiency rank efficiency rank efficiency rank efficiency rank
1 0.4994 8 0.5095 8 0.5390 8 0.6153 6 1.0000 1
2 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
3 0.6798 4 0.6441 4 0.6096 5 0.5759 7 0.5475 7
4 0.8023 3 0.8352 3 0.8702 3 0.9080 5 1.0000 1
5 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
6 0.5364 6 0.5348 7 0.5330 9 0.5310 9 0.5288 9
7 0.5578 5 0.5526 6 0.5473 7 0.5417 8 0.5360 8
8 0.4355 12 0.4415 12 0.4474 11 0.4531 10 0.4588 10
9 0.5286 7 0.5884 5 0.6866 4 1.0000 1 1.0000 1
10 0.4909 9 0.4673 10 0.4486 10 0.4339 11 0.4224 13
11 0.4331 13 0.4251 13 0.4169 13 0.4084 14 0.3997 15
12 0.4394 11 0.5060 9 0.5913 6 1.0000 1 1.0000 1
13 0.4899 10 0.4605 11 0.4389 12 0.4230 12 0.4114 14
14 0.3833 14 0.3957 14 0.4089 14 0.4228 13 0.4375 12
15 0.1557 26 0.1536 26 0.1524 25 0.1524 24 0.1542 24
16 0.3567 15 0.3498 15 0.3432 16 0.3369 16 0.3307 16
17 0.1633 24 0.1545 25 0.1460 26 0.1379 26 0.1300 26
18 0.2779 17 0.2836 17 0.2894 17 0.2954 17 0.3015 17
19 0.1835 21 0.1817 20 0.1801 20 0.1786 21 0.1772 21
20 0.2801 16 0.3110 16 0.3466 15 0.3883 15 0.4392 11
21 0.1884 19 0.1803 21 0.1720 22 0.1636 22 0.1551 23
22 0.2019 18 0.2105 18 0.2194 18 0.2287 18 0.2384 18
23 0.0308 30 0.0293 30 0.0278 30 0.0262 30 0.0247 30
24 0.1788 22 0.1695 23 0.1603 24 0.1510 25 0.1418 25
25 0.1269 28 0.1212 28 0.1156 28 0.1102 28 0.1048 27
26 0.1582 25 0.1594 24 0.1605 23 0.1616 23 0.1627 22
27 0.1641 23 0.1709 22 0.1781 21 0.1857 19 0.1938 19
28 0.1292 27 0.1230 27 0.1167 27 0.1104 27 0.1040 28
29 0.1166 29 0.1129 29 0.1090 29 0.1050 29 0.1008 29
30 0.1861 20 0.1862 19 0.1861 19 0.1857 20 0.1851 20

greater than the benefit under favorable circumstances. The increase of the standard deviation of the efficiency
scores may reflect the fact that without considering the contextual variables and statistical errors, the efficiency
scores of the DMUs in favorable circumstances are biased downward, and the efficiency scores of the DMUs in
unfavorable circumstances are biased upward.

7. Conclusions

In many real-life cases, contextual variables have a significant influence on the performances of decision
making units, which brings difficulties in performance evaluation. In this paper, we argue that various DEA
models may reflect various inefficiencies of the DMUs. An appropriate DEA model has a direct and significant
effect on the DMUs by analyzing the impact of contextual variables. Slack-based measure is suggested to enable
such illustration.

Moreover, contextual variables may have a direct influence on both the inputs and the outputs simultaneously.
T-ratio, a statistical analysis, is induced to identify whether the influences exist and how they act. Multi-
collinearity among contextual variables is also identified in the regression analysis. Based on the results of
regression analysis and SFA, two factors are defined to represent the composition of various impacts, where
the impact factor depicts the effect of contextual variables and the error factor illustrates the effect of random
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Table 8. Results of different adjustments (α = 0.5).

DMUs
Input

Ranking
Output

Ranking
Input and output

Ranking
Initial

Ranking
adjustments adjustments adjustments results

1 0.8194 4 1.0000 1 0.4994 8 1.0000 1
2 1.0000 1 1.0000 1 1.0000 1 0.5544 5
3 0.6600 5 0.6787 5 0.6798 4 0.5921 4
4 0.8245 3 1.0000 1 0.8023 3 0.7346 3
5 1.0000 1 1.0000 1 1.0000 1 1.0000 1
6 0.5444 7 0.5528 7 0.5364 6 0.4373 7
7 0.5731 6 0.6139 6 0.5578 5 0.5184 6
8 0.3978 13 0.4392 11 0.4355 12 0.3139 11
9 0.4833 8 0.4276 12 0.5286 7 0.2430 14
10 0.3980 12 0.3995 13 0.4909 9 0.2801 12
11 0.4467 10 0.4777 9 0.4331 13 0.4230 8
12 0.4581 9 0.4393 10 0.4394 11 0.2569 13
13 0.4434 11 0.4817 8 0.4899 10 0.3846 9
14 0.3326 15 0.3399 15 0.3833 14 0.2216 16
15 0.1536 24 0.1498 26 0.1557 26 0.1080 28
16 0.3722 14 0.3891 14 0.3567 15 0.3327 10
17 0.1419 25 0.1539 25 0.1633 24 0.1326 22
18 0.2772 17 0.2961 16 0.2779 17 0.2298 15
19 0.1571 23 0.1667 23 0.1835 21 0.1221 23
20 0.2814 16 0.2886 17 0.2801 16 0.1956 17
21 0.1733 20 0.1884 20 0.1884 19 0.1771 20
22 0.1882 19 0.2018 19 0.2019 18 0.1448 21
23 0.0274 30 0.0306 30 0.0308 30 0.0277 30
24 0.1707 21 0.1818 21 0.1788 22 0.1776 18
25 0.1115 28 0.1222 28 0.1269 28 0.0995 29
26 0.1412 26 0.1548 24 0.1582 25 0.1158 25
27 0.1577 22 0.1687 22 0.1641 23 0.1177 24
28 0.1211 27 0.1295 27 0.1292 27 0.1141 26
29 0.1097 29 0.1203 29 0.1166 29 0.1081 27
30 0.1904 18 0.2062 18 0.1861 20 0.1776 19

Mean. 0.3719 – 0.3933 – 0.3725 – 0.3114 –
StDev. 0.2696 – 0.2909 – 0.2545 – 0.2527 –
Max. 1.0000 – 1.0000 – 1.0000 – 1.0000 –
Min. 0.0274 – 0.0306 – 0.0308 – 0.0277 –

errors. Original inputs and outputs can be moderately adjusted to depict contextual, individual, and statistical
error inefficiencies respectively.

Further, we propose modified slack-based DEA models to uncover inner relationships of the three stages by
incorporating DEA and regression method. An integrated slack-based DEA model is also presented to combine
the three stages by presetting a designated parameter. An empirical application to universities in China is
reported to justify the feasibility of the models.

Finally, this research addresses a larger concern about the extended role of efficiency evaluation. Our study
points to the important and expanding role of the adjustments of inputs and outputs in the contextual variable
domain. Moreover, feasible methods in the integrated contexts of DEA, and statistical and stochastic optimiza-
tion theories must be appropriately selected and modified to accomplish this role. The encouraging feedback
from this case study, together with the applicability of our efficiency results, leads us to believe that these results
are helpful across the full range of decision contexts.
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